

Validation of SERPENT2/SUBCHANFLOW using Beginning-of-Transient Experimental Data from Rostov-2 VVER-1000 Core at 36.37 EFPD

Nuri Beydogan, Victor Hugo Sanchez-Espinoza

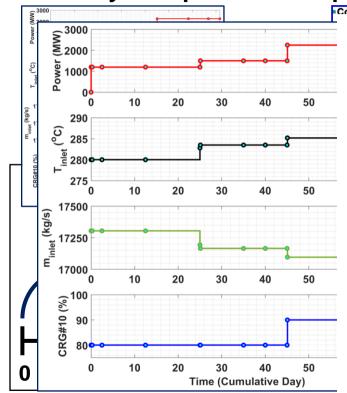
Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology Hermann-von Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen

Institute for Neutron Physics and Reactor Technology

Outline

- Introduction
- > Rostov-2 VVER-1000 Core: Reactivity Compensation Experiment
- Analysis Approach and Modelling
- Discussion of Results
- Validation of SERPENT2/SUBCHANFLOW
- ➤ Summary & Conclusion

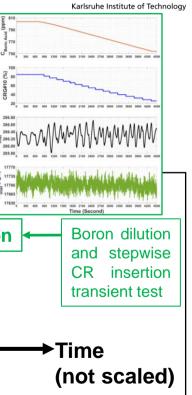
Introduction


- ➤ Pin and subchannel level depletion simulations using SERPENT2/SUBCHANFLOW*
 - Update of inputs
 - Employed the definition of "cumulative total days" in benchmark** for burnup steps
 - A comprehensive <u>code-to-code comparisons</u> and evaluations of the results

- Core Characterization at the <u>beginning-of-transient</u>
 - Utilization of burnup-dependent core composition
 - Validation includes both neutronic and thermal-hydraulic comparisons with measured data
 - Assess model accuracy and predictive capability

^{*} Diego Ernesto Ferraro. 2021. Monte Carlo-based multi-physics analysis for transients in Light Water Reactors. PhD thesis, Karlsruhe Institute of Technologie (KIT), Karlsruhe, GERMANY
** M. Avramova, K. Ivanov, P. Rouxelin, Y. Kutllu, K. Velkov, S. Nikonov, P. Gordienko, B. Shumskiy and O. Kavun, "Benchmark on reactivity compensation of boron dilution by stepwise
insertion of control rod cluster into the VVER-1000 core, Specifications and Support Data, Version 2.0," OECD/NEA. NEA/EGMPEBV/DOC(2024), 2024.

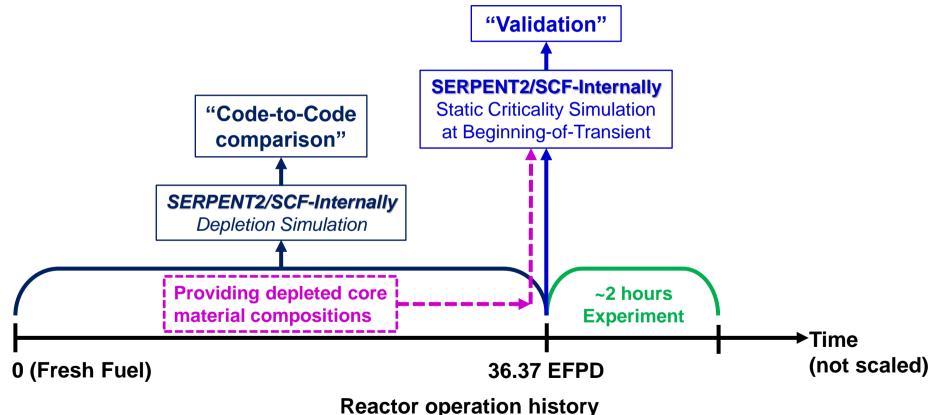
Rostov-2 VVER-1000 Core: Reactivity Compensation Experiment



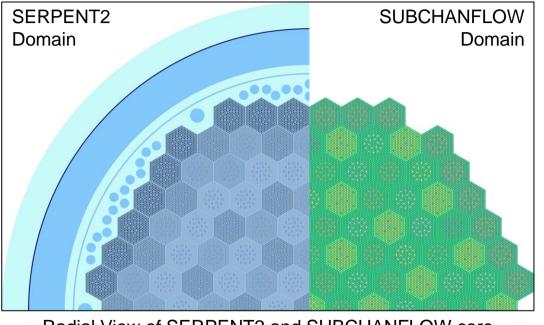
- \bullet Average Core Burnup level at ~1.45 MWd/kg $_{\! \cup}$
- Critical control rod position: 10 CR group banks located in 61 FAs
 - CR Groups 1-9: ARO
 - CR Group 10: 84.43% ARO (15.17 %ARI)
- Boric acid concentration: 4.6 g/kg (803.5 ppm)

TH-Parameters at Transient start

- Power: 2097.6 MW (69.92% of nominal Power)
- Core inlet temperature: 559.15 K
- · Primary system pressure: 15.7 MPa
- Loops mass flow rate (100%): 18262.78 kg/s
 - o Core mass flow rate (97%) : 17714.89 kg/s
 - Bypass mass flow rate (3 %): 547.89 kg/s


Reactor operation history

Analysis Approach and Modelling

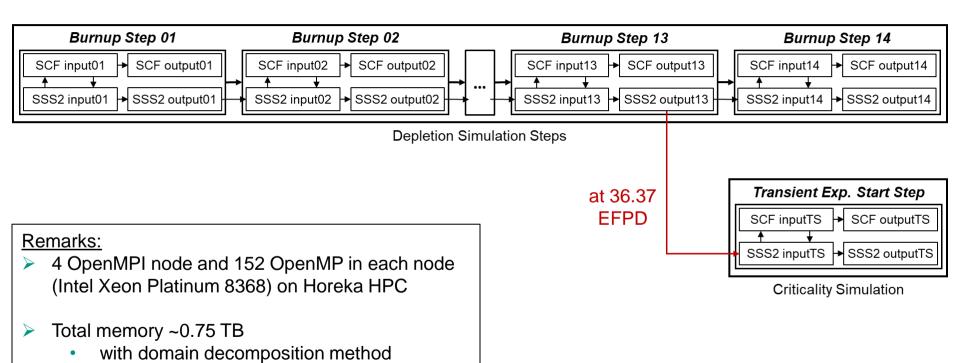

Analysis Approach

Core Models

- ➤ 53953 independent fuel cells definitions
- 'Explicit' modelling
- > Xenon is poisoning
- ➤ 15 axial depletion division
- > 762,840 depletion zones

Radial View of SERPENT2 and SUBCHANFLOW core models

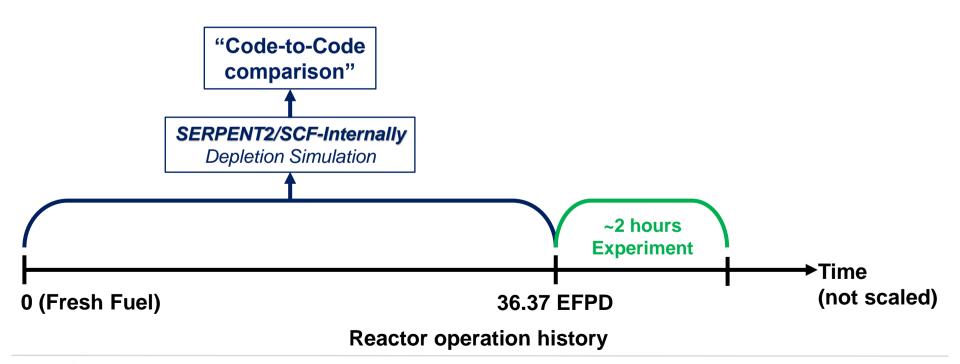
Axially 30 interface nodes to exchange feedback



- ➤ 53953 subchannels and fuel rods
- Radially: 10+2 nodes for fuel and clad
- VVER-specific thermo-physical properties

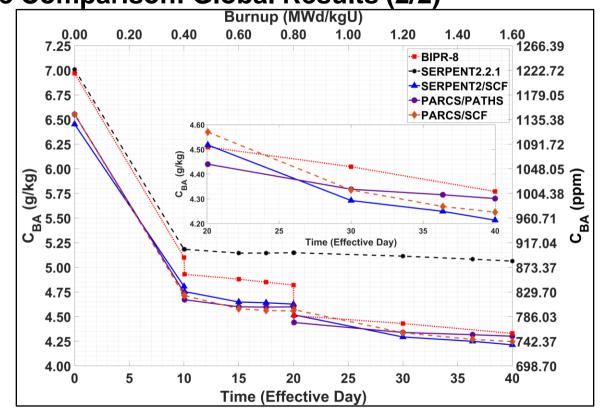
Solution Methodology

Total sim. time for depletion ~408 hours.



Discussion of Results

Analysis Approach


Code-to-Code Comparison: Global Results (1/2)

Comparison of the Depletion Results

	Time Steps		Benchmark		High-Fidelity	3D Nodal Level	
Step	Effective Full Power Days	Cumulative Total Days	BIPR-8 The Calculated Total Core Burnup (MW _a /kg _u)	SERPENT2.2.1 Burnup Estimates (MW _d /kg _u)	<u>SERPENT2/SCF</u> Burnup Prediction (MW _e /kg ₁₁)	PARCS/PATHS Burnup Prediction (MW _a /kg _u)	PARCS/SCF Burnup Prediction (MW _d /kg _u)
1	0.0	0.0	n/a	0.0	0.0	0.0	0.0
2	0.010	0.025	n/a	n/a	9.97E-07	0.0	0.0
3	0.100	0.250	n/a	3.99E-03	3.59E-03	4.0E-03	0.0
4	1.000	2.500	n/a	3.99E-02	3.95E-01	3.9E-01	3.9E-01
5	5.000	12.50	n/a	0.199	0.199	0.199	0.199
6	10.00	25.00	0.40	0.399	0.398	0.398	0.398
7	10.05	25.10	0.40	0.401	0.400	0.400	0.400
8	15.00	35.00	0.60	0.598	0.597	0.597	0.597
9	17.50	40.00	0.70	0.698	0.697	0.697	0.697
10	20.00	45.00	0.80	0.797	0.797	0.797	0.797
11	20.05	45.07	0.80	0.799	0.798	0.798	0.798
12	30.00	58.34	1.20	1.196	1.195	1.195	1.195
13	36.37	66.83	n/a	1.450	1.449	1.449	1.449
14	40.00	71.67	1.60	1.595	1.594	1.594	1.594

Change of Critical Boron Concentration

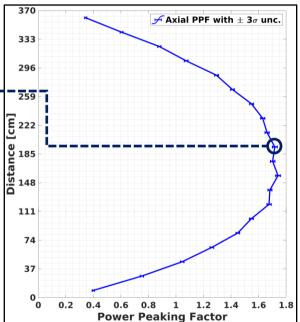

Comparison of FA Level Power Peaking Factors

	•		•	
T _{eff} ,	BIPR-8	SSS2/SCF	PARCS/PATHS	PARCS/SCF
eff. day	K _a / NK	K _a / NK	K _α / NK	K _a / NK
0.00	-	-	-	-
10.00	<i>1.27 </i> 010	1.27 / 010	1.29 / 010	1.28 / 010
10.05	<i>1.26 </i> 154	1.27 / 154	1.27 / 154	1.28 / 154
15.00	<i>1.25 </i> 137	1.25 / 137	1.27 / 137	1.26 / 137
17.50	<i>1.25 </i> 154	1.24 / 154	1.26 / 154	1.27 / 154
20.00	1.24 / 027	1.23 / 027	1.26 / 027	1.27 / 027
20.05	1.21 / 137	1.18 / 137	1.23 / 137	1.25 / 137
30.00	1.20/114	1.15 / 114	1.21 / 114	1.20 / 114
40.00	<i>1.21 </i> 110	1.24 / 110	1.18 / 110	1.19 / 110

Where,

K_a: Value of the relative power of the FA, Rel. units.

NK: FA number


Radial View of FA Level PPFs predicted by SSS2/SCF at 10 EFPD

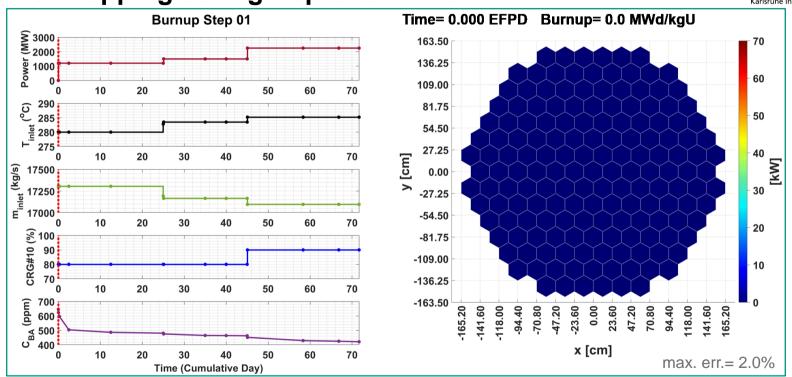
Code-to-Code Comparison: Neutronic Results (2/2)

Comparison of FA Axial Level PPFs

		· · ·		
T _{eff} , eff. day	BIPR-8 K _v / NK-NZ	SSS2/SCF K _v / NK-NZ	PARCS/PATHS K _v / NK-NZ (20 Nodes)	PARCS/SCF K _v / NK-NZ (20 Nodes)
0.00	-	-	,	
10.00	<i>1.74</i> / 010-13	1.73 / 010-11 <	ⁱ 1.52 / 010-12	1.52 / 010-12
10.05	<i>1.72</i> / 129-12	1.71 / 129-10	1.08 / 129-11	1.08 / 129-11
15.00	<i>1.71 </i> 114-12	<i>1.69 /</i> 114-10	1.26 / 114-11	1.25 / 114-11
17.50	<i>1.70 </i> 010-12	1.67 / 010-10	1.56 / 010-11	1.57 / 010-11
20.00	<i>1.69 </i> 154-12	<i>1.65</i> / 154-10	1.57 / 154-11	1.57 / 154-11
20.05	<i>1.63</i> / 012-12	1.56 / 012-10	1.43 / 012-11	1.47 / 012-11
30.00	<i>1.60</i> / 010-12	<i>1.57</i> / 010-10	1.59 / 010-11	1.61 / 010-11
40.00	<i>1.59</i> / 080-13	1.63 / 080-11	1.35 / 080-12	1.33 / 080-12
	-	·	-	

FA010 Axial PPF Distribution at 10 EFPD

Where,

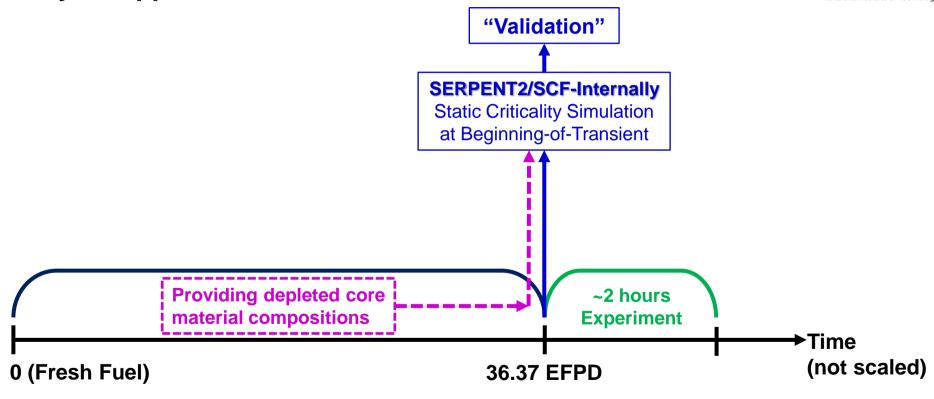

K_v: Maximum value of the PPF in the core volume, Rel. units.

NK: FA number

NZ: FA axial level (+2 refl. level for SERPENT2, +1 refl. level for PARCS)

Pin Power Mapping during Depletion Time

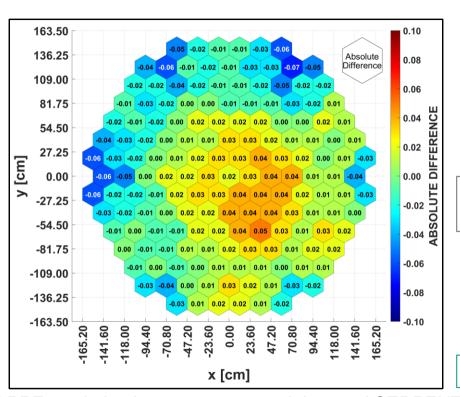
Estimation of the change in radial pin level power distributions in the Rostov-2 VVER-1000 core during depletion time by SERPENT2/SUBCHANFLOW



Validation of SERPENT2/SUBCHANFLOW

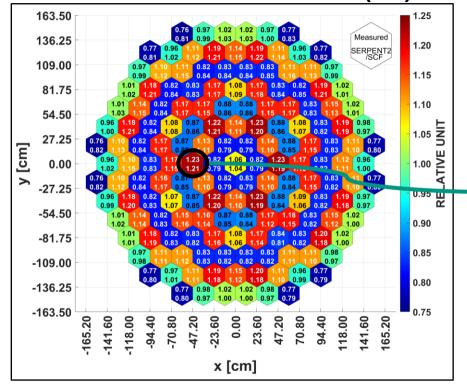
Analysis Approach

INR-RPD Group

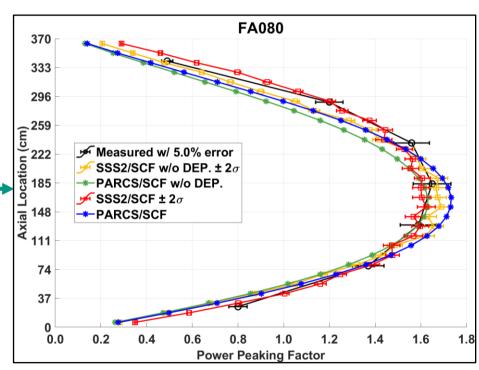


Reactor operation history

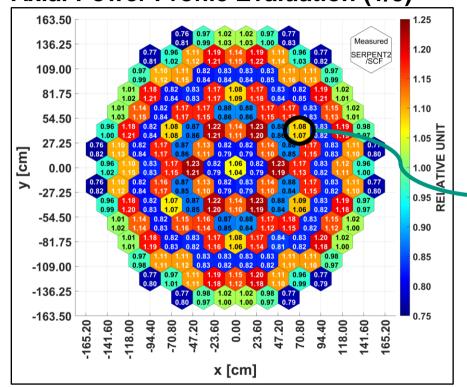
FA-Level Neutronic Assessment

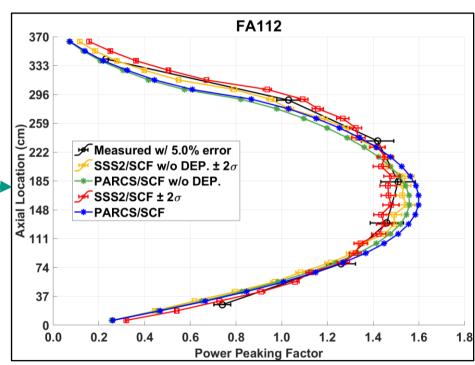

(difference= measured-calculated)

Max. difference ~7%

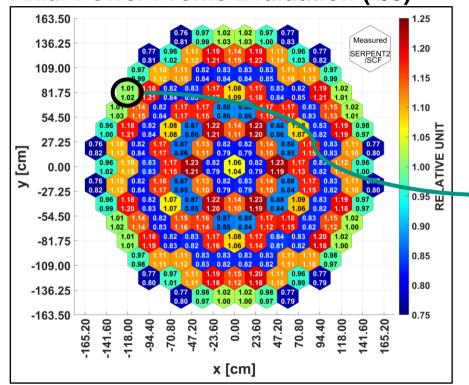

FA level PPFs variation between measured data and SERPENT2/SCF at the beginning-of-transient experiment at 36.37 EFPD

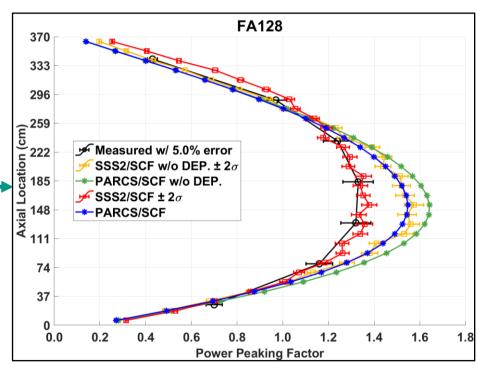
FA-Level Neutronic Assessment Axial Power Profile Evaluation (1/3)


FA-Level Power Peaking Factors

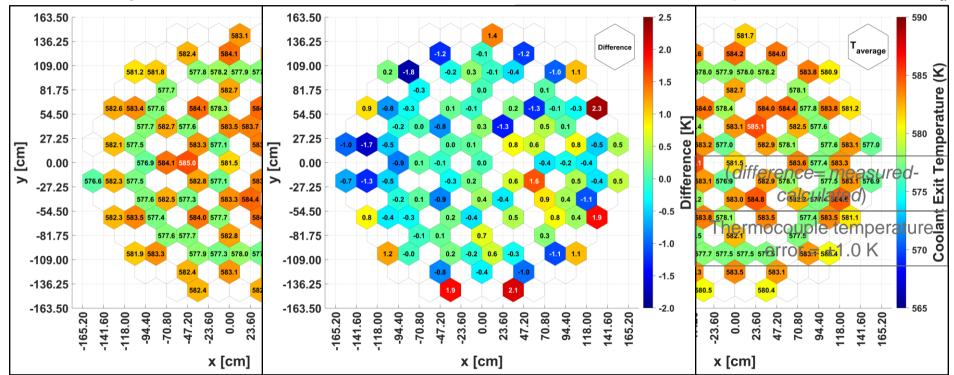

FA080 (highest power FA) axial PPFs

FA-Level Neutronic Assessment Axial Power Profile Evaluation (1/3)


FA-Level Power Peaking Factors

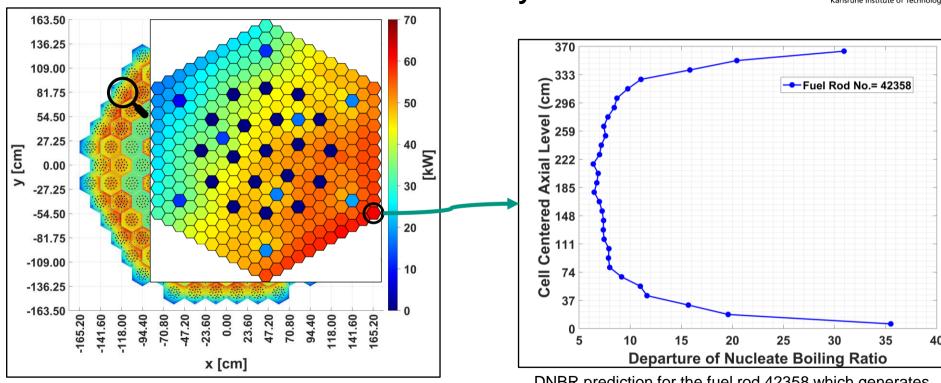

FA112 (CR partly inserted FA) axial PPFs

FA-Level Neutronic Assessment Axial Power Profile Evaluation (1/3)


FA-Level Power Peaking Factors

FA128 (including highest power pin) axial PPFs

Thermal-Hydraulic Assessment Based on Measured Outlet Temperature



Measured coolant temperature of temperature and the construction of the construction o

Prediction of Local Parameter with Safety Criteria

SERPENT2/SCF Pin-level power distribution in the core with the location of the pin with the highest power

DNBR prediction for the fuel rod 42358 which generates highest power in the core

Summary & Conclusion

- ➤ High-fidelity core analysis was conducted using the coupled SERPENT2/SUBCHANFLOW for the Rostov-2 VVER-1000 core.
 - The study features the first-of-its-kind full-core simulation at the pin and subchannel level for a depleted VVER-1000 core.
 - The core state at 36.37 EFPD was characterized using burnup-dependent isotopic composition derived from internal depletion simulations.
- ➤ A good level of agreement was observed between the measured data and the predictions obtained from SSS2/SCF.
- > Safety-relevant parameters, such as pin-level power and DNBR, were assessed and found to remain within acceptable margins.
- ➤ Results demonstrate the suitability of SERPENT2/SUBCHANFLOW coupling for core characterization and safety-oriented analyses in VVER-type reactors.

Thank you for your attention!

nuri.beydogan@kit.edu