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Earthen embankments are built to prevent flooding and protect communities from the dangers 
of floods and high water levels. However, these geotechnical structures may not always remain 
serviceable and can fail due to long-term seepage and ponding. For instance, erosion causes the 
earthen structure to weaken and eventually fail, which may be due to several factors, including the 
velocity of the water, soil water characteristics, fine content, and gradation of the soil. The presented 
research explores an advanced approach to address the critical issue of identifying the seepage and 
ponding through the embankment by assimilating the passive infrared thermographic imageries 
with Deep Learning (DL) algorithms. To facilitate the development and validation of developed DL 
frameworks, a physical experimentation setup at the model scale is developed. This platform enabled 
the generation of a comprehensive dataset of thermal images across various environmental scenarios, 
including vegetation coverage and rainfall. Multiple DL frameworks were initially explored within the 
framework and the models were designed to process sequences of thermal images and predict the 
extent of seepage and ponding. This research builds upon effectively transforming the complex task 
of embankment leakage identification into an image classification problem. Moreover, the developed 
framework demonstrates that mapping of seepage and ponding can be achieved with great accuracy 
and is vital in enhancing embankment safety and disaster prevention strategies in flood-prone areas.
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River embankments are critical flood control infrastructures that frequently suffer from seepage and ponding, 
particularly during flood seasons. The timely detection of these leaks is crucial, as unrecognized leakage can lead 
to catastrophic embankment breaches, resulting in widespread flooding, property destruction, and significant 
threats to public safety1. The history has witnessed several devastating consequences of embankment failure 
across the globe. For instance, a railway embankment in Southern Italy collapsed due to seepage following 
heavy rainfall2 in 2005. The 2019 Durgawati Dam in India faced seepage-induced slope failures3. Several other 
instances of embankment failure along the river Elbe in Eastern Germany have also been reported during floods 
due to seepage and ponding4. Moreover, nearly 1.6 million people were affected in the 2024 embankment breach 
in Bihar, India, underscoring the vital importance of early leakage detection in preventing such disasters5.

Conventional monitoring methods for leakage detection in reservoir dams, tailings, and levees; such as 
pressure gauges and weirs, are impractical for their extensive lengths. While geophysical prospecting techniques 
like resistivity detection6 and transient electromagnetic methods7 have been employed during non-flooding 
seasons, they lack the coverage, reliability, efficiency, and cost-effectiveness required for emergency detection 
during flood seasons. Even advanced techniques like optical-fiber-based distributed temperature monitoring 
systems face significant implementation challenges in existing embankments. Recent research has proposed 
various methods for ponding detection based on new equipment and platforms, including bionic dogs, manned 
vehicles, and ground monitoring equipment8–13. However, these methods are limited by factors such as range, 
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cost, or size. In contrast, systems deployed to Unmanned Aerial Vehicle (UAV) platforms offer advantages in 
terms of size, weight, and cost-effectiveness.

In this regard, infrared thermal (IRT) imaging has proven to be an effective non-destructive method for 
detecting seepage in embankments by capturing surface temperature variations. As water seeps through an 
embankment, it alters the soil’s thermal properties due to its higher specific heat capacity, causing wet areas 
to retain heat longer during the day and cool down more gradually at night14. These temperature differences 
detected using IRT images, help identify potential seepage zones. Recent studies have demonstrated the 
effectiveness of UAV-mounted IRT for monitoring levee seepage, allowing for efficient large-scale surveys15. 
Numerical modeling also supports its ability to detect seepage in dams by analyzing temperature anomalies. 
Compared to conventional methods such as piezometers and borehole investigations, which are invasive and 
expensive, IRT images provide a fast, cost-effective, and non-intrusive alternative. Its capability to inspect large 
and inaccessible embankments enhances its applicability16. Additionally, integrating IRT with UAV technology 
facilitates real-time monitoring, enabling early intervention before severe damage occurs. Long-term thermal 
monitoring has been shown to predict seepage-related instabilities, reducing risks of failure and maintenance 
costs16,17. Moreover, by utilizing temperature-based detection and UAV advancements, IRT with appropriate 
resolutions and thermal sensitivity (discussed later in Section 2) is becoming a key tool in geotechnical 
engineering for proactive seepage assessment.

The testing setup equipped with visible light and thermal infrared detection systems can perform near-real-
time detection and processing, enabling rapid and large-scale inspection of embankment failures18. The challenge, 
however, lies in the vast amount of thermal data collected in this process, which necessitates the development 
of automatic identification methods for leakage targets. Zhou et al.19 pioneered the use of AlexNet to transform 
the issue into an image classification problem for leakage detection. Building on a similar foundation, our study 
aims to determine the accurate position of leakage based on predicted values and optimize the process using 
advanced deep-learning networks. By addressing the limitations of current inspection methods and harnessing 
the power of advanced imaging and machine learning technologies, this research aims to significantly enhance 
the ability to detect and respond to embankment seepage. The outcomes of this study have the potential to 
improve flood control measures and public safety in flood-prone areas by providing a more reliable and efficient 
solution for detecting the seepage and ponding anomalies leading to embankment failure. In the presented 
research, a physical setup is developed to simulate seepage and ponding through the embankment replicating 
real-world embankment conditions. This platform enables the generation of a comprehensive dataset of infrared 
images depicting various seepage and ponding scenarios. These images are then used to train and fine-tune 
state-of-the-art deep convolutional neural networks. To validate the practicality, robustness, and generalization 
capabilities of the developed framework, extensive testing within different environmental condition scenario 
was also carried out.

Methodology
This study employs a systematic research methodology comprising several key phases to address the challenge of 
automatic identification of river embankment seepage and ponding. In the first phase, a sophisticated physical 
setup was developed to conduct the experiments. The novel setup was equipped with the facilities to replicate 
seepage and ponding mechanism as discussed in the next subsection in detail. Moreover, this platform served 
as a controlled setting for generating diverse leakage scenarios, enabling the collection of a comprehensive 
dataset of infrared images capturing various seepage-induced thermal anomalies in the second phase. In the 
third phase, leveraging this rich dataset, the authors developed state-of-the-art deep learning models trained 
to identify thermal anomalies associated with embankment leakage automatically. The presented framework 
effectively transforms the complex task of leakage detection into a more tractable problem of thermal anomaly 
recognition in infrared imagery. Thermal anomalies show a strong correlation with actual leakage occurrences, 
making them a reliable indicator for detection. The trained models leverage these thermal signatures to identify 
leaks effectively, offering a non-invasive and efficient approach.

Development of a physical experimental setup
A physical setup was developed in-house to conduct experiments on embankment seepage and ponding consisting 
of two major components: an embankment modeling section and an arrangement for controlling seepage flow 
as shown in Fig. 1. The embankment model was housed in a top container made of transparent Plexiglas/acrylic 
sheets, ensuring visual monitoring, with arrangements to prevent bulging of the side sheets. This container was 
placed within a primary tank constructed from aluminum sheets, providing structural stability. The tank had 
impervious sides and a bottom to prevent leakage, while filters were installed at the outlet to facilitate proper 
drainage. The second component included a system for generating and maintaining the required pressure head 
using a suitable pump, with strategically placed inlets and outlets ensuring zero disturbance to the embankment 
model. Additionally, provisions were made to regulate the downstream water level, allowing for a stable phreatic 
surface. The setup ensured continuous water flow through the embankment once steady-state conditions were 
achieved, enabling controlled experimentation on seepage and ponding mechanisms. Several other accessories 
were also integrated, including a thermal camera, a ponding setup, a ponding and seepage rate regulator, a 
rainfall simulator, and a real-time image processing system, which are discussed in the next subsections.

Embankment modeling scheme
A detailed schematic layout of the embankment model is shown in Fig. 2, with all dimensions in centimeters 
unless otherwise stated. The embankment was constructed using the homogenized silty soil sourced from 
MinERALiX GmbH in Germany, and its grain size distribution is presented in Fig. 3. The upstream (U/S) and 
downstream (D/S) slopes of the embankment were maintained at 1V:1.5H and 1V:2H, respectively, ensuring a 
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stable geometry. To facilitate drainage, Silica No. 3 was used, while a Plexiglas sheet was placed at the base of the 
model to simulate an impervious bedrock, as depicted earlier in Fig. 1. The index properties of both drainage 
material and embankment material is tabulated in Table  1. The index properties of the used materials align 
with typical construction materials of aged or poorly designed embankment materials across the world20–22. 
The embankment model was constructed layer by layer, with each layer being compacted through soft tamping 
to achieve the required density. The layers were built in 5 cm increments, ensuring uniformity and minimizing 
disturbances to the model. Guide plates were strategically positioned to maintain smooth slopes, and any excess 
soil was carefully slid with minimal disturbance to the embankment model. To study the effects of seepage and 
ponding, three pipes, each with a diameter of two mm, were embedded within the embankment at specific 
locations during construction as shown in Fig. 2. The bottom pipe was positioned to simulate ponding beneath 
the foundation of the embankment, allowing for the study of ponding-induced failure mechanisms at the base. 

Fig. 1.  A comprehensive arrangement of the physical experimental setup: (a) typical layout of all accessories 
involved in the experiment, (b) a typical schematic layout of embankment model.
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The inlets of the top two pipes were placed at a height of 17.25 cm (in model scale) above the embankment base, 
with their respective outlets oriented at different angles to replicate varying seepage flow paths. It is important 
to note that the outlets of all three pipes were not fully exposed on the downstream side, as they remained 
embedded within the embankment by 1 5 cm, ensuring actual seepage and ponding conditions. Additionally, 
the pipe inlets were carefully wrapped with a very soft fabric to prevent soil particles from entering the pipes 
while allowing water to pass through freely. It is to be noted that the ensuring a natural ponding or seepage 
induced leakage is neither feasible nor time effective in a small experimental setup. Therefore, novel synthetic 
arrangements are made in the model itself to mimic the real field scenario.

To provide a comprehensive view of the embankment and pipe placements, four different cross-sections 
were illustrated in Fig. 2, offering insights into the top-down perspective of the embankment model during its 

Fig. 2.  Schematic layout of embankment model with all dimensions along with the top view of different cross 
sections and arrangements for seepage and ponding mechanism. The ponding is achieved with the help of the 
bottom-most pipe.
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preparation. These cross-sections aid in visualizing the spatial distribution of the pipes and embankment layers, 
ensuring clarity in understanding the experimental setup. The systematic construction approach, combined 
with precise pipe placements, ensures that the embankment model accurately replicates real-world seepage and 
ponding phenomena.

Testing scheme for acquisition of IR images of embankment leakage and ponding
A sophisticated thermographic camera, the Testo 890, was used to capture thermal imageries throughout 
the experiment. The Testo 890 is a high-precision infrared camera equipped with a detector resolution of 
640 × 480 pixels, enabling detailed thermal mapping. It features a thermal sensitivity of <40 mK, allowing 
it to detect minimal temperature variations, making it suitable for seepage and ponding studies. The camera 
operates within a spectral range of 7.5 to 14 µm, ensuring accurate infrared detection. Its integrated resolution 
technology enhances image resolution, and a rotatable display facilitates ease of use in field conditions. Detailed 
specifications of the Testo 890 infrared camera are tabulated in Table 2 for ready reference. Thermal imageries 
were captured under various testing conditions, as tabulated in Table 3. In all test cases, thermal imaging was used 
to monitor both seepage-induced leakage and ponding signatures, helping to identify variations in subsurface 
water movement and associated thermal anomalies.

Ice was utilized to reduce the temperature of the water, which was subsequently circulated through the 
designated piping system (refer to Figure  2) to simulate seepage and ponding conditions. The temperature 
difference between the ambient environment and the embankment material—whose properties are summarized 

Description

Index properties

Drainage material Embankment material

Specific gravity, Gs 2.6 −

D50  (mm) 1.72 0.027

D10  (mm) 1.37 0.001

Maximum void ration, emax 1.009 −

Minimum void ration, emin 0.697 −

Permeability, k (m/s) 6.6E−3 −

Approximate relative density, Dr 45% 90%
Liquid limit − 30.7%
Plastic limit − 20.6%

Table 1.  Index properties of drainage and embankment material23.

 

Fig. 3.  Grain size distribution of embankment material.
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in Table 1 was maintained within a range of 0 to 7 °C across various test scenarios, as tabulated in Table 3. Figure 4 
presents both conventional (RGB) and thermal images captured under different experimental conditions and 
at various stages of seepage and ponding. In this figure, tags A1 A4, B1 B4, and C1 C4 correspond to scenarios 
representing: dry and clean surfaces, dry vegetation, and clear ponding, respectively. For enhanced clarity, the 
pipe associated with ponding is enclosed in a circle. The first row (tag 1) in each group (A C) displays the 
conventional images. The subsequent rows (tags 2 4) depict thermal images. Specifically, row 2 captures the 
thermal state before the onset of the seepage or ponding, row 3 shows the condition immediately following 
the onset of seepage or ponding, and row 4 illustrates the condition after prolonged seepage and piping. For 
consistency, a fixed temperature legend is also included in Figure 4.

The working principle of thermal imaging in detecting seepage and ponding is based on the difference in 
thermal properties of soil and water17,24. The specific heat capacity of soil is typically lower than that of water, 
meaning soil heats up and cools down more rapidly than water. The specific heat capacity of dry soil ranges 
usually from 0.8 to 1.3 kJ/kg K, whereas water has a significantly higher value of 4.18 kJ/kg K. Due to this 
difference, water-saturated zones within the embankment retain heat longer or take more time to heat up, 
leading to detectable thermal gradients25,26.

Infrared thermography relies on the principle of thermal radiation, which states that all objects emit 
electromagnetic waves according to their temperature. Planck’s law describes the spectral radiance L(λ, T ) of 
a blackbody as27:

	
L(λ, T ) = 2hc2

λ5
1

e(hc/λkT ) − 1
� (1)

where: h is Planck’s constant (6.626 × 10−34 J s), c is the speed of light (3.0 × 108 m/s), k is the Boltzmann 
constant (1.38 × 10−23 J/K), λ is the wavelength of emitted radiation, and T  is the absolute temperature in 
Kelvin. The emissivity of soil and water also influences thermal imaging results. The emissivity of dry soil varies 
between 0.90 and 0.95, while water has an emissivity close to 0.98. Since water retains heat longer, seepage-
affected regions appear as thermal anomalies in infrared imagery. By capturing continuous thermal data, 
the temperature distribution of an embankment can be analyzed to distinguish leakage patterns and identify 
potential failure zones. This technique provides a non-intrusive method for monitoring ponding and seepage 
dynamics, improving early detection of ponding failures.

 Referencing of the temperature and integration of Deep Learning methodologies
Different learning-based approaches for detecting seepage and ponding through thermal image sequences are 
discussed in this subsection. To ensure data consistency, a standardized preprocessing pipeline was applied, 
including conversion from BMT to PNG (either manually or automatically), color transformation from BGR 
to RGB, resizing to 224 × 224 pixels, and normalization of pixel values to the range [0, 1]. These steps ensure 
uniformity across datasets, minimizing inconsistencies in model input.

Thermal infrared imaging captures temperature variations influenced by the thermal properties of different 
materials28. Since leakage zones generally exhibit lower temperatures than their surroundings, precise 
temperature mapping is crucial to mitigate false color distortions. To achieve this, a calibrated temperature 
transformation function is applied:

Testing condition Number of thermal images

Rainfall over vegetation 118

Dry vegetation 120

Dry and clean surface 300

Rainfall over clean surface 131

Clear ponding 230

Ponding under rainfall 245

Table 3.  Number of thermal images collected for different test conditions on D/S side.

 

Technical specification Reliability

Field of view 42◦  x 32◦  (Standard lens), 25◦  x 19◦  (25◦  lens), 15◦ × 11◦  (Telephoto lens), 6.6◦ × 5◦  (Supertele)

Minimum focus distance 0.1 m (Standard lens), 0.2 m (25◦  lens), 0.5 m (Telephoto lens), 2 m (Supertele)

Geometric resolution 1.13 mrad (Standard lens), 0.68 mrad (25◦  lens), 0.42 (Telephoto lens), 0.18 (Supertele)

Infrared resolution 640 x 480 pixels

Thermal sensitivity < 40 mK at +30 ◦C

Spectral range 7.5 to 14 µm

Table 2.  Technical specification of Testo 890 thermal camera used in the experiments.
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T (x, y) = Tmin + H(x, y)

Hmax
(Tmax − Tmin)� (2)

where H(x, y) represents the hue value at pixel (x, y), Hmax is the maximum hue value, and [Tmin, Tmax] defines 
the expected temperature range. Anomaly detection is performed by computing the temperature difference 
∆Ti,j  between adjacent pixels using Equation (3):

	 ∆Ti,j = |T (i, j) − T (i + 1, j + 1)|� (3)

Fig. 4.  Conventional (RGB) and thermal images captured under different experimental conditions and at 
various stages of seepage and ponding. Tags A1 C4 represent three scenarios: clean dry surface, dry vegetation, 
and ponding (pipe circled). Row 1: Conventional image; Rows 2 4: Thermal images showing pre-seepage, 
onset, and after prolonged seepage/piping, respectively.
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The leakage detection algorithm, graphically outlined in Figure 5, applies an empirically determined threshold 
τ  (typically 1◦C) to filter out minor variations while preserving significant temperature anomalies indicative 
of leakage. Each image frame is regarded as a complete reference (100% pixel coverage), with leakage areas 
quantified by the proportion of pixels displaying significant temperature variations as outlined above. Pixels 
satisfying ∆Ti,j > τ  are classified as potential leakage points, as abrupt thermal fluctuations typically correspond 
to seepage or pipeline failures. To capture temporal dependencies, the framework primarily employs five-frame 
sequences (Seq5), balancing short-term anomaly detection with computational efficiency. Additionally, ten-
frame sequences (Seq10) were also tested exclusively with the EfficientNet-LSTM model, as longer sequences 
led to performance degradation in other DL frameworks. By enforcing anomaly consistency across frames, the 
sequence-based approach minimizes false positives and enhances early-stage leak detection29,30.

Each DL framework processes image sequences of shape (sequence_length: 224, 224, 3) along with one-
hot encoded environmental conditions. Feature extraction is performed using a time-distributed Convolutional 
Neural Network (CNN), ensuring spatial feature learning across frames. The extracted representations are 
processed by two stacked Long Short-Term Memory (LSTM) layers, capturing temporal dependencies. The 
LSTM output is concatenated with environmental features before being passed through fully connected dense 
layers, which refine learned representations for final leakage prediction. This architecture effectively integrates 
spatial, temporal, and environmental information, optimizing predictive accuracy. Leakage severity is quantified 
as the percentage of pixels with temperature anomalies exceeding the threshold, providing a continuous 
assessment rather than binary classification. To enhance contextual adaptation, environmental conditions 
(wet grass, dry grass, manual watering, and rainfall) are encoded as one-hot vectors and integrated into the 
model’s prediction layers. This multi-modal approach enables the network to adjust its outputs based on external 
factors influencing thermal signatures in outdoor environments. To identify the most effective leakage detection 
framework, four neural network architectures were evaluated: EfficientNetB0, AlexNet, ResNet, and CNN-
LSTM. Each framework was trained following a standardized methodology incorporating domain-specific 
enhancements31,32. The evaluation metric, optimization strategy, loss function, performance monitoring, 
and transfer learning technique is described in the next subsection for each DL framework with the help of 
algorithms.

Fig. 5.  Pictorial presentation t of leakage detection algorithm.
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Results and discussion
The architecture and quantitative performance of each deep learning (DL) framework are examined in terms 
of prediction accuracy relative to actual leakage, along with the mean absolute errors (MAE) across different 
epochs. To ensure robustness, all images were systematically compiled from various testing scenarios, as detailed 
in Table 3. This strategy was employed to minimize potential biases introduced during the training phase due to 
specific testing conditions, thereby enhancing the reliability of the proposed framework. A comparative analysis 
of the developed DL models under different testing conditions is also provided in the following subsection for 
clarity and conciseness.

Performance of EfficientNet-B0 framework
EfficientNet is a convolutional neural network architecture and scaling method that uniformly scales all 
dimensions of depth/width/resolution using a compound coefficient, proposed by Tan and Le33. It has achieved 
state-of-the-art accuracy on ImageNet while being significantly smaller and faster than previous models33. The 
proposed framework is implemented using a structured deep-learning approach. It employs the EfficientNetB0 
architecture as the feature extractor, utilizing pre-trained ImageNet weights while omitting the top layers. To 
handle sequential image data, a time-distributed EfficientNetB0 is incorporated, ensuring effective spatial feature 
extraction across frames. The extracted features are then processed through two Long Short-Term Memory 
(LSTM) layers, comprising 128 and 64 units, respectively, to capture temporal dependencies. Following this, 
a fully connected dense layer with 128 units and ReLU activation refines the learned representations. Finally, 
the model outputs a single-unit dense layer with a sigmoid activation function, scaling predictions within the 
range of 0 to 100%. This architecture enables robust feature extraction and sequence modeling, optimizing 
performance for image-based temporal analysis.

The schematic architecture layout of EfficientNet-B0 framework is shown in Figure 6 and its implementation 
is shown with the help of Algorithm 1. The predictive performance of the EfficientNet Seq5 (using the sequence 

Fig. 6.  Architecture of the EfficientNet-B0 framework.
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of five continuous images) and Seq10 (using the sequence of ten continuous images) frameworks is presented 
in Figure 7 and Figure 8, respectively. The observed leakage prediction for the EfficientNet Seq5 framework is 
19.30%, compared to the actual leakage of 17.55%, while for the EfficientNet Seq10 framework, the observed 
prediction leakage is 34.03% against an actual leakage of 29.88%. The corresponding Mean Absolute Error 
(MAE) performance is illustrated in Figure 9 and Figure 10 for the EfficientNet Seq5 and Seq10 frameworks, 
respectively.

Fig. 7.  Performance of EfficientNet Seq5 framework.
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Fig. 9.  MAE Performance of EfficientNet Seq5 framework.

 

Fig. 8.  Performance of EfficientNet Seq10 framework.
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Fig. 10.  MAE Performance of EfficientNet Seq10 framework.
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Algorithm 1.  EfficientNetB0 Architecture for Leakage Detection

Performance of CNN-LSTM framework
The implementation of the proposed framework follows a structured deep-learning approach. It begins with 
a simple Convolutional Neural Network (CNN) as the base feature extractor, consisting of two Conv2D layers 
with MaxPooling for spatial feature extraction. To efficiently process sequential image data, a time-distributed 
CNN is employed, ensuring consistent feature extraction across frames. The extracted features are then passed 
through two Long Short-Term Memory (LSTM) layers with 64 and 32 units, respectively, enabling the model 
to capture temporal dependencies. A fully connected dense layer with 64 units and ReLU activation further 
refine the learned representations. Finally, the model outputs a single-unit dense layer with a sigmoid activation 
function, scaling the predictions within the range of 0 to 100%. This architecture effectively combines spatial 
and temporal feature learning, making it well-suited for image sequence analysis. The schematic architecture 
layout of CNN-LSTM framework is shown in Figure  11 and its implementation is shown with the help of 
Algorithm 2. The predictive performance of the CNN-LSTM frameworks is presented in Figure 12. The observed 
leakage prediction for the CNN-LSTM framework is 23.71%, compared to the actual leakage of 23.67%. The 
corresponding Mean Absolute Error (MAE) performance is illustrated in Figure 13.
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Fig. 11.  Architecture of the CNN-LSTM framework.
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Fig. 13.  MAE Performance of CNN-LSTM framework.

 

Fig. 12.  Performance of CNN-LSTM framework.
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Algorithm 2.  CNN-LSTM Model for Thermal Leakage Detection

Performance of ResNet50 framework
Residual Networks, introduced by He et al.34, address the problem of training very deep neural networks by 
introducing skip connections. This innovation allows for the creation of much deeper and more powerful models 
for image recognition and has become a fundamental building block in many modern architectures34. The 
proposed framework is implemented using a deep learning architecture that integrates both spatial and temporal 
feature extraction. At its core, ResNet50 serves as the base feature extractor, utilizing pretrained ImageNet 
weights while excluding the top layers. A Global Average Pooling 2D (GAP) layer follows to reduce spatial 
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dimensions while preserving essential features. To efficiently process sequential image data, a time-distributed 
ResNet50 is employed, ensuring consistent feature extraction across frames. The extracted features are then 
passed through two Long Short-Term Memory (LSTM) layers with 128 and 64 units, respectively, to capture 
temporal dependencies. A fully connected dense layer with 128 units and ReLU activation further refines the 
learned representations. Finally, the model produces a single-unit dense layer with a sigmoid activation function, 
scaling the predictions within the range of 0 to 100%. This architecture effectively combines the powerful feature 
extraction capabilities of ResNet50 with LSTM-based temporal modeling, making it well-suited for sequential 
image analysis. The schematic architecture implementation is shown with the help of Algorithm 3. The predictive 

Fig. 15.  MAEPerformance of ResNet framework.

 

Fig. 14.  Performance of ResNet framework.
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performance of the ResNet frameworks is presented in Figure 14. The observed leakage prediction for the CNN-
LSTM framework is 13.06%, compared to the actual leakage of 14.88%. The corresponding Mean Absolute Error 
(MAE) performance is illustrated in Figure 15.

Algorithm 3.  ResNet Model for Thermal Leakage Detection

Performance of AlexNet framework
AlexNet is a pioneering deep convolutional neural network (CNN) architecture developed by Krizhevsky et 
al.35. It significantly outperformed previous methods in the ImageNet Large Scale Visual Recognition Challenge, 
marking a turning point in the adoption of deep learning for computer vision tasks35

The proposed framework is implemented using a deep learning architecture that integrates spatial and 
temporal feature extraction. It utilizes an AlexNet-inspired CNN as the base feature extractor, trained with 
custom weights to optimize performance for the given task. To handle sequential image data efficiently, a time-
distributed AlexNet-based CNN is employed, ensuring consistent spatial feature extraction across frames. The 
extracted features are then processed through two Long Short-Term Memory (LSTM) layers with 128 and 64 
units, respectively, enabling the model to capture temporal dependencies effectively. A fully connected dense 
layer with 128 units and ReLU activation further refines the learned representations. Finally, the model produces 
a single-unit dense layer with a sigmoid activation function, scaling the predictions within the range of 0 to 
100%. This architecture leverages the feature extraction power of AlexNet while integrating LSTM-based 
temporal modeling, making it well-suited for sequential image analysis. The schematic architecture is shown in 
Figure 16 and its implementation is shown with the help of Algorithm 4. The results are shown in Figure 17. The 
observed leakage prediction for the AlexNet framework is 39.00%, compared to the actual leakage of 39.59%. 
The corresponding Mean Absolute Error (MAE) performance is illustrated in Figure 18.
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Fig. 16.  Architecture of the AlexNet framework.
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Fig. 18.  MAE Performance of AlexNet framework.

 

Fig. 17.  Performance of AlexNet framework.
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Algorithm 4.  AlexNet-inspired Architecture for Thermal Image Leakage Detection

Deep Learning (DL) Performance under different conditions on D/S

Framework

Rainfall over Dry Dry and clean Clean surface Clear Ponding under

vegetation (%) vegetation (%) surface (%) under rainfall (%) ponding (%) rainfall (%)

EfficicentNet Seq5 Actual 34.88 8.96 21.27 10.62 19.6 21.97

Prediction 34.17 8.67 18.21 11.28 18.35 20.15

EfficicentNet Seq10 Actual 33.93 9.28 20.48 10.61 19.6 21.97

Prediction 34.03 9.1 18.91 11.94 18.01 20.95

CNN-LSTM Actual 34.88 8.96 21.27 10.62 19.6 21.97

Prediction 35.76 8.59 21.0 10.31 17.95 20.38

ResNet Actual 34.88 8.96 21.27 10.62 19.6 21.97

Prediction 34.65 9.25 18.79 11.42 21.13 22.65

AlexNet Actual 34.88 8.96 21.27 10.62 19.6 21.97

Prediction 34.85 9.35 18.82 10.47 20.29 20.82

Table 4.  Comparative performance of all DL frameworks under different environmental conditions.
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Comparative performance of all frameworks under different testing conditions
The comparative analysis of deep learning frameworks for seepage and ponding prediction under various 
environmental conditions, as presented in Table 4, evaluates the alignment between predicted and actual values, 
where lower deviations signify superior predictive accuracy. Among the examined DL frameworks, ResNet 
demonstrates the highest reliability, particularly excelling in scenarios involving clear ponding and ponding 
under rainfall, with predicted values (21.13% and 22.65%) closely matching actual measurements (19.6% and 
21.97%). Whereas, EfficientNet Seq5 shows strong predictive performance in most conditions, though it slightly 
underestimates clear ponding (actual: 19.6%, predicted: 18.35%) and ponding under rainfall (actual: 21.97%, 
predicted: 20.15%). EfficientNet Seq10, while generally accurate, also underestimates dry and clean surface 
conditions (actual: 20.48%, predicted: 18.91%) and clear ponding (actual: 19.6%, predicted: 18.01%). CNN-
LSTM performs consistently well across conditions, particularly in dry and clean surface scenarios, though 
it underestimates ponding under rainfall (actual: 21.97%, predicted: 20.38%). AlexNet maintains competitive 
accuracy, with minor overestimations in clear ponding (actual: 19.6%, predicted: 20.29%) and moderate 
variations in ponding under rainfall (actual: 21.97%, predicted: 20.82%). In summary, these results highlight 
the importance of selecting a DL framework that effectively captures the underlying seepage and ponding extent 
while minimizing predictive errors. ResNet emerges as the most reliable choice for complex seepage and ponding 
conditions, followed by CNN-LSTM for its stable performance across various conditions. EfficientNet models, 
while strong in predictive capability, exhibit a tendency to underestimate key environmental factors, suggesting 
potential room for optimization. AlexNet, though competitive, shows slightly higher variations that may impact 
its robustness in real-world applications. The findings of this study reinforce the necessity of deploying robust 
deep learning architectures to enhance seepage and ponding prediction accuracy, which is crucial for early 
detection and mitigation strategies in earthen embankments.

Conclusion
This study systematically evaluated the performance of various deep learning architectures for leakage detection 
using thermal imagery sequences, with model accuracy assessed via the Mean Absolute Error (MAE) metric. 
The Modified AlexNet with a sequence length of 5 demonstrated great predictive capability, achieving the 
lowest MAE of 1.02%, closely followed by EfficientNet (1.16%) and ResNet (1.29%). The CNN model, though 
simpler, attained a relatively higher MAE of 2.06%, reaffirming the advantage of deeper and more complex 
architectures. Notably, increasing the sequence length to 10 in EfficientNet resulted in a significant drop in 
performance, with the MAE rising to 3.20%. This suggests that longer temporal sequences may introduce 
excessive noise or redundant information, potentially leading to overfitting or reduced generalization. The 
consistently strong performance of models with a sequence length of 5 highlights its effectiveness in capturing 
essential temporal leakage patterns while avoiding unnecessary complexity. Despite its superior accuracy, the 
steeper gradient of the validation MAE curve in Modified AlexNet suggests potential limitations in scalability. 
EfficientNet and ResNet, due to their balanced accuracy and stability, appear to be more suitable for larger 
and more diverse datasets. These findings underscore the importance of selecting the appropriate combination 
of model architecture and sequence length to optimize performance. Additionally, the study demonstrates the 
readiness of these models for real-world applications, such as industrial leak detection, pipeline monitoring, 
and infrastructure maintenance, where early and accurate leakage identification is crucial. Future work should 
explore attention mechanisms or transformer-based models to enhance temporal feature extraction. Moreover, 
integrating multi-modal sensor data, including acoustic and pressure sensors, could further improve detection 
reliability. Interpretability techniques should also be developed to gain deeper insights into model predictions, 
ultimately leading to more transparent and effective leakage detection frameworks. The major takeaway from 
the presented studies are as follows:

•	 The modified AlexNet (Seq5) recorded the lowest MAE of 1.02%, making it the most precise model. However, 
ResNet demonstrated the highest stability and consistency across various testing conditions.

•	 Both EfficientNet (Seq5) and ResNet exhibited competitive performance, with strong generalization capabil-
ities reflected in MAE values of 1.16% and 1.29%, respectively. Notably, ResNet outperformed other models 
in terms of scalability.

•	 Extending the sequence length to 10 in EfficientNet resulted in a substantial performance decline (MAE = 
3.20%), highlighting the adverse effects of excessive temporal information.

•	 A sequence length of 5 proved to be optimal, effectively balancing temporal feature extraction with model 
stability.

•	 Future improvements may involve integrating transformer-based models or hybrid deep learning frame-
works to enhance temporal and spatial feature extraction. Additionally, incorporating multi-modal sensor 
data, such as pressure and acoustic sensors, could further improve prediction reliability. Interpretability tech-
niques, such as explainable AI methods, should be explored to gain deeper insights into the decision-making 
process of these models, ultimately leading to more effective predictive frameworks for seepage and ponding 
detection.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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