KIT | KIT-Bibliothek | Impressum | Datenschutz

2.5D Object Detection for Intelligent Roadside Infrastructure

Polley, Nikolai ORCID iD icon 1,2; Boualili, Yacin 1,2; Mütsch, Ferdinand 1; Zipfl, Maximilian ORCID iD icon 1,3; Fleck, Tobias 1,3; Zöllner, J. Marius 1,2,3
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)
2 Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL), Karlsruher Institut für Technologie (KIT)
3 FZI Forschungszentrum Informatik (FZI)

Abstract:

On-board sensors of autonomous vehicles can be obstructed, occluded, or limited by restricted fields of view, complicating downstream driving decisions. Intelligent roadside infrastructure perception systems, installed at elevated vantage points, can provide wide, unobstructed intersection coverage, supplying a complementary information stream to autonomous vehicles via vehicle-to-everything (V2X) communication. However, conventional 3D object-detection algorithms struggle to generalize to the domain shift introduced by top-down perspectives and steep camera angles. We introduce a 2.5D object detection framework, tailored specifically for roadside infrastructure cameras. Unlike conventional 2D or 3D object detection, we employ a prediction approach to detect ground planes of vehicles as parallelograms in the image frame. The parallelogram preserves the planar position, size, and orientation of objects while omitting their height, which is unnecessary for most downstream applications. For training, a mix of real-world and synthetically generated scenes is leveraged. We evaluate generalizability on a held-out camera viewpoint and on adverse-weather scenarios absent from the training set. ... mehr


Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 19.11.2025
Sprache Englisch
Identifikator KITopen-ID: 1000185688
HGF-Programm 46.23.03 (POF IV, LK 01) Engineering Security for Mobility Systems
Verlag arxiv
Umfang 8 S.
Bemerkung zur Veröffentlichung Paper has been accepted and will be presented at IEEE ITSC 2025 in november, Proceedings will probably published in january.

Open Acces through arxiv.
Vorab online veröffentlicht am 04.07.2025
Schlagwörter Computer Vision and Pattern Recognition (cs.CV), Machine Learning (cs.LG)
Nachgewiesen in arXiv
Dimensions
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page