KIT | KIT-Bibliothek | Impressum | Datenschutz

acepack : ACE and AVAS for Selecting Multiple Regression Transformations

Spector, Phil; Friedman, Jerome; Tibshirani, Robert; Lumley, Thomas; Garbett, Shawn; Klar, Bernhard ORCID iD icon 1; Chasalow, Scott
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Two nonparametric methods for multiple regression transform selection are provided. The first, Alternating Conditional Expectations (ACE), is an algorithm to find the fixed point of maximal correlation, i.e. it finds a set of transformed response variables that maximizes R^2 using smoothing functions [see Breiman, L., and J.H. Friedman. 1985. "Estimating Optimal Transformations for Multiple Regression and Correlation". Journal of the American Statistical Association. 80:580-598. <doi:10.1080/01621459.1985.10478157>]. Also included is the Additivity Variance Stabilization (AVAS) method which works better than ACE when correlation is low [see Tibshirani, R. 1986. "Estimating Transformations for Regression via Additivity and Variance Stabilization". Journal of the American Statistical Association. 83:394-405. <doi:10.1080/01621459.1988.10478610>]. A good introduction to these two methods is in chapter 16 of Frank Harrell's "Regression Modeling Strategies" in the Springer Series in Statistics. A permutation independence test is included from [Holzmann, H., Klar, B. 2025. "Lancaster correlation - a new dependence measure linked to maximum correlation". ... mehr


Originalveröffentlichung
DOI: 10.32614/CRAN.package.acepack
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Forschungsdaten
Publikationsjahr 2025
Identifikator KITopen-ID: 1000185859
Art der Forschungsdaten Software
Nachgewiesen in OpenAlex
URL https://cran.r-project.org/web/packages/acepack/index.html
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page