
Experimental and Numerical Investigations of a 3D-printed Monolithic Channel Inconel Receiver in Hot Sodium up to 500°C

Alexandru Onea, Joachim Fuchs, Alfons Weisenburger, Steffen Antusch, Sebastian Ruck Karlsruhe Institute of Technology

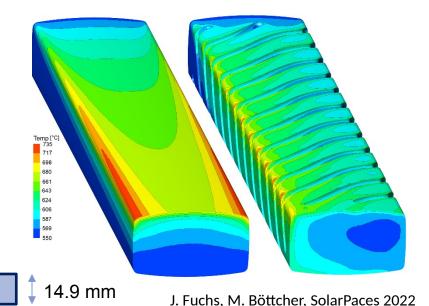
Institute for Neutron Physics and Reactor Technology

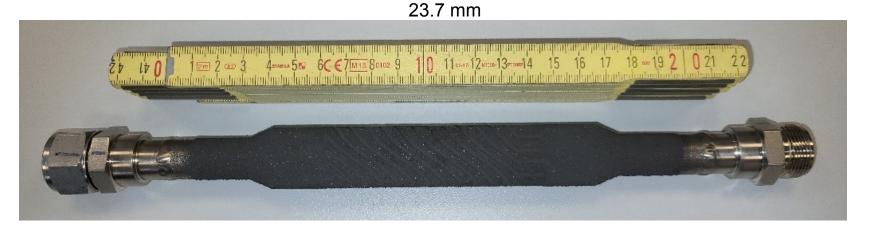
Introduction

- R&D activities at KIT-INR in the CSP field:
 - Experimental and numerical investigations of heat storage solutions (TES);
 - Experimental and numerical investigations of instrumentation (flow sensors 1) and components (receiver 2) in hot sodium;
 - Development and qualification of new materials for HT receivers.
- Present study (ongoing investigation) focuses on temperature measurements and test of 3D-printed monolithic channel³ up to 500°C:
 - Gain of first operational experience in the general usage of a monolith receiver;
 - Validation of CFD code.
- SOLTEC-2⁴: 1000 K sodium loop developed at KIT, Germany for component and material investigations and qualifications for high temperature applications in the CSP field.

⁴ A. Onea, W. Hering, S. Ulrich et al., SolarPaces 2020

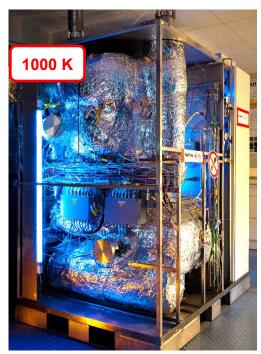
¹ N. Krauter, A. Onea, G. Gerbeth et al., JNERS 9, 2023

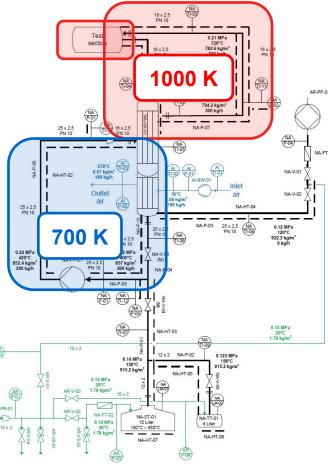

² J. Fuchs, A. Onea, M. Böttcher, SolarPaces 2025


³ S. Guth, T. Babinský, S. Antusch, et al., AEM 25 (16), 2023

3D-printed prototype Inconel monolith channel

- Task: receiver material for high flux CSP;
- Procedure: Selective Laser Melting method, as well as the Cold Spray metal powder deposition;
- Material: Inconel 718 (powder);
- Dimensions; 14.9 x 23.7 x 200 mm³;
- Inner and outer spiral rectangular channels: 2 mm;
- Cross-section rectangular duct:

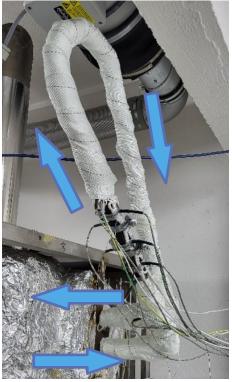



SOLTEC – SOdium Loop to TEst materials and Corrosion

SOLTEC-2

- Na mass flow rate: 300 kg/h
 - Velocity TS < 4.8 m/s (Re = 28600, 300°C);
- Temperature:
 - Cold loop 450°C;
 - Hot loop 720°C;
- Max. pressure: 3.5 bar g
- Dimensions: 1.2×1.6×1.9 m³
- Na inventory: ~ 14 L
- Main components:
 - 3kW Na-pump (permanent magnet pump)
 - 7.5 kW Na-air HX & 27 kW Na-Na heat recuperator,
 - Storage tank (15 L) = expansion tank (particular feature)
 - 6.7 kW high temperature heater

P&I diagram


Integration of the channel receiver in SOLTEC-2

- Test of the prototype receiver in the atmosphere;
- Area front side: 30.8 cm2
- Heating wire on monolith channel (one side): 75 W -> q = 24.3 kW / m2
- U-form pipeline and straight pipeline: Inconel 718, also heated.
- Pipeline ID: 11 mm.

Instrumentation of the channel receiver

T 8: outlet receiver, below

T 7: receiver channel, front side

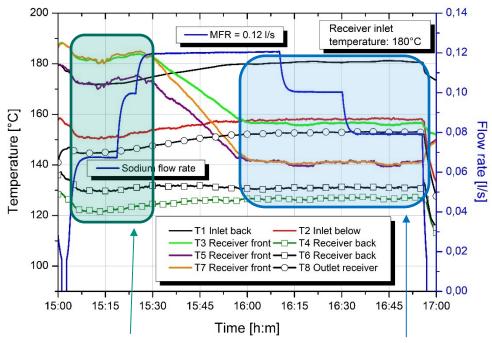
T 6: receiver channel, back side

T 5: receiver channel, front side

T 4: receiver channel, back side

T 3: receiver channel, front side

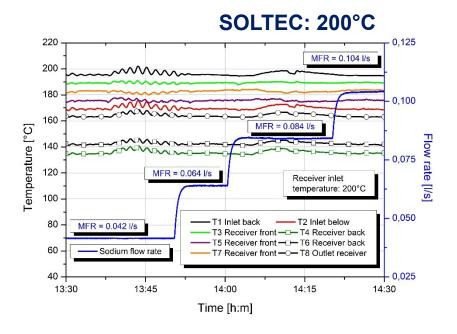
T 2: inlet pipe, below

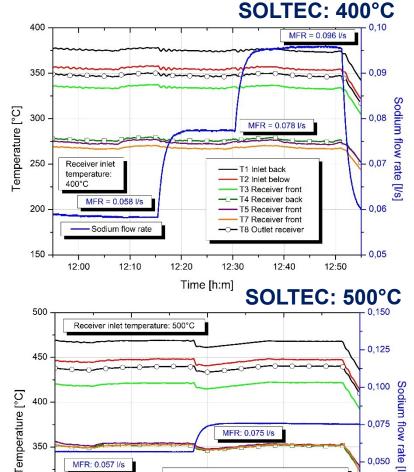

T 1: inlet pipe, back side

Experimental data: influence of the heater

- Average data monolith rectangular channel:
 - Re (MFR = 0.12 l/s): 14295
 - Vel (MFR = 0.12 l/s): 0.46 m/s
- Change of heat flux applied on the front side: no significant influence on the temperature distribution on the back side of the monolith channel;
- Change of sodium flow rate: no significant impact on the temperature distribution in the receiver;

Heater receiver: 220°C Heater receiver: 180°C


- Temperature oscillations are due to the oscillations of the high temperature heater in the SOLTEC facility.
- Even at max. power of the heating wire, the temperature on the front side of the receiver < 200°C.</p>


Experimental data: influence of flow rate

Channel heater set to 180°C

- Reynolds number: 8733 21834
- Velocities: 0.44 1.1 m/s
- Variation of the sodium flow rate: no significant influence on the temperature distribution on the channel.

0.050

0,025

0,000

17:45

T2 Inlet below

T3 Receiver front - T4 Receiver back

T7 Receiver front - T8 Outlet receiver

17:30

17:15

Time [h:m]

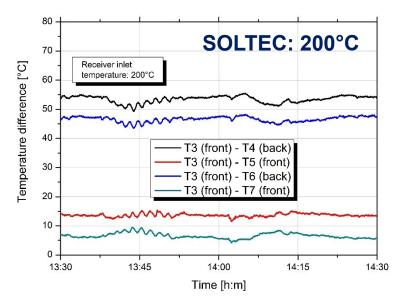
T5 Receiver front

MFR: 0.057 l/s

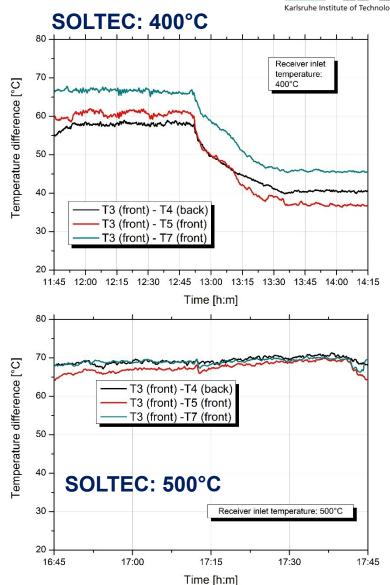
300

16:45

Sodium flow rate


17:00

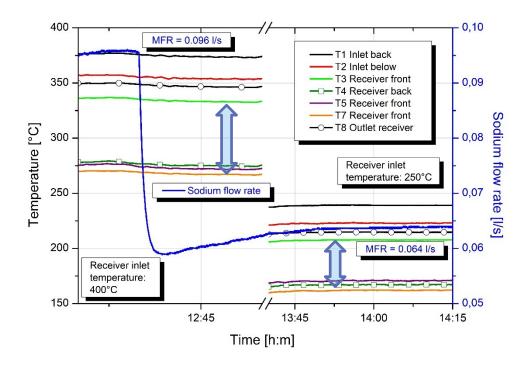
Temperature difference on the rectangular


channel

Karlsruhe Institute of Technology

Temperature difference on the front and back side of the receiver channel.

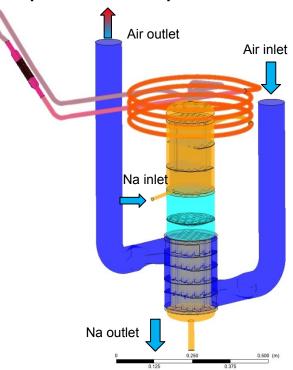
- Significant influence of the heater on the front side of the receiver on the temperature distribution in the front side for temperatures ≤ 200°C.
- The influence of the lateral heater diminishes at inlet temperatures > 200°C.



Influence of inlet temperature

- Inlet temperature: 250°C:
 - ΔT inlet-outlet (T3-T7): 45.6°C
- Inlet temperature: 400°C:
 - ΔT inlet-outlet (T3-T7): 66.1°C
- Inlet temperature: 500°C:
 - ΔT inlet-outlet (T3-T7): 69.2°C
 - ΔT inlet-outlet (CFD): 69.4°C
- When the influence of the side heater is negligible: almost constant temperature distribution along the flow direction and in azimuthal direction.

CFD Model



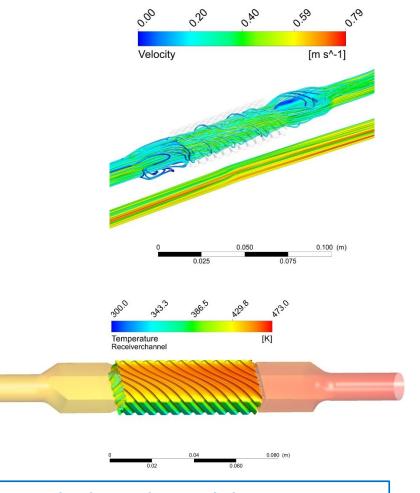
- Pointwise grid: 41.2 mio. cells (49% hexagonal, 45% tetrahedral, 3% pyramids, 3% prisms); y+ < 1 (regions of interest);</p>
- ANSYS CFX 2024: Conjugate heat transfer model (Na, air, steel, Inconel 718);
- Air, Na, Inconel properties implemented as temperature dependent;
- Heat transfer model: thermal energy;
- TM: ω-RS (Na) and SST (air);
- Turbulent Prandtl number:

$$Pr_{turb} (Air) = 0.85$$

 $Pr^{-1}tb(Na)=0.014 Re^{0.045} Pr^{0.2} \{1-exp[-1/(0.014 Re^{0.045} Pr^{0.2})]\}$ [Aoki, 1963]

Thermal losses based on exp. data

Validation of the numerical model


Location	T _{exp} [°C]	T _{CFD} [°C]	Absolute difference [°C]	δ [%]
T 1	195.1	192.2	2.9	1.5
T 2	169.4	187.3	17.9	10.5
T 3	189.5	186.4	3.1	1.6
T 4	134.9	155	20.1	14.8
T 5	176	185.7	9.7	5.5
T 7	183.3	379.7	6.6	3.6

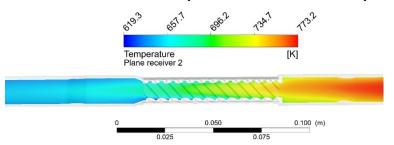
Temp. inlet receiver: 200°C

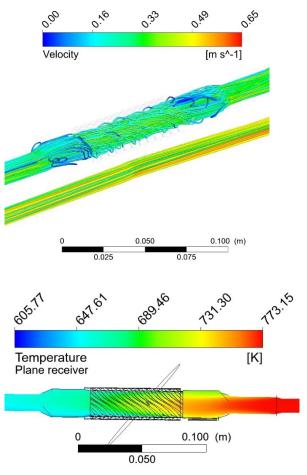
Temp. heater receiver front side: 180°C

 \dot{m}_{Na} = 194 kg/h

Mean inlet temperature heated part: 191.8°C Mean outlet temperature heated part: 174.6°C

Good agreement obtained between the numerical results and the experimental data.

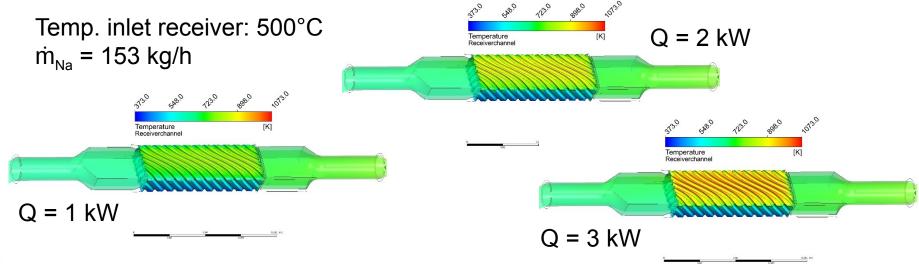



Location	T _{exp} [°C]	T _{CFD} [°C]	Absolute difference [°C]	δ [%]
T1	469.4	462.2	7.2	1.5
T 2	448.3	438	10.3	2.3
T 3	422	429.1	7.1	1.7
T 4	353	352.3	0.2	0.7
T 5	355	350.6	4.4	1.2
T 6	395	375	20	5.1
T 7	353	379.7	26.7	7.6

Temp. inlet receiver: 500°C

 \dot{m}_{Na} = 153 kg/h

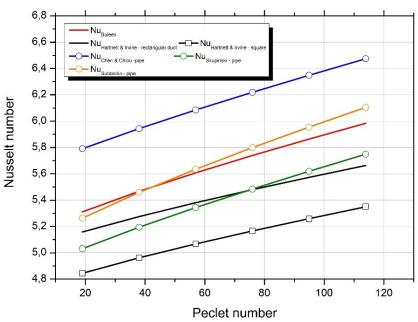
Mean inlet temperature heated part: 446.1°C Mean outlet temperature heated part: 376.7°C


Good agreement obtained between the numerical results and the experimental data.

Numerical investigations

Location	T _{exp} [°C]	T _{cfd} [°C]	T _{CFD} [°C] Q = 1 kW q = 439 kW/m²	T _{CFD} [°C] Q = 2 kW q = 877 kW/m²	T _{CFD} [°C] Q = 3 kW q = 1316 kW/m²
T 1	469.4	462.2	462.2	462.2	462.2
T 2	448.3	438	438	438	438
T 3 front	422	429.1	429.1	429.1	429.1
T 4 back	353	352.3	354.1	356.3	358.5
T 5 front	355	350.6	556	647.9	730.1
T 6 back	395	375	391.5	400.2	409.1
T 7 front	353	379.7	405.6	420.5	435.1
T inlet rec		446.1	448.4	449.5	450.6
T out rec		376.7	399.3	411.9	424.4
ΔT in-out		69.4	49.1	37.6	26.2

Nusselt number


Rectangular ducts:

Hartnett & Irvine (1957):

 $Nu_{H\&I} = 2/3 Nu_{slug} + 0.015 Pe^{0.8}, Nu_{slug} = 7.5$

Buleev (1959):

 $Nu_B = 5.1 + 0.02 Pe^{0.8}$

Nusselt number	Re=11439	Re=25966
Peclet number	44.7	101.5
Buleev (1959)	5.518	5.9
Hartnett & Irvine (1957)	5.314	5.6

Conclusions

- Successfull experimental investigations of a 3D-printed Inconel 718 prototype monolith rectangular duct with spiral channels up to 500°C performed in the SOLTEC-2 facility;
- Good tightness of the 3D-printed Inconel prototype;
- Successful validation of the numerical model against experimental data. Good agreement obtained for the temperature field;
- Outlook:
 - Further tests planned with higher power heater and at temperatures above 500°C;
 - Prototypical receiver with larger dimensions for the heat transfer area planned.

Thank you for your attention!

Alexandru Onea alexandru.onea@kit.edu Tel.: +49 (0)721 608 22949

