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Localized identification of

seepage and ponding in earthen
embankment using infrared
thermography assimilated with
different deep learning frameworks

Ritesh Kumar'™, Hans Henning Stutz?*! & Kanupriya Johari?

Earthen embankments are built to prevent flooding and protect communities from the dangers

of floods and high water levels. However, these geotechnical structures may not always remain
serviceable and can fail due to long-term seepage and ponding. For instance, erosion causes the
earthen structure to weaken and eventually fail, which may be due to several factors, including the
velocity of the water, soil water characteristics, fine content, and gradation of the soil. The presented
research explores an advanced approach to address the critical issue of identifying the seepage and
ponding through the embankment by assimilating the passive infrared thermographic imageries
with Deep Learning (DL) algorithms. To facilitate the development and validation of developed DL
frameworks, a physical experimentation setup at the model scale is developed. This platform enabled
the generation of a comprehensive dataset of thermal images across various environmental scenarios,
including vegetation coverage and rainfall. Multiple DL frameworks were initially explored within the
framework and the models were designed to process sequences of thermal images and predict the
extent of seepage and ponding. This research builds upon effectively transforming the complex task
of embankment leakage identification into an image classification problem. Moreover, the developed
framework demonstrates that mapping of seepage and ponding can be achieved with great accuracy
and is vital in enhancing embankment safety and disaster prevention strategies in flood-prone areas.
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River embankments are critical flood control infrastructures that frequently suffer from seepage and ponding,
particularly during flood seasons. The timely detection of these leaks is crucial, as unrecognized leakage can lead
to catastrophic embankment breaches, resulting in widespread flooding, property destruction, and significant
threats to public safety!. The history has witnessed several devastating consequences of embankment failure
across the globe. For instance, a railway embankment in Southern Italy collapsed due to seepage following
heavy rainfall® in 2005. The 2019 Durgawati Dam in India faced seepage-induced slope failures®. Several other
instances of embankment failure along the river Elbe in Eastern Germany have also been reported during floods
due to seepage and ponding®. Moreover, nearly 1.6 million people were affected in the 2024 embankment breach
in Bihar, India, underscoring the vital importance of early leakage detection in preventing such disasters.
Conventional monitoring methods for leakage detection in reservoir dams, tailings, and levees; such as
pressure gauges and weirs, are impractical for their extensive lengths. While geophysical prospecting techniques
like resistivity detection® and transient electromagnetic methods’” have been employed during non-flooding
seasons, they lack the coverage, reliability, efficiency, and cost-effectiveness required for emergency detection
during flood seasons. Even advanced techniques like optical-fiber-based distributed temperature monitoring
systems face significant implementation challenges in existing embankments. Recent research has proposed
various methods for ponding detection based on new equipment and platforms, including bionic dogs, manned
vehicles, and ground monitoring equipment®~!3. However, these methods are limited by factors such as range,
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cost, or size. In contrast, systems deployed to Unmanned Aerial Vehicle (UAV) platforms offer advantages in
terms of size, weight, and cost-effectiveness.

In this regard, infrared thermal (IRT) imaging has proven to be an effective non-destructive method for
detecting seepage in embankments by capturing surface temperature variations. As water seeps through an
embankment, it alters the soil's thermal properties due to its higher specific heat capacity, causing wet areas
to retain heat longer during the day and cool down more gradually at night'%. These temperature differences
detected using IRT images, help identify potential seepage zones. Recent studies have demonstrated the
effectiveness of UAV-mounted IRT for monitoring levee seepage, allowing for efficient large-scale surveys'.
Numerical modeling also supports its ability to detect seepage in dams by analyzing temperature anomalies.
Compared to conventional methods such as piezometers and borehole investigations, which are invasive and
expensive, IRT images provide a fast, cost-effective, and non-intrusive alternative. Its capability to inspect large
and inaccessible embankments enhances its applicability'®. Additionally, integrating IRT with UAV technology
facilitates real-time monitoring, enabling early intervention before severe damage occurs. Long-term thermal
monitoring has been shown to predict seepage-related instabilities, reducing risks of failure and maintenance
costs'®”. Moreover, by utilizing temperature-based detection and UAV advancements, IRT with appropriate
resolutions and thermal sensitivity (discussed later in Section 2) is becoming a key tool in geotechnical
engineering for proactive seepage assessment.

The testing setup equipped with visible light and thermal infrared detection systems can perform near-real-
time detection and processing, enabling rapid and large-scale inspection of embankment failures'®. The challenge,
however, lies in the vast amount of thermal data collected in this process, which necessitates the development
of automatic identification methods for leakage targets. Zhou et al.!® pioneered the use of AlexNet to transform
the issue into an image classification problem for leakage detection. Building on a similar foundation, our study
aims to determine the accurate position of leakage based on predicted values and optimize the process using
advanced deep-learning networks. By addressing the limitations of current inspection methods and harnessing
the power of advanced imaging and machine learning technologies, this research aims to significantly enhance
the ability to detect and respond to embankment seepage. The outcomes of this study have the potential to
improve flood control measures and public safety in flood-prone areas by providing a more reliable and efficient
solution for detecting the seepage and ponding anomalies leading to embankment failure. In the presented
research, a physical setup is developed to simulate seepage and ponding through the embankment replicating
real-world embankment conditions. This platform enables the generation of a comprehensive dataset of infrared
images depicting various seepage and ponding scenarios. These images are then used to train and fine-tune
state-of-the-art deep convolutional neural networks. To validate the practicality, robustness, and generalization
capabilities of the developed framework, extensive testing within different environmental condition scenario
was also carried out.

Methodology

This study employs a systematic research methodology comprising several key phases to address the challenge of
automatic identification of river embankment seepage and ponding. In the first phase, a sophisticated physical
setup was developed to conduct the experiments. The novel setup was equipped with the facilities to replicate
seepage and ponding mechanism as discussed in the next subsection in detail. Moreover, this platform served
as a controlled setting for generating diverse leakage scenarios, enabling the collection of a comprehensive
dataset of infrared images capturing various seepage-induced thermal anomalies in the second phase. In the
third phase, leveraging this rich dataset, the authors developed state-of-the-art deep learning models trained
to identify thermal anomalies associated with embankment leakage automatically. The presented framework
effectively transforms the complex task of leakage detection into a more tractable problem of thermal anomaly
recognition in infrared imagery. Thermal anomalies show a strong correlation with actual leakage occurrences,
making them a reliable indicator for detection. The trained models leverage these thermal signatures to identify
leaks effectively, offering a non-invasive and efficient approach.

Development of a physical experimental setup

A physical setup was developed in-house to conduct experiments on embankment seepage and ponding consisting
of two major components: an embankment modeling section and an arrangement for controlling seepage flow
as shown in Fig. 1. The embankment model was housed in a top container made of transparent Plexiglas/acrylic
sheets, ensuring visual monitoring, with arrangements to prevent bulging of the side sheets. This container was
placed within a primary tank constructed from aluminum sheets, providing structural stability. The tank had
impervious sides and a bottom to prevent leakage, while filters were installed at the outlet to facilitate proper
drainage. The second component included a system for generating and maintaining the required pressure head
using a suitable pump, with strategically placed inlets and outlets ensuring zero disturbance to the embankment
model. Additionally, provisions were made to regulate the downstream water level, allowing for a stable phreatic
surface. The setup ensured continuous water flow through the embankment once steady-state conditions were
achieved, enabling controlled experimentation on seepage and ponding mechanisms. Several other accessories
were also integrated, including a thermal camera, a ponding setup, a ponding and seepage rate regulator, a
rainfall simulator, and a real-time image processing system, which are discussed in the next subsections.

Embankment modeling scheme

A detailed schematic layout of the embankment model is shown in Fig. 2, with all dimensions in centimeters
unless otherwise stated. The embankment was constructed using the homogenized silty soil sourced from
MinERALiX GmbH in Germany, and its grain size distribution is presented in Fig. 3. The upstream (U/S) and
downstream (D/S) slopes of the embankment were maintained at 1V:1.5H and 1V:2H, respectively, ensuring a
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Fig. 1. A comprehensive arrangement of the physical experimental setup: (a) typical layout of all accessories
involved in the experiment, (b) a typical schematic layout of embankment model.

stable geometry. To facilitate drainage, Silica No. 3 was used, while a Plexiglas sheet was placed at the base of the
model to simulate an impervious bedrock, as depicted earlier in Fig. 1. The index properties of both drainage
material and embankment material is tabulated in Table 1. The index properties of the used materials align
with typical construction materials of aged or poorly designed embankment materials across the world?’-22.
The embankment model was constructed layer by layer, with each layer being compacted through soft tamping
to achieve the required density. The layers were built in 5 cm increments, ensuring uniformity and minimizing
disturbances to the model. Guide plates were strategically positioned to maintain smooth slopes, and any excess
soil was carefully slid with minimal disturbance to the embankment model. To study the effects of seepage and
ponding, three pipes, each with a diameter of two mm, were embedded within the embankment at specific
locations during construction as shown in Fig. 2. The bottom pipe was positioned to simulate ponding beneath
the foundation of the embankment, allowing for the study of ponding-induced failure mechanisms at the base.
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Fig. 2. Schematic layout of embankment model with all dimensions along with the top view of different cross
sections and arrangements for seepage and ponding mechanism. The ponding is achieved with the help of the
bottom-most pipe.

The inlets of the top two pipes were placed at a height of 17.25 cm (in model scale) above the embankment base,
with their respective outlets oriented at different angles to replicate varying seepage flow paths. It is important
to note that the outlets of all three pipes were not fully exposed on the downstream side, as they remained
embedded within the embankment by 1 5 cm, ensuring actual seepage and ponding conditions. Additionally,
the pipe inlets were carefully wrapped with a very soft fabric to prevent soil particles from entering the pipes
while allowing water to pass through freely. It is to be noted that the ensuring a natural ponding or seepage
induced leakage is neither feasible nor time effective in a small experimental setup. Therefore, novel synthetic
arrangements are made in the model itself to mimic the real field scenario.

To provide a comprehensive view of the embankment and pipe placements, four different cross-sections
were illustrated in Fig. 2, offering insights into the top-down perspective of the embankment model during its
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Fig. 3. Grain size distribution of embankment material.

Index properties
Description Drainage material | Embankment material
Specific gravity, G5 26 -
D5 (mm) 1.72 0.027
D1 (mm) 1.37 0.001
Maximum void ration, €, ¢z 1.009 -
Minimum void ration, €,,;n 0.697 -
Permeability, k (m/s) 6.6E~2 -
Approximate relative density, D | 45% 90%
Liquid limit - 30.7%
Plastic limit - 20.6%

Table 1. Index properties of drainage and embankment material®.

preparation. These cross-sections aid in visualizing the spatial distribution of the pipes and embankment layers,
ensuring clarity in understanding the experimental setup. The systematic construction approach, combined
with precise pipe placements, ensures that the embankment model accurately replicates real-world seepage and
ponding phenomena.

Testing scheme for acquisition of IR images of embankment leakage and ponding
A sophisticated thermographic camera, the Testo 890, was used to capture thermal imageries throughout
the experiment. The Testo 890 is a high-precision infrared camera equipped with a detector resolution of
640 x 480 pixels, enabling detailed thermal mapping. It features a thermal sensitivity of <40 mK, allowing
it to detect minimal temperature variations, making it suitable for seepage and ponding studies. The camera
operates within a spectral range of 7.5 to 14 pm, ensuring accurate infrared detection. Its integrated resolution
technology enhances image resolution, and a rotatable display facilitates ease of use in field conditions. Detailed
specifications of the Testo 890 infrared camera are tabulated in Table 2 for ready reference. Thermal imageries
were captured under various testing conditions, as tabulated in Table 3. In all test cases, thermal imaging was used
to monitor both seepage-induced leakage and ponding signatures, helping to identify variations in subsurface
water movement and associated thermal anomalies.

Ice was utilized to reduce the temperature of the water, which was subsequently circulated through the
designated piping system (refer to Figure 2) to simulate seepage and ponding conditions. The temperature
difference between the ambient environment and the embankment material —whose properties are summarized
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Technical specification | Reliability

Field of view 42° x 32° (Standard lens), 25° x 19° (25° lens), 15° X 11° (Telephoto lens), 6.6° X 5° (Supertele)
Minimum focus distance | 0.1 m (Standard lens), 0.2 m (25° lens), 0.5 m (Telephoto lens), 2 m (Supertele)

Geometric resolution 1.13 mrad (Standard lens), 0.68 mrad (25° lens), 0.42 (Telephoto lens), 0.18 (Supertele)

Infrared resolution 640 x 480 pixels

Thermal sensitivity <40 mK at +30 °C

Spectral range 7.5t0 14 pm

Table 2. Technical specification of Testo 890 thermal camera used in the experiments.

Testing condition Number of thermal images
Rainfall over vegetation 118
Dry vegetation 120
Dry and clean surface 300

Rainfall over clean surface | 131

Clear ponding 230

Ponding under rainfall 245

Table 3. Number of thermal images collected for different test conditions on D/S side.

in Table 1 was maintained within a range of 0 to 7 °C across various test scenarios, as tabulated in Table 3. Figure 4
presents both conventional (RGB) and thermal images captured under different experimental conditions and
at various stages of seepage and ponding. In this figure, tags A1 A4, B1 B4, and C1 C4 correspond to scenarios
representing: dry and clean surfaces, dry vegetation, and clear ponding, respectively. For enhanced clarity, the
pipe associated with ponding is enclosed in a circle. The first row (tag 1) in each group (A C) displays the
conventional images. The subsequent rows (tags 2 4) depict thermal images. Specifically, row 2 captures the
thermal state before the onset of the seepage or ponding, row 3 shows the condition immediately following
the onset of seepage or ponding, and row 4 illustrates the condition after prolonged seepage and piping. For
consistency, a fixed temperature legend is also included in Figure 4.

The working principle of thermal imaging in detecting seepage and ponding is based on the difference in
thermal properties of soil and water!”-*%. The specific heat capacity of soil is typically lower than that of water,
meaning soil heats up and cools down more rapidly than water. The specific heat capacity of dry soil ranges
usually from 0.8 to 1.3 kJ/kg K, whereas water has a significantly higher value of 4.18 k]/kg K. Due to this
difference, water-saturated zones within the embankment retain heat longer or take more time to heat up,
leading to detectable thermal gradients>*°.

Infrared thermography relies on the principle of thermal radiation, which states that all objects emit
electromagnetic waves according to their temperature. Planck’s law describes the spectral radiance L(\, T") of
a blackbody as*”:

2hc? 1
LAAT) = N6 e(he/ART) _ | (1)

where: h is Planck’s constant (6.626 x 10734 J s), ¢ is the speed of light (3.0 x 10® m/s), k is the Boltzmann
constant (1.38 x 10723 J/K), A is the wavelength of emitted radiation, and T is the absolute temperature in
Kelvin. The emissivity of soil and water also influences thermal imaging results. The emissivity of dry soil varies
between 0.90 and 0.95, while water has an emissivity close to 0.98. Since water retains heat longer, seepage-
affected regions appear as thermal anomalies in infrared imagery. By capturing continuous thermal data,
the temperature distribution of an embankment can be analyzed to distinguish leakage patterns and identify
potential failure zones. This technique provides a non-intrusive method for monitoring ponding and seepage
dynamics, improving early detection of ponding failures.

Referencing of the temperature and integration of Deep Learning methodologies

Different learning-based approaches for detecting seepage and ponding through thermal image sequences are
discussed in this subsection. To ensure data consistency, a standardized preprocessing pipeline was applied,
including conversion from BMT to PNG (either manually or automatically), color transformation from BGR
to RGB, resizing to 224 x 224 pixels, and normalization of pixel values to the range [0, 1]. These steps ensure
uniformity across datasets, minimizing inconsistencies in model input.

Thermal infrared imaging captures temperature variations influenced by the thermal properties of different
materials®®. Since leakage zones generally exhibit lower temperatures than their surroundings, precise
temperature mapping is crucial to mitigate false color distortions. To achieve this, a calibrated temperature
transformation function is applied:
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Fig. 4. Conventional (RGB) and thermal images captured under different experimental conditions and at
various stages of seepage and ponding. Tags A1 C4 represent three scenarios: clean dry surface, dry vegetation,
and ponding (pipe circled). Row 1: Conventional image; Rows 2 4: Thermal images showing pre-seepage,
onset, and after prolonged seepage/piping, respectively.

H
T(-T> y) = Tmin + #(Tmam - Tmzn) (2)

where H(x, y) represents the hue value at pixel (x, y), Hpmqo is the maximum hue value, and [Trin, Timaz| defines
the expected temperature range. Anomaly detection is performed by computing the temperature difference
AT;, ; between adjacent pixels using Equation (3):
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The leakage detection algorithm, graphically outlined in Figure 5, applies an empirically determined threshold
T (typically 1°C) to filter out minor variations while preserving significant temperature anomalies indicative
of leakage. Each image frame is regarded as a complete reference (100% pixel coverage), with leakage areas
quantified by the proportion of pixels displaying significant temperature variations as outlined above. Pixels
satisfying AT; ; > T are classified as potential leakage points, as abrupt thermal fluctuations typically correspond
to seepage or pipeline failures. To capture temporal dependencies, the framework primarily employs five-frame
sequences (Seq5), balancing short-term anomaly detection with computational efficiency. Additionally, ten-
frame sequences (Seq10) were also tested exclusively with the EfficientNet-LSTM model, as longer sequences
led to performance degradation in other DL frameworks. By enforcing anomaly consistency across frames, the
sequence-based approach minimizes false positives and enhances early-stage leak detection?>*.

Each DL framework processes image sequences of shape (sequence_length: 224, 224, 3) along with one-
hot encoded environmental conditions. Feature extraction is performed using a time-distributed Convolutional
Neural Network (CNN), ensuring spatial feature learning across frames. The extracted representations are
processed by two stacked Long Short-Term Memory (LSTM) layers, capturing temporal dependencies. The
LSTM output is concatenated with environmental features before being passed through fully connected dense
layers, which refine learned representations for final leakage prediction. This architecture effectively integrates
spatial, temporal, and environmental information, optimizing predictive accuracy. Leakage severity is quantified
as the percentage of pixels with temperature anomalies exceeding the threshold, providing a continuous
assessment rather than binary classification. To enhance contextual adaptation, environmental conditions
(wet grass, dry grass, manual watering, and rainfall) are encoded as one-hot vectors and integrated into the
model’s prediction layers. This multi-modal approach enables the network to adjust its outputs based on external
factors influencing thermal signatures in outdoor environments. To identify the most effective leakage detection
framework, four neural network architectures were evaluated: EfficientNetB0, AlexNet, ResNet, and CNN-
LSTM. Each framework was trained following a standardized methodology incorporating domain-specific
enhancements®¥2. The evaluation metric, optimization strategy, loss function, performance monitoring,
and transfer learning technique is described in the next subsection for each DL framework with the help of
algorithms.

Original image Temperature map
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Fig. 5. Pictorial presentation t of leakage detection algorithm.
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Results and discussion

The architecture and quantitative performance of each deep learning (DL) framework are examined in terms
of prediction accuracy relative to actual leakage, along with the mean absolute errors (MAE) across different
epochs. To ensure robustness, all images were systematically compiled from various testing scenarios, as detailed
in Table 3. This strategy was employed to minimize potential biases introduced during the training phase due to
specific testing conditions, thereby enhancing the reliability of the proposed framework. A comparative analysis
of the developed DL models under different testing conditions is also provided in the following subsection for
clarity and conciseness.

Performance of EfficientNet-B0 framework
EfficientNet is a convolutional neural network architecture and scaling method that uniformly scales all
dimensions of depth/width/resolution using a compound coefficient, proposed by Tan and Le*. It has achieved
state-of-the-art accuracy on ImageNet while being significantly smaller and faster than previous models*. The
proposed framework is implemented using a structured deep-learning approach. It employs the EfficientNetB0
architecture as the feature extractor, utilizing pre-trained ImageNet weights while omitting the top layers. To
handle sequential image data, a time-distributed EfficientNetB0 is incorporated, ensuring effective spatial feature
extraction across frames. The extracted features are then processed through two Long Short-Term Memory
(LSTM) layers, comprising 128 and 64 units, respectively, to capture temporal dependencies. Following this,
a fully connected dense layer with 128 units and ReLU activation refines the learned representations. Finally,
the model outputs a single-unit dense layer with a sigmoid activation function, scaling predictions within the
range of 0 to 100%. This architecture enables robust feature extraction and sequence modeling, optimizing
performance for image-based temporal analysis.

The schematic architecture layout of EfficientNet-B0 framework is shown in Figure 6 and its implementation
is shown with the help of Algorithm 1. The predictive performance of the EfficientNet Seq5 (using the sequence
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Fig. 6. Architecture of the EfficientNet-B0 framework.
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of five continuous images) and Seq10 (using the sequence of ten continuous images) frameworks is presented
in Figure 7 and Figure 8, respectively. The observed leakage prediction for the EfficientNet Seq5 framework is
19.30%, compared to the actual leakage of 17.55%, while for the EfficientNet Seq10 framework, the observed
prediction leakage is 34.03% against an actual leakage of 29.88%. The corresponding Mean Absolute Error
(MAE) performance is illustrated in Figure 9 and Figure 10 for the EfficientNet Seq5 and Seql0 frameworks,
respectively.

Image 1 Image 2 Image 3

Anomaly detection:
Prediction leakage:19.30%
Actual leakage: 17.55%
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Fig. 7. Performance of EfficientNet Seq5 framework.
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Mean Absolute Error (MAE)
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Fig. 8. Performance of EfficientNet Seq10 framework.
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Fig. 9. MAE Performance of EfficientNet Seq5 framework.
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Performance of EfficientNetB0 (Seq - 10)
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Fig. 10. MAE Performance of EfficientNet Seq10 framework.
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Require: Input sequence of 10 thermal images, X = {1, x9, ..., %10}, where each
T € R224><224><3
i .

Ensure: Predicted leakage percentage, 7.

1: Feature Extraction: For each image w;, extract features y; = f(x;), where
y; € R™.

2: Global Average Pooling: Transform features using z; = g(y;), where z; €
R™.

3: LSTM Layers:

e Process the sequence Z = {21, 22, ..., 210} using the first LSTM layer:
H1 = LSTIV[l(Z)‘ where H1 = {hlh hlg, ey hllO} and hli S R128.

e Pass H; through the second LSTM layer: hy = LSTMy(H;), where
ho € R%,
4: Dense Layer: Compute w = D(hy), where w € R'?.
5. Final Prediction: Compute:

§=o(Ww+b) x 100

where o(x) = H% is the sigmoid activation function.
6: Loss Function (Mean Squared Error):

L(y, ) = %Z(y —0i)°

i=1
7. Evaluation Metric (Mean Absolute Error):

1 N
MAE = = > lyi — il

i=1
8: Optimizer (Adam): Update model parameters 6 using:

My
9 = 6 _— 7’] . 7/\
R Vo + €
where:

e O represents the model parameters

7 is the learning rate

e M, and ¥; are bias-corrected estimates of the first and second moments
of the gradients

€ is a small constant to prevent division by zero

Algorithm 1. EfficientNetB0 Architecture for Leakage Detection

Performance of CNN-LSTM framework

The implementation of the proposed framework follows a structured deep-learning approach. It begins with
a simple Convolutional Neural Network (CNN) as the base feature extractor, consisting of two Conv2D layers
with MaxPooling for spatial feature extraction. To efficiently process sequential image data, a time-distributed
CNN is employed, ensuring consistent feature extraction across frames. The extracted features are then passed
through two Long Short-Term Memory (LSTM) layers with 64 and 32 units, respectively, enabling the model
to capture temporal dependencies. A fully connected dense layer with 64 units and ReLU activation further
refine the learned representations. Finally, the model outputs a single-unit dense layer with a sigmoid activation
function, scaling the predictions within the range of 0 to 100%. This architecture effectively combines spatial
and temporal feature learning, making it well-suited for image sequence analysis. The schematic architecture
layout of CNN-LSTM framework is shown in Figure 11 and its implementation is shown with the help of
Algorithm 2. The predictive performance of the CNN-LSTM frameworks is presented in Figure 12. The observed
leakage prediction for the CNN-LSTM framework is 23.71%, compared to the actual leakage of 23.67%. The
corresponding Mean Absolute Error (MAE) performance is illustrated in Figure 13.
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Fig. 11. Architecture of the CNN-LSTM framework.
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Require: Input sequence of 5 images, X = {r1,z9,..., x5}, where each x; €
Rmxnx3

Ensure: Predicted output, 3.
1: CNN Feature Extraction: For each image x;, extract features y; = f(z;),
where y; € R™ X7 x64,
2: Convolutional Layers:

e Apply the first convolutional layer:

Conv2Dy(z;) = ReLU(Wy % x; + by), W, € R¥*3x3x32

e Perform max pooling: z; = MaxPool; (Conv2Dy).
e Apply the second convolutional layer:

Conv2Dy(z) = ReLU(Wy % 21 + by), W, € R3*3x32x64

e Perform max pooling again: y; = MaxPooly(Conv2Ds).
3: Flatten: Convert feature map y; into a vector z; = g(y;), where z; € R¥.
4: LSTM Layers:

e Process the sequence Z = {21, 23, ..., 25} using the first LSTM layer:

Hy =LSTM(Z), Hy={hi,hi2,... . his}, hy € R

e Pass H; through the second LSTM layer:

hy = LSTM,(H,), hy € R®

5: Dense Layer: Compute w = D(hy), where w € R5.
6: Final Prediction: Compute:

= o(Ww+b) x 100

where o(7) = 5 _é,m is the sigmoid activation function.

7: Loss Function (Mean Squared Error):

N
1
L(y,9) = i — i)’
(.9) = ;(y )
8: Evaluation Metric (Mean Absolute Error):

N

1
MAE = — i — Ui
v ; ly: — il
9: Optimizer (Adam): Update model parameters 6 using:

Orvr = 0= 2
t

Algorithm 2. CNN-LSTM Model for Thermal Leakage Detection

Performance of ResNet50 framework

Residual Networks, introduced by He et al.*, address the problem of training very deep neural networks by
introducing skip connections. This innovation allows for the creation of much deeper and more powerful models
for image recognition and has become a fundamental building block in many modern architectures®*. The
proposed framework is implemented using a deep learning architecture that integrates both spatial and temporal
feature extraction. At its core, ResNet50 serves as the base feature extractor, utilizing pretrained ImageNet
weights while excluding the top layers. A Global Average Pooling 2D (GAP) layer follows to reduce spatial
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Fig. 15. MAEPerformance of ResNet framework.

dimensions while preserving essential features. To efficiently process sequential image data, a time-distributed
ResNet50 is employed, ensuring consistent feature extraction across frames. The extracted features are then
passed through two Long Short-Term Memory (LSTM) layers with 128 and 64 units, respectively, to capture
temporal dependencies. A fully connected dense layer with 128 units and ReLU activation further refines the
learned representations. Finally, the model produces a single-unit dense layer with a sigmoid activation function,
scaling the predictions within the range of 0 to 100%. This architecture effectively combines the powerful feature
extraction capabilities of ResNet50 with LSTM-based temporal modeling, making it well-suited for sequential
image analysis. The schematic architecture implementation is shown with the help of Algorithm 3. The predictive
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performance of the ResNet frameworks is presented in Figure 14. The observed leakage prediction for the CNN-
LSTM framework is 13.06%, compared to the actual leakage of 14.88%. The corresponding Mean Absolute Error
(MAE) performance is illustrated in Figure 15.

Require: Input sequence of 5 images, X = {1, x9,..., x5}, where each x; €
RmX”X3,

Ensure: Predicted output, 3.

1: ResNet Feature Extraction: For each image x;, extract features y; = f(z;),
where y; € R™.
2: Residual Blocks: Each residual block follows:

F(x) = ReLU(Wy * ReLU(W} % & + by) + ba + 1)

3: Global Average Pooling: Transform the feature map y; into a vector z; =
g(y:), where z; € R™.

4: Dense Layer: Compute w; = D(2;), where w; € R1924,

5. LSTM Layers:

e Process the sequence W = {wy, wo, ..., ws} using the first LSTM layer:

H1 = LSTl\/’Il(W)/ H1 = {hu, h127 ey h15}, hh' € R128

e Pass H; through the second LSTM layer:

, he e R

]'Lg = LSTl\/IQ (Hl)

6: Final Dense Layer: Compute:

j = o(Why + b) x 100

1
14+e—®

where o(x) = is the sigmoid activation function.

Algorithm 3. ResNet Model for Thermal Leakage Detection

Performance of AlexNet framework

AlexNet is a pioneering deep convolutional neural network (CNN) architecture developed by Krizhevsky et
al.3%. It significantly outperformed previous methods in the ImageNet Large Scale Visual Recognition Challenge,
marking a turning point in the adoption of deep learning for computer vision tasks*

The proposed framework is implemented using a deep learning architecture that integrates spatial and
temporal feature extraction. It utilizes an AlexNet-inspired CNN as the base feature extractor, trained with
custom weights to optimize performance for the given task. To handle sequential image data efficiently, a time-
distributed AlexNet-based CNN is employed, ensuring consistent spatial feature extraction across frames. The
extracted features are then processed through two Long Short-Term Memory (LSTM) layers with 128 and 64
units, respectively, enabling the model to capture temporal dependencies effectively. A fully connected dense
layer with 128 units and ReLU activation further refines the learned representations. Finally, the model produces
a single-unit dense layer with a sigmoid activation function, scaling the predictions within the range of 0 to
100%. This architecture leverages the feature extraction power of AlexNet while integrating LSTM-based
temporal modeling, making it well-suited for sequential image analysis. The schematic architecture is shown in
Figure 16 and its implementation is shown with the help of Algorithm 4. The results are shown in Figure 17. The
observed leakage prediction for the AlexNet framework is 39.00%, compared to the actual leakage of 39.59%.
The corresponding Mean Absolute Error (MAE) performance is illustrated in Figure 18.
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Fig. 16. Architecture of the AlexNet framework.
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Deep Learning (DL) Performance under different conditions on D/S
Rainfall over | Dry Dry and clean | Clean surface Clear Ponding under
Framework vegetation (%) | vegetation (%) | surface (%) under rainfall (%) | ponding (%) | rainfall (%)
EfficicentNet Seq5 Actual 34.88 8.96 21.27 10.62 19.6 21.97
Prediction | 34.17 8.67 18.21 11.28 18.35 20.15
EfficicentNet Seq10 | Actual 33.93 9.28 20.48 10.61 19.6 21.97
Prediction | 34.03 9.1 18.91 11.94 18.01 20.95
CNN-LSTM Actual 34.88 8.96 21.27 10.62 19.6 21.97
Prediction | 35.76 8.59 21.0 10.31 17.95 20.38
ResNet Actual 34.88 8.96 21.27 10.62 19.6 21.97
Prediction | 34.65 9.25 18.79 11.42 21.13 22.65
AlexNet Actual 34.88 8.96 21.27 10.62 19.6 21.97
Prediction | 34.85 9.35 18.82 10.47 20.29 20.82

Table 4. Comparative performance of all DL frameworks under different environmental conditions.

Require: Input sequence of 5 thermal images, X = {1, z,..., x5}, where each
R224><224><3
z; € .

Ensure: Predicted leakage percentage, g.
1: AlexNet-inspired Feature Extraction: For each image x;, extract features
yi = f(2;), where y; € RE.
2: The CNN consists of five convolutional layers:

Conv2Dq (z;) = ReLU(Wl wx;+by), Wy € RIXIx3x9%
MaxPool; (Conv2D,) =
Conv2Dy(z1) = ReLU(I/V2 * 21+ by), W, € RP*5x96x236
MaxPools(Conv2Dy) =
Conv2D3(z) = ReLU(I/Vg * 29+ by), Wse [R3X3x256x384
Conv2Dy(z3) = ReLU(Wy * 23 + by), W, € R3>*3x384x384
Conv2D5(zy) = ReLU(I/Vg) w2y +bg), Wi € R3*3x384x256
MaxPoolz(Conv2D5) =
Flatten(z;) =

3: Dense Layers:

Di(y;) = ReLU(WG% +bg), We e RF¥10%
Dropout(D;) =
Dy(dy) = ReLU(W7d1 by), Wy € RA096x4096

Dropout(D3) = dy
4: LSTM Layers: The sequence of features D = {da1, dag, . . ., d2s} is processed
by LSTM layers:

LSTNIl (D) = Hl = {hlh h12a ey h15}7 hli S R128
LSTMy(H,) = hy, hy € R%
5. Final Dense Layer: Compute:

§ =0 (Why +b) x 100

where o(z) = 5 +i,z is the sigmoid activation function.

Algorithm 4. AlexNet-inspired Architecture for Thermal Image Leakage Detection
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Comparative performance of all frameworks under different testing conditions

The comparative analysis of deep learning frameworks for seepage and ponding prediction under various
environmental conditions, as presented in Table 4, evaluates the alignment between predicted and actual values,
where lower deviations signify superior predictive accuracy. Among the examined DL frameworks, ResNet
demonstrates the highest reliability, particularly excelling in scenarios involving clear ponding and ponding
under rainfall, with predicted values (21.13% and 22.65%) closely matching actual measurements (19.6% and
21.97%). Whereas, EfficientNet Seq5 shows strong predictive performance in most conditions, though it slightly
underestimates clear ponding (actual: 19.6%, predicted: 18.35%) and ponding under rainfall (actual: 21.97%,
predicted: 20.15%). EfficientNet Seql0, while generally accurate, also underestimates dry and clean surface
conditions (actual: 20.48%, predicted: 18.91%) and clear ponding (actual: 19.6%, predicted: 18.01%). CNN-
LSTM performs consistently well across conditions, particularly in dry and clean surface scenarios, though
it underestimates ponding under rainfall (actual: 21.97%, predicted: 20.38%). AlexNet maintains competitive
accuracy, with minor overestimations in clear ponding (actual: 19.6%, predicted: 20.29%) and moderate
variations in ponding under rainfall (actual: 21.97%, predicted: 20.82%). In summary, these results highlight
the importance of selecting a DL framework that effectively captures the underlying seepage and ponding extent
while minimizing predictive errors. ResNet emerges as the most reliable choice for complex seepage and ponding
conditions, followed by CNN-LSTM for its stable performance across various conditions. EfficientNet models,
while strong in predictive capability, exhibit a tendency to underestimate key environmental factors, suggesting
potential room for optimization. AlexNet, though competitive, shows slightly higher variations that may impact
its robustness in real-world applications. The findings of this study reinforce the necessity of deploying robust
deep learning architectures to enhance seepage and ponding prediction accuracy, which is crucial for early
detection and mitigation strategies in earthen embankments.

Conclusion

This study systematically evaluated the performance of various deep learning architectures for leakage detection
using thermal imagery sequences, with model accuracy assessed via the Mean Absolute Error (MAE) metric.
The Modified AlexNet with a sequence length of 5 demonstrated great predictive capability, achieving the
lowest MAE of 1.02%, closely followed by EfficientNet (1.16%) and ResNet (1.29%). The CNN model, though
simpler, attained a relatively higher MAE of 2.06%, reaffirming the advantage of deeper and more complex
architectures. Notably, increasing the sequence length to 10 in EfficientNet resulted in a significant drop in
performance, with the MAE rising to 3.20%. This suggests that longer temporal sequences may introduce
excessive noise or redundant information, potentially leading to overfitting or reduced generalization. The
consistently strong performance of models with a sequence length of 5 highlights its effectiveness in capturing
essential temporal leakage patterns while avoiding unnecessary complexity. Despite its superior accuracy, the
steeper gradient of the validation MAE curve in Modified AlexNet suggests potential limitations in scalability.
EfficientNet and ResNet, due to their balanced accuracy and stability, appear to be more suitable for larger
and more diverse datasets. These findings underscore the importance of selecting the appropriate combination
of model architecture and sequence length to optimize performance. Additionally, the study demonstrates the
readiness of these models for real-world applications, such as industrial leak detection, pipeline monitoring,
and infrastructure maintenance, where early and accurate leakage identification is crucial. Future work should
explore attention mechanisms or transformer-based models to enhance temporal feature extraction. Moreover,
integrating multi-modal sensor data, including acoustic and pressure sensors, could further improve detection
reliability. Interpretability techniques should also be developed to gain deeper insights into model predictions,
ultimately leading to more transparent and effective leakage detection frameworks. The major takeaway from
the presented studies are as follows:

o The modified AlexNet (Seq5) recorded the lowest MAE of 1.02%, making it the most precise model. However,
ResNet demonstrated the highest stability and consistency across various testing conditions.

« Both EfficientNet (Seq5) and ResNet exhibited competitive performance, with strong generalization capabil-
ities reflected in MAE values of 1.16% and 1.29%, respectively. Notably, ResNet outperformed other models
in terms of scalability.

« Extending the sequence length to 10 in EfficientNet resulted in a substantial performance decline (MAE =
3.20%), highlighting the adverse effects of excessive temporal information.

o A sequence length of 5 proved to be optimal, effectively balancing temporal feature extraction with model
stability.

o Future improvements may involve integrating transformer-based models or hybrid deep learning frame-
works to enhance temporal and spatial feature extraction. Additionally, incorporating multi-modal sensor
data, such as pressure and acoustic sensors, could further improve prediction reliability. Interpretability tech-
niques, such as explainable Al methods, should be explored to gain deeper insights into the decision-making
process of these models, ultimately leading to more effective predictive frameworks for seepage and ponding
detection.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on
reasonable request.
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