KIT | KIT-Bibliothek | Impressum | Datenschutz

Conditioning Large Language Models on Legal Systems? Detecting Punishable Hate Speech

Ludwig, Florian; Zesch, Torsten; Zufall, Frederike ORCID iD icon 1
1 Institut für Informations- und Wirtschaftsrecht (IIWR), Karlsruher Institut für Technologie (KIT)

Abstract:

The assessment of legal problems requires the consideration of a specific legal system and its levels of abstraction, from constitutional law to statutory law to case law. The extent to which Large Language Models (LLMs) internalize such legal systems is unknown. In this paper, we examine different approaches to condition LLMs at multiple levels of abstraction in legal systems to detect potentially punishable hate speech. We focus on the task of classifying whether a specific social media posts falls under the criminal offense of incitement to hatred as prescribed by the German Criminal Code. The results show that there is still a significant performance gap between models and legal experts in the legal assessment of hate speech, regardless of the level of abstraction with which the models were conditioned. Our analysis revealed, that models conditioned on abstract legal knowledge lacked deep task understanding, often contradicting themselves and hallucinating answers, while models using concrete legal knowledge performed reasonably well in identifying relevant target groups, but struggled with classifying target conducts.


Verlagsausgabe §
DOI: 10.5445/IR/1000185712
Veröffentlicht am 14.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Informations- und Wirtschaftsrecht (IIWR)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 08.09.2025
Sprache Englisch
Identifikator KITopen-ID: 1000185712
Erschienen in Proceedings of the 21st Conference on Natural Language Processing (KONVENS 2025): Long and Short Papers Hrsg.: Wartena, Christian; Heid, Ulrich
Veranstaltung 21st Conference on Natural Language Processing: Long and Short (2025), Hannover, Deutschland, 10.09.2025 – 12.09.2025
Verlag HsH Applied Academics
Seiten 154–167
Serie Proceedings of the 21st Conference on Natural Language Processing (KONVENS 2025), Volume 1: Long and Short Papers
Externe Relationen Siehe auch
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page