KIT | KIT-Bibliothek | Impressum | Datenschutz

Microstructural evolution and mechanical properties of CuSn5 processed by HPT followed by short-time annealing

Dai, Yuting 1; Ahmadian, Ali 1,2; Petry, Oliver 3; Sos, Marcel; Schwotzer, Matthias ORCID iD icon 4; Durst, Karsten; Kübel, Christian ORCID iD icon 1,2,3
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)
3 Helmholtz-Institut Ulm (HIU), Karlsruher Institut für Technologie (KIT)
4 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)

Abstract:

Nanocrystalline and ultrafine-grained metallic materials have received considerable attention in recent years due to their ultrahigh strength and unique mechanical properties. However, pure nanocrystalline metals exhibit thermal instability, making them prone to grain growth during thermal treatment and usage, which in turn reduces hardness and strength, and compromises their structural integrity. To improve the thermal stability of these materials, grain boundary segregation of solute elements has emerged as a promising approach. In this study, we used advanced scanning transmission electron microscopy to investigate the grain growth mechanisms of ultrafine-grained Cu-5wt.% Sn annealed at temperatures up to 350°C. Our results indicate that Sn preferentially segregates at general high-angle GBs, while low-angle and coincidence site lattice GBs do not exhibit detectable enrichment of Sn. The segregation at these high angle GBs and GB relaxation explains the increased Vickers hardness of the Cu-Sn alloy during annealing.


Postprint §
DOI: 10.5445/IR/1000185619
Veröffentlicht am 14.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Helmholtz-Institut Ulm (HIU)
Institut für Funktionelle Grenzflächen (IFG)
Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2025
Sprache Englisch
Identifikator ISSN: 0264-1275
KITopen-ID: 1000185619
HGF-Programm 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Erschienen in Materials & Design
Verlag Elsevier
Band 259
Seiten 114897
Nachgewiesen in Dimensions
Scopus
Web of Science
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page