KIT | KIT-Bibliothek | Impressum | Datenschutz

Extended Natural Dataset for Rapid Deep-Learning-Based Optical Measurement of Printed Linear Structures

Polomoshnov, Maxim ORCID iD icon 1; Ashif, Nowab Reza Md 1; Reischl, Markus ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Conventional optical measurement techniques are beneficial in manufacturing processes due to their fast and non-intrusive operation. However, they require sophisticated and expensive equipment as well as increased personnel qualification. While the integration of machine learning contributes to alleviating these requirements, it needs a time-consuming and tedious preparation of training datasets. We introduce a twin concept to conduct rapid measurement of various geometrical properties of printed lines using deep learning. For the first time, a tedious collection and assessment of training data is substituted by synthetic generation of digital samples, which enables flexible, fast, and precise data processing. A full-field analysis of a non-preprocessed image conducted by a neural network facilitates measurement of multiple geometrical properties of an object at once. Corresponding network architecture, workflows, and metrics are outlined. The application area of the concept is demonstrated, but not limited to the field of functional printing. The method can easily be tailored to a wide range of engineering fields.


Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Forschungsdaten
Publikationsdatum 17.10.2025
Erstellungsdatum 10.10.2025
Identifikator DOI: 10.35097/vc8pdwnszx58uknz
KITopen-ID: 1000185721
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Lizenz Creative Commons Namensnennung 4.0 International
Liesmich

The archive includes one dataset of 1200 natural images that was collected to test pre-trained model. Filename structure: [line type, code]-[line width in nm]-[SD in nm]-[pixel density in mpx/mm]. Pixel density is reciprocal to the image resolution. Line type and code structure: [diw/ijp]: direct-written or inkjet-printed line, [first number]: sequence number, [a/b]: printed line or interline space, [last number]: 0 - original image, 1 - vertically mirrored and gamma-corrected image, 2 - horizontally mirrored and gamma-corrected image, 3 - 180° rotated and gamma-corrected image, 4 - solely gamma-corrected image. Gamma correction was randomly set in the range [0.5, 1.5].

Art der Forschungsdaten Dataset
Nachgewiesen in OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 8 – Menschenwürdige Arbeit und WirtschaftswachstumZiel 9 – Industrie, Innovation und InfrastrukturZiel 17 – Partnerschaften zur Erreichung der Ziele
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page