KIT | KIT-Bibliothek | Impressum | Datenschutz

Accelerating Weather Forecasting: A Neural Network-Based Emulation of ISORROPIA

Evangelopoulos, Georgios ORCID iD icon 1; Hoshyaripour, Gholamali ORCID iD icon 2; Meyer, Jörg ORCID iD icon 1; Kumar, Pankaj 2; Bruckert, Julia ORCID iD icon 2; Streit, Achim ORCID iD icon 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)
2 Institut für Meteorologie und Klimaforschung Troposphärenforschung (IMKTRO), Karlsruher Institut für Technologie (KIT)

Abstract:

Atmospheric composition is an essential part of weather, climate and Earth system modeling. However, modeling atmospheric composition is a computationally expensive and time-consuming task that requires a significant amount of energy. As models scale to finer spatial and temporal resolutions, maintaining real-time performance becomes increasingly challenging. To address this, optimization and acceleration techniques are essential. One promising approach is the use of deep neural networks, which have demonstrated the capability to efficiently approximate complex systems with high accuracy. Predictions using these neural networks are notably faster compared to traditional methods, significantly reducing the computational burden. In this study, we present the development of a surrogate model designed to emulate ISORROPIA, a traditional model used for calculating the concentrations of chemical compounds in the ICON-ART (ICOsahedral Nonhydrostatic model with Aerosol and Reactive Trace gases) model. Specifically, ISORROPIA is an aerosol thermodynamic equilibrium model used by ART that requires substantial computational resources, occupying a significant portion of the overall calculation time, making it particularly well-suited for emulation. ... mehr


Postprint §
DOI: 10.5445/IR/1000185854
Veröffentlicht am 28.10.2025
Originalveröffentlichung
DOI: 10.1109/eScience65000.2025.00017
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung Troposphärenforschung (IMKTRO)
Scientific Computing Center (SCC)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 15.09.2025
Sprache Englisch
Identifikator ISBN: 979-8-3315-9146-5
KITopen-ID: 1000185854
HGF-Programm 46.21.01 (POF IV, LK 01) Domain-Specific Simulation & SDLs and Research Groups
Weitere HGF-Programme 12.11.32 (POF IV, LK 01) Advancing atmospheric and Earth system models
Erschienen in IEEE International Conference on eScience (eScience), Chicago, IL, USA, 15-18 September 2025
Veranstaltung 21st IEEE International Conference on eScience (2025), Chicago, IL, USA, 15.09.2025 – 18.09.2025
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 67–75
Projektinformation ICON-SmART (BMDV, 4823DWDP4)
Schlagwörter Neural networks, Surrogate modeling, Atmospheric chemistry, ICON-ART
Nachgewiesen in OpenAlex
Scopus
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 13 – Maßnahmen zum Klimaschutz
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page