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Abstract
Beamforming, as introduced in WiFi 5, requires clients to broadcast
observations of their channel characteristics. This introduces a new
information source for WiFi sensing with privacy threats that have
not been explored, so far. With WiFi networks being ubiquitous in
our everyday lives, the impact of unknown privacy threats is likely
severe.

To investigate this concern, we introduce BFId, the first identity
inference attack using BFI-based sensing and evaluate its efficacy
on a novel dataset containing WiFi recordings of 197 individuals.
We show that we can infer the identity of individuals with very
high accuracy, across different walking styles and perspectives,
even with large sample sizes.

CCS Concepts
• Security and privacy → Pseudonymity, anonymity and un-
traceability; Privacy protections.
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1 Introduction
Wireless networks are ubiquitous – at home, at work, in a smart city.
With it comes WiFi sensing, the inference of information about the
networks environment from its signal propagation characteristics.
As signals propagate through matter, they interfere with it – they
are either transmitted, reflected, absorbed, polarized, diffracted,
scattered, or refracted [1]. By comparing an expected signal with
a received signal, the interference can be estimated and used for
error correction of the received data.

However, this estimation inherently contains information about
the environment that the signal traveled through. For example, a
human in the signal’s path will lead to more interference than a
clear path. By carefully analyzing the signal’s interference with the
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environment, even with previous generations of WiFi standards,
certain aspects of the environment can be inferred. For example,
whether humans are present [3], what activities they are doing
[14, 25, 32, 61], or who they are [5, 18, 26, 31, 34, 42, 46, 48, 49,
51–53, 56, 64, 66–68, 71–74, 76, 77, 81]. While much of the extant
literature focuses on the utility of WiFi sensing, the privacy threats
appear clear: with WiFi networks in the most private places and
inferences such as activity recognition shown to have high accuracy,
adversaries may be able to infer very sensitive information. In the
following, we will focus on identity inference as one archetypical
privacy threat.

Identity inference based on WiFi can be done by analyzing dif-
ferent sources, but most prominent in recent years has been the
analysis of Channel State Information (CSI), a built-in part of the
physical layer of WiFi. CSI, however, while being a rich source of
information for many different sensing applications, comes with a
significant drawback: As it was not envisioned to be used outside
of error correction, it is part of the physical layer of WiFi and thus
accessing this information requires modified firmware which is
only readily available for specific hardware [38]. On the one hand,
this makes utilizing WiFi for genuine sensing tasks harder, but on
the other hand, it also decreases the privacy risk associated with
the sensing capabilities of WiFi.

To enable higher bandwidths, WiFi 5 (802.11ac) introduced beam-
forming. Beamforming utilizes similar information on the physical
environment as CSI, but on the sender instead of the receiver side.
In a typical WiFi scenario, clients send Beamforming Feedback Infor-
mation (BFI) back to the access point, a compressed representation
of the current signal characteristics. The key difference to CSI-
based sensing is that BFI is broadcast back to the access point,
unencrypted. Thus, this information can be easily accessed with
common-off-the-shelf hardware, reducing the barrier for develop-
ing and deploying genuine WiFi sensing applications, but at the
same time making it also easier for malicious actors to build and
execute attacks. Furthermore, while CSI-based systems can only
access the perspective from access point to malicious node, for BFI a
single malicious node can record every perspective between access
point and legitimate clients as long as it is anywhere within the
broadcasting range. With the IEEE consortium planning to stan-
dardize WiFi sensing for broad applications in 802.11bf – without
any privacy protections – we feel it necessary to further investi-
gate and highlight the privacy risks associated with WiFi sensing,
particularly those of BFI.

The general ability of CSI-based sensing systems to infer iden-
tities has been documented, and to some extent investigated by
previous work [33, 38]. However, BFI-based sensing has not been
investigated to date. As the transmitted beamforming feedback
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information is a compressed version of CSI at a lower time reso-
lution, one might argue that the sensing capabilities of BFI based
systems are in principle inferior than those of CSI based systems.
However, the compression also inherently represents some form of
pre-processing that filters out noise from the raw signal, possibly
even enhancing the sensing potential. Whether BFI is still a rich
enough source of information for identity inference remains un-
known. At the same time, BFI and CSI have different attack surfaces
with BFI’s broadcasting facilitating trivial collection from various
perspectives (i.e., multiple devices at different positions relative
to the subjects). The impact of this on sensing accuracy remains
unclear. Finally, previous studies of WiFi sensing based identifi-
cation struggle with unrealistically low numbers of participants
(see Table 1). It is therefore unclear how WiFi sensing for identi-
fication scales and to which extent it may be used in real-world
organizational or smart city contexts. In summary, it is unclear
to which extent BFI-based sensing is able to infer the identity of
humans. Thus, and due to its significantly weaker adversary model
and thereby potentially higher privacy risk, we investigate this
privacy threat.

To address these open problems, we introduce BFId, the first
identity inference attack using beamforming feedback informa-
tion. As our goal is not to improve the absolute efficacy of WiFi
sensing based identification, but to investigate and demonstrate
the potential identification threat of BFI, the attack processes raw
WiFi artifacts (BFI or CSI) by utilizing recurrent neural works. This
makes it easier to deploy compared to previous attacks. It also more
accurately approximates the lower bound of the associated privacy
risk. To evaluate the attack’s efficacy, we conducted an extensive
user study in which we recorded WiFi artifacts of 197 participants,
including multiple perspectives and walking styles. These record-
ings include BFI and CSI information simultaneously, which allows
us to directly compare the efficacy of both sensing approaches. We
show that individuals can be recognized with very high accuracy
(99.5% ± 0.38) with our BFI-based attack. Furthermore, BFId is not
only able to infer the identity of individuals, our experiments also
demonstrate that in a direct comparison it is able to do so bet-
ter than CSI-based attacks for large populations. This also holds
for identifying individuals across walking styles, from multiple
different perspectives, and at reduced sample rates. We find that
BFI-based attacks both assume a weaker adversary model—they
do not require specialized hardware and custom firmware—and
achieve higher accuracy compared to CSI-based attacks.

To summarize, our main contributions in this paper are:

• We propose BFId, the first identity inference attack using
beamforming feedback information

• We conduct an extensive user study with WiFi recordings
(BFI &CSI) of 197 participants andmake this dataset available
to interested researchers

• We demonstrate the efficacy of our attack with very high
accuracy and its superior robustness to CSI-based attacks

We thereby highlight the identification threat of beamforming
and advance the understanding of the inherent privacy threats of
WiFi sensing.

The remainder of this paper is organized as follows: We start by
introducing the relevant background knowledge in Section 2 and

highlight key works in the literature in Section 3. We introduce
our attack in Section 4, describe our dataset for evaluation and its
collection in Section 5, and evaluate the attack with the dataset
in Section 6. We discuss the results in Section 7 and conclude the
paper in Section 8.

2 Background
WhileWiFi is most commonly known for its data transmission capa-
bilities, a variety of implicit or explicit properties of these transmis-
sions can also be used to make inferences about the environment.
A signal emitted by a transmitter is subject to interference based on
the surrounding environment, which results in a slightly different
signal received by a receiver compared to the signal the transmitter
emitted. The difference between the emitted and received signal is
the result of the physical properties of the electromagnetic waves
that make up this signal and the matter through that they travel
and interact with. For example, a concrete wall within the signal’s
path will result in parts of the signal being reflected and absorbed,
which means the received signal will be less strong. Similarly, a hu-
man walking through a signal’s path will cause different reflection,
refraction and transmission properties. By analyzing these signal
alterations, it is inherently possible to infer information about the
environment. This information can and is then used to, for exam-
ple monitor service quality or improve the transmission via error
correction. However, the same information can also be used for
sensing applications.

The most straightforward property of WiFi transmissions that
can be used for sensing is the received signal strength (RSS). It can
be accessed from the application layer of a device and allows simple
sensing tasks, such as human detection [3] and localization [70, 79].
At the same time, it’s an aggregation of a variety of information
and is not robust which means it cannot be used for fine-grained
sensing tasks [4].

2.1 Channel State Information (CSI)
To increase transmission rates, WiFi uses multiple subcarriers (i.e.
different frequencies) and divides the data to send over them using
orthogonal frequency-division multiplexing (OFDM). Every sub-
carrier interacts with the environment slightly differently, similar
to how different wavelengths of light interact differently with a
prism. Further, due to the reflection of the radio wave, the signal
will arrive at the receiver through multiple paths, each causing a
unique attenuation and phase shift of the signal [4].

The magnitude and phase shifts of each subcarrier at the receiver
is commonly referred to as channel state information (CSI). To mea-
sure CSI, pre-defined symbols, so called long training fields (LTFs),
are sent in the packet preamble of each WiFi transmission. The
receiver can then compare the expected signal (i.e. the predefined
LTFs) with the actual received signal and use this information for er-
ror correction of the transmission’s remaining payload. This results
in a three-dimensional complex-valued CSI matrix 𝐻 ∈ C𝑁×𝑀×𝐾 ,
where the 𝑁 and𝑀 give the number of receiving and transmitting
antennas and 𝐾 the number of used subcarriers [38]. Recording
and processing a timeseries of CSI-matrices can then be used for
sensing applications.
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Figure 1: Beamforming channel sounding procedure with
a null data packet (NDP), its announcement frame (NDPA),
beamforming report polls (BRP), and the compressed beam-
forming reports (CBR)

Amultitude of sensing applications have been realized using CSI,
for example activity recognition [14, 25, 32, 61], gesture recognition
[75, 80], object recognition [58, 82], human localization and tracking
[35, 43, 44, 54, 78], respiratory rate estimation [37, 55], and human
counting [11, 20, 60]. In this paper, we focus on human identification.
We discuss a variety of these approaches in our related work section.

2.2 Beamforming Feedback Information (BFI)
To further increase transmission rates, particularly atmedium range,
the 802.11ac standard introduced the option for beamforming. With
beamforming, the multiple antennas of WiFi devices send trans-
missions no longer unidirectional, but rather steer them towards
the receiver. For this, the sender (then called: beamformer) requires
information about the environment towards the receiver (beam-
formee) in order to steer the transmissions. For this, the standard
defines a channel sounding procedure (shown in Figure 1) which is
initiated by the access point (beamformer) regularly through a null
data packet (NDP) announcement frame. Beamformees will reply to
this announcement. The actual NDP is then sent by the access point
which contains one VHT-LTF (very high throughput long training
field) per spatial stream used in the transmission. Beamformees will
then use the CSI of these VHT-LTFs to calculate so-called feedback
matrices for each subcarrier. The feedback matrix is compressed
into beamforming angles which are sent back to the beamformer.
The beamformer can then calculate a steering matrix which can be
used to direct the transmission towards the beamformee [6, 16].

The compressed beamforming report (CBR) contains the beam-
forming angles which are referred to as BFI. Their size depends on
the number of beamformees (single user vs. multi user) and the
number of subcarriers. As they are based on CSI, similar sensing
applications as with CSI are possible and as they transmitted over
the air unencrypted, they can be more easily processed compared
to CSI. We discuss some approaches utilizing BFI for sensing in the
following section.

3 Related Work
Many works discuss WiFi based identification and sensing in gen-
eral. There have been multiple comprehensive surveys [33, 38] on
this topic. Thus, in this chapter, we focus on identification as the
sensing task and the latest state-of-the-art studies on CSI-based
systems and a general overview on BFI-based systems. To the best
of our knowledge, we are the first to investigate BFI-based identifi-
cation.

CSI-based identification. Table 1 shows an overview over CSI-
based identification systems. There are a multitude of studies which,
while having minor differences in their approaches, all reach the
same conclusion: the inference of identities via CSI-based WiFi
sensing is reliably possible. The vast majority of approaches use
recordings of gait sequences for identification, but there are excep-
tions, e.g. using lip-motions [42], keystrokes [18] or no moving at
all, but the individual just standing [53] or sitting [51]. When using
gait, most approaches record individuals while walking orthogo-
nally to the line-of-sight (LOS) between sender and receiver. Two
early approaches had participants walk parallel to the LOS [26, 71]
and some approaches have opted to have participants walk freely,
but only one approach considered multiple perspectives [76]. This
shows that the influence of perspectives does still appear to be an
underinvestigated topic while gait is the most robust biometric trait
for identification.

Similarly, the majority of approaches use the 5 GHz band for
WiFi sensing, though some approaches do use the 2.4 GHz band.
The difference between those bands has been explored further in
[19]. There, the authors find only small differences between the
2.4 and 5 GHz band, largely resulting from the larger number of
subcarriers that are used in 5 GHz. WiFi 6E also introduced the
6 GHz band with even greater bandwidths. It has not yet been
evaluated for use in WiFi sensing, although the difference between
the 6 GHz and 5 GHz is even smaller than that between 5 GHz and
2.4 GHz which means that the impact of this choice of band should
be minimal.

Another point of interest in comparing CSI-based identification
approaches is the choice of WiFi network interface card (NIC). As
the extraction of CSI requires modified firmware, only very few
NICs are compatible with CSI-based sensing. Most commonly, the
Intel 5300 is being used, a NIC released in 2008, even in studies
published as late as 2023. We will discuss this further in Section 4
when comparing adversary models.

Pre-processing has been done with a variety of complex combi-
nations of filtering, (inverse) Fourier transformations, and PCAs
(see Table 1). Only few approaches limit their pre-processing and
rely on their deep neural networks to identify relevant features.
For model architectures, there appears to be a trend towards convo-
lutional neural networks (CNNs), this however limits their ability
to consider the time dimension of CSI. Only WiHF uses a recur-
rent neural network (RNN) [34]. An overview and benchmark over
model architectures can also be found in SenseFi [65]. In summary,
there is no consensus on which pre-processing steps and model ar-
chitectures are the most beneficial to WiFi sensing, which suggests
that the problem is not yet well understood. There is no compre-
hensive comparison of pre-processing options. Even with in-depth
domain knowledge, it remains unclear how to implement the best
processing chain.

The biggest limitation of related work we find is the number of
identities that are being considered. The number of identities is
an important factor, as the larger the population, the harder the
problem becomes. Only a single approach attempts to distinguish
more than 50 individuals [72]. Considering that many approaches
claim they can be used in smart spaces or smart cities, this is clearly
unrealistic. To make the study at least a little more realistic, and the
identification more challenging than a simple classification task, we
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Table 1: Comparison of CSI-based identification approaches (ordered by year of publication)

Paper Identities Accuracy Pre-Processing Model Arch. Perspective NIC Channel
FreeSense [64] 6 88.9 PCA, DWT, DTW kNN orthogonal Intel 5300 2.4 GHz
WifiU [56] 50 79.3 Butterworth Filter, PCA SVM orthogonal Intel 5300 5 GHz
WFID [26] 9 93.9 Subcarrier Amplitude Frequency SVM parallel Intel 5300 unknown
WiFi-ID [73] 6 77 Butterworth Filter, CWT SAC orthogonal Intel 5300 5 GHz
WiWho [71] 6 80 FFT, Butterworth Filter Dec. Tree parallel Intel 5300 unknown
SLL+17 [49] 11 94 Bandpass Filter, Subcarrier Select. SVM orthogonal Intel 5300 unknown
WiID [48] 15 93.4 PCA, STFT, Freq. Time-Series SVM gestures Intel 5300 2.4 GHz
CrossSense [72] 100 80 Various different tested MLP orthogonal Intel 5300 5 GHz
NeuralWave [42] 24 87.8 Phase Calib., Wavelet Denoising CNN orthogonal Intel 5300 5 GHz
BioID [77] 5 90 Butterworth Filter, PCA, DWT kNN lip-motions Intel 5300 2.4 GHz
AutoID [81] 20 91 Shapelet Coefficient Matrix DNNa free TP-Link N750 5 GHz
WiPIN [53] 32 92 Butterworth Filter, IFFT, FFT SVM standing Intel 5300 5 GHz
XModal-ID [31] 6 80 STFT, Hermite Spectogram MLP orthogonal Intel 5300 5 GHz
WiHF [34] 6 96.7 Bandpass Filter, STFT RNN gestures Intel 5300 5 GHz
LW-WiID [5] 50 99.7 Frequency Energy Graph CNN orthogonal Intel 5300 5 GHz
Gate-ID [74] 20 75.7 Butterworth Filter, PCA DNNa orthogonal Intel 5300 5 GHz
WiOne [18] 16 94.7 Rician Fading CNN keystrokes Intel 5300 unknown
CAUTION [52] 15 88.9 None CNN free TP-Link N750 5 GHz
EfficientFi [67] 15 98.6 CNN-based Compression CNN orthogonal TP-Link N750 5 GHz
GaitSense [76] 11 76 Gait Body-Coord. Velocity Profile CNN 6 differentb Intel 5300 5 GHz
TDK+22 [51] 9 98.2 AGC compensation CNN sitting Raspberry Pi 2.4 GHz
AutoFi [66] 14 83.3 None CNN-MLP orthogonal Intel 5300 5 GHz
3D-ID [46] 28 85.3 2D AoA image, SMPL DNNa free Intel 5300 5 GHz
SecureSense [68] 12 95.8 None CNN orthogonal TP-Link N750 5 GHz
BFId (ours)c 170 84.3 None LSTM 4 different Intel AX210 6 GHz

a Custom complex DNN model that combines various building blocks b 4 different angles across LOS + walking in square and circle c applied to our CSI data, not BFI

suggest that datasets of at least over a hundred different individuals
are required to produce insights on convincing identification risks
in real environments.

BFI-based sensing. Table 2 shows an overview over existing BFI-
based sensing approaches. There already has been a few but valu-
able insights into the sensing capabilities of BFI, from human de-
tection [40, 41, 62] over localization [15, 50] to activity recognition
[23, 24]. However, for many conceivable sensing applications, in-
vestigations are still missing, especially compared to CSI-based
sensing.

Similar to the CSI-based approaches, we find a variety of pre-
processing steps and model architectures. Many pre-processing
approaches evolve around attempting to restore the CSI that was
used to calculate the transmitted BFI. This allows these systems to
then use the same further processing steps as they do for the related
CSI sensing task. At the same time, we do see more approaches that
do not use pre-processing anymore, but rather rely on their deep
learning models to extract relevant features from the raw data. This
shows that also the understanding of suitable processing pipelines
for BFI is limited.

Due to the wider availability of devices supporting BFI extrac-
tion compared to CSI, we see a variety of different setups. While
many approaches take advantage of wider channels in newer WiFi
standards, this is not ubiquitous. Also, we see most access points
using four antennas and nodes using either one or two. Only two

approaches also use APs as their beamformees which results in
4x4 antenna setups. This however, is clearly unrealistic, as in most
circumstances, access points will communicate with clients and not
with each other. As such, a realistic setup would use four or even
more antennas for the beamformer, as this is now standard for new
devices, and two antennas for the beamformee.

Mitigation approaches. There have a been a limited number of
studies on the privacy problems of WiFi sensing and approaches
to mitigate them for CSI-based sensing, in particular human lo-
calization. All of them are based on adding randomized noise to
the training fields of WiFi transmissions which results in a signifi-
cant loss of accuracy of the sensing approaches. The noise can be
added directly by the transmitter which relies on a passive adver-
sary which does not compromise the transmitter [8, 10]. It can also
be added by an intelligent reflective surface (IRS) which acts as a
repeater of the transmitted data, but with added noise [9, 45]. This
approach requires additional hardware. Either approaches have
currently only been prototyped using software defined radios and
not COTS hardware. Due to the noise added, utility degradations
(decreased bandwidth) must also be expected. In essence, no promis-
ing approaches for a real-world mitigation of WiFi sensing privacy
risks have been proposed.
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Table 2: Comparison of BFI-based WiFi sensing approaches (ordered by year of publication)

Paper Inference Pre-Processing Model Arch. Bandwidth Antennas Sampling Rate
MMI+18 [41] human detection Decompression n/a 20 MHz 4x1 unknown
MIF+19 [40] human detection Low-pass filter, Normal. MLP 20 MHz 4x1 100 Hz
FMA+19 [15] human localization None kNN, SVM,

RandF
unknown 4x1 100 Hz

TIF+19 [50] human localization Low-pass filter, PCA MLP unknown 4x1 100 Hz
CSI2Image [29] image reconstruction None GAN 80 MHz 2x2 unknown
KSA+22 [28] respiratory rate PCA, DFT, Bandpass filter n/a 80 MHz 4x4 5 Hz
KIY+22 [30] human localization None RandF, SVM,

LightGBM
20 MHz 4x4 10 Hz

DeepCSI [39] device identification Decompression CNN 80 MHz 3x1/2 unknown
Wi-BFI [23] activity recognition None CNN 80 MHz 3x1 unknown
BeamSensea [24] activity recognition None CNN 80 MHz 3x1 unknown
BeamSensea [59] device localization,

object tracking, sign
language recognition

CSI reconstruction CNN 80 MHz Multiple 30 Hz

BeamCount [7] crowd counting Time Series Prediction CNN unknown 4x2 unknown
Wi2DMeasure [57] object size CSI ratio, Singularity extract. n/a 80 MHz 4x1 unknown
BFMSense [69] respiratory rate,

walking speed
BFM ratio calculation n/a 80 MHz 4x1 10 Hz

LeakyBeam [62] occupancy detection Phase norm., subcarrier fusion n/a 20/40/80 MHz Multiple 10-17 Hz
BFId (ours) identity None LSTM 160 MHz 4x2 10 Hz

a Both approaches have been named ’BeamSense’ but have no relation to each other.

4 BFId
In this section, we introduce BFId, our WiFi sensing identity in-
ference attack. We would like to highlight that, even though re-
lated work may consider their identification systems to be "privacy-
preserving" [12, 18, 51, 64–67, 76, 81], "less privacy intrusive" [72],
"not cause any privacy concerns" [52] or "avoid[ing] [..] personal
privacy invasion" [5], we consider this to be an attack on privacy.
While legitimate use-cases may exist, considering the pervasiveness
of WiFi, especially in public areas, the ability to record through
walls, and the simplicity to do so without consent, we see severe
potential threats to everyone’s privacy. We therefore start by explic-
itly and elaborately defining the threat and adversary model that
we consider in this paper and highlight the differences between CSI
and BFI-based sensing. Finally, we describe the technical details on
the used pre-processing and machine learning models.

4.1 Threat model
Our threat model primarily addresses identity disclosure. WiFi sens-
ing identifies an individual by linking independent recordings of
individuals that walk through areas covered by WiFi networks—
breaking anonymous presence in public—and thereby causes pri-
vacy harm. Thus, we define identification as identity disclosure by
linking together recordings of the same individuals from different
points in time: Once during known presence and once during poten-
tial presence of that individual. As recordings, we solely consider
WiFi signal observations which capture the individuals in a WiFi
field. Linking together such recordings facilitates identification and
thus breaks anonymity, even if no direct mapping to a real-world
identity (i.e., name or social security number) is initially available.

Put colloquially, the adversary aims to recognize an individual
who they have observed before, similar to how one might recog-
nize the same person on the bus to work everyday, but without
necessarily knowing the real name of this person. This inherently
requires the adversary to only have access to previous recordings of
the target individual but not to have any further auxiliary informa-
tion on them. At the same time, further linking the recordings to a
real-world identity is generally possible down the line via auxiliary
information and would most likely amplify the privacy harm.

This identity disclosure can cause harm in multiple ways, even
if there is no direct link to a real-world identity. For instance, if
the adversary can link an individual’s recording in a malicious or
compromising situation to a recording of the same individual in a
benign situation, they could act upon this link in a harmful way by
confronting the individual in a benign situation. For example, imag-
ine an oppressive state records individuals on their way to protest
through a coffee shop’s WiFi along the way. Later, the state’s militia
could await these individuals while they are on a benign walk along
this coffee shop. This makes this threat especially problematic in
low-regulation and high-surveillance contexts, such as authoritar-
ian regimes, as government actors may use this technique to track
dissidents or suppress protests.

Compared to traditional surveillance mechanisms, such as CCTV,
WiFi-based surveillance is even more problematic in two ways:
Stealthiness and availability.

First, WiFi infrastructure is ubiquitous and primarily associated
with benign services. Cameras, in comparison, are less common,
their usage might be regulated, and their sole purpose is surveil-
lance. WiFi sensing allows an adversary to employ surveillance
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without raising suspicion, effectively creating an “inverse panop-
ticon”, where individuals behave as though they are unobserved,
while being silently tracked. Thus, an adversary might choose WiFi-
based attacks to give individuals a false sense of security. In the
protester example, individuals might purposely avoid an area with
video cameras, but will ignore seemingly harmless WiFi APs.

Second, modern environments host a wide range of devices that
are capable of sending and especially receiving BFI reports. As a
result, an adversary may be able to leverage existing infrastructure,
including remote devices that they have not deployed themselves,
but can take control of. Particularly since many WiFi-enabled de-
vices (for instance IoT devices) are insecure in practice and poorly
maintained, vulnerable WiFi-enabled coffee makers for instance.
This lowers the barrier for conducting large-scale and long-term
tracking.

4.2 Adversary model
We consider a passive adversary who aims to compromise the
anonymity of individuals that walk through a WiFi field. They do
this by observing WiFi signals and creating recordings of them.
These recordings are then used to create an identification system
that links recordings from different times to the same individual.

To do this, the adversary requires labeled training data. Our
adversary model does not assume that such training data exists
and thus needs to be created by the adversary. To record WiFi
sensing data — for training and inference — the adversary must
have access to a WiFi device within the broadcasting range of
the target individual and network. However, the adversary does
not need to have access to the WiFi access point or its network
(e.g. the network password is not needed). Any recording can be
done completely passively, it relies solely on the unencrypted parts
of legitimate traffic within the WiFi network. This also hides the
presence of the adversary, as they only monitor natural traffic.

Our scenario assumes the adversary to have continuous access
to a device in the network’s range, but only sporadic access to
the ground truth label, obtained on an arbitrary side-channel. The
labeled training examples would typically correspond to benign
situations, whereas unlabeled examples for inference may be from
compromising situations.

For example, one might consider the individual’s smartphone’s
MAC address as their label. Then, the adversary can link record-
ings where the individual was carrying their smartphone with ones
where they were not. This matches our protester scenario where
individuals carry their phone in benign situations but intentionally
do not in compromising situations, a common mitigation strat-
egy often recommended by civil rights organizations. This enables
attacks both in retrospect and in near-real time. Overall, this adver-
sary model aligns well with the (mostly implicit) assumptions of
previous works.

Differences between BFI- and CSI-based sensing. While large parts
of the adversary model are the same for both CSI and BFI, there
are differences regarding hardware requirements and recording
perspectives. For CSI, the perspective being recorded is always
between access point and the malicious node. Any traffic that the
access point broadcasts can be received by the malicious node, its
CSI calculated and thereby the channel between access point and

malicious node estimated. For this, it is irrelevant where and who
the legitimate recipient of the traffic is, as the access point broad-
casts the signal omnidirectional. This also means that in order to
record multiple perspectives, multiple malicious nodes are required.

For beamforming on the other hand, BFI reports are sent by legit-
imate nodes whenever prompted by the access point. During this
channel sounding procedure, all legitimate clients will broadcast in-
formation about the channel between access point and themselves.
Due to the fact that this communication back to the access point
happens unencrypted, a single malicious node can passively record
all these beamforming reports (even without being part of the net-
work). This means that for BFI, the malicious node can be placed
anywhere within range of the network and will receive information
about all channels between the access point and the legitimate de-
vices. At the same time, for CSI, the malicious node must be placed
in the exact location for which the channel should be estimated
and it will receive information about only this perspective.

CSI and BFI are processed by the network card on different layers
of the protocol stack which has implications for the adversary
model. CSI is an implicit part of WiFi’s physical layer which is
primarily used for error correction. Access to this information is
therefore generally not possible from applications because CSI is
processed directly by the network card. To access CSI, one needs
modified firmware for the WiFi adapter which only exists for few
NICs, primarily the Intel 5300 (via the Linux 802.11n CSI tool [21]),
certain Atheros 802.11n PCI/PCI-E chips (for example used in TP-
Link N750 APs; via Atheros CSI tool [63]), certain broadcom chips
(for example used in Raspberry Pis; via nexmon CSI extractor [17,
47], and, most recently, the Intel AX210 via PicoScenes [27]. BFI
on the other hand is easily accessible and does not require specific
hardware because clients broadcast it back to the access point on
the MAC layer. Any WiFi NIC can be set to monitor mode and
the relevant packets can then be easily recorded. For context, Wu
et al. [59] find that less than 6% of real-world deployedWiFi devices
support the extraction of CSI while even in 2023 over half of them
supported BFI, and this number most likely will only increase in
the future as it is part of the WiFi standard.

After recording, many related WiFi sensing approaches employ
significant pre-processing of their data to extract useful features
for classification, for example bandpass-filtering or Fourier trans-
formations (see Table 1). This indirectly assumes that the adversary
possesses the required domain knowledge to properly choose, im-
plement and tune such pre-processing steps. However, assuming
such domain knowledge as requirement to mount such attacks
underestimates the privacy risk, if it turns out that such domain
knowledge is not actually required.While such pre-processing steps
might enhance the attack’s efficacy, it requires a stronger adversary.
But as our goal in this paper is to demonstrate and investigate the
lower bound privacy threat of BFI-based identification, we deem
such assumptions unnecessarily strict and thus do not employ any
pre-processing steps besides feature standardization.

A summary and comparison of the adversary models can be
found in Table 3. It can be concluded that the BFI adversary model
is weaker. It has less requirements on hardware and positioning of
the malicious node while enabling multiple perspectives.
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Table 3: Comparison of adversary models

CSI BFI
Network access req. × ×
Fully passive ✓ ✓
No. of perspectives 1 Any
Perspective from AP to malicious node legitimate nodes
Specific hardware req. ✓ ×

4.3 Our attack
All the identification attacks that we discussed in Section 3 rely
on a fixed length of each sample. For example, Pokkunuru et al.
[42] make every sample exactly four seconds long and assume a
consistent sample rate of 2000 Hz of CSI data points. This is clearly
unrealistic. While one person might take four seconds to walk
through the WiFi field, another one might make the same trip in
just three seconds. Fixed length samples ignore that walking speed
is a simple and straightforward, yet important biometric feature
[22]. Furthermore, fixing the sample length assumes a constant
sample rate, which is unrealistic, especially for CSI, as it is depen-
dent on legitimate traffic to generate data points. Rather, samples
most likely are of different length and the sample rate might be
inconsistent, such that the time difference between points in the
timeseries is variable. We therefore design our attack to be able to
process variable length inputs by deploying simple and straightfor-
ward recurrent neural networks with a softmax classification as the
final layer. We also add an additional feature to the timeseries data
that contains the time elapsed since the last observed data point.

As we want to establish a lower bound for the privacy threat of
BFI, we purposely keep our processing pipeline simple. We do not
employ any pre-processing besides feature standardization of our
WiFi recordings, as in our adversary model we do not assume any
specific domain knowledge. Rather, we propose that an ordinary
machine learning model in combination with sufficient training
data should be able to learn relevant features and their dependen-
cies within the data itself. As such model, we utilize a standard
LSTM followed by two fully-connected layers, each with batch nor-
malization and ReLU activation functions, and ending in a softmax
layer. We utilized this architecture for both CSI and BFI and trained
the models with the ADAM optimizer until convergence. The only
difference being the input dimension which is given by the num-
ber of features in the CSI and BFI sequences. Additional learning
hyperparameters, such as the initial learning rate, the batch size,
weight decay, but also further architectural hyperparameters such
as the sizes of the LSTM and fully-connected layer have been opti-
mized individually for CSI and BFI using the Tree-structured Parzen
Estimator of the Optuna library [2].

In our evaluations, we split the samples between training and
test 80:20. If not stated otherwise, we repeated each experiment five
times with independent splits and measure identification accuracy.
That is the number of correct classifications over the total number of
identifications. As the maximum, a value of 1 means that all samples
where correctly identified, while as a lower bound 1 divided by the
number of identities is the chance level of a correct identification.

5 Data Collection
Existing data sets for WiFi sensing based identification are severely
limited in the number of participants that they recorded, see Ta-
ble 1. They also do not record multiple perspectives simultaneously
and, most importantly for our attack, do not record beamforming
feedback reports. Therefore, we conducted our own user study in
which 197 participants walked through a WiFi field, exercising five
different walking styles, while being recorded with CSI and BFI
simultaneously from four different perspectives. In this section, we
describe the technical recording setup, the study protocol and the
recording post-processing. We also consider ethical aspects of our
recording.

5.1 Setup
5.1.1 Physical Layout. We record both CSI and BFI from four dif-
ferent perspectives each. The perspectives and walking path layout
are shown in Figure 2.

Both the access points and all antennas, except the antennas
for perspective 2, are mounted at (or slightly above) hip height,
as done in previous work, as this is expected to result in the most
gait information being captured. Perspective 3 is the most common
in related work, in which the walking path is crossing the line-
of-sight orthogonally. Some related works also recorded from a
perspective that is parallel to the walking path, which corresponds
to our perspective 1. Perspective 2 is mounted in the same location
as perspective 3, but higher at a height of 210cm. This allows us to
investigate the impact of the antenna height. Finally, perspective 4 is
positioned such that the participant is not walking through the line-
of-sight, enabling us to test non-LOS scenarios. This setup allows us
to investigate the impact of different perspectives on identification
accuracy which is a limitation of the existing literature.

5.1.2 Technical Setup. Due to CSI and BFI requiring different traffic
patterns, two separate WiFi networks on different channels are
needed and therefore two access points are required. We use two
TP-Link Archer BE800, as they fullfill all requirements for our
experiment setup. As channels, we use channels 37 and 85, the
lowest two non-overlapping 160MHz-wide channels in the 6GHz
range that were introduced in WiFi 6E. This enables us to minimize
inference with other WiFi devices in the vicinity. It also allows us

Figure 2: Positions of access points, perspectives and the
walking path in our setup.
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to investigate the suitability of the 6 GHz band for WiFi sensing,
something that has not previously been done in related work, see
Section 3.

For each perspective, a set of two antennas, one for each BFI
and CSI, are connected to Intel AX210 WiFi NICs. These NICs were
chosen as the single option to support both 6 GHz and CSI extrac-
tion. For each NIC, the two antennas are mounted orthogonally
to each other, one pointing up and the other orthogonally to the
line-of-sight to the access point.

For CSI, the access point sends traffic to a separate traffic gen-
eration node. The traffic is generated via iperf3. While the traffic
generator is located beneath perspective 1 in our setup, it should
be noted that its location is irrelevant, as it simply requests the
traffic, but the packets that are recorded by the four perspectives
are broadcasted by the access point. Each perspective passively
monitors the frequencies of this access point and records the CSI
data of all packets send using PicoScenes [27].

For BFI, all perspectives are connected to the WiFi network es-
tablished by the access point and receive traffic from it. This traffic
triggers the channel sounding procedure regularly. All beamform-
ing reports are recorded centrally by an additional beamforming
recording node which is not part of the network. Again, the ex-
act location of this additional node is not relevant as long as they
are within range since beamforming reports are broadcast by the
beamformees. The traffic is once again generated using iperf3.

The exact parameters for the traffic pattern for both CSI and BFI
were determined empirically by performing a parameter optimiza-
tion with the goal of maximizing the sample rate. The optimization
determined a bitrate of 200 Mb/s of TCP traffic for BFI and 30 Kb/s
of UDP traffic for CSI1, for each perspective. This results in average
samples rates of ≈ 10 Hz for BFI and ≈ 285 Hz for CSI.

5.2 Study Protocol
In order to consider recognition in a variety of smart city scenarios,
we ask participants to walk within the recording area in multiple
walking styles: normal, with a backpack, carrying a bottle crate,
through a turnstile and at a faster speed. The normal walking style
is repeated 20 times (back and forth), the others 10 times.

To allow for an unobstructed gait recording, participants were
instructed not to wear any baggy clothes, skirts, dresses or heeled
shoes. We recorded 197 different individuals. Of these participants,
average age was 23.2 (standard deviation 3.3) and 58.9% identified
as male, 39.6% as female and the rest either answered with a custom
response or refused to answer. Due to technical unreliabiltities,
not all recordings resulted in usable data. For our experiments,
we use 170 and 161 participants for CSI and BFI, respectively. To
summarize, an overview over the parameters of our data collection
can be found in Table 4.

5.3 Ethical & Open Science Considerations
The user study data collection was approved by the ethics com-
mission of the Karlsruhe Institute of Technology (research project
"Smart City Privacy") and was conducted in accordance with the
Declaration of Helsinki. All data was collected in November 2024.

1Higher bandwidths are possible and result in higher sample rates, but cause CSI
recording to be unstable with PicoScenes.

Table 4: Parameters of our data set

Parameter Options
Participants 197 (CSI 170; BFI: 161)
WiFi artifacts Beamforming Feedback Information (BFI)

& Channel State Information (CSI)
Perspectives Parallel to LOS (1), Across LOS High (2) and

Low (3), & Non LOS (4)
Walking styles normal, with backpack, carrying crate,

through a turnstile, & fast

Participants were recruited from a local student panel and reminded
that they could refuse to answer any question and withdraw from
the study at any time. The study’s information sheet explicitly
stated that biometric data, which is part of the special categories of
personal data, as defined by Art. 9 of the GDPR, would be recorded
of them. Participation took up to one hour and participants were
paid 15€.

In addition to the recording, participants could optionally agree
to the sharing of their data with other scientists for research pur-
poses, which 181 of 197 did. While an unconditional publication
of all recorded data may be desirable from an Open Science per-
spective, considering the vastness of personal information in the
data and the possibility of further, currently still unknown, infer-
ences from the data, we consider this approach to be an advis-
able compromise. Researchers can request access to our dataset at
https://ps.kastel.kit.edu/bfid-dataset.

5.4 Post-Processing
The raw CSI recordings follow a custom data format specific to the
PicoScenes recording framework. However, processing these files
is straightforward due to their provided Python toolbox. Our CSI
recordings contain three distinct sets of CSI reports, differentiated
by the number of subcarriers used for a transmission. While the
bandwidth of a WiFi network defines the maximum number of
subcarriers that are available for communication, the number of
subcarriers actually used for a communication burst is not con-
stant and varies. In our recordings, the vast majority (≈ 80%) of
CSI reports include 53 subcarriers and ≈ 16% include 2025 subcar-
riers. In order to match the extant work’s sampling rate for CSI,
we extracted and utilized only the 53 subcarrier reports. The BFI
recordings are simple traffic dumps (i.e., pcaps) which we parsed
according to IEEE 802.11 standards and extract the for us relevant
compressed beamforming reports.

After processing the raw CSI and BFI recordings, each atomic
sample is a timeseries of variable length due to different walking
speeds. BFI recordings have 740 features, as our setup yields 10
(quantized) angles for 74 channels each. CSI recordings have 212
features, that is, both phase and magnitude for 53 subcarriers for
each of the two antennas. Additionally, each timeseries contains
one additional features which is the time difference between two
consecutive data points. In total, our dataset contains 6798 normal
walking CSI sequences with an average sequence length of 1241.2
across 170 individuals and 6312 BFI normal walking sequences
with an average length of 40 across 161 individuals. For the other
walking styles (with backpack, carrying a crate, walking fast or

https://ps.kastel.kit.edu/bfid-dataset
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through a turnstile) the number of sequences is halved. As expected,
the sample rate for CSI is significantly higher than for BFI (leading
to longer sequences), as CSI information is calculated for each
transmission whereas BFI is only requested periodically by the AP.

6 Evaluation
Using the data obtained in the user study that we described in the
previous section, we now evaluate our attack. For this, we define
a set of hypotheses based on our theoretical knowledge that we
want to test, design matching experiments, report their results and
analyze them.

6.1 BFI is identifying
We start by evaluating the main hypothesis of this paper:H1: Beam-
forming feedback information can be used to infer the identity of
individuals. To be precise, we hypothesize that we can link multiple
recordings of the same individual together. For this we apply the
attack described in Section 4 to the BFI data that we collected as
described in Section 5. We split all normal walking sequences (40
per individual) into training and test sets and trained our model on
the training dataset. Afterwards, our attack is able to identify the
samples in our test set with an accuracy of 99.5% ± 0.38.

For our study setup we attempted to maximize the sample rate
of BFI (and CSI equivalently). To this end, we tuned the traffic pat-
tern to maximize the frequency with which the channel sounding
procedure is triggered by the access point. During this prelimi-
nary experimentation, we observed that the frequency of channel
sounding procedures heavily depends on the traffic pattern. In an
everyday scenario, this frequency might therefore be lower, which
could decrease our attack’s efficacy.

To investigate how the number of beamforming reports per se-
quence (and thus the traffic pattern) influences the efficacy of our
attack, we continuously and uniformly remove entries from each
sequence (reducing the temporal resolution) and retrain the clas-
sification model. We hypothesize that H2: while time-coarsening
will reduce identification accuracy, a significant number of reports
need to be removed for this to have a severe impact.

The results of this experiment can be found in Figure 3. While
the accuracy slightly decreases as we reduce the number of beam-
forming reports, the effect is very small. Reducing the frequency
with which channel sounding procedures are conducted could also
be seen as a straightforward mitigation strategy for the threat
of identification. However, as the results indicate that BFI-based
identification is extremely robust to lower sample rates, a simple
time-coarsening based mitigation appears to be ineffective.

6.2 Comparison of CSI and BFI
After comparing the adversary models of CSI- and BFI-based sens-
ing in Section 4, we now compare the attack efficacy given these
two information sources. For H3, we expect that CSI achieves
slightly higher accuracies than BFI for all scenarios, for the rea-
sons described below. In essence, beamforming reports are lossy
compressed CSI at a lower temporal resolution. This means any
information present in BFI is also present in CSI while the higher
temporal resolution of CSI means that additional information is
available which we expect to increase identification accuracy.

Figure 3: Test accuracy for identification when decreasing
the sample rate.

We perform the same experiment for CSI as we did for BFI in
the previous subsection. However, it should be noted that reducing
the temporal resolution of CSI directly translates to reduced band-
width capacity, and to the fact that less legitimate traffic can be
sent: As CSI is calculated from every transmission from the access
point, lowering the sample rate of CSI is only possible by lowering
the transmission rate of the access point, thereby decreasing its
throughput. As a mitigation strategy this would directly cause a
loss of utility for the WiFi network.

The results for CSI can also be found in Figure 3. We find that we
can identify individuals based on their normal walking style using
CSI with high accuracy, here 82.4% ± 0.62. Related work, as seen in
Table 1, often achieves higher accuracies, up to 99.7% claimed by LW-
WiID. These methods are, however, generally tested on significantly
smaller datasets (none that exceed 90% accuracy have more than
50 individuals) and have a CSI-specific design and pre-processing.
Our approach, in contrast, is tested on the largest available CSI
dataset (170 individuals) and assumes no domain knowledge by the
adversary, therefore utilizing a purposely straightforward model
without pre-processing. Both of these factors will decrease the
measured identification accuracy. We validate this assumption by
comparing our approach to the state-of-the-art in Section 6.6.2.

We see the expected trend that a lower number of CSI reports
results in a decreased accuracy though the effect is more significant
than for BFI. Interestingly, decreasing the sample rate slightly to an
average of 620 packets actually increases the identification accuracy
slightly. We consider this to be an artifact of our machine learning
architecture inwhich the LSTMdoes eventually forget earlier inputs
and therefore samples that are too long might be harder to identify.

Finally, regarding our hypothesis that CSI surpasses BFI, we
find ourselves contradicted. In fact, BFI-based identification even
performs significantly better than CSI. Possible explanations for this
include that the compression of the feedback matrix into the angles
that we use for our attack in BFI work as a form of pre-processing
and noise removal. Also, the channel sounding procedure with
one VHT-LTFs per spatial stream could allow for a higher spatial
resolution in BFI than the regular LTFs that are used for CSI, which
relates well to the larger amount of features (740) per point in
time for BFI compared to the amount of features for CSI (212). This
would imply that spatial resolution is more important than temporal
resolution.
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Figure 4: Test accuracy for training on the normal walking
style and testing on the other walking styles.

6.3 Across walking styles
Individuals do not always exhibit the same walking style in every
situation. For example, one might be in a hurry to catch a bus, wear
a backpack, or carry home a crate full of beverages. This signifi-
cantly alters the movement patterns and possibly the capabilities
of recognition systems to identify individuals. Therefore, we also
investigate the possibility to identify them across walking styles.
We hypothesize for H4 that we can still identify individuals when
they walk with a backpack, a crate, or fast with both CSI and BFI,
although accuracy might be decreased. This is because we expect
our machine learning model to learn the gait of individuals based
on the normal walking style. The other walking styles are less sim-
ilar to the training data and therefore it becomes harder for our
model to extract the gait information, which could lead to some
misclassifications, so slightly reduced accuracy can be expected.
In our experiment, we use the same models which we previously
trained on the normal walking style only and measure the identifi-
cation accuracy of the other walking styles. We want to emphasize
that we do not retrain our models—but rather use the models al-
ready trained on normal walking to now infer identities based on
recordings of other walking styles, thereby testing whether the
capabilities of the system transfer across these styles.

Figure 4 reports the corresponding results. We find that for BFI,
we can still reliably identify individuals for all walking styles. For
CSI, we find accuracies between 50 and 60% for the modalities
backpack and crate, while they are around 10% for fast and turnstile.
This is insofar expected as backpack and crate are a smaller change
from normal, as the movement of the legs (most relevant for gait
[22]) stays the same. At the same time, fast and turnstile do also
significantly change the movement of the legs and therefore a lower
accuracy might be expected. We do see these same trends also for
BFI where accuracies for fast and turnstile are lower than the rest,
but this difference is much smaller. This shows that BFI is much
more robust in its identification potential.

6.4 Different perspectives
As highlighted before, there are multiple ways how individuals
can walk through the WiFi field and related work considers mul-
tiple different options, but there are few comparative insights on
which perspectives are the most effective. Thus, in this subsection,

Figure 5: Test accuracy for identification for all four different
perspectives.

we consider the different perspectives from which we recorded
information and compare them against each other.

We hypothesize that H5: perspective’s accuracy decreases as
the walking path intersects less with the path between AP and
perspective. The identification potential of WiFi sensing is based
on the amount of biometric information—particularly gait—that is
captured by the system. Signals between the AP and receiver will
contain more biometric information when the individual is walking
through the line-of-sight path between AP and receiver. Therefore,
attack accuracy is highest when the walking path intersects directly
with it and lowest when it does not. This assumption is also implicit
in related work where most studies regard individuals walking
orthogonally across the line-of-sight, see Table 1.

It should be noted that considering their adversary models, us-
ing multiple perspectives in CSI requires multiple malicious nodes,
while multiple perspectives in BFI still only require a single mali-
cious node. In the experiment, we always test and train with data
from the same perspective and measure the identification accuracy.

The results for this experiments are shown in Figure 5. We find
that all perspectives allow the reliable identification of participants.
Also, we find the trend of BFI outperforming CSI form the previous
experiment repeated for all perspectives. Generally, differences
between perspectives are very small for BFI. The only noticeable
difference to be found is slightly lower accuracy for perspective
4, which is the non line-of-sight perspective in the neighboring
room. This matches our hypothesis. However, we would also expect
perspective 1 to have a lower accuracy because the walking path
does not intersect its line-of-sight. An explanation could be that
while the impact of an individual on perspective 1 is smaller, because
only some signal paths will interfere with them, this impact is along
the entire walking path. In comparison, the impact on perspective
3 might be bigger, but only in one part of the walking path.

With the results for CSI, we find all perspectives with clients
at hip height (1, 3, and 4) to achieve very similar accuracies. Only
perspective 2 which is mounted a bigger height achieves a lower
accuracy. This indicates that the height of clients is relevant and
that positioning the antennas and access points such that gait can
be captured well is important. Therefore, CSI also matches our
hypothesis, with the same exception for perspective 1 as BFI.
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Figure 6: Test accuracy for identification for mismatched
perspectives. Left, training with perspective 1, right training
with perspective 3 and 2 respectively.

6.5 Across perspectives
As the adversary can easily record beamforming reports for differ-
ent perspectives, and it may be that not all clients always partici-
pate in the channel sounding procedure, they may want to attempt
to match recordings from one perspective with recordings from
another perspective. When considering the identification across
different perspectives (training the recognition system with sam-
ples from one perspective and testing with samples from another),
we hypothesize H6: that this will not be successful. This is due to
the identification being based on how individuals interfere with a
constant signal from access point to a client. An individual causing
a specific interference with the signal of one client does not neces-
sarily match the interference they may have with the signal of a
different client. For example, if the gait of an individual causes a
specific frequency to be refracted which results in a different path
of the signal between access point and client and this is used as an
identifying feature, then there’s no reason to assume that the same
frequency will also be refracted in the same way from a different
perspective, as the incoming angle will be different, and the walls
that may be part of the different path will be different. As such, this
identifying feature will not work across perspectives.

In our experiment, we train our model using the normal walks
from perspective 1 because this perspective achieved the highest
average single perspective accuracy. We then test using the record-
ings from the other perspectives. Additionally, because perspectives
2 and 3 are the closest, we also train on one of them and test on the
other.

Our results can be found in Figure 6. We find that, as expected,
identification accuracies are very low. For those cases where we
trained with perspective 1, all accuracies are below 5%. This is also
true for CSI when mismatching perspectives 2 and 3, but BFI is
slightly higher, even surpassing 25% for the case of training with
perspective 3 and testing on perspective 2. This is not surprising
because 2 and 3 are the most similar and BFI surpasses CSI in all of
our experiments.

6.6 Validation
We validate our results by conducting multiple further experiments:
We confirm that we cannot identify empty rooms and compare
our CSI-based results with related work in this subsection. We also

Figure 7: Test accuracy for identification for BFId (CSI and
BFI), and alternative CSI-based recognition methods over
differently sized subsets of our dataset. Trendlines are based
on median performance over five independent subsets.

investigate the generalizability of our model by testing alternative
data splits in Appendix B.

6.6.1 BFI in empty rooms. As our experiments demonstrate an
unexpectedly high accuracy for identifying individuals with BFI
– especially compared to the accuracies for CSI – we set out to
validate our results with a set of further experiments.

Before recording participants in our study, we also recorded
the empty room as a baseline for 45s. To test whether our trained
recognition system actually identifies the biometric information
contained in the BFI recordings, we let the trained model predict
participants for these empty room recordings. If the model was able
to link a recording of the empty room just before the participant
entered the room to the respective participant, the model would
not have learned to recognize the biometric trait but some other
session signal. Thus, for H7, we hypothesize that we cannot match
these empty room recordings to the participants that were recorded
before or after. This would support our claim that identification
is achieved based on the biometric data that is contained in the
signal propagation characteristics of WiFi and is not based on some
unexpected session information. For the empty room identification,
we use our models that have been trained on the normal walking
style and test with the empty room recordings. We specifically
use top-2-accuracy here, as most empty room recordings have
participants both before and after. A high top-2-accuracy would
imply that our model reliably matches empty rooms to either the
participant before or after them which could be interpreted as
evidence that we identify sessions rather than people.

We find that the BFI-model only reaches a top-2-accuracy of
2.34%(±0.64). This supports our hypothesis and indicates that the
source of information relevant to the identification is the biometric
data of the individuals walking through our experiment setup.

6.6.2 CSI baseline. Because our CSI-based attack only achieves
an accuracy of 82.4% ± 0.62 in comparison to related work that
regularly achieves over 90%, we conduct additional experiments
to validate these results. We hypothesize for H8, that the slightly
lower accuracy for CSI is a result of our purposefully straightfor-
ward machine learning model and our larger dataset that contains
more identities than any CSI dataset before. More identities trivially
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makes identification harder and increases the chance of misclassifi-
cations thereby decreasing accuracy. Our adversary model assumes
no domain knowledge which results in a simple machine learning
model without pre-processing to establish a lower bound on the
privacy risk. This is uncommon for related work which generally
uses purpose-built custom pre-processing and models, designed to
achieve the highest possible accuracy.

To test this hypothesis, we vary our baseline CSI experiment
(only normal walking, parallel to line-of-sight perspective 1) in two
factors: the number of identities and the recognition model. First,
we randomly sample subsets of identities from our full dataset, with
the subsets being the sizes often used by related work (i.e., 6, 15, 35,
50, 80, 120). We repeat this five times for each subset size. Second,
we select three CSI-based identification methods from our related
work (see Table 1) and train them on the subsets: LW-WiID (state-
of-the-art CNN with some pre-processing and the highest accuracy
on a larger dataset) [5], CAUTION (only encoding learning CNN,
no pre-processing) [52] and FreeSense (one of the first approaches
with extensive pre-processing and no deep learning) [64]. More
details on their implementation can be found in Appendix A.

Our results can be found in Figure 7. We find our implementa-
tions of the extant CSI-based identification methods attain their
claimed accuracies (LW-WiID: 50 / 99.7 / 100.0± 0.0; CAUTION 15 /
88.9 / 80.3± 2.74; FreeSense 6 / 88.9 / 69.1± 8.28 (identities/claimed
accuracy/our result)). Most noticeably, FreeSense, whose claims
were based on a small dataset, performs significantly worse for
larger datasets.2 At the same time, LW-WiID, which claimed the
highest accuracy on 50 individuals still performs very well on our
full dataset, even surpassing our BFId model used with CSI data,
which we attribute to its CSI-specific designed pre-processing and
model. CAUTION, which also has a CSI-specific design, performs
similarly to our BFIdmodel on CSI data on the full dataset, but worse
on medium sized datasets, showing particularly high variations be-
tween different subsets. We deduce that it requires more data to
train its model which makes it sensitive to the exact participants
that are chosen.

In conclusion, we find that our hypothesis to be supported. Even
with its simplistic design, BFId on CSI matches or significantly sur-
passes some methods that were only tested on significantly smaller
datasets. It is only surpassed by a method with CSI-specific design
on the full dataset, showing the impact of its purposely simplis-
tic design that models an adversary without domain knowledge.
BFId on BFI can match even the highest accuracies of LW-WiID in
defiance of its weaker adversary model and simple design.

7 Discussion
In our evaluation, we found BFI to be a highly identifying source of
information that even achieves higher identification accuracy than
CSI. The identification is robust across perspectives and walking
styles, even with large sample sizes. We will discuss these results
in this section, particularly the implications for everyone’s privacy.

2Please note that due to FreeSense’s unfavorable runtime scaling with datapoints, it
was not possible to run all five repetitions for larger (120+) population sizes.

7.1 Implications
As outlined in the related work section, numerous studies have
investigated the capabilities of WiFi sensing—primarily focusing
on its utility in sensing environments, while largely overlooking
the privacy risks it exposes. In fact, many of them actually claim to
be privacy-preserving [12, 18, 51, 64–67, 76, 81]. While there may
be legitimate use-cases, we explicitly consider identity inference
via WiFi sensing a privacy attack. This view reflects the serious
risks associated with the ubiquity of WiFi networks, their ability
to sense through walls and in non-line-of-sight scenarios, and the
fact that this would likely happen without explicit consent.

In this paper, we demonstrated the privacy threats of WiFi sens-
ing, particularly those linked to BFI, but also the ability of CSI-based
attacks to scale to large populations. We argue that future work on
wireless sensing must account for the threats that their approaches
introduce, and actively pursuemitigation strategies. Existingmitiga-
tion approaches for CSI-based sensing are inapplicable in real-world
scenarios and are unable to protect against BFI-based sensing. Ad-
ditionally, our identity inference attack also amplifies the risk and
harm that existingWiFi sensing applications pose, because it allows
adversaries to attach the inferred activities and other attributes to
specific individuals.

Furthermore, not just other researchers should be aware of the
privacy threats that BFI-based sensing poses, but also the public. We
have shown robust identity inference with common-of-the-shelf
hardware which is already in widespread adoption in many homes
and public areas. Without possible mitigation strategies, with stan-
dardization of WiFi sensing in work and the integration of similar
joint-communication-and-sensing (JCAS) approaches planned for
6G and beyond [13], we feel it necessary to communicate the as-
sociated privacy threats to the public. Particularly, the planned
standardization of WiFi sensing in 802.11bf should strongly con-
sider adding effective privacy protection, or abandon beamforming
entirely.

7.2 Limitations
We acknowledge some limitations of our investigation in this paper.
First, we use a straightforward machine learning model and no
data pre-processing. While this allows us to set a lower bound
for identification accuracy, it should be noted that further fine-
tuning of the model architecture, hyperparameters, and additional
pre-processing could improve the attack’s efficacy. Note, that the
recognition rate is already high—especially considering the size of
our dataset—despite this limitation. Furthermore, as to align with
prior work for comparability, we use a softmax classifier. Therefore
we cannot test to which extent our model generalizes to individuals
that are not part of the training data.

Second, while the number of individuals in our data set is signif-
icantly larger than any of those used in previous work, its size does
not match expected sample sizes in large organizational or smart
city contexts. To better investigate such scenarios, data sets with
thousands of identities would be desirable, like those which are
commonly used for evaluating face recognition systems. However,
it is beyond common academic capabilities to collect datasets of
the necessary size, and participation of industry would be required.
We believe that our study, given the sample size being an order
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of magnitude larger than what is common in the community, al-
ready highlights noteworthy threats for identity disclosure in public
spaces and small to medium sized organizations.

Third, since BFI identification capabilities were still unknown,
we also purposely collected the dataset under controlled condi-
tions, for instance regarding the clothing of individuals. As these
restrictions were meant to ensure that the gait of subjects could
be recorded by preventing clothing from obstructing it, we may
be overestimating the identification potential of BFI. At the same
time, these restrictions also lead to less diversity in recordings (as
clothing across participants was more similar), which makes iden-
tification more difficult. Therefore, we suggest that future work
considers a data collection scenario closer to a real-world setting
to investigate this.

Last, it remains unclear how exactly human gait influences beam-
forming reports, as we are missing a deeper understanding of the
semantics of them. While we can use them to infer information
using machine learning, domain knowledge based explanations of
individual features within BFI are still missing. This information
could potentially be leveraged to further increase recognition rates.
However, we would like to point out that the recognition accuracy,
even without a deeper understanding of the semantics and with
our simple machine learning approach is already alarmingly high.

7.3 Future Work
We consider the most crucial area for future research to be mitiga-
tion strategies for WiFi sensing based privacy threats. The utility of
WiFi in modern everyday life is immense, and therefore an effective
mitigation that can reliably prevent the privacy threats discussed
in this paper while not sacrificing its utility is crucial. Considering
the severe privacy threat that we demonstrated in this paper and
the ubiquitousness of devices that could implement this attack, a
defense against it seems imperative.

Existing countermeasures against CSI-based sensing (cf. Section
3) either rely on modified firmware, or require additional hard-
ware, and introduce performance trade-offs. Their effectiveness
against BFI-based sensing remains unclear. Since BFI is derived
from CSI (specifically, from VHT-LTFs), injecting noise into CSI
could degrade BFI-based sensing. However, the BFI computation
pipeline involves compression and other transformations that may
attenuate such noise. Inaccurate BFI, in turn, risks beamforming
misalignment, leading to packet loss and degraded network perfor-
mance. As shown in our evaluation, reducing the time resolution
of beamforming reports by modifying access points to initiate the
channel sounding procedure less often, also only has very lim-
ited effect. Approaches could consider encrypting the transmitted
beamforming information, such that at least the credentials to the
network would have to be known to the adversary, but this would
require modification of the WiFi standard and would potentially
result in devices being incompatible. As such, there does not seem
to be a straightforward path to mitigate the threats shown by BFId,
which highlights this as an important open problem that requires
community attention.

Further work should also deepen our understanding of BFI’s
identification capabilities through additional experiments. Open
questions include the effects of dynamic or transient objects in the

environment, long-term robustness, and interference from other
WiFi networks.

Finally, since current insights into BFI privacy risks are largely
empirical, a theoretical framework for analyzing and bounding such
risks remains an interesting open problem.

8 Conclusion
In this paper, we have introduced BFId, the first identity inference
attack using beamforming feedback information. We have shown it
to be a robust method of identification, even across walking styles
and perspectives and with large sample sizes. For this, we have
created a novel WiFi sensing dataset containing BFI and CSI record-
ings of 197 individuals, which is available to interested researchers.
We have also shown the BFI identification accuracy to surpasses
that of CSI in a direct comparison, even though it uses a weaker
adversary model. As BFI is transmitted unencrypted over the air, no
specialized hardware with custom firmware is necessary to record
it and it is easier to record multiple perspectives. This highlights the
privacy threats associated with BFI-based sensing. With this hard-
ware making its way into millions of homes, the privacy concerns
are severe.
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A CSI baseline implementation details
Some of the implemented CSI-based recognition approaches re-
quired minor modifications in order to be usable for our experi-
ments, which we want to acknowledge here. Generally, we per-
formed a hyperparameter optimization for any options of the ap-
proaches, as they may be specific to our dataset.

For LW-WiID, the size of the sliding window and the step size
during pre-processing were also determined using hyperparameter
optimization. As the Baloon mechanism used within the model de-
sign primarily has the goal of decreasing the size of the model while
preserving accuracy, we did not include it in our implementation.

Figure 8: Test accuracy for identification for BFId (CSI and
BFI) with varying data splits.

Instead, we used the CNN architecture from WiAU [36]. LW-WiID
compares its architecture to it during their evaluation and they find
insignificant accuracy changes, but a larger model – which is not
relevant for our experiments.

As CAUTION does not support variable length samples, but
requires every CSI recording to have the same number of frames,
we cut or pad them zeros. The fixed length is determined through
hyperparameter optimization.

While FreeSense generally supports variable length samples
(since DTW does), we found accuracy significantly improved when
cutting our samples to a common size, similar to CAUTION. Due
to FreeSense being significantly less efficient than the other deep
learning approaches due to using a k-NNwith custom (complex) dis-
tance function, we had to perform its hyperparameter optimization
on a random, but fixed subset of our dataset with 10 individuals.

B Impact of training data split
To further investigate how well our model generalizes, we test the
impact of the split between training and test data. We hypothesize
that less training data decreases the model’s accuracy though a iden-
tification remains generally possible. This is because less training
data means that it becomes more difficult to learn the representative
features from the data that can be used for identification. At the
same time, we have already seen BFI and CSI to be very distinctive,
so even if the extracted features are less optimal, identification will
often still be possible.

To test this hypothesis, we run our baseline experiment for both
CSI and BFI (normal walking, perspective 1) with varying data splits.
In our other experiments, we use the common 80:20 split between
training and test data. Here, we test multiples of 20 as values for
this split. As before, we repeat each experiment five times.

The results can be found in Figure 8. As expected, the identi-
fication decreases with lower amounts of training data. While it
remains over 90% for BFI even with only 20% of the data for train-
ing, it decreases to as low as 28% for CSI. This difference between
WiFi artifacts could be attributed to CSI being significantly higher
dimensional. This means the data is more complex and it is more
difficult to extract the relevant features for identification. This also
matches with the theory that BFI’s inherent compression already
extracts relevant features compared to raw CSI. Therefore, more
data is needed to train a system for CSI than for BFI.
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