
I

The Journal of Systems and Software 231 (2026) 112637

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Modeling the composition of analysis components and automatic constraint
checking for semantic soundnessI,II

Bahareh Taghavi a ,∗, Sebastian Weber b , Adrian Marin c , Bernhard Rumpe c ,
Sebastian Stüber c , Jörg Henß b , Thomas Weber a , Robert Heinrich d

a Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
b FZI Research Center for Information Technology, Karlsruhe, 76131, Germany
c Software Engineering, RWTH Aachen University, Aachen, 52062, Germany
d Ulm University, Ulm, 89081, Germany

A R T I C L E I N F O

Dataset link: https://github.com/FeCoMASS/M
odel-Transformation-for-Automated-Constraint
-Validation

Keywords:
Semantic constraint checking
Software architecture
Model transformation
Palladio
MontiArc

 A B S T R A C T

Component-based software architecture enables software architects to design complex systems by composing
components that interact through well-defined, syntactically specified interfaces. A special kind of component
we investigated in our previous work is the analysis components. Analysis components support the evaluation
and prediction of system’s functional and non-functional properties. Evaluating these properties early in the
development process helps optimize system performance and ensure compliance with requirements. While
approaches for modeling and analyzing such systems, such as the Palladio approach, support syntactic
validation of the composition, they often lack mechanisms to ensure the semantic soundness of compositions.
In this paper, we present a model transformation approach to help architects ensure that system models are
semantically sound and behave as expected. This approach enables the transformation of Palladio models
into MontiArc models, allowing architects to enrich their system representations with semantic constraints
and validate these constraints with the MontiArc workbench. This ensures that component interactions are
consistent with both structural composition and intended semantics. We evaluate our approach through two
different case studies. From these case studies, we derived several scenarios with varying constraints and
states to assess the accuracy and performance of our approach. To evaluate accuracy, we examined our
approach’s ability to check semantic constraints and detect violations. We observed high accuracy across
the case studies. For performance, we analyze time complexity in different constraint types. The approach
performed well when applied to arithmetic constraints, with its effectiveness decreasing when applied to more
complex string-centered constraints.
1. Introduction

Software plays a significant role in various domains, including
engineering, society, and the economy. Software is the backbone of
modern technology because it enables the functionality of a wide range
of systems, from desktop applications to enterprise-level technologies.
Hence, software must be deemed trustworthy; in other words, the
software must be ensured to fulfill the desired functionality and quality
properties (e.g., performance and security). Effective assurances of
trustworthiness can be given by analysis techniques.

Analysis techniques are designed to investigate specific questions
because complex systems exhibit diverse behaviors that require special-
ized and targeted analysis approaches. Examples of questions that may

I This article is part of a Special issue entitled: ‘SoftArch’ published in The Journal of Systems & Software.
I Editor: Raffaela Mirandola.
∗ Corresponding author.
E-mail address: bahareh.taghavi@kit.edu (B. Taghavi).

need investigating are ‘‘What happens if the number of users of my sys-
tem doubles?’’ or ‘‘What happens if my system is attacked?’’ To answer
such specific questions, each analysis technique must employ a model-
ing formalism tailored to the particular aspect it is intended to analyze.
For instance, analyses are tailored to specific disciplines, such as mod-
eling user interactions through the usage analysis technique (Hamlet
et al., 2004) or examining internal behavior and interactions within
system components using system-level analysis techniques (Bertolino
and Mirandola, 2004). Additionally, software analysis must be capa-
ble of evaluating and predicting how well the software aligns with
functional requirements and quality properties. To this end, analysis
components are designed as modular building blocks (Talcott et al.,
https://doi.org/10.1016/j.jss.2025.112637
Received 3 March 2025; Received in revised form 11 July 2025; Accepted 12 Septe
vailable online 26 September 2025
164-1212/© 2025 The Authors. Published by Elsevier Inc. This is an open access ar
mber 2025

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://orcid.org/0009-0005-0031-1938
https://orcid.org/0009-0006-3746-0694
https://orcid.org/0009-0006-5740-8439
https://orcid.org/0000-0002-2147-1966
https://orcid.org/0000-0002-6636-9375
https://orcid.org/0000-0002-4527-211X
https://orcid.org/0009-0001-5775-2225
https://orcid.org/0000-0003-0779-9444
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
mailto:bahareh.taghavi@kit.edu
https://doi.org/10.1016/j.jss.2025.112637
https://doi.org/10.1016/j.jss.2025.112637
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2025.112637&domain=pdf
http://creativecommons.org/licenses/by/4.0/

B. Taghavi et al. The Journal of Systems & Software 231 (2026) 112637
2021), and further, the components are also composed to scale analyses
to specific investigation goals. This composition poses a challenge:
Now, for each composition, it must be verified whether the composed
analysis components interact in such a way that the intended behavior
is preserved and the expected results are produced. In other words,
every composition must be verified for semantic soundness, meaning
that the composed components conform to their individual assumptions
and guarantees and produce valid analysis results.

One of the leading frameworks for modeling and analyzing
component-based software architectures is the Palladio simulation ap-
proach. With its metamodel, Palladio Component Model (PCM) (Reuss-
ner et al., 2016), and its simulation tool Palladio Bench (Heinrich et al.,
2018), the framework allows developers to create abstract representa-
tions of software architectures, simulate their behavior, and investigate
quality properties such as performance, scalability, and resource uti-
lization. Its structured modeling approach and extensibility make it
a suitable foundation for reasoning about system component-level
interactions.

In spite of Palladio’s strength in architectural-level analysis, PCM
supports only syntactic validation, such as checking for interface com-
patibility, and lacks support for reasoning about whether composi-
tions are semantically sound. This limitation, as discussed in Heinrich
et al. (2021), restricts the applicability of Palladio in scenarios where
the semantic soundness of component interactions and their emergent
behaviors is critical. In this work, we focus on modeling analysis
component compositions in Palladio to better support the extension
and replacement of analysis components by enabling the verification
of their composition. As highlighted by Koch (2024), finding reusable
analysis components remains a challenge due to factors such as a lack
of standardization, insufficient maintenance, and inadequate documen-
tation. These challenges hinder the reusability of analysis components.
To address this, and to ensure the reusability of an analysis component
within a composition at design time, Palladio will benefit from the
capability to verify the semantic soundness of analysis component com-
positions through semantic constraint checking and to reveal violated
constraints to analysis architects.

Hence, we propose a complementary approach to address the lack
of semantic soundness in the composition of analysis components,
instead of introducing direct support for semantic constraints within
Palladio itself. This approach bridges Palladio’s existing strengths in
quality property analysis with the semantic soundness capabilities of a
framework for semantic constraint validation. In particular, we enable
the transformation of PCM models into MontiArc models (Haber, 2016).
MontiArc supports the textual modeling of Component & Connector
architectures and allows the static validation of semantic constraints
specified at the ports of the components, which are connected through
the connectors. Our approach includes a systematic model-to-model
transformation process, where the architectural elements of PCM, such
as components, interfaces, and connectors, are mapped to their corre-
sponding representations in MontiArc. Once the PCM model is trans-
formed into a MontiArc model, semantic constraints can be applied
to verify whether the modeled system’s behavior aligns with expected
logical and functional requirements. These constraints are specified in
an additional model using a technique similar to tagging (Greifenberg
et al., 2015), where metadata or annotations are attached to elements
of the model without altering its core structure. This avoids adding
more complexity to the PCM and enriches the MontiArc model gener-
ated from the PCM. This approach contributes to trustworthy software
architecture by ensuring that the models of analysis components adhere
to defined constraints, which leads to more predictable and reliable
system behavior. By ensuring the reliable behavior of analysis com-
ponents in the static context of architectural models, we support the
semantic soundness of their composition by enabling well-defined and
meaningful interactions among them.
2
Contributions: In this article, we extend (Weber et al., 2024) work to
contribute to the trustworthiness of PCM as a foundation for early
architectural validation, by enabling constraint checking in scenar-
ios where ensuring the semantic soundness of analysis component
compositions is critical. In Weber et al. (2024), a robust transforma-
tion of PCM models to MontiArc models is provided that takes into
account the architectural details in both models and also considers
how architectural modeling in PCM can be abstracted and mapped to
MontiArc. The method in Weber et al. (2024) specifies constraints in
Palladio and also presents a solution for integrating these constraints
into MontiArc models. Additionally, Weber et al. (2024) include a tool
for constraint checking based on an assumption-guarantee formalism
within the MontiArc framework. However, the approach of Weber et al.
(2024) is only a technical demonstration and, consequently, is limited
in capability, lacking support for more complex constraints and a
comprehensive evaluation. Therefore, we build on that foundation and
extend the range of supported constraint types, including more complex
regular expression constraints. Furthermore, we analyze the accuracy
and performance of constraint checking in the MontiArc framework.
Lastly, we provide a more detailed comparison with related work and
apply our extended approach to a broad set of case studies.

Our contributions in this paper are as follows:

C1 We incorporate support for constraint checking using regular ex-
pressions into the semantic constraint analysis, thereby provid-
ing a more expressive and powerful specification formalism. This
enhancement enables our approach to support a broader range
of constraint types within MontiArc and Palladio, in particular
complex naming schemes present in e.g., file endings. Unlike ex-
isting OCL extensions (Lano, 2021; Damus and Sánchez-Barbudo,
2002), our lightweight approach avoids complex library depen-
dencies by using a simple formalism focused only on language
membership.

C2 We conducted a literature review to provide an overview of
existing related approaches. This review revealed that while
several approaches (Meyer, 1988, 1992; Swamy et al., 2013,
2016) address formal verification, they typically lack support for
architectural modeling. In contrast, our approach explicitly in-
tegrates such mechanisms into the semantic constraint analysis,
enabling validation of component interactions.

C3 We conducted an evaluation and structured it systematically
based on relevant development scenarios in order to examine
how changes in component composition affect semantic con-
straint checking. To this end, we employed a new case study to
evaluate regular expression support in addition to systematically
deriving relevant scenarios for the original case study. Further-
more, we assessed both the accuracy of semantic constraint
checking and the performance of our approach.

The paper is structured as follows: Section 2 provides an intro-
duction to the Palladio approach, its simulators, and the modeling
formalism PCM and MontiArc. This is followed by a discussion of
related approaches to address C2 in Section 3. Section 4 introduces a
running example that we reference throughout the paper. Our approach
is presented in Section 5, where we outline the transformation process
from Palladio to MontiArc, followed by the constraint-checking process.
Section 6 presents the evaluation of the accuracy and performance
of our approach. Finally, Section 7 focuses on conclusions and future
research directions.

2. Background

This section provides an overview of the two frameworks used in
this paper: Palladio and MontiArc, both of which adhere to a Compo-
nent & Connector (C&C) approach. In these frameworks, the logic is
encapsulated within components that communicate through explicitly

B. Taghavi et al. The Journal of Systems & Software 231 (2026) 112637
Fig. 1. LightCtrl repository diagram.

defined communication channels. The shared C&C architecture of Palla-
dio and MontiArc enables a translation between the two models, which
preserves both structure and meaning. During this translation process,
essential information – such as components, communication channels,
and message types – is preserved, thereby facilitating comprehensive
analysis in the context of software validation and verification.
Palladio (Reussner et al., 2016) is an approach to simulating software
architecture, aiming to analyze and predict performance, among other
quality properties. The tooling that implements the Palladio approach
is known as the Palladio-Bench (Heinrich et al., 2018). The Palladio
Component Model (PCM) is a domain-specific modeling language and
is composed of multiple sub-models, each targeting a particular devel-
oper role. Component developers contribute by specifying behavioral
aspects of their components and interfaces in the repository model.
Subsequently, system architects leverage these repositories to assemble
concrete component-based software systems in the assembly model.
Meanwhile, system deployers focus on modeling the resource environ-
ment and allocating components across different resources. Business
domain experts are also responsible for providing usage models that
describe critical usage scenarios and outline user behavior. Palladio fa-
cilitates model evaluation through simulation, enabling the prediction
of performance metrics like response times and hardware utilization
under specified workloads.

To provide a clearer understanding of Palladio’s modeling capabili-
ties, Fig. 1 presents the Repository model of a system called LightCtrl.
The Repository model defines the reusable component types, their
interfaces, and associated data types or service operations. This serves
as the foundation for modeling our components and their interactions
in Palladio. Fig. 1 illustrates a simplified version of the LightCtrl system,
which is a component-based architecture designed to process alarm
inputs and generate corresponding control commands. This system con-
sists of two components: AlarmCheck and Arbiter. AlarmCheck
component receives an input of type AlarmStatus via the interface
IAlarm. It processes this input according to its internal logic and emits
a Boolean flag. Arbiter component receives the Boolean flag through
its interface IArbiter. Based on the value of this flag, it determines
whether a control command should be issued. This decision is exposed
through its interface, IArbiter, which returns an OnOffCmd (e.g., to
activate or deactivate a device).

In addition to the components and interfaces, the Repository model
also includes composite data types that facilitate structured data ex-
change between components. The composite data types AlarmStatus
and OnOffCmd are depicted in Fig. 1. AlarmStatus encapsulates the
3
Fig. 2. LightCtrl assembly diagram.

alarm information received by the AlarmCheck component through
the IAlarm interface. OnOffCmd represents the output generated by
the Arbiter component through the IArbiter interface. It contains
a cmd attribute of type String that specifies the resulting control
command (e.g., ‘‘ON’’, ‘‘OFF’’).

Fig. 2 shows the Assembly model of the LightCtrl system in Pal-
ladio. Each box labeled with a component name (AlarmCheck and
Arbiter) represents an AssemblyContext, which is a concrete
instantiation of a repository component in the system. The connec-
tions between these AssemblyContexts are modeled using As-
semblyConnectors, which bind required roles of one component
instance to the provided roles of another. For example, the required
interface IArbiter of AlarmCheck is connected to the provided
interface of Arbiter that establishes the communication path be-
tween them (Connector2). Additionally, the Assembly model includes
DelegationConnector (Connector1) that route the system-level
inputs/outputs to the appropriate internal components. Specifically, the
alarm input received by the overall LightCtrl system is delegated to
AlarmCheck.

Montiarc1 (Haber, 2016) is a textual modeling language to describe
C&C systems. The components receive input messages and send output
messages via typed and directed ports. Communication is only possible
through these explicitly defined ports, which helps reduce hidden links.
MontiArc has a precisely defined semantic foundation in FOCUS (Broy
and Stølen, 2001). The textual MontiArc models can be mapped into the
mathematical FOCUS space to define the semantics of the models (Harel
and Rumpe, 2004), which enables formal interpretation and reasoning.
This enables formal verification of MontiArc models at design time.
In MontiArc, semantics are used to support formal reasoning about
system behavior, particularly with respect to component composition
and communication. For instance, properties such as the absence of
message loss, preservation of message order, and correctness of com-
ponent composition can be formally proven. The formal proofs are
performed using MontiBelle (Kausch et al., 2020b,a) and the interactive
theorem prover Isabelle (Nipkow et al., 2002). By leveraging this
formal semantics, MontiArc supports early detection of design issues
and ensures that system models satisfy critical correctness properties
before implementation.

Listing 1 shows the example of LightCtrl modeled in MontiArc. As
shown, the main component LightCtrl represents the system-level
assembly, which is depicted in the Assembly Diagram in Fig. 2. In
MontiArc, the keyword component signifies a local component type
definition. This can then be used inside a hierarchical composition by
declaring an instance of the component type, much like Palladio’s use
of assembly contexts within a system model. The ports of the main
component, such as alarm and cmd, serve as the external interfaces
of the system (lines 3 and 4, Listing 1). These correspond to Palladio’s

1 “ the montiarc architecture description language”, https://github.com/
monticore/montiarc (accessed: january 23, 2025).

https://github.com/monticore/montiarc
https://github.com/monticore/montiarc

B. Taghavi et al.

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

The Journal of Systems & Software 231 (2026) 112637
system-level required and provided roles, which are linked through del-
egation connectors. For instance, the alarm port in MontiArc delegates
its input to the internal component alarmCheck via a connection
specified using an arrow notation (line 21, Listing 1). Additionally,
outputs like cmd can also be modeled in Palladio as return values
of operations defined in a provided interface (depends on the design
decision). The connection between the AlarmCheck and Arbiter
components is represented in line 22 of Listing 1. This connection is
equivalent to an assembly connector in Palladio, where the required
role of AlarmCheck is connected to the provided role of Arbiter.
Finally, the output from the Arbiter is routed to the system’s output
port, as shown in line 23 of Listing 1.

1 component LightCtrl {
2 port
3 in AlarmStatus alarm,
4 out OnOffCmd cmd;
5

6 component AlarmCheck {
7 port
8 in AlarmStatus alarm,
9 out Boolean alarmFlag;
0 }
1

2 component Arbiter {
3 port
4 in Boolean alarmFlagIn ,
5 out OnOffCmd cmd;
6 }
7

8 AlarmCheck alarmCheck;
9 Arbiter arbiter;
0

1 connect alarm -> alarmCheck.alarm;
2 connect alarmCheck.alarmFlag -> arbiter.

alarmFlag;
3 connect arbiter.cmd -> cmd;
4 }

Listing 1: MontiArc model of the LightCtrl component.

3 Related work

Model-Driven Software Engineering (MDSE) is a method to bridge
the gap between a problem and the design and implementation of
a solution for the problem (France and Rumpe, 2007) and offers a
comprehensive view to develop systems (Brambilla et al., 2017). The
MDSE approach for software development has been proven to increase
efficiency and effectiveness (Acerbis et al., 2007). By applying MDSE,
verification through certification of source code can be reduced to
certifying the code generator and the model the code was generated
from, reducing the expense. In this way, formal modeling notations
and development tools that operate on architectural specifications are
needed to support architecture-based development (Medvidovic and
Taylor, 1997). That is why Architecture Description Languages (ADLs)
offer an avenue for modeling different aspects of the system under
development, allowing verification to be performed on the structure of
the system by employing composition (Allen et al., 2002; Haddad et al.,
2011). Designers can use an ADL aimed at a specific domain to verify
their system against specific properties (Allen et al., 2002). Although
there are quite a few ADLs available, they are mostly used in research
environments and are not widely adopted by industry and some of them
are only compatible with certain architectural styles (Gacek and de
Lemos, 2006). Furthermore, refinement is explicitly supported only in a
few ADLs, helping to ensure that lower-level constraints do not violate
higher-level constraints (Moriconi et al., 1995).

Model checking is an established verification technique that in-
volves evaluating a system’s model against its specification, considering
4
all possible execution traces, to systematically determine whether the
model satisfies the desired property (Baier and Katoen, 2008). Model
checking relies on formal constraints to define the properties that a
system must satisfy, ensuring compliance with its intended behav-
ior. Czepa et al. (2017) build upon this principle by introducing Card,
an Eclipse plug-in that automates conformance checking between UML
2.0 models and their corresponding Java implementations to miti-
gate architecture erosion. The evaluation of Card demonstrates its
effectiveness in detecting violations, usability within the Eclipse IDE,
and scalability across different project sizes. Czepa and Zdun (2019)
also conducted a controlled experiment with 116 participants to com-
pare novice software designers’ understanding of graphical and textual
behavioral constraint representations. Ly et al. (2012) introduced a
framework that provides a formal foundation for developing constraint-
aware process management systems (PrMS). It provides comprehen-
sive support for semantic constraints in PrMS, enabling the validation
and enforcement of business rules and policies throughout the entire
process lifecycle. Cardei et al. (2008) presented a methodology for
requirements specification and validation that uses an ontology-based
language for the semantic description of functional product require-
ments. The aim of the paper is to detect omissions and consistency
errors in the requirements specification early on, before the design
stage.

The FOCUS framework (Broy et al., 1992; Ringert and Rumpe,
2011) enables modular system development by providing precise spec-
ifications for component behavior and interactions, along with a math-
ematical semantics for defining the structure and behavior of software
systems. It supports various specification styles, including assumption-
guarantee reasoning, which allows system components to be defined
based on assumptions about their environment and the guarantees
they must fulfill under those conditions. Broy and Stølen (2012) build
upon the FOCUS framework, offering models, formal methods, and
verification techniques for the stepwise specification and development
of distributed interactive systems. They present a rigorous mathe-
matical and logical foundation for software and systems engineering,
enabling the verification and refinement of complex system interactions
through formal reasoning. Kausch et al. (2024) built on the former
and applied a model-driven approach, by verifying liveness properties
specified in the SysML v2 ADL over an uplink feed of an avionic system
in cooperation with Airbus. This approach employs theorem proving
to reach its goal of formal verification, by transforming components
and their behavioral specification into the interactive theorem prover
Isabelle and thus validating compositions by construction. This theorem
proving approach is more potent in showing semantic soundness of a
composition by handling history-based input–output specifications. But
generating fully automated proofs in Isabelle is not yet generalizable.

Formal verification and software correctness are critical in en-
suring software reliability. Eiffel (Meyer, 1988) is an object-oriented
programming language and environment that extends the concept of
assumption-guarantee reasoning through its native support for Design
by Contract (DbC) (Meyer, 1992), explicitly enforcing these interactions
within its programming model. DbC introduces a software develop-
ment methodology that enhances reliability by incorporating formal
contracts into code. It is based on the principle that if a client sat-
isfies a supplier’s precondition, the supplier is obliged to fulfill its
postcondition. These contracts serve as formal agreements between
different parts of a system, ensuring software correctness, robustness,
and maintainability. Eiffel demonstrates how contracts improve soft-
ware integrity by explicitly defining expected behaviors and preventing
unexpected failures. F* (Swamy et al., 2013, 2016) is a dependently-
typed, functional programming language designed for formal verifica-
tion, incorporating effectful programming, satisfiability modulo the-
ories SMT-based verification, and manual proofs. It enables users to
specify preconditions and post-conditions with mathematical precision,
allowing for rigorous formal reasoning about program correctness.
These two integrated approaches act at the source code level. While

B. Taghavi et al. The Journal of Systems & Software 231 (2026) 112637
they do perform, and in the case of F*, can also leverage underspecifi-
cation, the composition of analyses modeled through these can only
be performed at the source code level. Architecture analysis valida-
tion through semantic soundness assessments of compositions, how-
ever, is better suited for ADLs enriched with an assumption-guarantee
formalism.

Moreover, several studies have addressed the verification of UM-
L/OCL models. The UML can be considered a generic ADL, thus qual-
ifying it for this use case. But as stated by Pandey (2010), its in-
consistencies and ambiguities regarding formal semantics outside of
state charts and class diagrams hinder its use for analysis and code
generation. Tools such as the USE Validator (Richters and Gogolla,
2000) support checking OCL constraints over UML models, particularly
focusing on class and object diagrams. Similarly, Cabot et al. (2008)
present an approach for verifying the correctness of UML class diagrams
annotated with OCL constraints by transforming them into constraint
satisfaction problems. However, they are not designed for component-
based architectures. Moreover, OCL lacks the extensibility required
to capture system-level architectural constraints that span interfaces,
ports, and component interactions, as supported in MontiArc.

To summarize this section, while there are works that employ
DbC on the source code level and others that perform requirement-
to-realization tracing and validation, there are no works that explore
applying automatic composition validations on the architectural model-
ing level, apart from theorem-proving-based approaches which cannot
guarantee full automation.

4 Running example

To illustrate the concepts described in our approach and to briefly
demonstrate how it is beneficial, we use the Slingshot simulator (Katić
et al., 2021; Klinaku et al., 2025) as a running example. We selected
Slingshot because our focus is on composition case studies involving
analysis components. Slingshot is a simulation environment as part of
the Palladio approach and is based on an event-driven architecture.
This simulator is employed to analyze the dynamic behavior and per-
formance of component-based software architectures. For the purposes
of this paper, we employ a simplified model of Slingshot (building
on our earlier work, which particularly modeled its behavioral as-
pects (Taghavi et al., 2025)) to make the concepts easier to understand
and to focus on the core aspects relevant to our proposed approach.

Slingshot currently comprises three simulation components: the
UsageSimulation, the SystemSimulation, and the
ResourceSimulation components. As shown in Fig. 3, the Repos-
itory Model Diagram in Palladio illustrates the components, their
interfaces, and their connections. We represent the three Slingshot
components using BasicComponents and establish their connections
through Interface model elements. To initiate a simulation in
Slingshot, Slingshot begins with the UsageSimulation component,
which reads and interprets predefined usage scenarios. These usage
scenarios describe user behavior and interaction with the system over
time. One key parameter in the usage scenario, numOfUsers, de-
fines the number of users concurrently present in the system during
simulation. As the first constraint in this composition, we define that
this parameter must be greater than zero to ensure meaningful results.
Based on this and other usage scenario parameters, the UsageS-
imulation component generates systemCall, which may include
the name of the invoked method. These calls are then processed
by the SystemSimulation. The SystemSimulation component
identifies the demand for computational resources. Then it passes
these resource demands, such as CPU or memory usage, to the Re-
sourceSimulation component, which simulates hardware-level
resource consumption. This interaction allows Slingshot to simulate
how the behavior of components and different usage conditions affect
overall performance. The simulation results include performance pre-
dictions such as response time and resource utilization. For example, in
5
Fig. 3, a composite data type named ResourceSimulationReturn
is defined, which includes an attribute utilization.

The components from the Repository are instantiated and their
interconnections within the system are defined in the Assembly model
of Palladio, as shown in Fig. 4. These AssemblyContexts, which
contain component types, are connected through directed connectors,
including delegation connectors that link the system’s required or
provided roles to the corresponding roles of internal AssemblyCon-
texts. We show the constraints for each port in Slingshot in Fig. 4 to
provide a clearer understanding of their placement.

5 An automated approach for semantic constraint checking

In this section, we first introduce the underlying structural defi-
nitions of both source and target languages, and we also provide an
overview of our proposed approach.

Fig. 5 depicts the transformation and enrichment process applied
by the approach to check semantic constraints in the composition of
systems modeled in the PCM. PCM is based on an Eclipse Model-
ing Framework (EMF)-compatible Ecore metamodel (Steinberg et al.,
2008), which explicitly defines its core modeling constructs, including
components, interfaces, data types, and system architectures. However,
MontiArc defines its modeling language using MontiCore grammars,2
from which the abstract syntax trees are generated.

This section discusses the contributions provided in Weber et al.
(2024), as well as those related to C1. The primary goal of the approach
is to enrich PCM models in order to check semantic constraints for
software architectures, a capability that was previously unavailable. We
achieve this goal in two main steps: Transform PCM into MontiArc mod-
els (Section 5.1) and Semantic Checking of Transformed Constraints
(Section 5.2).

At a high level, our approach (depicted in Fig. 5) receives a PCM
model and transforms it into a MontiArc model. It is possible to
annotate the PCM model with constraints, which are also transformed
and enrich the MontiArc model. These constraints can then be validated
on the MontiArc model using our constraint checker.

The key PCM metamodel elements (detailed in Section 2) in the
Repository model are BasicComponent, Interface (with oper-
ation signatures), ProvidedRole, RequiredRole, and Compos-
iteDataType (illustrated in Fig. 3); and in the Assembly model, the
main elements are System, AssemblyContext, and Connector,
which define how components are instantiated and interconnected (il-
lustrated in Fig. 4). In MontiArc, the key language elements (detailed in
Section 2) are Component, Port, and Connector, with connections
specified using the connect keyword.

The proposed approach begins with the specification of compo-
nents using Palladio, which facilitates early performance predictions
and supports architectural decision-making during the design phase.
By modeling the architecture in Palladio, the components’ behavior
and resource demands can be defined, enabling a simulated perfor-
mance analysis of the system under varying conditions. This process is
closely interconnected with MontiArc, another approach that supports
the design of components and their interactions while enabling the
specification of communication patterns. Although both Palladio and
MontiArc approaches share a common focus on defining and managing
components, their goals and applications differ. On the tool level,
Palladio is primarily tailored for performance simulation and analysis,
enabling architects to assess system quality attributes such as scalability
and responsiveness. In contrast, MontiArc is centered on the composi-
tional development of software architectures and provides additional
capabilities for formal verification to ensure the correctness of system
interactions and communication. By integrating Palladio and MontiArc,

2 ‘‘The MontiCore Grammar Library’’, https://github.com/MontiCore/
monticore/tree/dev/monticore-grammar (accessed: June 17, 2025).

https://github.com/MontiCore/monticore/tree/dev/monticore-grammar
https://github.com/MontiCore/monticore/tree/dev/monticore-grammar

B. Taghavi et al. The Journal of Systems & Software 231 (2026) 112637
Fig. 3. Repository model of Slingshot.
Fig. 4. Assembly model of Slingshot.
Fig. 5. Transformation process and artifacts.
the proposed approach leverages the strengths of both methods. This
integration is further strengthened by allowing the specification of
constraints within the Palladio approach, which can then be validated
using MontiArc, ensuring semantic soundness between architectural
design and composition verification.

5.1 Transforming PCM to MontiArc

Our transformation uses the Repository (Fig. 3) and the Assembly
model (Fig. 4) of the PCM as inputs. The other model types of the
PCM (i.e., Allocation, Deployment, and Usage) are not relevant to our
approach. The Usage model is excluded because the analysis is static
and therefore independent of how the system is used. Similarly, the
6
Allocation of hardware resources and the Deployment of the software
system to those resources are not relevant, as they do not affect the
system’s composition.

We transform PCM to MontiArc because these two frameworks serve
different purposes. PCM is designed primarily for performance mod-
eling with an emphasis on behavioral specifications and performance
properties, whereas MontiArc focuses on architectural descriptions cen-
tered on hierarchical components and their interconnections. By trans-
forming PCM models into MontiArc, we enable architectural analysis
and validation using MontiArc’s component-based framework, which
better supports compositional reasoning and architectural constraint
checking, which is a key contribution of our work.

B. Taghavi et al.

1

1

1

1

1

1

1

1

The Journal of Systems & Software 231 (2026) 112637
The transformation is implemented using QVT Operational (QVTo),3
which is a model transformation language well-suited for defining map-
pings between EMF-based models. QVTo was selected for its support
of complex model navigation and strong integration with EMF, which
aligns with the needs of our transformation logic. The purpose of this
transformation is to make PCM architecture models usable within the
MontiArc framework for further analysis. We use QVTo to transform
PCM elements into corresponding MontiArc representations by gener-
ating valid textual MontiArc models, even though MontiArc itself is
not based on EMF. Therefore, we developed an Xtext4 grammar for
MontiArc and used the Ecore model Xtext generates from this grammar
as the transformation target. The grammar then allows us to save the
transformed model as a valid textual MontiArc model.

The PCM input models are assumed to satisfy the following condi-
tions to ensure the success of the transformation:

(a) Each component must have explicitly defined required and pro-
vided interfaces.

(b) Operation signatures must be expressible as data-type-based
communication patterns suitable for MontiArc, typically by map-
ping method calls to port-based interactions.

(c) All parameter and return types used in operation signatures
should be either basic types (e.g., int, boolean) or composite data
types that can be represented as message types in MontiArc.

Our transformation is divided into three key steps. The first step is
to extract and transform the data types from the Repository model
into a MontiArc ClassDiagram. PCM’s Repository model includes
various primitive, collection-based, and composite data types, as well as
interfaces that define methods with potentially multiple parameters and
return types. Since MontiArc does not support method-based interfaces
in the same way as PCM does, these must be transformed appropriately.
Primitive data types like int or char can be used directly in MontiArc
models and do not need their own definition, therefore they are trans-
formed whenever necessary and not specifically in this step. However,
composite data types (that are composed by attributes) require explicit
representation in the MontiArc model. The transformation generates
MontiArc ClassDiagrams based on collection and composite data
types defined in the Repository model. Additionally, PCM interfaces
with methods containing multiple parameters must be restructured, as
MontiArc does not natively support method signatures. To resolve this,
we aggregate these parameters of all interfaces of the Repository model
into a single CDClass.

In addition, all interfaces of the Repository model are searched
for methods with two or more parameters. These parameters will
be summarized in a single CDClass in the MontiArc class diagram.
Following this step, we have a MontiArc ClassDiagram, as shown
in Listing 2 that contains all necessary data types for the description
of the PCM model as a MontiArc model. Each PCM Composite-
DataType in Fig. 3 is mapped to a class in MontiArc, with its attributes
directly translated into typed fields. For example, the PCM data type
ResourceSimulationReturn, which encapsulates a utiliza-
tion : DOUBLE attribute, is translated into a MontiArc class with
a corresponding field double utilization (line 15, Listing 2).
This transformation is illustrated in Listing 3. The mapping function
compositeDataTypeToCDClass takes a CompositeDataType
as input and produces a CDClass element. It sets the class name based
on the source entity name and applies a helper mapping to convert
each InnerDeclaration (which represents an attribute declaration
within a CompositeDataType) into a class member.

3 ‘‘OMG QVT 1.3 Specification’’, https://www.omg.org/spec/QVT/1.3/
(accessed: June 17, 2025).

4 ‘‘The Xtext Framework’’, https://eclipse.dev/Xtext/ (accessed: June 17,
2025).
7
1 classdiagram Slingshot {
2 public class UsageScenario {
3 int numberOfUsers;
4 }
5

6 public class SystemCall {
7 String method;
8 }
9

0 public class ResourceDemand {
1 double resourceDemand;
2 }
3

4 public class ResourceSimulationReturn {
5 double utilization;
6 }
7 }

Listing 2: Class diagram based on the repository model in Fig. 3.

1 mapping CompositeDataType::
compositeDataTypeToCDClass() : CDClass {

2 name := self.entityName;
3 public := true;
4 members += self.

innerDeclaration_CompositeDataType ->
map innerDeclarationToMember();

5 }

Listing 3: QVTo mapping for transforming CompositeDataType to
CDClass.

In the next step, the PCM Assembly model from Fig. 4 is trans-
formed. The output of this transformation step is shown in Listing 4
(see Appendix for the complete listing). The constraints are shown in
gray because they are added in the third step of the transformation. The
first challenge in this stage is transforming the system, which is the root
element of an Assembly model, to the core component of the MontiArc
model. Next, the AssemblyContexts, which represent instances of
components specified in the repository (Fig. 3), are transformed into
sub-components in MontiArc. A key complexity here is that PCM As-
semblyContexts encapsulate components defined in the Repository,
and their roles (i.e., required and provided interfaces) need to be
correctly translated into MontiArc ports. For example, consider the
UsageSimulation component. It provides the UsageSimulation
interface and requires the SystemSimulation interface. In PCM,
both are modeled as roles in the Assembly model, which are shown
through the circle at the top for the provided role and the half-circle
at the bottom for the required role (Fig. 4). Through the provided role
the component receives a UsageScenario as input and through the
required role the component outputs a SystemCall. Therefore, the
component has one input port for UsageScenario while the port
for SystemCall is an output port. The last part of this step is the
transformation of PCM connectors, which define how assembly contexts
communicate according to the roles of the encapsulated components, to
MontiArc connectors.

1 component Slingshot {
2 port <<condition = " x.numberOfUsers > 0 &&

x.numberOfUsers < 2147483647" >> in
UsageScenario usageScenario;

3 component UsageSimulation {
4 port <<condition = " x.numberOfUsers > 0"

>> in UsageScenario usageScenario;
5 port <<delayed, condition = " x.method

== \" executeOperation \ " " >> out
SystemCall systemCall;

https://www.omg.org/spec/QVT/1.3/
https://eclipse.dev/Xtext/

B. Taghavi et al.

1

1

1

1

1

1

1

1

1

1

2

2

2

2

1

1

1

The Journal of Systems & Software 231 (2026) 112637
6 }
7 component SystemSimulation {
8 port <<condition = " x.method == \"

executeOperation \ " " >> in SystemCall
systemCall;

9 port <<condition = " x.resourceDemand >
1.0" >> out ResourceDemand
resourceDemand;

0 port in ResourceSimulationReturn
resourceSimulationReturn;

1 }
2 component ResourceSimulation {
3 port out ResourceSimulationReturn

resourceSimulationReturn;
4 port <<condition = " x.resourceDemand >

1.0" >> in ResourceDemand
resourceDemand;

5 }
6 UsageSimulation usageSimulation;
7 SystemSimulation systemSimulation;
8 ResourceSimulation resourceSimulation;
9 usageSimulation.systemCall ->

systemSimulation.systemCall;
0 resourceSimulation.

resourceSimulationReturn ->
systemSimulation.
resourceSimulationReturn;

1 systemSimulation.resourceDemand ->
resourceSimulation.resourceDemand;

2 usageScenario -> usageSimulation.
usageScenario;

3 }

Listing 4: MontiArc model based on the repository (Fig. 3) and system
(Fig. 4) model.

In the final stage, the generated MontiArc model is enriched with
constraints that were specified as Ecore annotations in the additional
input model. Listing 5 illustrates the result of the transformation,
showing how constraints are integrated into the MontiArc model. Each
annotation refers to a directed connector in the PCM Assembly model
and contains different key value pairs that define specific conditions
for ports. Taking Connector2 as an example, it connects the UsageS-
imulation and the SystemSimulation. The constraints with the
keys containing Source are applied to UsageSimulation and the
keys containing target are applied to SystemSimulation. The
constraint x.method == "executeOperation" is applied to the
output port of the UsageSimulation corresponding to Connector2
and to the input port of the SystemSimulation corresponding to
Connector2.

1 <eAnnotations references= " Slingshot.system
#Connector1 " >

2 <details key= " Source:In " value= " x.
numberOfUsers > 0 && x.
numberOfUsers < 2147483647 " />

3 <details key= " Target:In " value= " x.
numberOfUsers > 0 " />

4 </eAnnotations>
5 <eAnnotations references= " Slingshot.system

#Connector2 " >
6 <details key= " Source:Out " value= " x.

method == "executeOperation&
quot; " />
8
7 <details key= " Target:In " value= " x.method
== "executeOperation" " />

8 </eAnnotations>
9 <eAnnotations references= " Slingshot.system

#Connector3 " >
0 <details key= " Source:Out " value= " x.

resourceDemand > 0.0 " />
1 <details key= " Target:In " value= " x.

resourceDemand > 0.0 " />
2 </eAnnotations>

Listing 5: Ecore model of the constraints.

Fig. 6 gives an overview of the model elements involved from both
Palladio and MontiArc and the complex relationships the transforma-
tion has to take into account. Due to the different underlying concepts
of both modeling approaches, elements from MontiArc might be gen-
erated based on one or multiple different metamodel elements from
Palladio. Enriching already generated elements based on information
from other metamodel elements is also necessary for some elements,
e.g., when a constraint from an annotation is applied to a port. The
right side of the figure shows the model elements in Palladio, while the
left side displays the elements in MontiArc. For example, a component
from the Repository in Palladio, as well as an AssemblyContext
from the system, are both transformed into a Component element in
MontiArc. The mapping from an AssemblyContext in Palladio to
a Component in MontiArc starts by assigning the component’s name
based on the AssemblyContext’s entityName. It then iterates
over the provided and required roles of the encapsulated component
and transforms them into MontiArc ports. These ports are then added
to the resulting component. This process ensures that the interface
structure from Palladio is preserved and represented appropriately in
the MontiArc model. The QVTo transformation code implementing this
mapping is provided in Appendix.

5.2 Semantic checking of transformed constraints

We present a solution to automatically ensure the semantic sound-
ness of PCM models by performing constraint checking after trans-
forming them into MontiArc. The core idea is to verify that a mod-
eled system behaves as intended by checking whether its architectural
constraints are satisfied. An analysis component comes with its as-
sumptions about its inputs and outputs. Thus, every component can
guarantee to act as intended – through its output guarantees – only
if the aforementioned assumptions are satisfied. By proving that the re-
quired assumption is satisfied by the output guarantee of the connected
component, we can conclude that the connection is also semantically
valid. To exemplify this on our very simple running example from
Listing 4, the output constraint of the UsageSimulation on port
systemCall is guaranteed then the assumption on the input of the
SystemSimulation also has to be satisfied for the connection to be
valid.

To achieve this, constraints are embedded as stereotypes over ports
of C&C architectural components. This employs a reduced form of the
assumption-guarantee formalism (Broy and Stølen, 2001) that is easily
automatable. The assertion paradigm is similar to the Eiffel program-
ming language (Meyer, 1990) but employed at the architectural level.
The restriction in question is that the constraints are not expressed
through formulas handling potentially infinite port flow histories but
only instant values present at ports. This approach uses static model
analysis and restricts the types available at ports performing dependent
typing similar to Swamy et al. (2016). The validation process consists
of the following steps: (1) Parsing the generated MontiArc model and
processing constraint pairs defined with the condition stereotype
iterating over their connections. Processing constraints starts by parsing
the constraints into the MontiCore expression framework (Hölldobler

B. Taghavi et al. The Journal of Systems & Software 231 (2026) 112637
Fig. 6. Mapping of transformed elements from Palladio to MontiArc.
et al., 2021). (2) Translating constraints into SMT formulas performed
in concordance to Rumpe et al. (2024) . (3) Employing the Z3 SMT
solver to check if the translated implication over the constraints is valid.

We employ SMT checking over the chosen OCL subset to auto-
matically prove that the connections between two components are
potent enough to guarantee an implication. As explained by Rumpe
et al. (2024), OCL can be directly mapped to SMT with minimal
limitations due to their large overlap. Additionally, SMT solvers offer
direct regular expression support. Our implementation reuses an OCL
to SMT translator developed by Rumpe et al. (2024) restricted on the
set of MontiCore OCL expressions. The specific OCL variant supported
by the translator is described in Rumpe (2016). Our restriction of
the OCL language is introduced to ensure that the generated con-
straints remain simple, decidable, and efficiently solvable by standard
SMT solvers. In particular, our approach only handles quantifier-free
constraints. Furthermore, when complex objects are transmitted on
ports, their datatypes must be represented and translated into SMT,
a process also devised by Rumpe et al. (2024). Our approach uses
implementation-focused class diagrams and objects diagrams as pre-
sented in Rumpe (2016). For constraint validation, we use Microsoft’s
Z3 SMT solver (De Moura and Bjørner, 2008) to check the SMT-Lib
formulas derived from our transformation (Barrett et al., 2010). SMT-
lib and Z3 were chosen as a input/output language and solver pair
because of its standardized use when checking constraints with SMT
when it comes to the former and its wide usage in different applications
for the latter (Bjørner and Jayaraman, 2015; Bjørner, 2018).

To formulate checkable constraints, we build implications over the
assumptions and the guarantee obligations. Since port datatypes are
instances of classes, we introduce an SMT sort for each class. Listing
6 presents the declaration of the UsageScenario sort and corre-
sponding function numberOfUsers, which represents its attribute.
This follows the class diagram generated for the PCM model in Fig. 3.
The return type of the function is represented by the SMT-Lib built-in
Int sort.
9
1 (declare-sort UsageScenario)
2 (declare-fun numberOfUsers (UsageScenario) (

Int))
3 (declare-fun x () UsageScenario)
4 (assert (=> (and (< (numberOfUsers x)

2147483647")
5 (> (numberOfUsers x) 0))
6 (> (numberOfUsers x) 0)))

Listing 6: Translated Constraints in SMT-Lib.

The translation of the constraints takes place by introducing a vari-
able x and declaring it in the respective sort of the port’s type, i.e., the
sort generated for the class, here UsageScenario. The implication
and logical operators used in constraints are then 1-to-1 mapped to
SMT-Lib. The result of the checker is then constructed with a classic
approach, i.e., to check validity we negate the implication and check for
unsatisfiability. The result is then produced to the standard output with
a statement about the validity of the implication along with references
to the affected ports. Listing 7 presents an output of the constraint
checker for the valid Slingshot model, referencing the connected ports
in question. If the negated implication is satisfiable, then the impli-
cation is not valid. Listing 8 presents the output of the constraint
checker if we modify the target constraint in Listing 4 to require a
positive number of users. In this case, the tool detects the error but still
processes all implications before halting. The tool presents a counter-
example in the form of an object diagram, performing a retranslation
of the SMT-Lib model into an object-oriented representation. This helps
identify violations and incorrect constraints easily.

Formulating constraints using only arithmetic and string operations
can be tedious. This limits the expressiveness of constraints to only
pre-defined string operations combined with boolean logic between
constraints. In particular, while writing string constraints the user also
has to possess knowledge of string standard method library signatures

B. Taghavi et al. The Journal of Systems & Software 231 (2026) 112637
Table 1
Structure of the use-cases for the evaluation.

Expression

Change Modify
Output guarantee Input assumption

Refine Refactor Abstract Refine Refactor Abstract
Boolean 6.3.2

Regex-Kleene 6.4.4
Regex-MinMax 6.4.2 6.4.3 6.4.4
1

1

1

1 Constraint of Port usageScenario in
Component Slingshot guarantees
constraint of Port usageScenario in
Component UsageSimulation

Listing 7: Output of the Constraint Checker for the
Constraint-Enriched model.

1 [ERROR] Found error in port-constraint.
Constraint of Port usageScenario in
Component UsageSimulation does not
follow from constraint of usageScenario
in Component Slingshot.

2 Counterexample: objectdiagram x {
3 usageScenario_0:UsageScenario {
4 int numberOfUsers=1;
5 };
6 }

Listing 8: Output of the Constraint Checker for a negative result in the
model.

and has to understand their usage. This defers addressing the issue
to the tooling provider, requiring code completion support. To better
motivate the need for regular expression support, we revisit the running
example from Listing 4. The method property for a systemCall can
be constrained through a naming scheme only through a complex chain
of string method calls. A regular expression simplifies this to a more
concise regular expression membership operation. Thus, we introduced
the option to use regular expressions to specify string constraints, as
promised in C1. Even though regular expression dialects also require
prior knowledge, these are standardized and in conformance to the
Java specification.5 To satisfy C1 we introduce a minimal language
that extends the OCL with the regular expressions6 framework provided
with MontiCore. There are works that extend the OCL with regular
expressions support. Lano (2021) provides a proposal for standard-
ization of regular expressions in future OCL releases. Eclipse OCL
also provides an implementation of regular expressions (Damus and
Sánchez-Barbudo, 2002). These extensions, however, are very string-
centric and complex in their matching capabilities, thus requiring prior
knowledge of each extension standard library method signature inside
the expressions to use. As these are not standardized in the OCL itself,
we chose to minimally implement a very simple formalism where
the regular expression can only express the language generated by
the regular expression. Listing 9 presents the implementation of a
language embedding operation through a MontiCore grammar with

5 “ The Java Regular Expression Language Specification”, https:
//docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/regex/
Pattern.html (accessed: January 23, 2025).

6 “ The MontiCore Regular Expression Library”, https://github.com/
MontiCore/monticore/blob/dev/monticore-grammar/src/main/grammars/de/
monticore/regex/RegularExpressions.mc4 (accessed: January 23, 2025).
10
1 grammar OCLwithRegEx extends
2 de.monticore.ocl.OCLExpressions ,
3 de.monticore.ocl.SetExpressions ,
4 de.monticore.ocl.OptionalOperators ,
5 de.monticore.expressions.BitExpressions ,
6 de.monticore.expressions.

ExpressionsBasis ,
7 de.monticore.regex.RegularExpressions {
8 start Expression;
9

0 @Override
1 RegExLiteral implements Expression;
2 }

Listing 9: MontiCore Grammar that performs Language Embedding of
regular expressions into OCL Expressions.

the goal of allowing regular expressions to be used in OCL expressions
by providing an implementation of the hook-point non-terminal for
expressions through regular expression literals, which can then be used
in an OCL set expression formalism.

To provide a transformation from OCL with regular expressions to
SMT-Lib, we only have to implement the transformation for regular
expression elements, as MontiCore’s modular expressions framework
allows us to reuse the formerly presented transformation for OCL
expressions as presented in Rumpe et al. (2024). Additionally, Z3
and SMT-Lib provide support for regular expressions natively. We
formalize the bridging point by defining the language defined by a
regular expression instance as a set. Thus, we map the aforementioned
language as an SMT-Lib set and define its use through membership
relations. We illustrate this for our running example, Listing 4. x.
method isin R"executeOperation" is an adapted constraint using
regular expressions, which expresses the constraint obligation that the
property method of the variable x is in the set defined by the language
of the regular expression executeOperation.

6 Evaluation

In this section, we address C3 by evaluating our approach, validat-
ing different constraints across a range of scenarios. The evaluation is
designed to assess the quality of our approach in handling semantic
constraints under varying conditions and identify any challenges or
differences observed during the validation process. To conduct the
evaluation, we design multiple scenarios inspired by our original case
studies and add an additional Artifact Model Analysis case study to
address C3 with respect to regular expression support. These scenarios
simulate diverse contexts and constraints to assess our approach.

We outline our evaluation goals and metrics in Section 6.1, followed
by a description of the evaluation design in Section 6.2. The first case
study is discussed in Section 6.3, and the second case study is detailed
in Section 6.4. In Section 6.5, we present the results of our evaluation.
Threats to validity are discussed in Section 6.6, and limitations are
addressed in Section 6.7. Finally, information on the availability of
evaluation data is provided in the ‘Data Availability’ section.

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/regex/Pattern.html
https://github.com/MontiCore/monticore/blob/dev/monticore-grammar/src/main/grammars/de/monticore/regex/RegularExpressions.mc4
https://github.com/MontiCore/monticore/blob/dev/monticore-grammar/src/main/grammars/de/monticore/regex/RegularExpressions.mc4
https://github.com/MontiCore/monticore/blob/dev/monticore-grammar/src/main/grammars/de/monticore/regex/RegularExpressions.mc4

B. Taghavi et al. The Journal of Systems & Software 231 (2026) 112637
6.1 Evaluation goals and metrics

This evaluation aims to systematically evaluate our proposed ap-
proach across different scenarios for validating semantic constraints. To
structure our evaluation, we employ the Goal-Question-Metric (GQM)
approach (Caldiera and Rombach, 1994; Basili and Weiss, 1984). We
aim to achieve the following objectives through examination of differ-
ent configurations, contexts, and constraints. Scenarios are designed in
accordance with the following goals.

G1 Evaluate the accuracy of the approach in validating semantic
constraints.

G2 Evaluate the performance of the approach as the complexity of
semantic constraints increases.

We evaluate the accuracy of our approach because it is a crucial
factor in ensuring the correctness of component compositions during
system design. If the results of the constraint checking do not accurately
reflect whether a composition satisfies the intended constraints, the
approach would be unreliable in practice. To calculate the accuracy of
constraint checking, it is essential to systematically explore scenarios
in which the composition may change. The methodology employed for
systematically exploring scenarios is described in Section 6.2. Addition-
ally, we evaluate the performance of the approach by analyzing the
runtime of the constraint checker in terms of increasing constraint com-
plexity. Our approach is a static analysis taking place at design time.
Thus, the threshold where the performance of our tool is important is
very permissive. But as SMT solving is generally a NP-hard problem and
the general OCL satisfiability problem is undecidable (Franconi et al.,
2019), the effectiveness of our tool could be reduced to very limited
examples, if the constraints are complex enough. This assessment is
important because the constraint checker plays a central role in our val-
idation process. It is responsible for identifying counter-examples and
validating the composition, which can be computationally expensive,
along with potentially being the main bottleneck of our approach. As
the complexity of constraints increases, it is necessary to understand
how the runtime grows to ensure that the approach remains feasible
and efficient for larger and more complex constraints.

To evaluate our goals, we aim to answer the following questions:

Q1 How accurate is the approach in detecting violations and seman-
tic constraint checking?

Q2 How is the performance of the approach impacted as the
complexity of the constraints increases?

To answer the question Q1, we employed the well-known metrics
suggested by Metz (1978) to evaluate accuracy. The True Positive Frac-
tion (TPF) is defined as 𝑇𝑃𝐹 = 𝑡𝑝∕𝑃 , where 𝑡𝑝 represents the number
of scenarios with constraint violations that were correctly identified,
and 𝑃 is the total number of actual constraint violation scenarios. The
True Negative Fraction (TNF) is defined as 𝑇𝑁𝐹 = 𝑡𝑛∕𝑁 where 𝑡𝑛 is
the number of identified scenarios without constraint violations, and
𝑁 is the total number of actual scenarios without constraint violations.
With these two metrics, we can calculate the accuracy of our approach
for scenarios involving expected violations and those that do not.

In addition to these metrics, we also calculate the F1-score (Man-
ning, 2009), which is a widely used metric that combines Precision
and Recall. Precision is the proportion of predicted positives that are
actually correct and is defined as 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝∕𝑡𝑝 + 𝑓𝑝 where 𝑓𝑝 refers
to cases incorrectly identified as positive. Recall is the proportion of
actual positives that are correctly identified, which is the same as the
TPF. This is especially important because a high TPF or TNF alone may
not fully represent the overall accuracy of the validation process. The
F1-score is defined as 𝐹1 = 2 ⋅ (Precision ⋅ Recall)∕(Precision + Recall).

To answer question Q2, we evaluate the execution time of the
operations in the MontiArc constraint checker to assess the performance
of our approach. This evaluation helps us understand how the system
behaves with increasing constraint complexity, providing insights into
its efficiency and computational cost.
11
6.2 Evaluation design

We aim to systematically evaluate our approach using case studies
and defining scenarios. Case studies are especially useful for under-
standing complex phenomena in their real-life context (Runeson and
Höst, 2009). Through these case studies, we are able to demonstrate the
applicability of our approach under different conditions and its ability
to address practical issues. On the basis of expert knowledge relevant
to the case studies, we derive one relevant scenario for each case study,
which then serves as the basis for generating a set of variations by al-
tering relevant architectural or constraint-related parameters. For each
original scenario, we systematically introduce variations by modifying,
removing, or extending specific components of the case studies. Each
component comes with its own constraints, thus any operation that
changes the architecture also changes the constraints. Components may
be modified to assess adaptability, removed to analyze the impact of
their absence, or added to introduce new functionality and evaluate the
model’s ability to accommodate enhancements. These variations allow
us to explore the flexibility of our approach across a range of scenarios.
In particular, these evaluations help us explore how our approach han-
dles replacements and restructurings of individual components without
affecting the overall validity of the system. To do this, we start with
a composition that is already valid, apply various substitutions and
restructurings that deliver valid or invalid compositions, and then
check whether the composition still holds up using our approach. We
provide an expected result for each operation and compare the output
of the tool with it to assess accuracy. Furthermore, by varying the
constraint types, we ensure that our transformation is not limited to a
single model or a fixed set of constraints but can be generalized across
diverse situations.

In the following, we present two case studies from different domains
along with their corresponding scenarios. For each scenario, we de-
scribe the relevant constraints that must be satisfied. We classify the
results of constraint checking into the following categories in order
to calculate accuracy metrics. A 𝑡𝑝 (True Positive) is a case where
the approach correctly identifies a constraint violation in a connection
between ports that is indeed invalid. A 𝑡𝑛 (True Negative) is a case
where the approach successfully recognizes that all constraints are
satisfied in a valid port connection, i.e., no constraints are violated.
Based on these classifications, we calculate the TPF for all scenarios
with expected violations and the TNF for all scenarios without any
violations. Moreover, the F1-score is a single metric that shows how
well a model correctly identifies positive cases while minimizing false
positives and false negatives. A higher F1-score indicates better overall
performance in identifying relevant results accurately.

To address Q2, we performed execution time performance testing
for the newly added regular expression support (C1), as these are
the only computationally hard problems while performing constraint
solving over the set of transformed OCL constraints with the restrictions
described in 5.2. Arithmetic constraints are also briefly touched upon
in order to demonstrate their viability. We deemed the number of con-
straints not relevant for this particular evaluation, as interval constraint
solving scales linearly with the number of constraints. Elaborating on
the method for Q2, we decided to evaluate the time complexity of the
operations of the MontiArc constraint checker, starting with regular
expressions. We evaluate here how the runtime is influenced if the
constraint checker requires to check valid connections in comparison
to invalid connections where a counter-example is found. The perfor-
mance testing was conducted on a machine running Windows 10 22H2
19045.5737, with a 13th Gen Intel(R) Core(TM) i7-1365U 1.80 GHz,
having 32 GB LPDDR5 RAM 4800 MHz.

B. Taghavi et al.

1

1

The Journal of Systems & Software 231 (2026) 112637
6.2.1 Introduction to case studies
Before explaining each case study in detail, we first examine the

changes presented in Table 1. For brevity only selected changes are
discussed in details. The full evaluation with all models can be found
here.7 This provides an overview of how scenarios are represented
in the context of modifications. Replacement cases are particularly
interesting, especially when evaluating regular expression constraints,
as they better reflect the accuracy of our approach when constraints
are modified like for like. For semantic soundness through constraint
checking, replacing a component cannot be done without replacing
the assumptions and promises associated with it. We can validate the
modification if the approach finds the same result as the expected
result.

Every column in Table 1 represents a modification relationship
between a component and its replacement in relation to the datatypes
used in the scenario. Every replacement scenario stands in relation
with the original scenario, which can systematically be disseminated to
the displayed operations. The crucial point of this distribution is that
every replacing component is modeled only as a black box and without
behavior. Thus, we have to focus on the constraints delivered with this
black box and reason if the connections and implicit composition it is
part of remain valid throughout replacement.

6.3 First case study: Slingshot

For our first case study, we examine Slingshot, a simulation frame-
work previously introduced in Section 4. Slingshot is an event-driven
simulator designed to be extensible and capable of simulating Palladio
models. Its architecture facilitates communication between components
through publishing and responding to events.

The Slingshot simulator consists of three analysis components ca-
pable of simulating the performance of models created using PCM.
To illustrate its functionality, we model a simplified version of these
components and their interactions as a core scenario, and then derive
variations by modifying architectural aspects such as adding, removing,
and modifying components. In addition, we define several semantic
constraints on their incoming and outgoing ports, based on expert
knowledge specific to this case study.

6.3.1 Original scenario – Main components with output guarantee
Datatype String & int
Case study & relevance Slingshot is designed to evaluate the perfor-
mance behavior of the system under varying usage conditions. As
shown in Fig. 7, the usageScenario serves as the input port to the
UsageSimulation component. Each usage scenario models individ-
ual use cases of the system and includes a workload that describes usage
intensity. The parameter numberOfUsers in this workload represents
the population, which is meaningful only if it is greater than zero.
This is enforced by a constraint that differentiates between closed and
open workloads: if closedWorkload is true, then numberOfUsers
must be greater than 0 and less than 2,147,483,647. Otherwise, for
open workloads, the interval between requests must be greater than 0.0
(line 1, Listing 10). The userRequest, as the output of UsageSim-
ulation, contains a systemCall, which is a string representing the
name of the invoked method. This string must remain unchanged when
it reaches the input port of SystemSimulation. Similarly, we define
a constraint on the input to the ResourceSimulation component,
which reflects the demand for resources simulated by the System-
Simulation component. Each component in the system produces at
least one output, and constraints are also applied to these outputs. The
outputs represent the simulation results, or performance predictions,
which include responseTime and resourceUtilization. These

7 https://github.com/FeCoMASS/Model-Transformation-for-Automated-
Constraint-Validation
12
results are considered valid only if their values are greater than or equal
to zero. Any value below zero would violate the constraints and render
the predictions invalid. In particular, the constraint on port utiliza-
tion ensures that if both totalTime and busyTime are greater
than zero, then utilization must be equal to busyTime divided
by totalTime, and the resulting value must also be greater than zero.
Listing 10 shows how these constraints are defined, respectively.

1 if x.closedWorkload == true then (x.
numberOfUsers > 0 && x.numberOfUsers <
2147483647) else x.interval > 0.0

2 -------------------------------------
3 x.method == " executeOperation "
4 -------------------------------------
5 x.resourceDemand > 0.0
6 -------------------------------------
7 (x.totalTime > 0 && x.busyTime > 0)
8 implies
9 (x.utilization == x.busyTime / x.totalTime

&& x.utilization > 0)
0 -------------------------------------
1 x.responseTime > 0.0

Listing 10: Constraint on ports UsageScenario, UserRequest,
ResourceDemand, Utilization, and ResponseTime, respectively.

Result Listing 11 illustrates the output of our constraint checker tool
applied to the constraints presented in Listing 10 and Fig. 7.

1 Constraint of Port usageScenario in
Component Slingshot guarantees
constraint of Port usageScenario in
Component UsageSimulation

2 Constraint of Port resourceDemand in
Component SystemSimulation guarantees
constraint of Port resourceDemand in
Component ResourceSimulation

3 Constraint of Port resourceSimulationReturn
in Component ResourceSimulation
guarantees constraint of Port
resourceSimulationReturn in Component
SystemSimulation

4 Constraint of Port usageSimulationReturn in
Component UsageSimulation guarantees
constraint of Port usageSimulationReturn
in Component Slingshot

5 Models processed successfully!

Listing 11: Output of the constraint checker tool applied to the
constraints presented in Fig. 7.

6.3.2 Modify ResourceSimulation component scenario – Separation of ac-
tive and passive resources
Datatype String & int & boolean
Case study & relevance In the second scenario, we aim to examine
the impact of modifying components on the validation of constraints.
Specifically, we focus on decomposing the functionality of the Re-
sourceSimulation component. Since there are two types of re-
sources – active resources, such as CPUs and I/O devices, and pas-
sive resources, such as semaphores and threads – we divide the Re-
sourceSimulation component into two distinct functions. One
function is responsible for managing the demand for active resources,
while the other handles the demand for passive resources, if applicable.
As illustrated in Fig. 8, constraints are applied to the inputs of these

https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation

B. Taghavi et al. The Journal of Systems & Software 231 (2026) 112637
Fig. 7. Case Study — Slingshot: The original scenario with three analysis components.
Fig. 8. Modification of the ResourceSimulation component by separating resources based on type.
separated components to ensure they correctly correspond to their
respective resource types. This separation not only ensures proper
validation of constraints for each resource category but also allows for
more fine-grained analysis of how the system handles different types
of resource demands. Listing 12 shows the constraint on the output of
SystemSimulation on the ResourceType port and input to Ac-
tiveResourceSimulation, and the constraint on the output ports
of ResourceType and input to PassiveResourceSimulation.

1 x.active == true && x.passive == false
2 x.active == true
3 x.active == false && x.passive == true
4 x.passive == true

Listing 12: Constraints on ports ResourceType.

Result Listing 13 illustrates the result of our tool applied to Fig. 8 and
Listing 12.

1 Constraint of Port active in Component
SystemSimulation guarantees constraint
of Port active in Component
ResourceSimulation

2 Constraint of Port passive in Component
SystemSimulation guarantees constraint
of Port passive in Component
PassiveResourceSimulation

3 Models processed successfully!

Listing 13: Output of the Constraint Checker in Fig. 8.
13
6.3.3 Add NetworkSimulation component scenario — Add constraints for
ResourceSimulation
Datatype String & int
Case study & relevance This scenario is inspired by Henss et al. (2013)
to predict the performance of network-intensive distributed systems.
The core idea of this work is the integration of Palladio with a network
simulation tool to analyze the overall system performance. This compo-
sition enables the prediction of end-to-end response times in scenarios
where network communication plays a critical role, without requiring
explicit hardware-level simulations.

The network simulation is closely related to ResourceSimula-
tion, as it incorporates critical factors such as network latency and
throughput. By modeling these elements, the framework effectively
captures the impact of network communication on system behavior.
This integration provides a more comprehensive understanding of sys-
tem performance by reflecting the dynamic interplay between compu-
tational resources and network constraints. Fig. 9 shows how this new
component interacts with the ResourceSimulation component.

1 x.serverLoad > 0.0
2 x.latency > 0.0

Listing 14: New constraints for NetworkSimulation component.

Result Listing 15 shows the result of the constraint checker for the new
constraints in Listing 14.

B. Taghavi et al. The Journal of Systems & Software 231 (2026) 112637
Fig. 9. Addition of the NetworkSimulation component to the original scenario.
1 Constraint of Port serverLoad in Component
ResourceSimulation guarantees
constraint of Port serverLoad in
Component NetworkSimulation

2 Constraint of Port latency in Component
NetworkSimulation guarantees constraint
of Port latency in Component

ResourceSimulation
3 Models processed successfully!

Listing 15: Output of the Constraint Checker in Fig. 9 for the new
constraints.

Fig. 10. Removal of the ResourceSimulation component.

6.3.4 Remove ResourceSimulation component scenario — Removal of re-
lated constraints
Datatype String & int

Case study & relevance In another scenario where the ResourceS-
imulation component is removed, the focus shifts to a simplified
modeling approach involving only UsageSimulation and System-
Simulation. Without ResourceSimulation, the simulation no
longer includes explicit hardware resource modeling such as CPU,
memory, or disk usage. Despite the lack of direct resource modeling,
it is still possible to calculate the total load on each service based on
the user’s behavior and the configuration of the internal system. This
new configuration is depicted in Fig. 10. The new port must never have
a value less than zero.

Result As shown in Listing 16, it is the output of the constraint checker
for the constraint on the port NumberOfUsersPerService, which
is required to be defined as the return value of the UsageSimula-
tion component.
14
1 Constraint of Port usageSimulationReturn in
Component UsageSimulation guarantees
constraint of Port usageSimulationReturn
in Component Slingshot

2 Models processed successfully!

Listing 16: Output of the Constraint Checker in Fig. 10 for the new
constraint.

6.4 Second case study: Artifact model analysis

Artifact analysis is crucial in complex software development projects
as it transforms implicit knowledge into an explicit understanding
of the intricate relationships between artifacts, tools, and processes.
The artifact tooling from this case-study is published in Greifenberg
et al. (2020), Hillemacher et al. (2021) and Butting et al. (2018,
2017). Greifenberg et al. (2020) developed an artifact model which can
be used as a basis for any artifact-based analysis, such as a simple check
for double names in all software artifacts, and can be extended for more
complex analyses, such as dependency analysis. Such analyses based
on the artifact model contain in general a high degree of modularity,
allowing us to evaluate the semantic soundness of the composition
employing our approach. An extended overview of artifact analysis is
given in this link.8

The case study presented in this section shows a simplified model
of this artifact analysis. The evaluation consists of modeling an artifact
analysis pipeline in its decomposed form using MontiArc, deriving
semantic constraints from the appropriate literature and validating the
composition using our approach. We contribute to this evaluation by
demonstrating valid and invalid operations on analysis components
shipped with their own constraints and comparing expected outputs
with actual outputs of our approach.

6.4.1 Original scenario
Datatype Length-bounded regular expression & string
Case study & relevance This scenario presents the architecture model of
the system in an underspecified form. This is then used as a baseline
for architectural modifications to the system which then have to be
validated using our approach. Fig. 11 displays a decomposed view of a
software artifact analysis system. Artifacts in raw form flow into the
system under analysis and are fed into extractor components. Each
extractor displayed filters out its irrelevant artifacts. Functionally, an
extractor component gathers data from the artifact’s content relevant
for an analysis and stores said data into a data structure. The processing

8 https://www.se-rwth.de/research/Artifacts/.

https://www.se-rwth.de/research/Artifacts/

B. Taghavi et al.

i
d
t
1
t
e
i

R
o
s

The Journal of Systems & Software 231 (2026) 112637
Fig. 11. Case Study — Artifact Model: Artifacts are processed by extractor components and validated for their consistency to the artifact model. The valid object
diagram is then fed into a change impact analysis component. Conditions required for functional validity are expressed through stereotypes on ports.
6
s
D

C
p
i
m
–
L
a
m
b
c
d
a
t
e
i

R
o
v
a
i
v

6
v
D

C
t
t
r
f
a
f
i
e

R
e
i
w
i
a

6
i

of an artifact takes place in a sequential run with each ArtData rep-
resenting a single object. These then have to be checked by an artifact
model validator, which cumulates and merges all data it receives into
an object diagram, and finds inconsistencies regarding conformance
to the artifact model. The explicit analysis component evaluates this
merged object diagram and produces the analysis results.

We chose this scenario as representative, because this displays a
generally usable contract that is trivially checkable due to bounded
regular expressions and does not require deep insight into the func-
tionality of extractors, allowing for interpretation from an architectural
viewpoint. This can only serve as a weak condition, thus covering
additional cases through refining this scenario further by abstracting
or refining the components and its provided constraints is needed.

1 x.id == " @ " + x.simpleName + " ! " + x.
nameExtension &&

2 x.simpleName isin R " [a-zA-Z]{1,20} " &&
3 x.nameExtension isin R " [a-zA-Z]{1,20} "

Listing 17: Constraint on the GPLExtractor’s Port o. Every object
diagram artifact has an id and consists of the concatenation of the

filename and the extesion.

1 x isin R " @[a-zA-Z_0-9]{1,20}![a-zA-Z_$
]{1,20} "

Listing 18: Constraint on Validator’s input Ports srcIn and tmpIn. A
validator requires the identifier to have a simple alphanumeric format

encompassed by two special characters.

The correctness of the composition is ensured by contracts over
ts components which the constraints here are based on. An extractor
erives identificators for each processed artifact, based on its name,
he file extension and two specific encoding characters @ !. Listing
7 displays the simple form of an ID, which is guaranteed by extrac-
ors. The Artifact Model validator requires that all IDs contain the
ncoding characters accompanied by alphanumerics. This assumption
s displayed in Listing 18.
esult Listing 19 illustrates the output of our tool matching expected
utput for this trivial case, where the character set in the promise is a
ubset of that of the condition.

1 Constraint of Port o in Component
GPLExtractor guarantees constraint of
Port srcIn in Component Validator

Listing 19: Output of the Constraint Checker for both Extractor to
Validator connections displayed in Fig. 11.
D

15
.4.2 Refine output guarantee – Replace general extractor with a language
pecific extractor
atatype Length-bounded regular expression & string
ase study & relevance A usual step when modeling any kind of analysis
roject is to refine the architecture of the system by introducing an
mplementation-driven architecture into the model. This can be done by
odeling language specific extractors that handle the Java ecosystem
 as used in the literature – with Java as the General Programming
anguage (GPL) and Freemarker as the template language. Obviously,
 decomposition of one or both extractors presented in the original
odel can be performed while preserving the refinement relationship,
ut as this was covered in a previous scenario (Section 6.3.2), we
hose a direct component-to-component replacement scenario. Fig. 12
isplays such a replacement. The Java-specific promise guarantees that
ll outputs of the Java extractor start with a capital letter and have
he Java-specific fixed file ending. The replacement of the template
xtractor with a Freemarker extractor then takes place analogously and
s not displayed here for brevity.
esult Intuitively, the expectation is that a more specific extractor, by
ffering a stronger guarantee, validates the conditions required by the
alidator component. The promise of the Java extractor is more specific
nd in a refinement relation to the more general extractor displayed
n the original scenario. The actual result indeed finds the implication
alid, as shown in Listing 21.

.4.3 Refine input assumption - Replacement with a case-sensitive restricted
alidator
atatype Length-bounded regular expression & string
ase study & relevance In this scenario we explore the situation where
he validator component is replaced to model case-sensitive file sys-
ems. This is reflected in requiring camel case file endings without
eplacing any other component of the original scenario. To detail the
unctional specification of the validator, the validity of any extracted
rtifact can only be computed if the file endings are of the correct
ormat. This is functionally another component refinement including
ts input condition. This scenario differs from the previous one by its
xpected result.
esult A strict refinement on the target of the connection does not nec-
ssarily guarantee that the implication holds. Thus, a counter-example
s expected. Fig. 13 displays the component and its regular expression
hich encodes this in our approach. Because now the target of the
mplication is a stronger requirement than the source, our tool finds
 counter-example provided in Listing 23.

.4.4 Abstract input assumption - Replacement with an all-accepting val-
dator with kleene operations
atatype Length-bounded regular expression & string

B. Taghavi et al. The Journal of Systems & Software 231 (2026) 112637
Fig. 12. Replacement operation of an extractor with a more specific one.
Fig. 13. Replacement of a artifact model validator with a more specific one.
6
C
t
m
m

Case study & relevance This scenario presents an abstraction case where
the validator is replaced by an all-accepting validator provided the two
parts of the ID are encompassed by the characters presented in the
original case, as shown in Fig. 14. This validator handles any naming
schemes, also providing an abstraction of the associated assumption.
Because a word regular expression could lead to catastrophic failures,
we can obviously see that our approach is as strong as the constraints
provided by the model. Kleene operations are put in use here. This
represents a more convenient way of modeling constraints with regular
expressions, by not specifying any bounds. While this has use cases
in the real world, in the case of specifying constraints, this poses real
issues.

Result An expected result for the single replacement of the validator –
with its constraint in Listing 24 – delivers a positive result, which our
tool certifies. In the case we also replace the output promise from the
original scenario with a Kleene repetition as seen in Listing 25, even
though through intuitive reasoning the result should stay the same, the
tool runs in an endless loop. We chose to count this as a failed detection
of a valid connection because it represents the user-friendly case.

6.4.5 Remove input assumption and merger of connections - Removal of an
Artifact Model Validator
Case study & relevance This scenario explores the case where the Ar-
tifact Model validator is not present in the system. This effect offers
t

16
no apparent explicit functional difference from a black-box perspec-
tive, but crucially it removes a component that processes artifact data
streams and merges the connections in the pipeline.
Result The connection produced by this operation modifies the ar-
chitecture directly and evidently makes the types present on each
connection end not match, as shown in Fig. 15. This is not caught di-
rectly by our SMT-centered approach, but rather trivially by MontiArc’s
context conditions which check weather port datatypes match. Listing
26 displays such a failure and an error-coded message.

1 0xC1110 Type mismatch , expected
ObjectDiagram but provided ArtData

Listing 26: Output of the Constraint Checker for a Component
Removal scenario where the merged connection ends port types are

mismatched.

.4.6 Add component - Addition of a merger component
ase study & relevance This scenario expresses an operation where
he architecture was modified by adding a component specifically
odeled to transfer artifact data from each individual artifact to a
erged object diagram with aggregated data. Trivially, the wiring of
he component was also designed in this addition. The newly-produced

B. Taghavi et al. The Journal of Systems & Software 231 (2026) 112637
Fig. 14. Replacement of an artifact model validator with a general validator.
Fig. 15. Removal of an Artifact model validator component and merger of
remaining connections.

result of the validation will be influenced by the new condition-promise
pair shipped with the Merge component.
Result Trivially when modeling this connection, datatypes match with
this modification by addition to the system architecture, as seen in Fig.
16. But as the validator’s interface has been changed the old guarantee
of the validator is obsolete. Thus, the merger component and the val-
idator’s promise require new constraints, making this scenario’s result
entirely dependent on the new constraints provided by the redesign,
which was not presented with Q1 in mind.

6.5 Evaluation results

To evaluate the accuracy of our approach (Q1), we analyzed all
defined scenarios under two conditions: (1) scenarios where no pre-
defined violations exist in the constraints and (2) modified scenarios
where constraints are deliberately altered to introduce expected viola-
tions. This allowed us to assess the accuracy of our constraint-checking
mechanism in both cases. The results are presented in Table 2, where,
for instance, S6.3.1 represents a scenario with no violations, while
S6.3.1’ denotes the modified version of S6.3.1 that includes an expected
violation. In this case, the violation occurs because the input assump-
tion of ports, which is defined by the constraints, does not align with
the guarantee imposed on the output of the same ports.

For scenarios that contain violations, we can only calculate TPF, as
there are no true negatives in these cases. The TPF value is 1.0, indi-
cating that our approach correctly identified all scenarios with invalid
constraints, and achieved the highest possible result. For scenarios that
include only valid constraints, we calculate TNF, as there are no true
positives in this case. This demonstrates that the approach successfully
validates scenarios containing only the correct constraints. The analysis
shows strong results for both TPF and TNF, confirming the overall
quality and reliability of our approach in accurately distinguishing
valid and invalid constraints.

As mentioned earlier in Section 6.2, we also calculate the F1-score
to provide a more balanced evaluation of our approach. In our case,
17
both Precision and Recall have a value of 1, since 𝑡𝑝 = 1 and both 𝑓𝑝
and 𝑓𝑛 are 0. This indicates that our approach perfectly identifies valid
and invalid constraints. Using the F1-score formula, 𝐹1 = 2 ⋅ 1⋅1

1+1 = 1,
we see that our approach achieves perfect effectiveness in validating
constraints under the evaluated scenarios.

For Q2, Fig. 17 displays the execution time of the implication
displayed in the scenario 6.4.1 with modifications to force valid checks
or counter-examples. The blue plot represents the runtime measure-
ment of finding counter-examples, while the red plot the runtime
of validating the constraint. The constraints tested were selected by
modifying the guarantee to limit it to a reduced number of repeti-
tions. The 𝑥-axis represents the index i in the constraintx isin [a-
zA-Z_0-9]{1,i}, more specifically, how many character repetitions
do we allow in the guarantee. In the case of counter-example find-
ing test, we keep the original constraint from Listing 18 unchanged.
For the valid-constraint check, we chose to scale the assumption as
well to force valid implications. So, while using the same indexing
as above for the guarantee, we also scaled the assumption, as in
@[a-zA-Z0-9]{1,i}![a-zA-Z_$]{1,i}, thus finding valid checks.

The result is clear that every regular expression can be checked up
to single Kleene operations on both sides of the connection, as also seen
in scenario 6.4.4. To be more precise, by introducing bounded regular
expressions to any side of the connection, non-termination is avoided.
The caveat is that the most powerful scenarios where Kleene operations
are found on both sides of the implication do not terminate even in the
simplest of character ranges. This was not presented in the plot. We
performed the test for Kleene operations by replacing the bounds with
the Kleene plus operation on both sides of the connection tested by
the former aforementioned test.

Our findings suggest that finding counter-examples tends to scale
linearly with the bounds of the repetition of characters with slight
oscillations due to the Z3 optimizations. Inopportunely, checking im-
plications that result in valid checks tends to scale exponentially to
the point where valid implications with high character repetitions are
unfeasible to check. Another point to consider is the performance of
the regular expressions in comparison with simple arithmetic constraint
checks on datatypes such as integers and floats. As expected, these
scale at most, linearly with the distance between the compared values.
A simple check where x < 0 implies x < $y takes milliseconds even
at the max distance where the integer y is the JVM upper bound.
The execution time values for integers can be found in Fig. 18 and is
in concordance to our assumptions, i.e. these being feasible to check
independent of size.

6.6 Threats to validity

We discuss the threats to validity based on Runeson and Höst’s
guidelines (Runeson and Höst, 2009), which categorize them into
Internal Validity, External Validity, Construct Validity, and Reliability.

Internal validity ensures that the observed causal relationships are
not affected by any factors other than those intentionally considered
in the study. In our study, we evaluate the accuracy and performance
of our approach. The metrics related to accuracy are influenced by

B. Taghavi et al. The Journal of Systems & Software 231 (2026) 112637
Fig. 16. Addition of a merger component aggregating all artifact data into an object diagram.
Table 2
Evaluation results for Q1 — Accuracy of our approach in detecting violations.
 Scenarios Violations detected No violations

detected
TPF TNF F1-score

 Expected violations S6.3.1’, S6.3.2’,
S6.3.3’, S6.3.4’,
S6.4.1’, S6.4.2’,
S6.4.3

– 1.0 –

1.0

 No violations – S6.3.1, S6.3.2,
S6.3.3, S6.3.4,
S6.4.1, S6.4.2

– 1.0
Fig. 17. Performance testing of regular expressions with bounded repetition of characters. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
the selection of case studies and scenarios. We mitigate this factor by
choosing two case studies that cover two different scopes of the analysis
components and by systematically designing the scenarios to capture
all major potential changes. However, we cannot completely eliminate
this factor, as we were unable to identify additional case studies with
various types of constraints. This limitation will be addressed in future
work. There may also be biases related to the enrichment of models
with semantic constraints, due to the varying definitions of constraints
used by practitioners. However, we can exclude this factor, as the
authors of this article are sufficiently familiar with the two selected case
18
studies. Furthermore, any errors or inconsistencies introduced during
the transformation from Palladio models to MontiArc models could
potentially impact the semantic validation results. We exclude this
threat, as we were able to model our scenarios and achieve the expected
results in constraint checking with good accuracy. Moreover, the use of
a simplified model of a use case for evaluation purposes may limit the
generalizability of the results. Therefore, testing with real-world data
will be essential to ensure that the approach is robust and reliable.
This means that the real modeling of these case studies may differ
slightly, as they are more complex than the versions presented in our

B. Taghavi et al. The Journal of Systems & Software 231 (2026) 112637
Fig. 18. Empirical measurement of a direct implication check where the distance between the assumption and the guarantee covers the JVM integer bounds.
study. However, since we have modeled the most critical parts of the
use cases and incorporated the most important semantic constraints,
this factor should not significantly impact the results, even in more
complex models. Additionally, while our approach has been tested
under controlled conditions, future studies should validate its effective-
ness in more diverse and large-scale scenarios to further strengthen its
reliability and applicability.

External validity assures that the findings can be generalized, making
the results useful beyond the researcher who conducted the study. A
potential bias may arise from the selection of the two use cases used
to evaluate our approach. To mitigate this, we systematically defined
different scenarios for each case study to cover a wide range of possible
states and variations. Moreover, while our study presents exemplary
results, it does not include a comprehensive empirical validation across
a diverse set of models or real-world case studies. This limitation may
affect the external validity of our findings, as the results may not be
directly generalizable to all possible use cases. However, the selected
cases are derived from related works and are considered representative
of the application domain.

Construct validity ensures that the metrics used for answering the
research questions are appropriate. The TPF and TNF methods were
chosen for the accuracy calculation in our study because the analysis
of semantic constraints yields binary results-whether the constraints
are validated or not and whether violations have been detected or
not. In this case, these metrics are sufficient. For the evaluation of
scalability and performance, we chose to measure the time complexity
of the constraint checker, as the performance of our approach primarily
depends on this factor. By focusing on execution time, we ensure that
our evaluation reflects the computational efficiency of the method in
different scenarios.

Reliability ensures that the results of the evaluation are independent
of the researchers. The creation of a model in Palladio largely depends
on the design decisions made by the conducting researcher. However,
we can argue that if the researcher has a good understanding of Palladio
and MontiArc, they can create a reasonable model that produces results
similar to ours. In general, we ensured reproducibility by providing the
models for all scenarios, the transformation code, and the constraint-
checking process. Conducting the study only requires running the
provided models; therefore, the results of the conducted scenarios do
not depend on the individual researcher and should yield consistent
outcomes. Nevertheless, a potential threat to validity arises from the
fact that modeling still involves subjective decisions, and variations
19
in experience or interpretation might introduce minor differences. To
mitigate this, we have provided clear instructions on how to use the
tool and the necessary artifacts to ensure traceability and minimize
inconsistencies.

6.7 Limitations

The most restrictive limitation of our approach is that it does not
support a broad range of constraints, particularly those related to inter-
message relations. For example, constraints such as ‘‘Value Increasing’’,
which ensure that a value monotonically increases over time, are not
currently supported, as these require encoding into SMT constraints
limited port communication history. Additionally, our approach does
not facilitate the aggregation of data across multiple channels of differ-
ent components, which is crucial for analyzing complex interactions. In
a similar manner, while we can enforce local constraints within individ-
ual components, enforcing global constraints that span across multiple
components remains challenging. It affects scenarios where system-
wide properties, such as timing dependencies, need to be validated.
Additionally, Palladio does not support enumerations, and lists and sets
are also unsupported as data types. QVTo also imposes limitations when
transforming nested classes. These issues restrict the ability to fully
leverage MontiArc’s capabilities for modeling constraints.

The MontiArc Language supports hierarchical composition, allowing
systems to be structured with nested subcomponents; however, our
approach does not utilize this capability. The lack of this capability
restricts our ability to modularly define and manage some complex
systems. Moreover, MontiArc incorporates automata-based behavior
modeling, allowing dynamic component behavior to be specified for-
mally. By doing so, it is possible to capture state transitions and
interactions within a system more accurately. We are not currently able
to formally specify and verify dynamic behaviors within our system
model due to the lack of support for automata, but there is currently
work being done to support automata to SMT encoding.

To the topic of validating our approach, the evaluation was primar-
ily driven by accuracy and performance, as these metrics are critical
for evaluating its effectiveness and efficiency. In contrast, usability
focuses on tool usage and user experience, which is less relevant to
our validation goals. Additionally, we assume that users have basic
knowledge of defining models in Palladio. Given this level of expertise,
usability metrics would not provide significant insights or meaningful
improvements to our validation process. Therefore, usability was not a
primary focus of our evaluation.

B. Taghavi et al.

1

1

1

1

1

1

1

1

1

1

2

2

1

1

1

1

1

The Journal of Systems & Software 231 (2026) 112637
7 Conclusion & future work

In this paper, we presented an approach to automatically check se-
mantic constraints by transforming software architecture models from
the Palladio approach to the MontiArc architecture description lan-
guage. We then performed constraint checking within MontiArc. Our
approach leverages the assumption-guarantee formalism for constraint
validation and enables the validation of constraints on both prim-
itive data types and regular expressions. In contrast to related ap-
proaches, we bridge the gap between architecture analysis methods
focused on performance prediction and semantic constraint checking.
This enhances software architecture reliability by combining perfor-
mance evaluation with semantic soundness while enabling thorough
analysis without the need for repeated modeling of the same system
in different formalisms.

We evaluated the accuracy of the approach in checking semantic
constraints in both valid and invalid substitution scenarios, based on
the defined constraints. To achieve this, we systematically derived mul-
tiple scenarios for each case study. The evaluation results demonstrate
that the approach can accurately check valid implications that denote
the semantic soundness of a composition, while effectively detecting
violations in scenarios where the performed operation invalidates its
semantic soundness. Additionally, we assess the performance of the
approach by evaluating the runtime of the constraint checker as the
complexity of constraints increases. The results indicate that our ap-
proach performs well in assessing arithmetic constraints. However,
for regular expressions, performance does not scale linearly as com-
plexity increases when assessing constraints in scenarios where the
composition is semantically sound.

For future work, we plan to extend our approach to fully support the
expressiveness of the PCM concepts within the MontiArc framework.
This will involve incorporating additional features and enhancing the
transformation process to accommodate more complex architectural
elements. For facilitating the reuse of the MontiArc semantic soundness
in this approach, we plan to retransform the resulting counter-examples
and validation results into Palladio to be interpreted and to allow for
optimizations at system design time.

Another future plan is to extend the approach to handle more
complex, domain-specific constraints, such as inter-message relations
constraints, in order to better capture the dynamic aspects of sys-
tem behavior in software architecture models. To this end, we also
plan to incorporate the more potent communication channel history-
based assumption-guarantee formalism into our semantic soundness
framework. Finally, we will conduct empirical studies with larger and
more complex case studies to further validate the performance and
effectiveness of the proposed approach, and to assess scalability.

CRediT authorship contribution statement

Bahareh Taghavi: Writing – review & editing, Writing – original
draft, Validation, Software, Methodology, Data curation, Conceptu-
alization, Investigation. Sebastian Weber: Writing – original draft,
Software, Methodology. Adrian Marin: Writing – review & editing,
Writing – original draft, Validation, Software, Methodology, Conceptu-
alization. Bernhard Rumpe: Writing – review & editing, Supervision.
Sebastian Stüber: Writing – review & editing, Validation. Jörg Henß:
Methodology. Thomas Weber: Writing – review & editing. Robert
Heinrich: Writing – review & editing, Supervision, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
20
Acknowledgments

This work was funded by the DFG (German Research Foundation)
– project number 499241390 (FeCoMASS), and supported by the Col-
laborative Research Center ‘‘Convide’’- SFB 1608- 501798263, and
supported by funding from the topic Engineering Secure Systems of
the Helmholtz Association (HGF), KASTEL Security Research Labs, and
supported by funding from the pilot program Core Informatics at KIT
(KiKIT) of the Helmholtz Association (HGF). This paper has been edited
by our textician, Daniel Shea.

Appendix. Complete code listings for the running example

1 package cd2pojo.slingshot;
2 classdiagram Slingshot {
3 public class SystemCall {
4 String method;
5 }
6 public class SystemSimulationReturn {
7 double utilization;
8 }
9 public class ResourceDemand {
0 double resourceDemand;
1 }
2 public class UsageSimulationReturn {
3 double responseTime; double utilization;
4 }
5 public class ResourceSimulationReturn {
6 double utilization;
7 }
8 public class UsageScenario {
9 int numberOfUsers;
0 }
1 }

Listing 27: Class diagram derived from the Slingshot Repository
model (see Fig. 3)

1 package slingshot;
2 import cd2pojo.slingshot.Slingshot.

UsageScenario;
3 import cd2pojo.slingshot.Slingshot.

UsageSimulationReturn;
4 import cd2pojo.slingshot.Slingshot.

ResourceSimulationReturn;
5 import cd2pojo.slingshot.Slingshot.

ResourceDemand;
6 import cd2pojo.slingshot.Slingshot.

SystemCall;
7 import cd2pojo.slingshot.Slingshot.

SystemSimulationReturn;
8 component Slingshot {
9 port << condition = " x.numberOfUsers > 0

&& x.numberOfUsers < 2147483647" >> in
UsageScenario usageScenario;

0 port << condition = " x.responseTime > 1.0"
>> out UsageSimulationReturn

usageSimulationReturn;
1 component UsageSimulation {
2 port << condition = " x.responseTime >

1.0" >> out UsageSimulationReturn
usageSimulationReturn;

3 port << condition = " x.numberOfUsers >
0" >> in UsageScenario usageScenario
;

4 port << delayed, condition = " x.method
== \" executeOperation \ " " >> out
SystemCall systemCall;

B. Taghavi et al.

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

The Journal of Systems & Software 231 (2026) 112637
5 port in SystemSimulationReturn
systemSimulationReturn;

6 }
7 component SystemSimulation {
8 port out SystemSimulationReturn

systemSimulationReturn;
9 port << condition = " x.method == \"

executeOperation \ " " >> in SystemCall
systemCall;

0 port << condition = " x.resourceDemand >
1.0" >> out ResourceDemand
resourceDemand;

1 port << condition = " x.utilization >
1.0" >> in ResourceSimulationReturn
resourceSimulationReturn;

2 }
3 component ResourceSimulation {
4 port << delayed, condition = " x.

utilization > 1.0" >> out
ResourceSimulationReturn
resourceSimulationReturn;

5 port << condition = " x.resourceDemand >
1.0" >> in ResourceDemand
resourceDemand;

6 }
7 UsageSimulation usageSimulation;
8 SystemSimulation systemSimulation;
9 ResourceSimulation resourceSimulation;
0 systemSimulation.systemSimulationReturn ->

usageSimulation.
systemSimulationReturn;

1 usageSimulation.systemCall ->
systemSimulation.systemCall;

2 resourceSimulation.
resourceSimulationReturn ->
systemSimulation.
resourceSimulationReturn;

3 systemSimulation.resourceDemand ->
resourceSimulation.resourceDemand;

4 usageScenario -> usageSimulation.
usageScenario;

5 usageSimulation.usageSimulationReturn ->
usageSimulationReturn;

6 }

Listing 28: MontiArc model based on the Repository (Fig. 3) and
System (Fig. 4) models.

1 <?xml version ="1.0" encoding =" UTF -8"?>
2 <ecore:EPackage xmi:version= " 2.0 " xmlns:xmi=

" http://www.omg.org/XMI " xmlns:ecore= "
http://www.eclipse.org/emf/2002/Ecore "
name= " Constraints " nsURI= " Constraints "
nsPrefix= " constraints " >

3 <eAnnotations references= " Slingshot.system
#Connector1 " >

4 <details key= " Source:In " value= " x.
numberOfUsers > 0 && x.
numberOfUsers < 2147483647 " />

5 <details key= " Target:In " value= " x.
numberOfUsers > 0 " />

6 <details key= " Source:Out " value= " x.
responseTime > 0.0 " />

7 <details key= " Target:Out " value= " x.
responseTime > 0.0 " />

8 </eAnnotations>
9 <eAnnotations references= " Slingshot.system

#Connector2 " >
0 <details key= " Source:Out " value= " x.

method == "executeOperation&
quot; " />
21
1 <details key= " Target:In " value= " x.method
== "executeOperation" " />

2 </eAnnotations>
3 <eAnnotations references= " Slingshot.system

#Connector3 " >
4 <details key= " Source:Out " value= " x.

resourceDemand > 0.0 " />
5 <details key= " Target:In " value= " x.

resourceDemand > 0.0 " />
6 </eAnnotations>
7 </ecore:EPackage>

Listing 29: Ecore model of the constraints.

1 mapping AssemblyContext : : assemblyContextToComponent () :
Component {

2 name := s e l f . entityName ;
3 s e l f . encapsulatedComponent__AssemblyContext .

p rov idedRo le s _ In t e r f aceProv id ingEn t i t y
4 −> s e l e c t (ocl IsTypeOf (OperationProvidedRole))
5 −> forEach (ro l e) {
6 ro l e . oclAsType (OperationProvidedRole) −> map

operat ionProvidedRoleToPort ()
7 −> forEach (port) { arcElements += port ; } ;
8 } ;
9 // P ro c e s s ALL Requ i red Ro l e s
0 s e l f . encapsulatedComponent__AssemblyContext .

r equ i r edRo l e s _ I n t e r f a ceRequ i r i ngEn t i t y
1 −> s e l e c t (ocl IsTypeOf (OperationRequiredRole))
2 −> forEach (ro l e) {
3 ro l e . oclAsType (OperationRequiredRole) −>

map operationRequiredRoleToPort ()
4 −> forEach (port) { arcElements += port ;

} ;
5 } ;
6 }

Listing 30: QVTo mapping for transforming AssemblyContext to
Component.

Data availability

All data used in the evaluation are available in our dataset: https://
github.com/FeCoMASS/Model-Transformation-for-Automated-Constrai
nt-Validation. It includes our complete tool with the transformation
and constraint-checking process, as well as the full QVTo code used
for the model transformation. Additionally, all the scenarios used for
the evaluation are included.

References

Acerbis, R., Bongio, A., Brambilla, M., Tisi, M., Ceri, S., Tosetti, E., 2007. Developing
ebusiness solutions with a model driven approach: The case of acer EMEA. In:
International Conference on Web Engineering. Springer, pp. 539–544. http://dx.
doi.org/10.1007/978-3-540-73597-7_51.

Allen, R., Vestal, S., Cornhill, D., Lewis, B., 2002. Using an architecture description
language for quantitative analysis of real-time systems. In: Proceedings of the
3rd International Workshop on Software and Performance. pp. 203–210. http:
//dx.doi.org/10.1145/584369.584399.

Baier, C., Katoen, J.-P., 2008. Principles of Model Checking. MIT Press.
Barrett, C., Stump, A., Tinelli, C., et al., 2010. The smt-lib standard: Version 2.0. In:

Proceedings of the 8th International Workshop on Satisfiability Modulo Theories.
Vol. 13, Edinburgh, UK, p. 14.

Basili, V.R., Weiss, D.M., 1984. A methodology for collecting valid software engineering
data. IEEE Trans. Softw. Eng. (6), 728–738. http://dx.doi.org/10.1109/TSE.1984.
5010301.

Bertolino, A., Mirandola, R., 2004. CB-SPE tool: Putting component-based performance
engineering into practice. In: International Symposium on Component-Based Soft-
ware Engineering. Springer, pp. 233–248. http://dx.doi.org/10.1007/978-3-540-
24774-6_21.

https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
https://github.com/FeCoMASS/Model-Transformation-for-Automated-Constraint-Validation
http://dx.doi.org/10.1007/978-3-540-73597-7_51
http://dx.doi.org/10.1007/978-3-540-73597-7_51
http://dx.doi.org/10.1007/978-3-540-73597-7_51
http://dx.doi.org/10.1145/584369.584399
http://dx.doi.org/10.1145/584369.584399
http://dx.doi.org/10.1145/584369.584399
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb3
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb4
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb4
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb4
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb4
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb4
http://dx.doi.org/10.1109/TSE.1984.5010301
http://dx.doi.org/10.1109/TSE.1984.5010301
http://dx.doi.org/10.1109/TSE.1984.5010301
http://dx.doi.org/10.1007/978-3-540-24774-6_21
http://dx.doi.org/10.1007/978-3-540-24774-6_21
http://dx.doi.org/10.1007/978-3-540-24774-6_21

B. Taghavi et al. The Journal of Systems & Software 231 (2026) 112637
Bjørner, N., 2018. Z3 and SMT in industrial R&D. In: Formal Methods: 22nd Inter-
national Symposium, FM 2018, Held As Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 15-17, 2018, Proceedings 22. Springer, pp. 675–678.
http://dx.doi.org/10.1007/978-3-319-95582-7_44.

Bjørner, N., Jayaraman, K., 2015. Checking cloud contracts in microsoft azure. In:
Distributed Computing and Internet Technology: 11th International Conference,
ICDCIT 2015, Bhubaneswar, India, February 5-8, 2015. Proceedings 11. Springer,
pp. 21–32. http://dx.doi.org/10.1007/978-3-319-14977-6_2.

Brambilla, M., Cabot, J., Wimmer, M., 2017. Model-Driven Software Engineering
in Practice. Morgan & Claypool Publishers, http://dx.doi.org/10.1007/978-3-031-
02549-5.

Broy, M., Dederichs, F., Dendorfer, C., Fuchs, M., Gritzner, T.F., Weber, R., 1992. The
Design of Distributed Systems: An Introduction to Focus. Citeseer.

Broy, M., Stølen, K., 2001. Specification and Development of Interactive Systems.
Focus on Streams, Interfaces and Refinement. Springer Verlag Heidelberg, http:
//dx.doi.org/10.1007/978-1-4613-0091-5.

Broy, M., Stølen, K., 2012. Specification and Development of Interactive Systems: Focus
on Streams, Interfaces, and Refinement. Springer Science & Business Media.

Butting, A., Greifenberg, T., Rumpe, B., Wortmann, A., 2017. Taming the complexity
of model-driven systems engineering projects. In: Part of the Grand Challenges
in Modeling (GRAND’17) Workshop. URL: http://www.se-rwth.de/publications/
Taming-the-Complexity-of-Model-Driven-Systems-Engineering.pdf.

Butting, A., Greifenberg, T., Rumpe, B., Wortmann, A., 2018. On the need for
artifact models in model-driven systems engineering projects. In: Seidl, M.,
Zschaler, S. (Eds.), Software Technologies: Applications and Foundations. In:
LNCS 10748, Springer, pp. 146–153. http://dx.doi.org/10.1007/978-3-319-74730-
9_12, URL: http://www.se-rwth.de/publications/On-the-Need-for-Artifact-Models-
in-Model-Driven-Systems-Engineering-Projects.pdf.

Cabot, J., Claris, R., Riera, D., et al., 2008. Verification of UML/OCL class diagrams
using constraint programming. In: 2008 IEEE International Conference on Software
Testing Verification and Validation Workshop. IEEE, pp. 73–80. http://dx.doi.org/
10.1109/ICSTW.2008.54.

Caldiera, V.R.B.G., Rombach, H.D., 1994. The goal question metric approach. Encycl.
Softw. Eng. 528–532.

Cardei, I., Fonoage, M., Shankar, R., 2008. Model based requirements specification
and validation for component architectures. In: 2008 2nd Annual IEEE Systems
Conference. IEEE, pp. 1–8. http://dx.doi.org/10.1109/SYSTEMS.2008.4519001.

Czepa, C., Tran, H., Zdun, U., Kim, T.T.T., Weiss, E., Ruhsam, C., 2017. On the
understandability of semantic constraints for behavioral software architecture
compliance: A controlled experiment. In: 2017 IEEE International Conference on
Software Architecture. ICSA, IEEE, pp. 155–164. http://dx.doi.org/10.1109/ICSA.
2017.10.

Czepa, C., Zdun, U., 2019. How understandable are pattern-based behavioral constraints
for novice software designers? ACM Trans. Softw. Eng. Methodol. (TOSEM) 28 (2),
1–38. http://dx.doi.org/10.1145/3306608.

Damus, C., Sánchez-Barbudo, A., 2002. OCL documentation.
De Moura, L., Bjørner, N., 2008. Z3: An efficient SMT solver. In: International

Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, pp. 337–340.

France, R., Rumpe, B., 2007. Model-driven development of complex software: A
research roadmap. Futur. Softw. Eng. (FOSE ’07) 37–54. http://dx.doi.org/
10.1109/FOSE.2007.14, URL: http://www.se-rwth.de/publications/Model-driven-
Development-of-Complex-Software-A-Research-Roadmap.pdf.

Franconi, E., Mosca, A., Oriol, X., Rull, G., Teniente, E., 2019. OCL FO: First-order
expressive OCL constraints for efficient integrity checking. Softw. Syst. Model. 18
(4), 2655–2678. http://dx.doi.org/10.1007/s10270-018-0688-z.

Gacek, C., de Lemos, R., 2006. Architectural description of dependable software
systems. In: Structure for Dependability: Computer-Based Systems from an Interdis-
ciplinary Perspective. Springer, pp. 127–142. http://dx.doi.org/10.1007/1-84628-
111-3_7.

Greifenberg, T., Hillemacher, S., Hölldobler, K., 2020. Applied artifact-based analysis for
architecture consistency checking. In: Ernst Denert Award for Software Engineering
2019. Springer, pp. 61–85, URL: http://www.se-rwth.de/publications/Applied-
Artifact-Based-Analysis-for-Architecture-Consistency-Checking.pdf.

Greifenberg, T., Look, M., Roidl, S., Rumpe, B., 2015. Engineering tagging languages
for DSLs. In: 2015 ACM/IEEE 18th International Conference on Model Driven
Engineering Languages and Systems. MODELS, IEEE, pp. 34–43.

Haber, A., 2016. MontiArc - Architectural Modeling and Simulation of Interactive
Distributed Systems. In: Aachener Informatik-Berichte, Software Engineering, Band
24, Shaker Verlag, URL: http://www.se-rwth.de/phdtheses/Diss-Haber-MontiArc-
Architectural-Modeling-and-Simulation-of-Interactive-Distributed-Systems.pdf.

Haddad, S., Kordon, F., Pautet, L., Petrucci, L., 2011. Architecture description lan-
guages. In: Models and Analysis in Distributed Systems. John Wiley & Sons, Ltd,
pp. 97–134. http://dx.doi.org/10.1002/9781118602638.ch5, Chapter 5.

Hamlet, D., Mason, D., Woit, D., 2004. Properties of software systems synthesized
from components. In: Component-Based Software Development: Case Studies. World
Scientific, pp. 129–158.

Harel, D., Rumpe, B., 2004. Meaningful modeling: What’s the semantics of ’’Seman-
tics’’? IEEE Comput. J. 37 (10), 64–72, URL: http://www.se-rwth.de/staff/rumpe/
publications20042008/Meaningful-Modeling-Whats-the-Semantics-of-Semantics.pdf.
22
Heinrich, R., Strittmatter, M., Reussner, R.H., 2021. A layered reference architecture
for metamodels to tailor quality modeling and analysis. IEEE Trans. Softw. Eng. 47
(4), 775–800. http://dx.doi.org/10.1109/TSE.2019.2903797.

Heinrich, R., Werle, D., Klare, H., Reussner, R., Kramer, M., Becker, S., Happe, J.,
Koziolek, H., Krogmann, K., 2018. The palladio-bench for modeling and simulating
software architectures. In: Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings. pp. 37–40. http://dx.doi.org/10.
1145/3183440.3183474.

Henss, J., Merkle, P., Reussner, R.H., 2013. The OMPCM simulator for model-based
software performance prediction. In: Proceedings of the 6th International ICST
Conference on Simulation Tools and Techniques. pp. 354–357.

Hillemacher, S., Jäckel, N., Kugler, C., Orth, P., Schmalzing, D., Wachtmeister, L.,
2021. Artifact-based analysis for the development of collaborative embedded
systems. In: Model-Based Engineering of Collaborative Embedded Systems. Springer,
pp. 315–331, URL: http://www.se-rwth.de/publications/Artifact-Based-Analysis-
for-the-Development-of-Collaborative-Embedded-Systems.pdf.

Hölldobler, K., Kautz, O., Rumpe, B., 2021. MontiCore Language Workbench and
Library Handbook: Edition 2021. In: Aachener Informatik-Berichte, Software En-
gineering, Band 48, Shaker Verlag, URL: http://www.monticore.de/handbook.
pdf.

Katić, J., Klinaku, F., Becker, S., 2021. The slingshot simulator: An extensible
event-driven PCM simulator (poster).

Kausch, H., Pfeiffer, M., Raco, D., Rumpe, B., 2020a. An approach for logic-based
knowledge representation and automated reasoning over underspecification
and refinement in safety-critical cyber-physical systems. In: Hebig, R.,
Heinrich, R. (Eds.), Combined Proceedings of the Workshops At Software
Engineering 2020. Vol. 2581, CEUR Workshop Proceedings, URL: http://www.se-
rwth.de/publications/An-Approach-for-Logic-based-Knowledge-Representation-and-
Automated-Reasoning-over-Underspecification-and-Refinement-in-Safety-Critical-
Cyber-Physical-Systems.pdf.

Kausch, H., Pfeiffer, M., Raco, D., Rumpe, B., 2020b. MontiBelle - toolbox for a
model-based development and verification of distributed critical systems for
compliance with functional safety. In: AIAA Scitech 2020 Forum. American
Institute of Aeronautics and Astronautics, URL: http://www.se-rwth.de/
publications/MontiBelle-Toolbox-for-a-Model-Based-Development-and-Verification-
of-Distributed-Critical-Systems-for-Compliance-with-Functional-Safety.pdf.

Kausch, H., Pfeiffer, M., Raco, D., Rumpe, B., Schweiger, A., 2024. Model-
driven development for functional correctness of avionics systems: A
verification framework for sysml specifications. CEAS Aeronaut. J. 15
(4), http://dx.doi.org/10.1007/s13272-024-00762-6, URL: http://www.se-
rwth.de/publications/Model-driven-Development-for-Functional-Correctness-of-
Avionics-Systems-A-Verification-Framework-for-SysML-Specifications.pdf.

Klinaku, F., Stieß, S.S., Hakamian, A., Becker, S., 2025. An architectural view type for
elasticity modeling and simulation—The Slingshot approach. J. Syst. Softw. 112432.
http://dx.doi.org/10.1016/j.jss.2025.112432.

Koch, S., 2024. A Reference Structure for Modular Model-based Analyses. KIT Scientific
Publishing, http://dx.doi.org/10.5445/KSP/1000167848.

Lano, K., 2021. Adding regular expression operators to OCL. In: STAF Workshops. pp.
162–168.

Ly, L.T., Rinderle-Ma, S., Göser, K., Dadam, P., 2012. On enabling integrated process
compliance with semantic constraints in process management systems: Require-
ments, challenges, solutions. Inf. Syst. Front. 14 (2), 195–219. http://dx.doi.org/
10.1007/s10796-009-9185-9.

Manning, C.D., 2009. An introduction to information retrieval.
Medvidovic, N., Taylor, R.N., 1997. A framework for classifying and comparing

architecture description languages. ACM SIGSOFT Softw. Eng. Notes 22 (6), 60–76.
http://dx.doi.org/10.1145/267896.267903.

Metz, C.E., 1978. Basic principles of ROC analysis. In: Seminars in Nuclear Medicine.
Vol. 8, Elsevier, pp. 283–298. http://dx.doi.org/10.1016/S0001-2998(78)80014-2,
no. 4.

Meyer, B., 1988. Eiffel: A language and environment for software engineering. J. Syst.
Softw. 8 (3), 199–246. http://dx.doi.org/10.1016/0164-1212(88)90022-2.

Meyer, B., 1990. Lessons from the design of the eiffel libraries. Commun. ACM 33 (9),
68–88. http://dx.doi.org/10.1145/83880.84464.

Meyer, B., 1992. Applying’design by contract’. Computer 25 (10), 40–51. http://dx.doi.
org/10.1109/2.161279.

Moriconi, M., Qian, X., Riemenschneider, R.A., 1995. Correct architecture refinement.
IEEE Trans. Softw. Eng. 21 (4), 356–372. http://dx.doi.org/10.1109/32.385972.

Nipkow, T., Paulson, L.C., Wenzel, M., 2002. Isabelle/hol: A Proof Assistant for Higher-
Order Logic. In: Lecture notes in artificial intelligence, vol. 2283, Springer, Berlin
[etc.].

Pandey, R., 2010. Architectural description languages (ADLs) vs UML: A review.
ACM SIGSOFT Softw. Eng. Notes 35 (3), 1–5. http://dx.doi.org/10.1145/1764810.
1764828.

Reussner, R.H., Becker, S., Happe, J., Heinrich, R., Koziolek, A., 2016. Modeling and
Simulating Software Architectures: The Palladio Approach. MIT Press.

Richters, M., Gogolla, M., 2000. Validating UML models and OCL constraints. In:
International Conference on the Unified Modeling Language. Springer, pp. 265–277.
http://dx.doi.org/10.1007/3-540-40011-7_19.

http://dx.doi.org/10.1007/978-3-319-95582-7_44
http://dx.doi.org/10.1007/978-3-319-14977-6_2
http://dx.doi.org/10.1007/978-3-031-02549-5
http://dx.doi.org/10.1007/978-3-031-02549-5
http://dx.doi.org/10.1007/978-3-031-02549-5
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb10
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb10
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb10
http://dx.doi.org/10.1007/978-1-4613-0091-5
http://dx.doi.org/10.1007/978-1-4613-0091-5
http://dx.doi.org/10.1007/978-1-4613-0091-5
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb12
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb12
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb12
http://www.se-rwth.de/publications/Taming-the-Complexity-of-Model-Driven-Systems-Engineering.pdf
http://www.se-rwth.de/publications/Taming-the-Complexity-of-Model-Driven-Systems-Engineering.pdf
http://www.se-rwth.de/publications/Taming-the-Complexity-of-Model-Driven-Systems-Engineering.pdf
http://dx.doi.org/10.1007/978-3-319-74730-9_12
http://dx.doi.org/10.1007/978-3-319-74730-9_12
http://dx.doi.org/10.1007/978-3-319-74730-9_12
http://www.se-rwth.de/publications/On-the-Need-for-Artifact-Models-in-Model-Driven-Systems-Engineering-Projects.pdf
http://www.se-rwth.de/publications/On-the-Need-for-Artifact-Models-in-Model-Driven-Systems-Engineering-Projects.pdf
http://www.se-rwth.de/publications/On-the-Need-for-Artifact-Models-in-Model-Driven-Systems-Engineering-Projects.pdf
http://dx.doi.org/10.1109/ICSTW.2008.54
http://dx.doi.org/10.1109/ICSTW.2008.54
http://dx.doi.org/10.1109/ICSTW.2008.54
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb16
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb16
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb16
http://dx.doi.org/10.1109/SYSTEMS.2008.4519001
http://dx.doi.org/10.1109/ICSA.2017.10
http://dx.doi.org/10.1109/ICSA.2017.10
http://dx.doi.org/10.1109/ICSA.2017.10
http://dx.doi.org/10.1145/3306608
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb20
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb21
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb21
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb21
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb21
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb21
http://dx.doi.org/10.1109/FOSE.2007.14
http://dx.doi.org/10.1109/FOSE.2007.14
http://dx.doi.org/10.1109/FOSE.2007.14
http://www.se-rwth.de/publications/Model-driven-Development-of-Complex-Software-A-Research-Roadmap.pdf
http://www.se-rwth.de/publications/Model-driven-Development-of-Complex-Software-A-Research-Roadmap.pdf
http://www.se-rwth.de/publications/Model-driven-Development-of-Complex-Software-A-Research-Roadmap.pdf
http://dx.doi.org/10.1007/s10270-018-0688-z
http://dx.doi.org/10.1007/1-84628-111-3_7
http://dx.doi.org/10.1007/1-84628-111-3_7
http://dx.doi.org/10.1007/1-84628-111-3_7
http://www.se-rwth.de/publications/Applied-Artifact-Based-Analysis-for-Architecture-Consistency-Checking.pdf
http://www.se-rwth.de/publications/Applied-Artifact-Based-Analysis-for-Architecture-Consistency-Checking.pdf
http://www.se-rwth.de/publications/Applied-Artifact-Based-Analysis-for-Architecture-Consistency-Checking.pdf
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb26
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb26
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb26
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb26
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb26
http://www.se-rwth.de/phdtheses/Diss-Haber-MontiArc-Architectural-Modeling-and-Simulation-of-Interactive-Distributed-Systems.pdf
http://www.se-rwth.de/phdtheses/Diss-Haber-MontiArc-Architectural-Modeling-and-Simulation-of-Interactive-Distributed-Systems.pdf
http://www.se-rwth.de/phdtheses/Diss-Haber-MontiArc-Architectural-Modeling-and-Simulation-of-Interactive-Distributed-Systems.pdf
http://dx.doi.org/10.1002/9781118602638.ch5
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb29
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb29
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb29
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb29
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb29
http://www.se-rwth.de/staff/rumpe/publications20042008/Meaningful-Modeling-Whats-the-Semantics-of-Semantics.pdf
http://www.se-rwth.de/staff/rumpe/publications20042008/Meaningful-Modeling-Whats-the-Semantics-of-Semantics.pdf
http://www.se-rwth.de/staff/rumpe/publications20042008/Meaningful-Modeling-Whats-the-Semantics-of-Semantics.pdf
http://dx.doi.org/10.1109/TSE.2019.2903797
http://dx.doi.org/10.1145/3183440.3183474
http://dx.doi.org/10.1145/3183440.3183474
http://dx.doi.org/10.1145/3183440.3183474
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb33
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb33
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb33
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb33
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb33
http://www.se-rwth.de/publications/Artifact-Based-Analysis-for-the-Development-of-Collaborative-Embedded-Systems.pdf
http://www.se-rwth.de/publications/Artifact-Based-Analysis-for-the-Development-of-Collaborative-Embedded-Systems.pdf
http://www.se-rwth.de/publications/Artifact-Based-Analysis-for-the-Development-of-Collaborative-Embedded-Systems.pdf
http://www.monticore.de/handbook.pdf
http://www.monticore.de/handbook.pdf
http://www.monticore.de/handbook.pdf
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb36
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb36
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb36
http://www.se-rwth.de/publications/An-Approach-for-Logic-based-Knowledge-Representation-and-Automated-Reasoning-over-Underspecification-and-Refinement-in-Safety-Critical-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/An-Approach-for-Logic-based-Knowledge-Representation-and-Automated-Reasoning-over-Underspecification-and-Refinement-in-Safety-Critical-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/An-Approach-for-Logic-based-Knowledge-Representation-and-Automated-Reasoning-over-Underspecification-and-Refinement-in-Safety-Critical-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/An-Approach-for-Logic-based-Knowledge-Representation-and-Automated-Reasoning-over-Underspecification-and-Refinement-in-Safety-Critical-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/An-Approach-for-Logic-based-Knowledge-Representation-and-Automated-Reasoning-over-Underspecification-and-Refinement-in-Safety-Critical-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/An-Approach-for-Logic-based-Knowledge-Representation-and-Automated-Reasoning-over-Underspecification-and-Refinement-in-Safety-Critical-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/An-Approach-for-Logic-based-Knowledge-Representation-and-Automated-Reasoning-over-Underspecification-and-Refinement-in-Safety-Critical-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/publications/MontiBelle-Toolbox-for-a-Model-Based-Development-and-Verification-of-Distributed-Critical-Systems-for-Compliance-with-Functional-Safety.pdf
http://www.se-rwth.de/publications/MontiBelle-Toolbox-for-a-Model-Based-Development-and-Verification-of-Distributed-Critical-Systems-for-Compliance-with-Functional-Safety.pdf
http://www.se-rwth.de/publications/MontiBelle-Toolbox-for-a-Model-Based-Development-and-Verification-of-Distributed-Critical-Systems-for-Compliance-with-Functional-Safety.pdf
http://www.se-rwth.de/publications/MontiBelle-Toolbox-for-a-Model-Based-Development-and-Verification-of-Distributed-Critical-Systems-for-Compliance-with-Functional-Safety.pdf
http://www.se-rwth.de/publications/MontiBelle-Toolbox-for-a-Model-Based-Development-and-Verification-of-Distributed-Critical-Systems-for-Compliance-with-Functional-Safety.pdf
http://dx.doi.org/10.1007/s13272-024-00762-6
http://www.se-rwth.de/publications/Model-driven-Development-for-Functional-Correctness-of-Avionics-Systems-A-Verification-Framework-for-SysML-Specifications.pdf
http://www.se-rwth.de/publications/Model-driven-Development-for-Functional-Correctness-of-Avionics-Systems-A-Verification-Framework-for-SysML-Specifications.pdf
http://www.se-rwth.de/publications/Model-driven-Development-for-Functional-Correctness-of-Avionics-Systems-A-Verification-Framework-for-SysML-Specifications.pdf
http://www.se-rwth.de/publications/Model-driven-Development-for-Functional-Correctness-of-Avionics-Systems-A-Verification-Framework-for-SysML-Specifications.pdf
http://www.se-rwth.de/publications/Model-driven-Development-for-Functional-Correctness-of-Avionics-Systems-A-Verification-Framework-for-SysML-Specifications.pdf
http://dx.doi.org/10.1016/j.jss.2025.112432
http://dx.doi.org/10.5445/KSP/1000167848
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb42
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb42
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb42
http://dx.doi.org/10.1007/s10796-009-9185-9
http://dx.doi.org/10.1007/s10796-009-9185-9
http://dx.doi.org/10.1007/s10796-009-9185-9
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb44
http://dx.doi.org/10.1145/267896.267903
http://dx.doi.org/10.1016/S0001-2998(78)80014-2
http://dx.doi.org/10.1016/0164-1212(88)90022-2
http://dx.doi.org/10.1145/83880.84464
http://dx.doi.org/10.1109/2.161279
http://dx.doi.org/10.1109/2.161279
http://dx.doi.org/10.1109/2.161279
http://dx.doi.org/10.1109/32.385972
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb51
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb51
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb51
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb51
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb51
http://dx.doi.org/10.1145/1764810.1764828
http://dx.doi.org/10.1145/1764810.1764828
http://dx.doi.org/10.1145/1764810.1764828
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb53
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb53
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb53
http://dx.doi.org/10.1007/3-540-40011-7_19

B. Taghavi et al. The Journal of Systems & Software 231 (2026) 112637
Ringert, J.O., Rumpe, B., 2011. A little synopsis on streams, stream processing functions,
and state-based stream processing.. Int. J. Softw. Inform. 5 (1–2), 29–53.

Rumpe, B., 2016. Modeling with UML: Language, Concepts, Methods. Springer
International, URL: https://mbse.se-rwth.de/.

Rumpe, B., Stachon, M., Stüber, S., Voufo, V., 2024. Semantic difference
analysis with invariant tracing for class diagrams extended by OCL. In:
Workshop on Model Driven Engineering, Verification and Validation, MODELS
Companion ’24: International Conference on Model Driven Engineering
Languages and Systems. MoDeVVa, Association for Computing Machinery
(ACM), pp. 1066–1075. http://dx.doi.org/10.1145/3652620.3687818, URL:
http://www.se-rwth.de/publications/Semantic-Difference-Analysis-with-Invariant-
Tracing-for-Class-Diagrams-Extended-by-OCL.pdf.

Runeson, P., Höst, M., 2009. Guidelines for conducting and reporting case study
research in software engineering. Empir. Softw. Eng. 14, 131–164. http://dx.doi.
org/10.1007/s10664-008-9102-8.

Steinberg, D., Budinsky, F., Merks, E., Paternostro, M., 2008. EMF: Eclipse Modeling
Framework. Pearson Education.

Swamy, N., Chen, J., Fournet, C., Strub, P.-Y., Bhargavan, K., Yang, J., 2013. Secure
distributed programming with value-dependent types. J. Funct. Programming 23
(4), 402–451. http://dx.doi.org/10.1017/S0956796813000142.
23
Swamy, N., Hriţcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S., Bhar-
gavan, K., Fournet, C., Strub, P.-Y., Kohlweiss, M., et al., 2016. Dependent types
and multi-monadic effects in F. In: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. pp. 256–270. http:
//dx.doi.org/10.1145/2837614.2837655.

Taghavi, B., Heinrich, R., Marin, A., Rumpe, B., Stüber, S., Weber, S., 2025. Semantic
validation for slingshot simulator using MontiArc. In: Softwaretechnik-Trends Band
45, Heft 1. Gesellschaft für Informatik e.V..

Talcott, C., Ananieva, S., Bae, K., Combemale, B., Heinrich, R., Hills, M., Khakpour, N.,
Reussner, R., Rumpe, B., Scandurra, P., et al., 2021. Composition of languages,
models, and analyses. Compos. Model-Based Anal. Tools 45–70. http://dx.doi.org/
10.1007/978-3-030-81915-6_4.

Weber, S., Henß, J., Taghavi, B., Weber, T., Stüber, S., Marin, A., Rumpe, B.,
Heinrich, R., 2024. Semantics enhancing model transformation for automated
constraint validation of palladio software architecture to MontiArc models. In:
European Conference on Software Architecture. Springer, pp. 30–38. http://dx.doi.
org/10.1007/978-3-031-71246-3_4.

http://refhub.elsevier.com/S0164-1212(25)00306-1/sb55
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb55
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb55
https://mbse.se-rwth.de/
http://dx.doi.org/10.1145/3652620.3687818
http://www.se-rwth.de/publications/Semantic-Difference-Analysis-with-Invariant-Tracing-for-Class-Diagrams-Extended-by-OCL.pdf
http://www.se-rwth.de/publications/Semantic-Difference-Analysis-with-Invariant-Tracing-for-Class-Diagrams-Extended-by-OCL.pdf
http://www.se-rwth.de/publications/Semantic-Difference-Analysis-with-Invariant-Tracing-for-Class-Diagrams-Extended-by-OCL.pdf
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb59
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb59
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb59
http://dx.doi.org/10.1017/S0956796813000142
http://dx.doi.org/10.1145/2837614.2837655
http://dx.doi.org/10.1145/2837614.2837655
http://dx.doi.org/10.1145/2837614.2837655
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb62
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb62
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb62
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb62
http://refhub.elsevier.com/S0164-1212(25)00306-1/sb62
http://dx.doi.org/10.1007/978-3-030-81915-6_4
http://dx.doi.org/10.1007/978-3-030-81915-6_4
http://dx.doi.org/10.1007/978-3-030-81915-6_4
http://dx.doi.org/10.1007/978-3-031-71246-3_4
http://dx.doi.org/10.1007/978-3-031-71246-3_4
http://dx.doi.org/10.1007/978-3-031-71246-3_4

	Modeling the composition of analysis components and automatic constraint checking for semantic soundness
	Introduction
	Background
	Related Work
	Running Example
	An Automated Approach for Semantic Constraint Checking
	Transforming PCM to MontiArc
	Semantic Checking of Transformed Constraints

	Evaluation
	Evaluation Goals and Metrics
	Evaluation design
	Introduction to Case Studies

	First Case Study: Slingshot
	Original Scenario – Main Components with Output Guarantee
	Modify ResourceSimulation Component Scenario – Separation of Active and Passive Resources
	Add NetworkSimulation Component Scenario — Add Constraints for ResourceSimulation
	Remove ResourceSimulation Component Scenario — Removal of Related Constraints

	Second Case Study: Artifact Model Analysis
	Original Scenario
	Refine Output Guarantee – Replace General Extractor with a Language Specific Extractor
	Refine Input Assumption - Replacement With a Case-Sensitive Restricted Validator
	Abstract Input Assumption - Replacement with an All-Accepting Validator with Kleene Operations
	Remove Input Assumption and Merger of Connections - Removal of an Artifact Model Validator
	Add Component - Addition of a Merger Component

	Evaluation results
	Threats to validity
	Limitations

	Conclusion & Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. Complete Code Listings for the Running Example
	Data availability
	References

