KIT | KIT-Bibliothek | Impressum | Datenschutz

Explainable Artificial Intelligence for Biomedical Data: A Systematic Mapping Study

Gansäuer, Robin; Weinreuter, Maria; Ben Aoun, Hichem; Pietsch, Felix

Abstract (englisch):

Background: Artificial intelligence (AI) in biomedicine must be explainable to ensure
trust, accountability, and safety. However, most explainable AI (XAI) approaches are
evaluated primarily on technical grounds, with limited systematic assessment and
reliable metrics, hindering translation into practice.
Objective: This study aims to identify and categorize XAI systems for biomedical data
that fulfill criteria for evaluation readiness, defined by output demonstration, input data
availability, and practical applicability.
Methods: A systematic mapping study was conducted using a Scopus search from 2020
to 2025, retrieving 1,178 journal and conference papers. Restricting to 2023 to 2025
yielded 780. Screening identified 27 systems meeting evaluation readiness criteria,
classified by AI evaluation, AI method, agnosticism, data type, input samples, medical
field, medical use case, scope, stage, XAI evaluation, XAI method, and XAI technique.
Results: Imaging-oriented XAI systems dominate, with 63% (n = 17) using radiology or
histopathology pipelines and visual heatmaps such as Grad-CAM and saliency maps.
Tabular (n = 4) and graph-based (n = 3) approaches are less common. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000185402
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Buchaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000185620
Erschienen in cii Student Papers 2025. Ed.: A. Sunyaev
Verlag Karlsruher Institut für Technologie (KIT)
Seiten 24-41
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page