KIT | KIT-Bibliothek | Impressum | Datenschutz

Parameter estimation for SPDEs based on discrete observations in time and space

Hildebrandt, Florian; Trabs, Mathias ORCID iD icon 1
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

Parameter estimation for a parabolic linear stochastic partial differential equation in one space dimension is studied observing the solution field on a discrete grid in a fixed bounded domain. Considering an infill
asymptotic regime in both coordinates, we prove central limit theorems for realized quadratic variations based on temporal and spatial increments as well as on double increments in time and space. Resulting method of mo-
ments estimators for the diffusivity and the volatility parameter inherit the asymptotic normality and can be constructed robustly with respect to the sampling frequencies in time and space. Upper and lower bounds reveal
that in general the optimal convergence rate for joint estimation of the parameters is slower than the usual parametric rate. The theoretical results are illustrated in a numerical example.


Verlagsausgabe §
DOI: 10.5445/IR/1000185725
Veröffentlicht am 14.10.2025
Originalveröffentlichung
DOI: 10.1214/21-EJS1848
Scopus
Zitationen: 30
Web of Science
Zitationen: 30
Dimensions
Zitationen: 41
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.01.2021
Sprache Englisch
Identifikator ISSN: 1935-7524
KITopen-ID: 1000185725
Erschienen in Electronic Journal of Statistics
Verlag Institute of Mathematical Statistics (IMS)
Band 15
Heft 1
Seiten 2716-2776
Nachgewiesen in OpenAlex
Dimensions
Scopus
Web of Science
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page