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Zusammenfassung

Stammzellbasierte Modelle bieten physiologisch relevante in vitro-Plattformen zur Un-
tersuchung von Gewebeentwicklung und Krankheitsmechanismen sowohl auf Organ-
als auch auf Organismenebene und stellen leistungsfahige Alternativen zu traditionellen
humanen und tierexperimentellen Modellen dar. Sie leisten damit einen Beitrag zum Re-
placement im Sinne der 3R-Prinzipien fiir Tierversuche. Trotz ihres Potenzials erfolgt die
Analyse stammzellbasierter Modelle bislang tiberwiegend manuell, was zu Ineffizienzen,
Beobachterverzerrungen und eingeschrankter Reproduzierbarkeit fithrt. Zudem sind beste-
hende Kultivierungsprotokolle hdufig wenig robust und unterliegen einer hohen Chargen-
variabilitét, da systematische Feedbackschleifen zur Protokolloptimierung fehlen. Diese Ar-
beit adressiert diese Limitationen durch die Entwicklung automatisierter Analysepipelines
sowie Strategien zur Protokolloptimierung tiber sechs Messmodalitaten hinweg: Magnet-
resonanztomographie (MRT), Hellfeldmikroskopie, Epifluoreszenzmikroskopie, konfokale
Live-Imaging-Mikroskopie, Einzelzell-RNA-Sequenzierung (scRNA-Seq) und Imaging Flow
Cytometry. Hierzu wurden Methoden des maschinellen Lernens und Deep Learnings
eingesetzt, um spezialisierte Pipelines fiir Segmentierung, Klassifikation und Merkmalsex-
traktion zu entwickeln, die eine quantitative Analyse bildgebender und einzelzellbasierter
Datentypen ermoglichen.

Fir stammzellbasierte Modelle auf Organebene wurde die erste automatisierte MRT-
basierte Pipeline zur Segmentierung, Strukturanalyse und Qualitatskontrolle entwickelt.
Fiir die Hellfeldmikroskopie wurde eine robuste und interpretierbare Pipeline zur Uber-
wachung der Organoidmorphologie und -diversitit implementiert, die die iterative Opti-
mierung von Kultivierungsprotokollen unterstiitzt. Fiir Epifluoreszenzbilder wurde eine
Deep-Learning-basierte Pipeline entwickelt, um Zellkerne und ventrikelartige Strukturen
zu segmentieren. Dariiber hinaus konnte die Machbarkeit einer in silico 3D-Rekonstruktion
demonstriert werden. Im Bereich Einzelzellanalyse wurden Pipelines fiir scRNA-Seq und
Imaging Flow Cytometry entwickelt, um Zellpopulationen zu quantifizieren, morpholo-
gische Merkmale zu erfassen und die Chargenvariabilitit zu bestimmen. Fiir stammzell-
basierte Modelle auf Organismusebene wurde eine neuartige Deep-Learning-Methode
eingefithrt, um individuelle Entwicklungstrajektorien zu verfolgen und eine frithe und
spate Qualitatskontrolle zu unterstiitzen. Abschlieffend préasentiert die Arbeit allge-
meine Empfehlungen zur Kultivierung, Messung, automatisierten Analyse, und Opti-
mierung stammzellbasierter Modelle. Insgesamt zeigt sie, wie automatisierte Pipelines
eine skalierbare, interpretierbare Analyse ermoglichen und die iterative Optimierung von
Kultivierungs- und Messprotokollen unterstiitzen. Diese Beitrdage schaffen die Grundlage
fiir stabile stammzellbasierte Modelle, die eine belastbare Analyse, die Optimierung experi-
menteller Protokolle sowie Anwendungen in der Wissensgenerierung und Krankheitsmod-
ellierung ermdglichen.






Abstract

Stem cell-derived models offer physiologically relevant in vitro platforms for studying tis-
sue development and disease mechanisms at both the organ and organism level, serving as
powerful alternatives to traditional human and animal models. In doing so, they contribute
to the Replacement principle of the 3Rs (Replacement, Reduction, and Refinement) in ani-
mal research. Despite their promise, analysis of stem cell-derived models remains largely
manual, leading to inefficiencies, observer bias, and limited reproducibility. In addition,
cultivation protocols are often unrobust and suffer from batch-to-batch variability, as they
lack systematic feedback loops for optimization. This thesis addresses these limitations by
developing automated analysis pipelines and strategies for protocol optimization across
six measurement modalities: magnetic resonance imaging (MRI), brightfield microscopy,
epifluorescence microscopy, live-imaging-based confocal microscopy, single-cell RNA se-
quencing (scRNA-Seq), and imaging flow cytometry. To achieve this, machine learning and
deep learning approaches were employed to build specialized pipelines for segmentation,
classification, and feature extraction, enabling quantitative analysis across imaging and
single-cell data types.

This thesis presents the first automated MRI-based pipeline for the segmentation, struc-
tural analysis, and quality control of organ-level stem cell-derived models. For brightfield
microscopy, a robust and interpretable pipeline was implemented to monitor organoid
morphology and diversity, supporting iterative protocol optimization. A deep learning-
based pipeline was developed for epifluorescence microscopy images to segment nuclei
and ventricle-like structures, with the feasibility of in silico 3D reconstruction also demon-
strated. For single-cell analysis, sScRNA-Seq and imaging flow cytometry pipelines were
designed to quantify cell populations, assess morphological characteristics, and quantify
batch variability. For organism-level stem cell-derived models, a novel deep learning-based
method was introduced to monitor individual developmental trajectories and support
both early- and advanced-stage quality control. Finally, the thesis presents general rec-
ommendations for the cultivation, measurement, automated analysis, and optimization
of stem cell-derived models. Altogether, it demonstrates how automated pipelines en-
able automated, interpretable analysis and support iterative optimization of cultivation
and measurement protocols. These contributions establish a foundation for stable stem
cell-derived models, fostering robust analysis, protocol refinement, and applications in
knowledge discovery and disease modeling.
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1. Introduction

Section 1.5 about related work is partially based on: L. Deininger, P. Caldarelli, M.
Zernicka-Goetz, et al. “From pixels to patterns: The Al revolution in stem cell-derived
models”. Submitted to Nature Methods. 2025. [1]. The article was conceptualized and
written by L.D. and P.C., with L.D. primarily responsible for the text and P.C. focusing
on the figures.

1.1. Stem Cell-Derived Models

Understanding human development and disease requires physiologically relevant and
scalable model systems. Stem cell-derived models are in vitro systems developed from
pluripotent or adult stem cells that replicate key aspects of tissue development and func-
tion. They closely mimic physiological processes and provide powerful platforms for
studying human and animal biology. Compared to traditional animal models like mice or
zebrafish, stem cell-derived models provide a more precise representation of organ-specific
processes [2—4]. Importantly, such systems contribute to the Replacement aspect of the
3Rs (Replacement, Reduction, and Refinement), which guide ethical animal research by
promoting alternative methods that avoid or replace the use of animals [5].

These models serve as versatile platforms across multiple domains of biomedical research.
They are widely used for knowledge discovery, enabling the study of early developmental
processes and tissue morphogenesis in organs such as the brain, liver, kidney, and gut [2,
6-9]. They also support disease modeling, where patient-derived systems recapitulate
disease-relevant cell types and molecular phenotypes, enabling the study of conditions
such as microcephaly, Alzheimer’s, Parkinson’s disease, and various cancers [2, 10-16].
Finally, they are applied in toxicology and drug screening, where stem cell-derived models
provide human-relevant platforms for compound testing, facilitating drug discovery and
improving the prediction of efficacy and adverse effects [17-22].

Despite their potential, stem cell-derived models exhibit high variability across individual
samples and often fail to form fully developed structures [23-27], limiting reproducibility
and hindering protocol refinement. These challenges are amplified by measurement and
protocol limitations, and the lack of standardized, automated tools for phenotypic analysis
during or after cultivation. Automated analysis and quality assessment are therefore
crucial for consistent evaluation and data-driven protocol optimization.

Stem cell-derived models vary in their complexity, ranging from systems that model
individual tissues or organs to those that aim to replicate aspects of whole-organism devel-
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opment. This thesis focuses on one representative of each: brain organoids (Section 1.1.1)
and ETiX-embryos (Section 1.1.2), respectively. While brain organoids model neural tis-
sue organization and differentiation, ETiX-embryos simulate the integrated development
of whole organisms. Together, they offer complementary insights into tissue-specific
and system-level processes. Both models surpass traditional two-dimensional (2D) cul-
tures by better capturing spatial organization, cell-cell interactions, and physiological
microenvironments [28-30].

1.1.1. Brain Organoids

Brain organoids, derived from pluripotent stem cells (Figure 1.1a), mimic key features
of the human brain, including its structure and cellular diversity, exemplified by the
generation of major cell types such as neural progenitor cells (NPCs) and neurons [31].
These miniaturized versions of the brain are uniquely suited to studying the complexity
of human brain development and associated disorders [2, 32-37]. When derived from
patient-specific induced pluripotent stem cells, brain organoids enable personalized disease
modeling and therapeutic discovery [38, 39].

Brain organoid formation

PSC

weeks to months {
* —

—

v

Brain organoid
ETiX-embryo formation

b EsSC ESC-iGata4 TSC
® & @
L 2

65-90 hours

v

ETiX-embryo

Figure 1.1: Brain organoid and ETiX-embryo formation. (a) Schematic illustration of
brain organoid formation. Brain organoids are derived from pluripotent stem cells (PSCs).
(b) Schematic of ETiX-embryo formation and structural organization, based on three stem
cell types: embryonic stem cells (ESC), ESCs expressing inducible Gata4 (ESC-iGata4), and
trophoblast stem cells (TSCs). Panel (b) is adapted from Fig. 1 in Caldarelli, Deininger et
al. [40], licensed under CC BY 4.0.

Brain organoids can be categorized based on the cultivation protocol used, specifically as
either unguided or guided [41]. Unguided protocols primarily rely on cell self-organization,
giving rise to cerebral organoids, which are considered to model the entire brain [41, 42].
In contrast, guided protocols direct differentiation toward specific brain regions, resulting
in regionalized organoids, such as forebrain organoids [41, 42]. Even though with slightly
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different regional specializations, forebrain and cerebral organoids exhibit significant
biological similarities, both recapitulating key aspects of human brain development [43,
44).

Quantification of brain organoids is essential for effectively modeling central nervous
system pathologies, particularly malformations of cortical development, which often
involve changes in brain volume [45-47]. Monitoring growth and morphology during
cultivation is crucial for detecting early developmental changes.

In addition, many neurological disorders are associated with disruptions in neuronal
differentiation and maturation [11, 48-50]. Brain organoid substructures, such as ventricle-
like regions composed of NPCs and neurons, offer valuable insights into neurodevelop-
ment [51]. Quantification of these structures and analysis of cell type composition enable
the assessment of neuronal development, with the ratio of neurons to NPCs serving as a
key indicator. A higher ratio reflects more advanced developmental stages.

An illustrative application is the modeling of rare neurodevelopmental disorders, such
as succinic semialdehyde dehydrogenase deficiency (SSADH). SSADH is a genetic disorder
caused by mutations in the ALDH5A1 gene, leading to the accumulation of GABA and its
metabolites in the brain. This causes a complex clinical presentation involving intellectual
disability, ataxia, seizures, and autism spectrum traits, with no known cure [48]. Brain
organoids provide a promising in vitro platform for modeling SSADH, enabling controlled
investigation of disease mechanisms. Prior immunohistochemistry studies suggested
premature neuronal differentiation might be a hallmark of the disorder SSADH [52],
motivating deeper exploration of this hypothesis using quantitative automated analysis.

Brain organoid cultivation presents several challenges, in which automated quantifica-
tion can play a key role in enabling iterative protocol optimization. A major limitation
is the high organoid-to-organoid variability, which leads to substantial heterogeneity in
cellular composition and spatial organization [53-55]. Additionally, unintended differen-
tiation into off-target lineages further complicates reproducibility. One such undesired
route is the formation of fluid-filled cavities or cysts [56, 57].

While many cultivation protocols focus on guiding differentiation toward specific neural
lineages, they typically lack mechanisms for intrinsic quality monitoring, such as built-in
criteria or feedback mechanisms for detecting suboptimal development during cultivation,
e.g., detection of cystic tissue. As a result, researchers rely heavily on endpoint evaluation
or manual selection, often after weeks to months of culturing. This absence of continuous,
protocol-internal assessment hampers early detection of aberrant trajectories and limits
opportunities for timely intervention.

1.1.2. ETiX-Embryos

ETiX-embryos are stem cell-derived embryo models engineered to mimic key develop-
mental stages of natural embryos [26, 58]. They are generated from three stem cell types:
embryonic stem cells (ESCs), trophoblast stem cells (TSCs), and ESCs transiently induced
to express the transcription factor GATA4 (referred to as iX cells or ESC-iGata4 cells). In
comparison to brain organoids, ETiX-embryos go beyond modeling individual organs by



1. Introduction

replicating early embryonic stages and the integrated processes involved in forming an
entire organism (Figure 1.1b).

By the fourth day post-cell-seeding, a selection process is required to eliminate ETiX-
embryos that fail to meet developmental criteria, mirroring the natural progression of
embryogenesis at a comparable stage. Such selection is standard practice in organoid and
stem cell-derived embryo research, where only the most promising samples are retained
for further study. However, current cultivation protocols lack intrinsic quality monitoring
mechanisms that could flag suboptimal development.

Automated selection is particularly necessary due to the high proportion of unsuc-
cessfully developed ETiX-embryos. On average, only 22% of ETiX-embryos reach a well-
developed state, while 78% fail to progress normally [26]. This highlights the need for
improving cultivation efficiency. Moreover, the selection process remains inherently sub-
jective, relying on individual researchers’ judgment, which introduces variability across
laboratories. Standardizing selection through deep-learning-based automated classification
could enhance reproducibility and improve developmental success rates by ensuring a
consistent and objective evaluation of ETiX-embryo viability.

1.2. Measurement Techniques

A diverse range of measurement techniques is available for characterizing stem cell-derived
models, each providing unique insights into their structure, function, and developmental
processes. These techniques can be broadly grouped into imaging-based methods (Sec-
tions 1.2.1-1.2.4), which are the most commonly used [59], and non-imaging techniques
such as RNA sequencing (Section 1.2.5).

1.2.1. Brightfield and Fluorescence Microscopy

Brightfield and fluorescence microscopy are the most widely employed techniques for
studying stem cell-derived models [59]. Brightfield microscopy uses transmitted light
to illuminate transparent tissues, producing images where light-absorbing structures
appear darker against a bright background. This straightforward technique is effective for
assessing overall morphology and growth patterns.

Fluorescence microscopy, on the other hand, provides higher specificity by using
fluorescence-labeled antibodies that bind to tissue-specific proteins, or fluorescent proteins
genetically fused to target proteins, enabling detailed visualization of subcellular structures
and specific features within stem cell-derived models [23, 45, 60-63]. However, as stem
cell-derived systems grow larger and more opaque, full 3D imaging becomes increasingly
challenging due to light scattering and limited antibody penetration. To overcome these
limitations, there are two options. One solution is tissue clearing to enhance transparency,
followed by light-sheet microscopy [64-67]. Yet, this method is technically demanding
and relies on expensive, less-accessible equipment.



1.2. Measurement Techniques

A more practical and widely accessible alternative is to use a rotary microtome to
section samples into thin slices (typically 5 — 30 um), stain them with antibodies, and
image them in two dimensions. This workflow is commonly known as immunohisto-
chemistry (IHC). To recover global tissue organization from such 2D sections, two main
strategies exist. One approach involves computational 3D reconstruction and has been
applied to hematoxylin-eosin-stained, paraffin-embedded serial sections [68]. Another
approach uses an ultramicrotome to reconstruct large volumes from ultrathin (100 nm),
resin-embedded sections [69, 70]. However, this approach requires specialized ultrami-
crotomes and labor-intensive embedding protocols. Such equipment and expertise are
uncommon in most wet labs, particularly when working with fragile specimens like brain
organoids. In contrast, rotary microtomes are standard in histology facilities, and IHC is
well established and broadly accessible. At the start of this thesis, no related work existed
about in silico, IHC-based, 3D reconstruction of entire brain organoids sectioned on rotary
microtomes.

Among the available fluorescence microscopy systems, epifluorescence microscopes
are commonly used due to their simplicity and cost-effectiveness. They illuminate the
entire sample, which may result in out-of-focus fluorescence and reduced image quality.
In contrast, confocal microscopes offer improved resolution through optical sectioning by
using laser light and a pinhole aperture to capture fluorescence from specific focal planes,
enabling 3D reconstruction capabilities [71].

Fluorescence microscopy, particularly confocal systems, is also widely used for live imag-
ing, enabling real-time observation of dynamic cellular processes, such as cell migration,
division, and differentiation in stem cell-derived models [72, 73].

1.2.2. Light-Sheet Microscopy

Light-sheet microscopy is an imaging technique that enables high-resolution, three-
dimensional visualization of biological specimens. It works by illuminating the sample
with a thin sheet of light perpendicular to the detection axis. This allows for fast volu-
metric imaging with high optical sectioning, reducing phototoxicity and photobleaching
compared to techniques such as confocal microscopy [74]. Despite these advantages,
the use of light-sheet microscopy remains limited due to the high cost of the required
instrumentation and the complexity of sample preparation protocols, including the need
for optical clearing [59].

1.2.3. Magnetic Resonance Imaging (MRI)

MRI is based on the interaction of hydrogen protons with a strong magnetic field and
radiofrequency pulses, generating detailed images of tissues and structures. Although
widely established in clinical and preclinical neuroscience, MRI had not been explored
for imaging stem cell-derived models at the start of this thesis. Its status as the clinical
gold standard for diagnosing, staging, and monitoring neurological disorders highlights
its untapped potential for organoid imaging [75-77].
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In contrast to many existing stem cell-derived model analysis pipelines, which are
often limited to smaller structures such as intestinal organoids [78] or require destruc-
tive sample preparation [64], MRI offers the unique advantage of enabling longitudinal,
non-invasive imaging of organoids over time. Compared to brightfield microscopy, the
standard approach for assessing organoid size and morphology [2, 56, 79], MRI provides
3D information. T2*-weighted (T2*-w) imaging is particularly sensitive to magnetic sus-
ceptibility differences, highlighting paramagnetic substances such as neuromelanin [80],
cellular debris, or calcifications. These signals can reflect biological processes such as
neuronal differentiation, necrosis, or mineralization. Additionally, diffusion tensor imag-
ing (DTI) offers functional insight into tissue architecture by capturing the directionality of
water diffusion, offering insight into microstructural organization and potential fiber-like
arrangements.

1.2.4. Imaging Flow Cytometry (IFC)

Imaging flow cytometry (IFC) combines traditional flow cytometry with high-resolution
imaging, enabling the simultaneous analysis of both physical properties and morphological
features of individual cells. Flow cytometry analyzes cell size, granularity, and fluorescence
as cells pass through a laser beam, providing quantitative data for various biological
applications. IFC enhances this by capturing images of cells in both brightfield and
fluorescence channels, producing thousands to millions of images per experiment, allowing
detailed analysis of cell morphology and function. To date, IFC has been sporadically
utilized for stem cell analysis [81, 82], but has not been used to study compacted organoids
or later stages of development.

1.2.5. RNA-Seq

Beyond imaging, RNA sequencing (RNA-Seq) is the most widely used method for exam-
ining stem cell-derived models [59]. RNA-Seq is a powerful technique used to analyze
gene expression in biological samples, providing insights into activated and non-activated
genes. RNA-seq can be divided into two main types: bulk RNA-seq and single-cell RNA-
seq (scRNA-Seq). Bulk RNA-seq measures the average gene expression across a pooled
population of cells, providing an overview of gene activity in the sample, while scRNA-Seq
captures gene expression at the individual cell level, enabling the exploration of gene
activity within distinct cell populations.

The primary output of a sScRNA-Seq experiment is a matrix with dimensions #cells X
#genes, where each entry represents the transcript count for a particular gene in a given
cell. For downstream analyses such as differential gene expression analysis (DGEA), data
can be analyzed at the single-cell level or aggregated into pseudo-bulk profiles. In pseudo-
bulk analysis, transcript counts are summed across all cells of the same group (e.g., per
sample or cell type), thereby approximating bulk RNA-Seq data. This approach increases
statistical robustness, reduces noise inherent to individual cells, and allows the use of
established bulk RNA-Seq tools like DESeq2 [83] for DGEA.
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The analysis of scRNA-Seq data involves several steps, including quality control, nor-
malization, feature (gene) selection, data scaling, dimensionality reduction (both linear
and non-linear), cell clustering, and cell annotation. Popular tools for scRNA-Seq analysis,
such as Seurat [84], facilitate the semi-automated processing of data sets. After these
initial steps, further downstream analyses such as differential gene expression analysis
and gene set enrichment analysis provide deeper biological insights.

DGEA identifies genes with significantly different expressions between conditions,
cell types, or groups, helping to understand how gene expression responds to stimuli or
environmental changes. Fold change, typically reported on a log2 scale, quantifies the
magnitude of expression differences (e.g., between Wildtype and Patient conditions).

Gene set enrichment analysis (GSEA) determines whether predefined gene sets, linked
to biological functions, pathways, or cellular processes, show significant expression differ-
ences. GSEA often incorporates databases such as Gene Ontology (GO) [85] to interpret
gene sets in the context of biological processes, enhancing the understanding of gene
expression patterns and their implications for specific biological phenomena. GO is a
structured framework that categorizes genes based on their associated biological processes,
molecular functions, and cellular components. It is organized as a tree-like hierarchy,
where broader categories branch into more specific subcategories, allowing for a systematic
representation of gene functions and relationships.

1.3. Automated Image Analysis

Manual image analysis relies on human operators for inspection, segmentation, quantifica-
tion, and classification, often involving hand-drawn annotations and threshold adjustments.
Its accuracy and efficiency are limited by observer variability, time consumption, and
subjective bias [86-88].

In contrast, automated image analysis relies on predefined algorithms, machine learning,
or deep learning to extract features and make standardized, reproducible, and scalable
decisions. Key tasks include image classification, which assigns labels to entire images (Sec-
tion 1.3.1), image segmentation, which partitions images into meaningful regions (Sec-
tion 1.3.2), image registration, which aligns images from different modalities or time
points (Section 1.3.3), and feature extraction, which quantifies relevant patterns, textures,
or structures (Section 1.3.4). These components work together to enable high-throughput,
unbiased analysis and drive advancements in biomedical research, microscopy, and medical
imaging.

1.3.1. Image Classification

Image classification is the task of assigning a label k € K to an input image i € I, where |
denotes the set of all images and K represents the set of predefined classes.
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1.3.1.1. Classical Methods

Before the emergence of deep learning, classical image classification relied on a combina-
tion of feature extraction, discussed in Section 1.3.4, and machine learning algorithms. This
approach was widely used and forms the foundation of modern deep learning methods.
Support Vector Machines (SVMs) were commonly employed, leveraging high-dimensional
hyperplanes to separate classes in feature-based classification tasks [89, 90]. Additionally,
Random Forests and XGBoost, both decision tree-based models, improved classification
performance through ensemble learning, with Random Forests reducing variance by av-
eraging multiple trees and XGBoost enhancing accuracy through gradient boosting [91,
92].

1.3.1.2. Deep Learning

Deep learning models for image classification are dominated by convolutional neural
networks (CNNs) and, more recently, vision transformers (ViTs). CNNs utilize hierarchical
layers to perform convolution operations, extracting features from raw data and excelling
at tasks like image classification. Notable CNN architectures include AlexNet [93], which
pioneered deep network structures, MobileNet [94], designed for efficiency in mobile ap-
plications, and ResNet [95], which introduced residual connections to enable the training
of very deep networks effectively. DenseNet [96] enhances gradient flow through densely
connected layers, GoogLeNet [97] utilizes inception modules for multi-scale feature ex-
traction, and ResNeXt [98] extends ResNet by incorporating grouped convolutions to
improve model efficiency and performance. 3D ResNet [99], an extension of ResNet for
volumetric data, is widely used in video classification and medical imaging, as it applies
3D convolutions to capture spatio-temporal features across multiple frames.

In contrast, ViTs divide images into fixed-size patches and process them as sequences
of tokens through a transformer encoder, capturing global context with self-attention
mechanisms [100-102]. One recent ViT, in particular, designed for video classification, is
the Multiscale Vision Transformer (MViT) [102], which combines hierarchical features
with ViTs. Additionally, Long Short-Term Memory (LSTM) networks, combined with a
CNN as a feature extractor, are widely used in video classification to effectively model
temporal dependencies [103, 104].

1.3.1.3. Evaluation Metrics

Accuracy, F1-score, and ROC AUC are widely used metrics for evaluating classification
problems. Accuracy is the proportion of correct predictions over all predictions and is
calculated as:

TP+TN
Accuracy = X 100 (1.1)
TP+TN+FP+FN

Here, TP (true positives) and TN (true negatives) are cases where the model’s prediction

matches the actual class, while FP (false positives) and FN (false negatives) represent
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incorrect predictions. The terms true and false indicate whether the model’s prediction is
correct or not. Positive and negative refer to the presence or absence of the target feature,
e.g., whether an organoid is high-quality (positive) or not (negative). While intuitive and
easy to interpret, accuracy can be misleading for imbalanced datasets, where one class
dominates, since it may remain high even if the model performs poorly on the minority
class. The F1-score (F1, Equation 1.2) addresses this by combining precision and recall into
a single harmonic mean:

o precision X recall

F1 = 2 X 100 (1.2)

precision + recall

Precision (Equation 1.3) measures the proportion of predicted positives that are correct,
while recall (Equation 1.4) measures how well the model detects true positives:

.. TP (13)
recision = ———— .
P TP+ FP
TP
recall = ————— (1.4)
TP+ FN

The ROC AUC (Area Under the Receiver Operating Characteristic Curve) quantifies a
model’s ability to distinguish between classes across all classification thresholds. It is
particularly valuable when no definitive decision threshold is specified. For an ideal
classifier, Accuracy, F1-score, and ROC AUC all reach 100%.

1.3.2. Image Segmentation

Among several segmentation approaches, semantic segmentation is one of the most widely
used. It assigns each image pixel (or voxel, in 3D) a label from the set {0,1,...,K} by
selecting the class with the highest predicted probability. The segmentation mask M(p) is
defined as:

M(p) = argmax P(k | p) (1.5)

Here, p € Z" with n = 2 (i.e., p = (x,y)) for 2D images or n = 3 (i.e., p = (x,y, z)) for 3D
images. In the special case of binary semantic segmentation (K = 1), the mask assigns 1 to
foreground if P(1 | p) > P(0 | p) and 0 to background.

1.3.2.1. Classical Methods

Classical image segmentation methods rely on mathematical and statistical principles.
Among them, Otsu’s method [105] is one of the most widely used global thresholding
techniques. It segments an image into foreground and background by selecting an optimal
threshold that minimizes intra-class variance while maximizing inter-class variance, un-
der the assumption of a bimodal histogram. Multi-Otsu thresholding [106] extends this
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approach by identifying multiple threshold values to partition the image into multiple
classes.

1.3.2.2. Deep Learning

Deep learning models for segmentation can be broadly categorized into CNN-based and
transformer-based architectures. U-Net [107], one of the most widely used CNN-based
models, features a symmetric encoder-decoder structure with skip connections. The
encoder extracts hierarchical features through successive convolution and pooling op-
erations, while the decoder restores spatial resolution using upsampling layers. Skip
connections link corresponding encoder and decoder layers, integrating low-level spatial
details with high-level semantic features. Numerous domain-specific adaptations of U-Net
have been developed, including BeadNet [108] for bead detection, CellPose [109] for cell
segmentation, and 3D U-Net [110], which extends U-Net to volumetric data.

In contrast, SegFormer represents a state-of-the-art transformer-based approach for
semantic segmentation [111]. By leveraging the attention mechanisms of transformers,
it captures global context more effectively than CNNs. Meanwhile, newer hybrid archi-
tectures known as foundation models, such as Segment Anything, combine CNN-based
backbones with transformer-based attention mechanisms. These models offer a univer-
sal segmentation framework that generalizes across a wide range of image types and
domains [112].

1.3.2.3. Evaluation Metrics

The Dice score is commonly used to quantify the performance of image segmentation
methods. It is defined as twice the size of the intersection between the ground truth A and
the predicted segmentation B, divided by the total number of pixels or voxels in A and
B (Equation 1.6):

2-|AN B
|Al + B
A perfect segmentation corresponds to a Dice score of 1. In cases where both the ground
truth and the prediction contain no positive class, the Dice score is mathematically unde-
fined due to division by zero. It was therefore defined as 1.0 to reflect perfect agreement,
which intuitively captures that the model correctly predicted the absence of any target

Dice score = (1.6)

structure.

1.3.3. Image Registration

Automated image registration aligns images from different modalities, time points, or
perspectives by estimating geometric transformations to optimize similarity. Elastix, an
open-source framework built on ITK, provides robust registration methods, including
rigid, affine, and non-rigid transformations [113]. Widely used in medical imaging and
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microscopy, Elastix enables accurate and efficient alignment, making it a valuable tool for
large-scale automated image registration.

1.3.4. Feature Extraction and Representation

Feature extraction from images plays a crucial role in quantitative analysis, with both tra-
ditional and deep learning-based approaches offering distinct advantages. Several software
packages facilitate automated feature extraction from images based on a given segmenta-
tion mask. One example is PyRadiomics [114], a widely used tool for computing a broad
range of features, including intensity, texture, and shape descriptors. Another commonly
used library is scikit-image [115], which provides a flexible set of image processing tools
and feature extraction modules that can be integrated into custom analysis pipelines.

Beyond traditional feature extraction, deep learning-based methods encode images into
abstract latent spaces. For instance, DINO [116] leverages self-supervised learning to
extract meaningful features from images without requiring manual annotations.

However, high-dimensional feature spaces are challenging to interpret and visualize.
Principal Component Analysis (PCA) addresses this by projecting the data onto a lower-
dimensional space, typically two or three dimensions, while retaining as much of the
original variance as possible. This reveals feature relationships and enables the iden-
tification of meaningful clusters. Alternatively, Uniform Manifold Approximation and
Projection (UMAP) offers a nonlinear embedding that preserves both local and global
structure, often producing clearer separation of clusters in complex datasets [117]. UMAP
has become especially popular in single-cell analyses, such as scRNA-Seq, to investigate
cell populations [118].

1.4. Training and Evaluation of Deep Learning Models

Deep learning is a subset of machine learning that uses multi-layered neural networks to
automatically learn hierarchical data representations. By leveraging large datasets and
computational power, it extracts complex patterns without manual feature engineering,
achieving state-of-the-art performance in tasks such as image classification and segmenta-
tion.

1.4.1. Training Process

The training process of deep learning models consists of four key steps. First, during the
forward pass, input data is processed through the network to generate predictions. The
loss function then quantifies the difference between these predictions and the ground truth.
In the backward pass, gradients of the loss with respect to model parameters are computed
using backpropagation. Finally, an optimizer updates the model parameters based on these
gradients, the learning rate, and any regularization terms, iteratively refining the model’s
performance.

11
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Training deep learning models typically requires large, well-annotated datasets. In
biology, where labeled data is often scarce, transfer learning using models pretrained
on large datasets, e.g., ImageNet, has become a common strategy [119]. Additionally,
self-supervised learning enables models to learn useful representations from unlabeled
data [116]. Both approaches are especially valuable in biomedical imaging, where annota-
tions are costly and time-consuming,.

1.4.2. Loss Functions
1.4.2.1. Image Classification

For binary image classification tasks, the binary cross-entropy (BCE) loss quantifies the
discrepancy between predicted probabilities and true binary labels, guiding the optimizer
to adjust model parameters for improved classification accuracy. A weighted version of
BCE is defined as

1

Lece(y, ) = N

M=

[wl y; log(g;) + wo (1 —y;) log(l - Ql)] (1.7)

i=1

where N is the total number of samples, y; € {0,1} is the ground truth label, and 3;
is the predicted probability for the positive class. In the unweighted case, both classes
are treated equally by setting w; = wy = 1. When dealing with class imbalance, the
weights can be adjusted to ensure that both classes contribute proportionally to the loss.
A common approach is inverse class frequency weighting, where w; = %‘1’ for the positive
class and wy = 1 for the negative class, with N; and N denoting the number of positive
and negative samples, respectively.

1.4.2.2. Image Segmentation

A commonly used loss function for binary semantic segmentation combines BCE loss with
Dice loss [120, 121]. It is defined as

L(y,9) = a - Lece(9, §) + f - Lice (4, ) (1.8)

where the Dice loss is given by

22511 yi- Y
g\zfl yi+ Zf\il Ui

LDice(ya ﬁ) =1- (1-9)

Here, y represents the ground truth segmentation mask and ¢ represents the predicted
segmentation mask. BCE loss provides stable pixel-wise classification but is sensitive to
class imbalance, whereas Dice loss emphasizes global overlap and improves segmentation
of small or underrepresented structures [120]. A 1:10 weighting (a = 1, § = 10) emphasizes
Dice loss to improve global overlap while preserving BCE’s stability.

12



1.4. Training and Evaluation of Deep Learning Models

1.4.3. Image Augmentation

Before model training, image augmentation serves as a preprocessing step to artificially
expand the size and diversity of the dataset by applying transformations such as rotation,
flipping, scaling, and color jittering. These modifications enhance model robustness and
reduce overfitting, particularly when training data is limited [122]. For augmentation to
effectively improve model performance, it must be tailored to the specific characteristics
and challenges of the given imaging task, which requires a solid understanding of the
underlying problem.

To further improve generalization across different datasets, min-max normalization
is commonly applied. This technique rescales each pixel intensity value x € X to a
normalized range [0, 1] according to:

, _ x—min(X)
* = max(X) — min(X)’

Vx € X (1.10)

Here, min(X), max(X) are the minimum and maximum pixel intensity values in X, re-
spectively.

1.4.4. Optimization

Model optimization is performed iteratively using algorithms such as Stochastic Gradient
Descent [123] (SGD), which updates model parameters by computing gradients on mini-
batches of data, enabling efficient training on large datasets. Training proceeds over
multiple epochs, where one epoch corresponds to a complete pass through the dataset,
and each epoch consists of several iterations, each based on a batch of samples. While
SGD provides strong generalization properties, it can suffer from slow convergence and
sensitivity to learning rate selection. To address these issues, adaptive methods such as
Adam leverage adaptive learning rates and momentum to accelerate convergence [124],
while AdamW improves generalization by decoupling weight decay from the gradient
update, reducing the risk of overfitting [125].

To enhance generalization and mitigate overfitting, weight decay is commonly applied
as a regularization technique [126, 127]. By penalizing large weights through an additional
term proportional to their squared magnitude in the loss function, weight decay discourages
overly complex models that fit the training data too closely, thereby improving robustness
on unseen data.

1.4.5. Evaluation

Cross-validation (CV) is a technique used to assess model performance by splitting the
dataset into multiple training and validation subsets. It reduces bias compared to a single
train-test split. Two common types of CV are k-fold CV and leave-one-out CV.

In k-fold CV, the dataset is divided into k equally sized folds. Each fold is used once as a
test set, while the remaining k — 1 folds are used for training (Figure 1.2). This process is
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repeated k times, generating split-level metrics for each fold. The results can be averaged
to report overall performance, or predictions from all validation folds can be aggregated
into out-of-fold predictions for the entire dataset. For deep learning, the training set within
each fold is further divided into a smaller training set and a validation set, enabling model
selection.

Leave-one-out CV (LOOCV) is a special case of k-fold CV where k = N, the number of
samples. LOOCYV is particularly useful for capturing sample-level variability, making it
suitable for small datasets.

When constructing folds for cross-validation, stratified sampling ensures that the distri-
bution of key features or classes in each fold reflects their proportions in the overall dataset.
This approach is essential for imbalanced datasets to avoid biases for model evaluation.
To properly account for confounding factors in cross-validation, data should be split in
a way that prevents leakage of confounding information between training and test sets.
Specifically, all samples sharing the same confounding attribute, such as originating from
the same individual, batch, experimental condition, or lab, should be grouped together
within a single fold. This ensures that the model is evaluated on its ability to generalize
beyond those confounding factors. When only a few distinct confounding groups exist,
cross-validation can be replaced or complemented by cross-testing, where the model is
trained on data from one or more groups and tested on a separate, unseen group. This
strategy provides an estimate of generalization performance in the presence of known
sources of variability.

Dataset

l Create five folds Out-of-fold

predictions
Splits #1
#2
#3
#4
#5

Train = Test

Figure 1.2: 5-fold cross-validation and out-of-fold predictions.

1.4.6. Model Explainability

Model explainability is essential for both segmentation and classification tasks, providing
insights into model behavior and decision-making. In segmentation, visual inspection
of results and encoder feature maps helps interpret how the model processes spatial in-
formation. For deep learning-based classification, Gradient-weighted Class Activation
Mapping (Grad-CAM) [128] generates attention maps that highlight the most influential
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input regions, improving interpretability. In classical SVM-based classification, analyz-
ing feature weights reveals the relative importance of individual features. Similarly, in
PCA-based dimensionality reduction, examining the loading values of each feature for
the principal components helps uncover feature relationships and their contributions to
variance in the dataset.

1.5. Related Work

1.5.1. Manual and Semi-Automated Analysis

Image analysis of stem cell-derived models is frequently done with the open-source
software Fiji [129] or CellProfiler [130], which are versatile tools supporting manual
and semi-automated biological image segmentation and analysis [24, 47, 59, 131-134].
However, the growing interest in stem cell research over the past decade [135] results in
an increasing amount of data and thus calls for automated analysis and quantification.

1.5.2. Automated Analysis Pipelines
1.5.2.1. Spheroids

Several analysis pipelines exist for the automated analysis of spheroids [136-144]. Spheroids
are simple, typically homogeneous 3D aggregates formed by the spontaneous adhesion of
one or more cell types, lacking tissue organization and differentiation potential [145]. In
contrast, stem cell-derived models lead to more complex and heterogeneous structures
that require more specialized analysis approaches.

1.5.2.2. Diverse Stem Cell-Derived Models

Automated analysis pipelines have been widely developed to phenotype diverse stem
cell-derived organoid models, particularly using brightfield microscopy. For intestinal
organoids, OrgaQuant enables quantitative assessment [146], Deep-Orga evaluates morpho-
logical features [147], and clustering methods categorize organoids phenotypically [132].
In liver and alveolar organoids, image analysis pipelines monitor growth and morphol-
ogy [148], while automated frameworks extract key morphological descriptors [149].
OrganoSeg specializes in segmentation across various organoid types [150], OrgDyn
captures shape dynamics of mouse mammary organoids [151], and OrganelX automates
localization, segmentation, and quantification of murine liver progenitor organoids to track
growth over time [152]. While these tools highlight the value of automated phenotyping,
many were developed for specific imaging setups, raising concerns about their broader
applicability and robustness to common variations in sample preparation and imaging
conditions.

Several pipelines were also developed for fluorescence-based phenotyping. In intestinal
organoids, multi-scale pipelines automate cell and substructure segmentation [78] and
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tracking growth dynamics [153]. Kidney organoid pipelines support segmentation [154]
and differentiation status prediction [155]. Deep learning approaches enhance reproducibil-
ity by identifying morphologically similar organoids [156]. Phindr3D enables large-scale
phenotypic analysis of human mammary gland acinar organoids without cell segmenta-
tion [157]. CARE automates segmentation of cell membranes and nuclei in 3D fluorescence
microscopy images of human-derived cardiospheres [158].

In the context of drug screening, several organoid-focused tools have been introduced.
OrganolD segments and tracks cancer organoids to extract morphology-based drug re-
sponse features [159], while D-CryptO predicts both structural maturity and pharmacolog-
ical response in colon organoids [160]. Cellos enables high-throughput 3D segmentation
of organoids and their nuclei, supporting single-cell resolution drug response profiling
in cancer organoid systems [161]. SSDquant quantifies 3D topography and viability of
patient-derived glioma organoids through deep-learning-based segmentation [162].

1.5.2.3. Brain Organoids

Beyond several studies employing semi-automated analyses of gene expression data [163-
165] and a single approach applied to light-sheet imaging [64], several image-based
pipelines have been developed for analyzing brain organoids using brightfield and fluores-
cence microscopy.

For brightfield imaging, MOrgAna is an automated analysis pipeline that combines multi-
layer perceptron models and logistic regression to perform segmentation and morphology-
based quantification of brain organoids in brightfield microscopy images [166]. It features
a graphical user interface to enable broad accessibility, allowing users without expert
knowledge to perform analyses efficiently. Another study also designed a segmentation
pipeline for brightfield images [167]. Additionally, clustering has been applied to char-
acterize and differentiate the morphological development of brain organoids at different
stages using segmented brightfield images [168].

In the fluorescence domain, an early semi-automated pipeline applies thresholding and
traditional image-processing steps to count cells and detect ventricle-like regions, though
it does not specify whether epifluorescence or confocal imaging was used [169]. More
recently, a deep learning-based tool was introduced to perform classification, segmentation,
and object detection on both brightfield and fluorescence images of brain organoids,
enabling morphological feature extraction to support developmental analysis [170].

1.5.2.4. Embryo Models

Several automated analysis pipelines have been developed for embryo models, though
the majority focus on non-stem cell-derived models. These include Al-driven approaches
for in wvitro fertilization success prediction, phenotypic defect detection and staging in
zebrafish, structural quantification in frog and mouse embryos, and high-throughput
screening applications [171-176].
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For stem cell-derived embryo models, deep learning has been applied to automate
classification and analysis. One study developed a deep learning-based classifier that
categorizes human blastoids into five quality groups using brightfield images for high-
throughput evaluation [177]. However, at the start of this thesis, no automated analysis
pipelines had been developed for embryo models of later developmental stages, such as
ETiX-embryos. Nonetheless, advancements in automated analysis for embryo models and
other stem cell-derived systems underscore the potential of deep learning for automating
classification and quantitative analysis of complex, organism-level models like ETiX-
embryos.

1.6. Open Questions

There are several open questions in the domain of automated analysis pipelines for stem
cell-derived models that need to be addressed:

1. While several organoid analysis pipelines have been developed for brightfield mi-
croscopy, magnetic resonance imaging (MRI) remained unexplored for organoid
analysis, including brain organoids, at the start of this thesis. Given its non-invasive
nature and ability to capture internal structures in 3D without the need for labeling,
MRI offers unique advantages. How can an automated MRI-based analysis pipeline
be designed to extract brain organoid structure and assess organoid quality? Further-
more, what unique features does an MRI-based analysis pipeline provide compared
to automated organoid analysis using brightfield microscopy?

2. A wide range of organoid analysis pipelines for brightfield microscopy images exist,
yet their robustness to imaging artifacts, such as light reflections, shadows, and color
variations from the culture medium, varies. This leads to inaccurate monitoring of
growth and morphology, limits the transferability of methods to other laboratories,
and restricts insights into developmental dynamics. How can a segmentation and
analysis pipeline be implemented to ensure robustness and explainability for brain
organoid size monitoring, assessment of organoid diversity, and iterative protocol
optimization?

3. Compared to brightfield microscopy, epifluorescence microscopy provides deeper
structural insights into brain organoids while being less complex than light-sheet
imaging. How can an automated analysis pipeline be developed to quantify nuclei
and ventricle-like structures from epifluorescence microscopy images? Additionally,
is in silico volumetric reconstruction from serial epifluorescence images a feasible
approach to capture global organoid architecture, and what challenges must be
addressed?

4. Compared to organoid-level analyses, cell-level analysis provides additional insights
into the presence and characteristics of distinct cell populations. How can automated
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Stem Cell-Derived Models

analysis pipelines for single-cell RNA sequencing and imaging flow cytometry
be leveraged for brain organoid analysis and quality control, and what unique
advantages do these approaches offer in comparison to organoid-level analyses?

. While previous analysis pipelines have focused on phenotyping and quality control

in organ-level stem cell-derived models, similar challenges arise in systems of whole-
organism development. How can these pipeline elements be adapted to support
automated quality monitoring and iterative protocol optimization in more complex,
organism-level stem cell-based systems?

. Experimental protocols for stem cell-derived models have so far lacked systematic

feedback from automated analysis pipelines. What feedback from automated analysis
pipelines can be used to enhance the cultivation and measurement of these systems?
And what conclusions and recommendations can be derived for advancing their
automated analysis?

Cultivation Measurement Automated Analysis Result

Brain Organoids
Chapter 2 S

e o0 @ )

ETiX-Embryos Chapter 2+3

Chapter 3
1P P 1 &
2 ARETE 1%

General implications
Chapter 4

Figure 1.3: Thesis outline.

1.7. Objectives and Thesis Outline

Based on the previously outlined open questions, the primary objectives of this thesis are:
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1. Develop an automated analysis pipeline for brain organoids using MRI data to

monitor organoid morphology and quality, while comparing its performance with
brightfield imaging for the same tasks.

2. Establish a robust and explainable automated analysis pipeline for brain organoids

using brightfield microscopy data to monitor organoid size and morphological
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characteristics while demonstrating how automated methods can facilitate iterative
protocol optimization.

3. Design an automated analysis pipeline for brain organoids using epifluorescence
microscopy images to quantify nuclei and ventricle-like structures. Additionally, in-
vestigate and evaluate the feasibility of registration-based volumetric reconstruction
from serial epifluorescence immunohistochemistry sections of brain organoids.

4. Explore the potential of automated scRNA-Seq data analysis and imaging flow cy-
tometry for brain organoids, comparing their capabilities to image-based modalities
and evaluating their roles in protocol optimization.

5. Implement an automated analysis pipeline incorporating a novel deep learning ap-
proach for quality monitoring, variability assessment, and cultivation improvement
of organism-level stem cell-derived models at both early and advanced developmen-
tal stages based on live-imaging confocal microscopy.

6. Generate insights into the broader implications of automated quantification, mea-
surement, and protocol optimization for stem cell-derived models, with an emphasis
on recommendations for robust, comprehensive, and targeted analyses.

Figure 1.3 provides an overview of how the contributions of each chapter integrate into
the thesis. Chapter 2 introduces analysis pipelines developed for brain organoids, which
represent organ-level stem cell models, across multiple data modalities. Building on these
foundations, Chapter 3 focuses on adapting analysis pipelines for ETiX-embryos, which
represent organism-level stem cell models. Finally, Chapter 4 broadens the perspective
by delineating general implications for the cultivation, measurement, automated analysis,
and optimization of experimental protocols of stem cell-derived models.
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2. Analysis Pipelines for Brain Organoids

As part of this work, automated analysis pipelines for brain organoids were developed,
investigated, and evaluated across several data modalities, addressing automated quantifica-
tion of organoid size, growth, quality, diversity, cellular substructures, and cell populations.
These modalities include magnetic resonance imaging (MRI), as detailed in Section 2.1,
brightfield microscopy, discussed in Section 2.2, and epifluorescence microscopy, covered
in Section 2.3. Additionally, cell-level analysis was explored in Section 2.4, which includes
single-cell RNA-Seq, described in Section 2.4.1, and imaging flow cytometry, outlined in
Section 2.4.2.

Throughout this study, all sections focus on cerebral organoids, except for Section 2.2,
which examines forebrain organoids — a closely related type of brain organoid with many
shared characteristics, as explained in Section 1.1.1.
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2.1. Magnetic Resonance Imaging (MRI)

This section is based on work presented in L. Deininger, S. Jung-Klawitter, R. Mikut,
et al. “An Al-based segmentation and analysis pipeline for high-field MR monitoring
of cerebral organoids”. In: Scientific Reports, Vol. 13, No. 1 (Dec. 2023). 1SSN: 2045-2322.
DOI: 10.1038/541598 - 023 - 48343 -7. [178]. S.J-K. conducted organoid cultivation,
while D.S. handled the magnetic resonance imaging. L.D. was responsible for data
processing, data analysis, and the development of the automated analysis pipeline.

While automated analysis pipelines for cerebral organoids have been established for
brightfield and fluorescence microscopy, magnetic resonance imaging (MRI) remained an
untapped modality at the start of this thesis. Leveraging its ability to capture internal
3D structures non-invasively and without labeling, this section explores how MRI can be
used for automated analysis and what distinct advantages it offers over brightfield-based
methods.

In this work, the first automated pipeline for analyzing cerebral organoids in MRI is
introduced, using a neural network-based approach to extract organoid volume and struc-
tural features. Specifically, three crucial tasks for cerebral organoid monitoring and quality
assessment are addressed: (i) organoid segmentation (Section 2.1.4.1), (ii) global cysticity
classification (Section 2.1.4.2), and (iii) local cyst segmentation (Section 2.1.4.3). Finally, its
performance is compared to those of brightfield-based analysis pipelines (Section 2.1.4.5).

2.1.1. Sample Preparation and MRI

Sample preparation involved transferring the organoids into medium-containing Eppen-
dorf tubes and positioning them in a custom holder, enabling the simultaneous imaging of
three organoids (Figure 2.1a-c). This setup optimized the use of the MRI scanner’s imaging
volume, ensured adequate spacing to prevent signal interference or artifacts, and reduced
total imaging time by allowing parallel acquisition. The imaging medium (organoid dif-
ferentiation medium) was chosen to maintain organoid viability and minimize metabolic
stress during MRI. In addition, the medium was selected for its low magnetic susceptibility
and minimal background signal, thereby reducing artifacts and ensuring optimal image
contrast.

MRI was performed using a high-field 9.4 Tesla horizontal bore small animal scanner
(BioSpec 94/20 USR, Bruker BioSpin GmbH, Ettlingen, Germany). Compared to conven-
tional clinical MRI systems (1-3 Tesla) or preclinical scanners with field strengths up to 7
Tesla, this high-field setup offers significantly improved spatial resolution and signal-to-
noise ratio [179, 180]. Two MRI sequences were recorded: a 3D T2*-w sequence with a
resolution of 387 X 100 X 75 px and an isotropic voxel size of 80 ym, and a 2D Diffusion
Tensor Imaging (DTI)-spin echo sequence with a resolution of 309 X 100 x 12 px and 100 pm
in-plane resolution. Further details regarding MRI parameters can be found in [178].
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Figure 2.1: Experimental setup, data preparation, and data. (a) Transfer of organoids
into medium-containing Eppendorf tubes. (b-c) Placement of three Eppendorf tubes in a
holder for MRI. (d) After MRI, the MRI images were cut in silico to derive one image per
organoid (e) 2D coronal planes of the MRI image (T2*-w sequence) of one organoid. Ground
truth organoid segmentation as a green transparent overlay showing organoid localization.
The first 16 and last 11 planes were omitted for space reasons. Derivative of Fig. S6 by
Deininger et al. [178] licensed under CC BY 4.0; added details and added (e).




2. Analysis Pipelines for Brain Organoids

Nine control organoids, which did not undergo MRI, served as handling controls to
assess any potential effects of the imaging process itself. Ensuring that MRI does not
adversely affect organoid metabolism or viability is crucial, as any such influence could
distort the biological interpretation of the results. Blood gas analysis of the culture medium
before and after imaging confirmed that the MRI procedure had no specific negative impact
on organoid health (Figure A.7). The handling controls thereby validated that the imaging
setup and scanning conditions preserved physiological stability during MRI.

2.1.2. Dataset

Two MRI datasets were generated for this work, designated as Dataset A (Datay) and
Dataset B (Datag). The datasets were acquired in separate experimental runs but followed
the same protocols. Each dataset consists of scans of nine wildtype cerebral organoids
taken at various time points over 64 days, resulting in a total of 45 samples (Figure 2.2).
Unless specified otherwise, figures and text refer to results from Data,. The results from
Datagp are included to validate the methodology and to demonstrate the performance of
the organoid and local cyst segmentation models trained on Data, and tested on Datag,
and vice versa.

1 a8
2 a8
3 a8
=2 0
6 o
7 —¥K
8 =—K
9 =

X Organoid sacrificed

14 19 26 29 36 42 49 57 64
Imaging timepoint (day)

Figure 2.2: Data acquisition. Nine organoids were imaged at multiple time points over 64
days. After each imaging session, one organoid was sacrificed for additional experiments.
This sequential sacrifice resulted in a total of 45 MRI samples, with organoid 1 imaged 9
times, organoid 2 imaged 8 times, and so on, down to organoid 9, which was imaged only
once.

Due to the chosen imaging setup, three organoids appeared within a single MRI image.
As a first preprocessing step, the image was separated in silico into three equal sections to
isolate each organoid for downstream analysis (Figure 2.1d,e). Each T2*-w organoid image
measured 129 x 100 X 75 px (axial X sagittal X coronal), and each DTI image measured
103 X 100 x 12 px (axial X sagittal X coronal).

Annotations were generated to support the development and evaluation of the image
analysis methods presented in this work. One expert annotated both MRI datasets, includ-
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ing organoid and local cyst segmentations based on the T2*-w sequence, and global cysticity
classification labels. All MRI images and corresponding annotations are publicly available
on Zenodo (https://zenodo.org/record/7805426). The code used to reproduce the results
is accessible on GitHub (https://github.com/deiluca/cerebral_organoid_quant_mri).

2.1.3. Methods
2.1.3.1. Organoid Segmentation

To assess organoid volume and morphology, images from the T2*-w sequence were utilized.
Binary semantic segmentation was employed to classify each voxel as either organoid (fore-
ground) or non-organoid (background, Equation 1.5). To enhance model generalization
across different datasets, min-max normalization was applied to each 3D scan (Equa-
tion 1.10). Three methods were evaluated for MRI organoid segmentation: Multi-Otsu
thresholding, 2D U-Net, and 3D U-Net.

Multi-Otsu thresholding was applied on each MRI image rather than per coronal plane,
due to uncertainty about the presence of the organoid in every plane, as the organoid
occupies only small portions of the images (Figure 2.1e). Using the scikit-image Python
package [115], MRI images were segmented into three classes: MRI background, Eppendorf
tube including medium, and organoid. To enable evaluation and comparison with binary
segmentation, the organoid class prediction was used. The MRI background showed low
image intensities, the Eppendorf tube high image intensities, and the organoid intermediate
image intensities; therefore, Multi-Otsu’s threshold assigned the intermediate intensity
range to the organoid.

For the 2D U-Net [107], data augmentation included random rotations by 0°, 90°, 180°,
or 270°, applied with a probability of 0.75. Training and evaluation were performed
on 2D slices extracted along the coronal axis of each MRI image (Figure 2.1d), using
the implementation from [181]. The model was trained for 200 epochs with the Adam
optimizer (learning rate = 1 X 107>, f; = 0.9, B; = 0.999, weight decay = 1 X 1073), using a
batch size of 1.

The 3D U-Net [110] was trained on 3D volumes using the implementation from [182],
also with the Adam optimizer (learning rate = 1 x 1073, B; = 0.9, B, = 0.999, weight decay
=1x1077), over 2,000 iterations and a batch size of 1.

2.1.3.2. Global Cysticity Classification

Global cysticity classification aims at determining the overall organoid cysticity: cystic
(low-quality) or non-cystic (high-quality). To provide a reference ground truth based on
the T2"-w sequence, an organoid was categorized as cystic if at least one cystic structure
was detected within the organoid. Otherwise, it was categorized as non-cystic.

For automatic classification in MRI, the metric Compactness was constructed, which
serves as an environment-based estimator of organoid cysticity (Equation 2.1). It is based
on the idea that cysts are filled with a fluid similar to the medium. Therefore, the more
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similar the organoid intensities (Equation 2.5) are to the medium intensities (Equation 2.6),
the more cystic the organoid is (Figure 2.3a).

Compactness := |/1(V0rg) — ,u(vmedium)| (2.1)
1
HOX) = 57 DX (22)
xeX
x ifx>0
|x| = { . (2.3)
—x otherwise
A\B={xe€ A|x ¢ B} (2.4)
Vorg = {intensities of organoid voxels} (2.5)
Vmedium = {intensities of medium voxels} \ vorg (2.6)

While v, was derived from the ground truth organoid segmentations, Viedium Was
determined by applying Otsu’s threshold [105] in 2D across all coronal planes containing
organoids, excluding organoid regions based on the ground truth segmentations (Fig-
ure 2.3b). The first and last organoid-containing coronal planes were discarded to filter
artifacts caused by noisy medium intensities.

To compare Compactness with a deep learning model, a 3D ResNet18 [183] was used.
The model was trained with stochastic gradient descent (learning rate = 1 x 1073) for 150
epochs with a batch size of 1. A binary cross-entropy loss function, weighted by inverse
class frequencies, was employed to ensure an unbiased training process.

To investigate not only the organoid quality but also the tissue characteristics of cystic
and non-cystic organoids, diffusion tensor imaging (DTI) was employed. DTI enables the
extraction of quantitative parameter maps—such as the mean diffusivity (Trace), fractional
anisotropy (FA), and the first, second, and third eigenvalues of the diffusion tensor—which
provide insight into the microstructural organization of the tissue. These parameters
were calculated for each organoid, and a two-sided t-test was used to assess statistically
significant differences in average diffusion values between cystic and non-cystic groups. To
account for multiple comparisons, p-values were adjusted using the Holm-Sidak method.

2.1.3.3. Local Cyst Segmentation

Local cyst segmentation aims at localizing cystic regions within brain organoids. For this
task, the T2"-w sequence was used, and cysts were manually annotated. Due to the limited
spatial resolution, small cysts lie near the detection limit of the MRI and are difficult to
distinguish from noise or partial volume effects, making reliable annotation challenging
even for human experts and prone to label noise. To ensure the quality and consistency of
the segmentation ground truth, organoids with fewer than 1,000 cyst voxels (0.51, mm?)
were excluded from the dataset, resulting in a final set of 34 samples. This exclusion is
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Figure 2.3: Concept of global cysticity classification in MRI. (a) Histograms depicting
the grayscale intensity distributions of voxels corresponding to organoid tissue (vorg) and
surrounding medium (Vpedium) in both non-cystic and cystic organoids. (b) Otsu’s mask,
organoid location, and medium mask are binary masks. The white pixels of the medium
mask belong to the medium. This example is based on Organoid 1 (day 14), coronal plane
60. To determine the medium intensities for one organoid, this procedure is applied to all
organoid-containing coronal planes from the 3D image. For better visibility in this figure,
the coronal plane shown was cut to the Eppendorf tube boundaries. Derivative of Fig. S7 by
Deininger et al. [178] licensed under CC BY 4.0, with added panel (a) and modified layout in
(b).
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unproblematic from a quality assessment perspective, as organoids with only small or
ambiguous cysts typically still exhibit good overall structural integrity and would not be
classified as low-quality based on their cysticity alone.

For segmentation, a 3D U-Net [110] was trained and evaluated as for organoid segmen-
tation but with 5,000 training iterations. Local cyst segmentation was performed for MRI
images only, because the annotation of cysts in brightfield images was not feasible due to
the limited spatial visibility of cysts in the 2D images (Figure A.5).

2.1.3.4. Model Evaluation

For the evaluation of organoid segmentation and local cyst segmentation, the Dice score
was used (Equation 1.6). To obtain an unbiased estimate of model performance, organoid-
wise leave-one-out cross-validation (LOOCV) was employed. In each of the nine LOOCV
splits, all images from a single organoid were reserved for model testing, while the re-
maining images from all other organoids were used for model training and validation.
Within each LOOCYV split, the training set was further divided into 80% training and 20%
validation data, assigned randomly at the image level rather than organoid-wise to ensure
a more stable number of images in both subsets. For the assessment of global cysticity
classification, the area under the Receiver Operating Characteristic curve (ROC AUC) was
used to evaluate multiple thresholds. Additionally, organoid-wise LOOCV was applied to
assess the performance of the 3D ResNet18 model for global cysticity classification.

2.1.4. Results
2.1.4.1. Organoid Segmentation

Organoid segmentation is essential to automatically extract features like organoid volume
or structure. Neither thresholding nor using a 2D U-Net produced satisfactory results
for MRI-based organoid segmentation (Figure 2.4). The 3D U-Net achieved superior
performance with a Dice score of 0.92 + 0.06 (mean =+ SD, Figures 2.4, 2.5).

Although the 3D U-Net performed highly accurately overall, challenging samples were
analyzed to identify its weaknesses. The model performed worst on Organoid 3 on day
36, with a Dice score of 0.59. In this case, the disruption of one or more cystic structures
led to a reduced overall volume (Figure A.3) and fragmented the organoid into multiple
pieces (Figure 2.5¢). These fragments adhered to the Eppendorf tube wall, causing parts of
the organoid’s border to blur with the MRI background. As a unique biological outlier in
the dataset, this sample posed a learning challenge for the model. In contrast, the analysis
of other samples demonstrated reliable detection (Figure 2.5d-e).

For application to larger-scale experiments, it is essential that both model training and,
especially, inference times remain within a practical range. The 3D U-Net completes
training for MRI organoid segmentation in under an hour, with inference times averaging
approximately two seconds per sample (Table A.1).
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Figure 2.4: Organoid segmentation performance of Multi-Otsu’s threshold, 2D U-
Net, and 3D U-Net. The boxplots show the Dice scores on the LOOCV test sets: 45 values
for Multi-Otsu thresholding and the 3D U-Net (one per sample), and 3,375 values for the
2D U-Net (# samples X # coronal planes). Each box represents the interquartile range (IQR),
with the median shown as a black line and the mean indicated by a yellow line. Whiskers
extend to the minimum and maximum values within 1.5 times the IQR. ****p<0.0001, two-
sided Welch’s t-test.

2.1.4.2. Global Cysticity Classification

Cyst formation is an undesired process during cerebral organoid cultivation (Section 1.1.1).
Thus, accurately determining organoid cysticity can serve as a quality control tool. Qualita-
tively, non-cystic and cystic organoids show different morphologies in MRI and brightfield
microscopy (Figure A.5). While segmentation performance was evaluated using the Dice
score, the cysticity classification was assessed using the ROC AUC. For global cystic-
ity classification, the environment-based metric Compactness achieved an ROC AUC of
0.98 (Table 2.1, Figure 2.6), thus highlighting its role as a reliable quality control tool.
Separating cystic and non-cystic samples using either a 3D ResNet or using their mean
intensities resulted in lower ROC AUCs (Table 2.1). Different diffusion tensor imaging
(DTI) maps can be used to distinguish cystic and non-cystic organoids using the organoid
mean intensity, but at a lower ROC AUC compared to using Compactness on the T2*-w
sequence (Table 2.1).

Compared to the T2"-w sequence, DT enables the investigation of tissue properties such
as diffusion characteristics. DTI showed a significantly higher average diffusion in cystic
organoids compared to non-cystic organoids (Figure 2.7a). As shown in Figure 2.7b-c,
regions with increased diffusion correspond to cystic areas. This difference most likely
reflects the higher fluid content of cystic organoids, as fluid-filled structures allow for less
restricted water diffusion.
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Figure 2.5: 3D organoid segmentation in MRI. (a-b), Model performance. (c-e), Selected
sagittal planes. (c), Organoid 3 (day 36): Dice score of 0.59. (d), Organoid 2 (day 42): Dice
score of 0.91. (e), Organoid 5 (day 26): Dice score of 0.95. Image: original image, GT: Image
with ground truth organoid location (green), Prediction: image with predicted organoid
location (orange). Selected sagittal planes (left to right): (c), 50, 47, 44; (d), 58, 50, 40; (e),
52, 40, 34. For better visibility of the organoids and to investigate the detailed differences
between ground truth and model prediction, the images were cut to the organoid location.
Scale bar: 400 ym. Derivative of Fig. 1 in Deininger et al. [178], licensed under CC BY 4.0,
with adapted panels (a,b) and modified layout.
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Figure 2.6: Global cysticity classification in MRI. (a), Compactness separates cystic and
non-cystic organoids. ****p<0.0001 two-sided t-test. (b-e), Selected sagittal planes from two
cystic and two non-cystic organoids. Selected sagittal planes (left to right): (b), 59, 60; (c),
41, 45; (d), 58, 61; (e), 36, 53. For better visibility of the organoids, the images were cut to the
organoid location. (b-e) Compactness is abbreviated with C. Scale bar: 400 ym. Derivative
of Fig. 2 in Deininger et al. [178], licensed under CC BY 4.0, with adapted panel (a) and
modified layout.
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Figure 2.7: Diffusion tensor imaging (Trace map) shows different tissue character-
istics of cystic and non-cystic organoids. (a), Trace of non-cystic and cystic organoids.
****p<0.0001 two-sided t-test and Holm-Sid4k correction to adjust for multiple testing of

other DTI maps. (b-c), Selected coronal planes from one cystic and one non-cystic organoid;
*[x107% mm2/s]. Selected coronal planes (left to right): b, 1, 2; ¢, 5, 6. For better visibility, the
images were cut to the Eppendorf tube boundaries. Scale bar: 400 ym. Derivative of Fig. 3 in
Deininger et al. [178], licensed under CC BY 4.0, with adapted panel (a) and modified layout.
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Table 2.1: Performance for global cysticity classification for T2"-w sequence and
selected DTI maps. Mean intensity refers to the mean organoid intensity extracted using
ground truth organoid segmentations. For the DTI maps, ground truth segmentations were
separately generated, as the segmentations from the T2*-w images could not be transferred
due to differing image resolutions.

Data Method ROC AUC
Compactness 0.98

T2*-w 3D ResNet 0.91
Mean intensity 0.65

Trace 0.91

1st Eigenvalue 0.93

g 2nd Eigenvalue Mean intensity 0.91
3rd Eigenvalue 0.86
Fractional Anisotropy 0.63

2.1.4.3. Local Cyst Segmentation

The good performance for global cysticity classification raised the question of whether
cysts can be segmented locally, which would provide further insight into cyst distribution
and location. For this task, the 3D U-Net achieved a Dice score of 0.63 + 0.15 (mean + SD).
As shown in Figure 2.8a-b, the Dice scores for individual samples showed a large variation
with values ranging from 0.34 to 0.83. The analysis of weak and intermediate model
predictions showed discrepancies between model predictions and ground truth, especially
for organoids with many small cysts (Figure 2.8c-d). The model performed especially
well on images with large, clearly visible, and distinct cysts (Figure 2.8e). Compactness
exhibited a strong negative correlation with cystic tissue volume based on ground truth
local cyst segmentations (Pearson’s r = —0.74, Figure A.1), supporting its potential as an
estimate for cyst volume.

2.1.4.4. Model Versatility to Other Dataset

Training and testing organoid segmentation and local cyst segmentation on Datap yielded
performance comparable to that on Datas (Table 2.2). Combining datasets A and B
maintained similar performance levels for organoid segmentation but led to improved
accuracy in local cyst segmentation compared to training on a single dataset (Table 2.2).
Cross-testing models—training on Datas and testing on Datag, and vice versa—also
resulted in comparable performance to training and testing on the same dataset for both
tasks (Table 2.2). These results indicate that the models demonstrate robustness, with
consistent performance across individual and combined datasets and enhanced accuracy
in local cyst segmentation when datasets are merged.
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Figure 2.8: 3D local cyst segmentation in MRI. (a-b), Model performance. (c-e), Selected
sagittal planes for three organoids. (c), Organoid 1 (day 42): Dice score of 0.34. (d), Organoid
4 (day 36): Dice score of 0.63. (e), Organoid 7 (day 26): Dice score of 0.83. Image: original
image, GT: image with ground truth organoid location (green), Prediction: image with pre-
dicted organoid location (orange). For better visibility of the organoids and to investigate
the detailed differences between ground truth and model prediction, the images were cut to
the organoid location. Selected sagittal planes (left to right): (c), 60, 55, 51; (d), 52, 49, 42; (e),
63, 56, 49. Scale bar: 400 um. Derivative of Fig. 4 in Deininger et al. [178], licensed under CC
BY 4.0, with adapted panels (a,b) and modified layout.
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Table 2.2: Performance for organoid and local cyst segmentation on different
datasets. The Dice score is reported as mean + SD.

Task Datapp.in  Datagest Dice score

A A 0.92 +0.06

Orgsanoid B 0.91 +£0.08

ganoid B AUB  0.91+0.09
segmentation

A B 0.93 +0.06

B A 0.90 £ 0.06

A A 0.63 +0.15

Local cvst B B 0.63 +0.16

Y AUB AUB  0.68+0.13
segmentation

B 0.57 +£0.08

B A 0.63 +0.15

2.1.4.5. Comparison to Brightfield Microscopy

Quantitatively comparing the performance of automated analysis of different data modal-
ities can give insight into the benefits of one data modality over another. Since MRI
acquisition is relatively time-consuming and resource-intensive, it is of particular interest
to assess whether significantly simpler and more accessible imaging techniques, such
as brightfield microscopy, can yield comparable results for the same tasks. To this end,
organoid segmentation and global cysticity classification were also performed on bright-
field images based on organoids of the same dataset. Local cyst segmentation, however, was
not feasible due to the limited visibility of cysts in the 2D brightfield images (Figure A.5).

For organoid segmentation, Otsu’s thresholding method [105] did not produce satis-
factory results. Therefore, the SegFormer model [111] was used, implemented in [184],
for state-of-the-art 2D segmentation. The model was trained with Adam (learning rate =
1x 10, weight decay = 1 x 10™) for 2,000 iterations with batch size 1 and a weighted sum
of binary cross entropy and Dice loss (1:10).

For global cysticity classification, the state-of-the-art neural network ResNet18 [95]
implemented in [185] was used for binary classification. The model was trained with
Adam (learning rate 1 X 107, weight decay 0) for 30 epochs with batch size 16 and a binary
cross entropy loss. On-the-fly image augmentations included random rotation (0-360
degrees), random resized crop (scale 0.3 — 1.0, ratio 1.0), and Color]Jitter (brightness = 0.1,
saturation = 0.1, contrast = 0.1) to account for large variations in organoid size and color.
Since, in contrast to Compactness, the deep-learning-based ResNet18 requires training,
organoid-wise LOOCV was used for model evaluation.

Correlating organoid sizes across imaging modalities can increase confidence in the
respective measurements and reveal modality-specific biases. The correlation between
organoid sizes in MRI and brightfield microscopy was strong when organoids were fully
contained within the brightfield imaging frame, but weak when organoids extended beyond
the frame, resulting in underestimated sizes in brightfield microscopy (Figure A.4). These
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protocol-related limitations, along with strategies for their detection and correction, are
discussed in detail in Section 2.2.4.2.

Overall, organoid segmentation in MRI performed similarly to brightfield organoid
segmentation (Table 2.3, Figure A.2). Global cysticity classification performed slightly
better in MRI compared to brightfield images (Table 2.3). However, this is likely also due
to the limited dataset available for model training. The MRI experimental setup supports
concepts like Compactness, which is inspired by the signal-to-signal ratio. In contrast,
such concepts do not apply to brightfield imaging due to the heterogeneous microscopy
backgrounds and the limited spatial visibility of cysts in 2D images (Figure A.5).

Table 2.3: Comparison of best-performing MRI-based models and brightfield
microscopy-based models for organoid segmentation and global cysticity classi-
fication. Segmentation performance is reported using the Dice score, while classification
performance is reported as the ROC AUC. All metrics are derived from cross-validation,
except for Otsu and Compactness, which are not machine learning-based and are computed
on the full dataset A.

Task Data  Method Metric
MRI 3D U-Net 0.92 £ 0.06

Organoid segmentation BF SegFormer 0.91+0.11
BF Otsu 0.84 £0.18

MRI  Compactness 0.98

Global cysticity classification BF ResNet18 0.94 + 0.08

2.1.5. Discussion

With mean Dice scores of 0.92 and 0.91, the performance of organoid segmentation in
3D MRI images is on par with Al-based organoid segmentation for brightfield imaging.
Comparable methods for MRI brain segmentation achieve Dice scores in the range of
0.72 and 0.93 [186-190]. Such a highly reliable automated analysis will represent a pow-
erful tool to compare wild-type organoids with disease models associated with altered
growth rates, such as Zika-Virus disease [191] or neurodevelopmental diseases leading to
microcephaly [192].

As the first step, reliable organoid segmentation paves the way for comprehensive, non-
destructive quality monitoring, including morphological and functional tissue parameters.
For MRI, the newly introduced metric Compactness, inspired by the concept of signal-to-
signal ratio [193, 194], assesses overall cysticity. It successfully separated non-cystic and
cystic organoids, closely matching the phenotypical appearance of previously reported
non-cystic and cystic organoids (Figures A.5, A.6) [56, 79], at a ROC AUC of 0.98 and
outperformed the deep learning-based ResNet18 applied to brightfield imaging (ROC AUC
0.94). In contrast to brightfield imaging, which only provides morphological insight, DTI
measures functional tissue parameters. Using DTI, it was shown that cystic organoids
have a significantly higher diffusion than non-cystic organoids, most likely reflecting
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their increased fluid content. This observation aligns with the anatomical differences
between the two groups, as fluid-filled cysts facilitate less restricted water diffusion. To
further investigate cyst formation, especially using DTI, choroid plexus organoids could
be an interesting model [79]. While the study primarily focused on the detection of cystic
miss-differentiation, the pipeline could likely also be applied to investigate necrotic core
formation in larger, longer-matured cerebral organoids, which could be used as a quality
control readout as well.

Successful global cysticity assessment led to the question of whether cysts can be
segmented locally to differentiate solid compartments from fluid-filled cavities. While
organoid segmentation and global cysticity classification were conducted in brightfield
and MRI images for comparison, local cyst segmentation was performed for MRI images
only. Due to the 2D nature of brightfield images, reliable annotation of cysts is rather
difficult (Figure A.5). Using the 3D MRI images, an annotation of cysts was more feasible,
indicating a better assessment of the three-dimensional morphology using MRI images.
The 3D U-Net trained for local cyst segmentation reached a mean Dice score of 0.63, which
indicates a challenging segmentation task. Other challenging segmentation tasks, such as
ischemic stroke lesion segmentation, achieve Dice scores of 0.37 in MRI [195, 196] and 0.54
in CT [195, 197]. MRI acquisitions were performed using a high-end 9.4 Tesla system, of
which only a limited number exist worldwide. Despite the relatively high resolution of this
advanced system, accurate segmentation of individual cysts, particularly in organoids with
many small cystic structures, remains a significant challenge due to inherent limitations in
spatial resolution and contrast-to-noise ratio. In such cases, global cysticity classification
may thus capture more easily the fluent transition from compact to cystic organoids.

Some limitations need to be taken into consideration. On the one hand, reliable MRI
organoid segmentation and global cysticity assessment could be achieved despite the
relatively small dataset and heterogeneous organoid morphology, with an equal or better
performance compared to state-of-the-art Al-based methods applied to brightfield images.
As shown, extending the dataset did not further improve the performance for organoid seg-
mentation. On the other hand, local cyst segmentation slightly improved when extending
the dataset (mean Dice score +0.05). However, technical limitations of image acquisition
still impede segmentation performance in the case of many small cysts due to uncertainty
concerning exact boundary detection for both human annotation and model prediction.

Overall, this work presents the first analysis pipeline for the non-invasive quantifica-
tion of cerebral organoids based on MRI. It was shown that cerebral organoids can be
accurately monitored over time and for quality assessment using state-of-the-art tools for
automated image analysis. In comparison to brightfield imaging, MRI gives better insight
into 3D cerebral organoid morphology, and DTI provides functional tissue characteristics
of cerebral organoids. As a result, this pipeline facilitates iterative comparative analysis
of organoids and supports the refinement of cultivation protocols. These findings point
out the pipeline’s potential for clinical application to larger-scale comparative organoid
studies.
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2.2. Brightfield Microscopy

Parts of this section are based on: J. Schréter, L. Deininger, B. Lupse, et al. “A large
and diverse brain organoid dataset of 1,400 cross-laboratory images of 64 trackable
brain organoids”. In: Scientific Data, Vol. 11, No. 1 (May 2024). 1sSN: 2052-4463.
DOI: 10.1038/541597 - 024-03330- z. [198]. J.S. was responsible for brain organoid
cultivation and imaging, while L.D. contributed through data annotation, processing,
and development of the automated analysis pipeline.

While many analysis pipelines exist for brightfield microscopy of organoids, their sen-
sitivity to imaging artifacts, such as reflections, shadows, and color variations from the
culture medium, can compromise segmentation accuracy and hinder cross-laboratory
reproducibility. This limits reliable growth tracking and the extraction of morphological
features. This section explores how a segmentation and analysis pipeline can be designed
for robust and explainable monitoring of brain organoid growth, diversity, and protocol
refinement.

As shown in Section 2.1, volumetric analysis via MRI is feasible but experimentally de-
manding, while brightfield microscopy is the standard approach for routine organoid size
assessment due to its simplicity and accessibility. This work presents a robust segmentation
and analysis pipeline for brightfield images and compares two classical tools—CellProfiler, a
highly versatile platform for biomedical image segmentation and analysis, and OrganoSeg,
specifically developed for brightfield segmentation of diverse organoids—with two deep
learning-based methods: MOrgAna, tailored for brightfield brain organoid segmentation,
and SegFormer, a model not previously applied to organoids. Their performance is evalu-
ated across developmental stages, laboratories, and common artifacts in Section 2.2.3.1
and Section 2.2.3.2. Beyond segmentation, the pipeline’s utility is demonstrated for an-
alyzing clone diversity (Section 2.2.3.3) and supporting iterative protocol optimization
through optical distortion correction and handling organoid extension beyond imaging
boundaries (Section 2.2.4).

2.2.1. Dataset

The dataset consists of over 1,400 images capturing 64 trackable brain organoids, derived
from four different clones, imaged at 10 time points over 30 days in two separate labora-
tories (Figure 2.9a, 2.10). In the context of organoids, the term clones refers to distinct
groups originating from different stem cells. The clones included a healthy control (wt2D),
two patient-derived clones with TUBA1A- and TUBB2A-associated tubulinopathy, and
one patient-derived clone with the neurotransmitter disorder tyrosine hydroxylase (TH)
deficiency [199, 200]. For each clone, 16 technical replicates were generated.

To enable analyses of organoid size, growth, and diversity, pixel-level organoid annota-
tions were created (Figure 2.9b). Given the high clone diversity, distinct developmental
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Figure 2.9: Data generation and analyses of organoid analysis pipelines. (a) Repli-
cates of the four clones wt2D, A1A, B2A, and TH2 were cultivated and imaged over 30 days,
yielding a dataset of more than 1,400 images. (b) This dataset enables a systematic evalua-
tion of the strengths and limitations of methods for organoid growth monitoring. Scale bar:
500 pum. Derivative from Fig. 1 in Schroeter, Deininger et al. [198], licensed under CC BY 4.0,
with modified layout.
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Day 2 Day 30

022 (TH2-7)

Figure 2.10: Excerpt of the dataset. One representative organoid per clone is shown
alongside the corresponding ground truth segmentation for day 2 and day 30, imaged in
Lab A and Lab B. The examples illustrate heterogeneous organoid development across
time and imaging conditions. On day 2, the dark, textured region surrounding the central
circular area indicates cell debris around the embryoid body. By day 30, the translucent
structures encircling the organoid correspond to the Matrigel matrix in which the organoids
are embedded. Scale bar: 500 ym. Derivative from Fig. 3 in Schroeter, Deininger et al. [198],
licensed under CC BY 4.0, with modified layout.
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patterns, cross-laboratory imaging conditions, frequent imaging intervals, and common
imaging artifacts—such as light reflections from plate well rims, shadows, and varying
colors due to culture medium—this dataset supports detailed evaluation of automated
organoid analysis pipelines, providing insights into their specific strengths and limitations.

All images and annotations for organoid segmentation generated for this work are pub-
licly available on Zenodo (https://zenodo.org/records/10301912). The code to repro-
duce the results is publicly available on GitHub (https://github.com/deiluca/robust_
monitoring_organoid_growth/tree/main).

2.2.2. Methods
2.2.2.1. Organoid Segmentation
CellProfiler

For organoid segmentation, the procedure and parameter settings previously optimized
for brain organoids [166] were followed and are outlined here for reference (Figure 2.11a).
Initially, image smoothing was performed using morphological opening and closing oper-
ations, with a structuring element of 25 pixels in diameter. Next, image intensities were
inverted via the ImageMath module. Primary objects were identified using Global Otsu
segmentation, applying a two-class thresholding approach. To eliminate debris, analysis
was restricted to the largest detected object by applying the MeasureObjectSizeShape
method, followed by object filtering with FilterObjects.

OrganoSeg

For brain organoid segmentation, the default OrganoSeg pipeline, previously established
in [166], was applied and is summarized here for reference (Figure 2.11b). Segmentation
was performed using an Intensity Threshold of 0.5, a Window Size of 500, and a Size
Threshold of 5,000. To eliminate debris, any objects smaller than the largest detected object
were excluded.

MOrgAna

A primary module within MOrgAna is its organoid segmentation feature, which cal-
culates pixel-wise characteristics and then classifies those pixels for accurate organoid
segmentation (Figure 2.11c). The developers implemented two model types for this pur-
pose: a Multilayer Perceptron (MLP) and Logistic Regression (LR). For each model, MOr-
gAna generates two distinct masks: the classification mask (maskc) and the watershed
mask (masky). To determine the optimal approach, both mask types were evaluated for
the MLP model (MOrgAnay p - and MOrgAna,; py) and the LR model (MOrgAnay .
and MOrgAnay ), each of which was trained independently. Default parameters were
applied to all methods, and training and inference were performed via the MOrgAna
graphical user interface. During the evaluation, the organoid border, which MOrgAna
separately predicts, was treated as background.
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Figure 2.11: Overview of preprocessing, postprocessing, and key parameters across
organoid segmentation methods. CellProfiler, OrganoSeg, and MOrgAna are established
pipelines for organoid analysis, while SegFormer has not yet been applied in this context.
CellProfiler and OrganoSeg rely on classical image processing techniques that require man-
ual parameter tuning (a, b), whereas MOrgAna and SegFormer are deep learning-based and
were re-trained on the dataset (c, d). Otsu, Otsu’s thresholding; MLP, multilayer perceptron;
LR, linear regression.

SegFormer

For expedited training, the SegFormer model with the smallest encoder configuration (MiT-
B0) was selected (Figure 2.11d). Model training, evaluation, and inference were conducted
using the implementation provided in [184]. The model was trained using AdamW, with
a learning rate of 0.0001, ; = 0.9, 2 = 0.999, and a weight decay of 0.1. Training was
performed with a batch size of 2 for a total of 1,000 iterations. A weighted combination
of binary cross-entropy and Dice loss (ratio 1 : 10) was employed to guide the learning
process. On-the-fly image augmentation included three steps:

1. Image downscaling to 256 x 192. This aligns with the MOrgAna default image
downscaling.

2. Random horizontal flipping with a probability of 0.5.

3. Z-score normalization (Equation 2.10).

To examine the functionality of the SegFormer model, the encoder’s feature maps
were analyzed, which represent the features relevant for segmentation in the decoder. To
spatially interpret the feature values, organoid segmentations were utilized, and the average
feature value relative to the organoid boundary was calculated (Figure 2.12). The first step
involved generating organoid segmentations—either from ground truth annotations or,
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for new data, using predictions from the SegFormer model (Figure 2.12b). Then, a signed
Euclidean distance map was created, with positive distances inside the organoid mask that
increase further from the boundary, and negative distances outside the mask that decrease
with distance from the boundary (Figure 2.12c). For each feature map derived from the
SegFormer encoder (Figure 2.12d), feature values were paired with corresponding signed
distances. These distances were organized into bins, each representing a specific 1-px-wide
range from the boundary, moving inward or outward. The mean feature value was then
calculated for each bin, capturing how feature intensity varies as a function of distance
from the organoid boundary (Figure 2.12e). For simplicity, the analysis was limited to
the first cross-validation (CV) split. Specifically, the model trained on this CV training
split was used to extract feature maps on its corresponding CV test split, enabling an
investigation into which features the model relies on for prediction. To draw meaningful
conclusions, feature values from each feature map were extracted across all test images.
For visualization, min-max normalization (Equation 1.10) was applied to each feature map.

Segmentation c Signed distance

a Original image
7% SN
‘ : )

b/ . | —200 -150 =100 =50 0O 50 100 150 200
' d SegFormer Signed distance (px)
LA " = d Feature map e  Spatial analysis

Avg. feature map value
W s o N @ oo

Signed distance (px)
Figure 2.12: Concept of spatially analyzing SegFormer feature values. (a) Input
organoid image. (b) Corresponding organoid segmentation, which can be either the ground
truth or the segmentation predicted by SegFormer. (c) Signed Euclidean distance map com-
puted from the binary mask in (b), with positive values increasing toward the organoid
center and negative values decreasing outward into the background. (d) Feature map ex-
tracted from Transformer block 4 of the SegFormer encoder, based on input image (a). (e)
Spatially resolved SegFormer feature value as a function of distance from the organoid
boundary based on (c) and (d).

Model Evaluation

The Dice score was used to compare the segmentation performance of the models. For
unbiased model comparison, 5-fold cross-validation (CV) was used. Since the Dice score
provides a sample-level evaluation score, in contrast to e.g., Accuracy, the Dice score
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distributions of the out-of-fold model predictions were compared. The 5-fold CV splits
were organized (1) by organoid to ensure that all images of a particular biological sample
were exclusively in either the training or test set, and (2) stratified by clone to reduce
model bias toward any specific clone. For SegFormer, the CV training data was randomly
partitioned into an 80% training set and a 20% validation set for model selection. In
contrast, MOrgAna automatically creates its internal training and validation split from
the CV training data.

2.2.2.2. Organoid Growth Monitoring

Organoid size, measured as area in pixels, serves only as a relative metric, as it depends on
both the microscopy magnification and the image resolution. To determine the absolute
organoid size, the pixel-based organoid size Ag;{; is converted to micrometers squared Aﬁrnglz
using the scaling relation in Equation 2.7. For this, the corresponding scaling factor from

Lab A (Equation 2.8) or Lab B (Equation 2.9) must be used in Equation 2.7.

2 2 2
Abrg = Avrg * (Sym/px) (2.7)
500 um
LabA _ H
Sim/px = T5g px 28)

pm/px )
167 px

2.2.2.3. Clone Diversity

To quantify morphological differences between clones, 2D organoid features were ex-
tracted using PyRadiomics [114]. The features included Elongation, MajorAxisLength,
MaximumDiameter, MeshSurface, MinorAxisLength, Perimeter, PerimeterSurfaceRatio,
PixelSurface, and Sphericity. To enable visualization of clone diversity, all features were
z-score normalized (Equation 2.10) to ensure equal contribution to the subsequent Principal
Component Analysis.

z= (2.10)

o

Here, z represents the z-score normalized value, x denotes the original data point, y is
the mean of the dataset, and o represents the standard deviation of the dataset.

To understand the relationship between the features and the principal components,
the loading values of each feature for the principal components were extracted. These
loadings indicate the strength of each feature’s contribution to the principal components.
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2.2.3. Results
2.2.3.1. Organoid Segmentation
Model Performances

For Lab A, MOrgAna, py, achieved the highest performance across all MOrgAna con-
figurations, surpassing CellProfiler and OrganoSeg (Table 2.4, Figure 2.13a). The lower
standard deviation of MOrgAna, pyy indicates more consistent performance across sam-
ples compared to the higher variability observed in CellProfiler and OrganoSeg. SegFormer
outperformed all models, demonstrating both high accuracy and low variability.

For Lab B, OrganoSeg and MOrgAna,; pyy exhibited comparable performances (Table 2.4,
Figure 2.13b). The higher standard deviation in OrganoSeg suggests greater variability in
performance, whereas MOrgAna, py, shows more stability. Again, SegFormer demon-
strated superior performance in comparison to all models.

The analysis also revealed the limited generalizability of CellProfiler and MOrgAnay; py
which performed better in Lab A compared to Lab B (Table 2.4, Figure 2.13c,d). In general,
robust models are expected to yield consistent predictions across different imaging labs.
In contrast to SegFormer, which demonstrated high cross-lab consistency, CellProfiler,
OrganoSeg, and MOrgAna,py, exhibited greater variability in performance between
labs (Figure 2.13e). Additionally, day-wise segmentation accuracy varied notably in Lab
B for CellProfiler, OrganoSeg, and MOrgAnay; pyy, reflecting substantial day-to-day fluc-
tuations in model performance (Figure 2.13d). Additionally, segmentation quality for
CellProfiler and OrganoSeg was particularly poor on Day 2 images (Figure 2.13c,d). In
contrast, SegFormer consistently delivered high accuracy across all days and in both
labs (Figure 2.13c,d).

Table 2.4: Overview of organoid segmentation performance of all models. The
segmentation performance is reported as the Dice score (mean + SD). Results are based on
5-fold cross-validation.

Model Lab A Lab B Overall

CellProfiler 0.77+0.30 0.53+0.39 0.65=*0.36
OrganoSeg 0.75+0.36 0.77+0.34 0.76 £0.35
MOrgAnajr c 0.72+0.13 0.59+0.17 0.65+0.17
MOrgAnairw 0.86+0.17 0.73+0.27 0.79+0.23
MOrgAnaygpc  0.84+0.16 0.71+0.24 0.78 + 0.22
MOrgAnayipw 0.88+0.15 0.76 £0.24 0.82 +£0.21
SegFormer 0.96 +£0.05 0.96+0.03 0.96+0.04

When SegFormer was trained and tested using 5-fold cross-validation on a combined
dataset from both Lab A and Lab B, it achieved a Dice score of 0.96 + 0.05 (Table 2.5).
Training exclusively on Lab A’s dataset and testing on Lab B’s dataset resulted in a slightly
lower Dice score of 0.94 + 0.08, suggesting a minor reduction in performance when
generalizing to unseen data (Table 2.5). Similarly, training on Lab B’s dataset and testing
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Figure 2.13: Segmentation performance of different organoid analysis pipelines.
(a,b) Dice score distribution of all models by imaging lab. Yellow triangle: mean Dice score.
(c,d) Day-wise Dice scores for CellProfiler, OrganoSeg, best MOrgAna model, and the Seg-
Former for both imaging labs. (d) has the same model order as (c). (e) 2D histogram show-
ing the correlation of Dice scores between Lab A and Lab B across models. High values
along the diagonal and limited spread in off-diagonal areas indicate strong agreement in
predictions between labs. Model order corresponds to (c); bin width is set to 0.1. (c,d) Error
bars represent 95% confidence intervals across images acquired on the same day and at the
same imaging lab (n = 64 for all days, except Day 12 with n = 128 due to imaging before and
after well transfer). Adapted from Fig. 4 in Schroeter, Deininger et al. [198], licensed under

CC BY 4.0, with added panel (e) and modified layout.
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on Lab A’s dataset yielded a Dice score of 0.94 + 0.07, reflecting consistent performance
across different datasets (Table 2.5). These findings underscore SegFormer’s ability to
maintain high segmentation accuracy and generalizability, particularly when trained on
diverse datasets.

Table 2.5: Cross-testing SegFormer for organoid segmentation. #1: results obtained
using 5-fold cross-validation (CV) across the entire dataset, incorporating images from both
Lab A and Lab B. #2: utilized the same 5-fold CV splits as #1. However, training and valida-
tion were conducted exclusively on images from Lab A, with testing performed solely on
images from Lab B. #3: employed the same 5-fold CV splits as #1. Training and validation
were restricted to images from Lab B, while testing was conducted exclusively on images
from Lab A. The Dice score is reported as mean + SD.

Exp Labrrin Labrest Dice score

#1 AUB AUB 0.96 £ 0.04

#2 A B 0.94 +0.08

#3 B A 0.94 + 0.07

Model Robustness to Diverse Phenotypes and Imaging Artifacts

The inclusion of diverse organoid phenotypes and common imaging artifacts in the dataset
provides a basis for evaluating the robustness of organoid analysis pipelines. An initial
examination shows the robustness of these pipelines when analyzing day-2 matrigel-
surrounded organoids (Figure 2.14). For one of these organoids in Lab B, CellProfiler
segmented only the background (Figure 2.14a). Moreover, CellProfiler, OrganoSeg, and
MOrgAnay py; in both labs often misclassified the surrounding matrigel as part of the
organoid, while SegFormer correctly identified the organoid boundary (Figure 2.14a).
CellProfiler and MOrgAna, py, occasionally misclassified dark background as an organoid,

notably for organoids imaged on days 2, 8, 10, 16, and 30 (CellProfiler, Figure 2.14a-e)
and on days 10 and 30 (MOrgAnaMLP’W, Figure 2.14c,e). On day 30 in Lab A, SegFormer
incorrectly segmented two organoids instead of one (Figure 2.14e).

SegFormer Explainability

The SegFormer architecture consists of an encoder and a decoder. The encoder is composed
of four transformer blocks that process image patches in multiple stages, allowing the
model to capture information at different scales (Figure 2.15a). Analyzing the feature
maps of individual organoids revealed distinct roles for each block. Block 1 captured fine
details and edges, outlining the organoid structures broadly (Figure 2.15b). Blocks 2 and 3
exhibited more focused patterns, emphasizing the organoid boundary and isolating it from
the background, thus enhancing its contour (Figure 2.15b). Block 4 was most concentrated
on the organoid’s central region (Figure 2.15b).

Systematic analysis across all test images in a cross-validation split supported these
observations (Figure 2.15d). Feature maps from Blocks 1 and 2 displayed high focus at the
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Figure 2.14: Robustness of organoid analysis pipeline to heterogeneous organoid
phenotypes and different imaging features. Shown are images of organoid 3 for days 2
(a), 8 (b), 10 (c), 16 (d), and 30 (e), for both imaging labs (first column). Columns 2-6 display
the ground truth (GT) segmentation, followed by predictions from CellProfiler, OrganoSeg,
MOrgAnay py, and SegFormer, respectively. On day 2, the dark textured region around
the centered circular region represents cell debris around the embryoid body. On day 30,
the translucent circumferential structures are the Matrigel matrix in which the organoids
are embedded. Scale bar: 500 um. Adapted from Fig. 5 in Schroeter, Deininger et al. [198],
licensed under CC BY 4.0, with modified layout.
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organoid boundary, with clear peak values. Feature map 3 also peaked at the boundary,
though with a broader distribution and a less distinct peak. Feature map 4, however,
showed a shift in peak values approximately 50 pixels from the boundary, indicating a

focus on the organoid core.

This analysis illustrates how the SegFormer model progressively refines its attention
on the organoid, starting from fine-grained details of the organoid border in early blocks
to core-focused features in later blocks. This hierarchical approach enables accurate
segmentation by integrating features at varying detail levels.
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Figure 2.15: Analysis of SegFormer encoder feature values. (a) The SegFormer en-

coder architecture shows the four

transformer blocks, their output stages, and input to

the decoder. (b) Example feature maps from each of the four transformer blocks for two
representative organoids. (c) Simplified schematic of the organoid structure, depicting the
center, boundary, and surrounding background to provide spatial reference for panel (d).
(d) Line plot of average feature values from each transformer block’s feature map, shown
as a function of distance (px) from the organoid boundary. Error bars represent 95% confi-
dence intervals of feature values across test images from one cross-validation split (n = 286).
(a) adapted from [111], licensed under CC BY 4.0.
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2.2.3.2. Organoid Growth Monitoring

Among the clones, TH2-7 demonstrated the most rapid growth trajectory, followed by
A1A-1 (Figure 2.16). Clone B2A-2, while initially growing slower than wt2D, eventually
reached a comparable size by the end of the observation period. For effective organoid
growth monitoring, an ideal model should accurately capture these unique growth patterns.
The marked decrease in measured organoid size between days 5 and 8 is attributable to the
transfer of organoids from V-bottom 96-well plates to flat-bottom 24-well plates. V-bottom
plates tend to optically enlarge the organoids, creating an apparent drop in size when they
are transferred.

The SegFormer model stood out as the most accurate, closely aligning with the ground
truth measurements for organoid growth in both imaging labs (Figure 2.16). In contrast,
OrganoSeg in Lab B provided only a rough approximation of the actual growth pattern,
while in Lab A, CellProfiler, OrganoSeg, and MOrgAnay pyw showed significant deviations
from the ground truth and did not consistently replicate the observed organoid growth
trajectories. CellProfiler, in particular, exhibited considerable fluctuations, especially in
Lab B, where the growth trends varied widely. Similarly, MOrgAnay pyy showed notable
variability in Lab B, with visible fluctuations that detract from reliable trend representation.

While Lab A generally showed more stable growth trends across the different methods,
Lab B displayed greater variability, with CellProfiler and MOrgAna, py being the most
inconsistent (Figure 2.16b). In comparison, the SegFormer model demonstrated the most
reliable and consistent measurements relative to the ground truth across both labs, making
it the preferred method for accurate organoid growth monitoring.

Beyond visual inspection, the ground truth organoid annotations allow for the quantita-
tive assessment of each model’s accuracy by calculating the maximum day-wise deviation
from the actual organoid size (Table A.2). The SegFormer consistently outperformed
the other models, achieving the lowest deviations. Specifically, SegFormer demonstrated
superior accuracy on 8 out of 10 days in Lab A and across all days in Lab B, with a
maximum day-wise deviation of +7% from the ground truth organoid size. In contrast,
the other models—CellProfiler, OrganoSeg, and MOrgAnay; pyy; —exhibited considerably
higher deviations from the ground truth. CellProfiler showed a maximum day-wise devi-
ation of 1768%, while OrganoSeg and MOrgAna,; py, deviated by up to 303% and 351%,
respectively (Table A.2).

Overall, these findings underscore the importance of selecting a robust analysis model,
as the chosen method can significantly impact the accuracy and consistency of organoid
growth assessment, with SegFormer demonstrating a substantial performance advantage
over the other models and proving to be the most reliable and precise model for tracking
organoid growth.

2.2.3.3. Clone Diversity

To explore clone diversity, a principal component analysis (PCA) was performed across all
samples and both imaging labs, using 2D imaging features that capture organoid shape
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Figure 2.16: Organoid growth based on ground truth and model predictions. Abso-
lute organoid sizes for Lab A (a) and Lab B (b). Columns represent ground truth organoid
size (column 1), organoid size based on CellProfiler segmentations (column 2), organoid size
from OrganoSeg segmentations (column 3), organoid size from MOrgAnay py, segmenta-
tions (column 4), and organoid size from SegFormer segmentations (column 5). Adapted
from Fig. 6 in Schroeter, Deininger et al. [198], licensed under CC BY 4.0, with modified
layout.
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and morphology (Figure 2.17a). The first two principal components accounted for 93.3%
of the total variance. Both the combined PCA across all days and the individual day-
wise PCAs indicated distinct morphological differences among the clones (Figure 2.17b,d).
Notably, clones A1A-1, TH2-7, and B2A-2 consistently displayed clear separation from
others on most days (specifically days 2, 5, 12, 16, 19, 22, and 25), highlighting their unique
morphological characteristics. Clone WT2D also showed similarity to A1A-1 on days 2, 5,
8, 16, 19, 22, and 25, suggesting overlapping morphological traits at these time points.

To better understand the relationship between the features and the principal compo-
nents, the loading values were analyzed, which indicate the contribution of each feature
to the principal components. This analysis revealed that features dominated by size, such
as MajorAxisLength, MinorAxisLength, Perimeter, MeshSurface, PixelSurface, and Maxi-
mumDiameter, drove the variance captured by PC1 (Figure 2.17c). In contrast, PC2 was
primarily influenced by shape-related features, specifically Sphericity and Elongation.

2.2.4. Protocol Optimization
2.2.4.1. Optical Distortion

During cultivation, organoids grow, and common protocols describe transferring organoids
at specific time points into larger wells that can accommodate their increased size or embed-
ding them in Matrigel [47, 56, 198]. However, different wells and Matrigel embedding often
have distinct optical properties that may cause artifacts, such as apparent enlargement,
complicating organoid growth monitoring.

Automatically and accurately monitoring organoid growth can reveal such optical dif-
ferences before and after the organoid transfer (Figure 2.18). In the dataset, organoids
were transferred from 96-well plates to larger 12-well plates on day 12, where they were
embedded in Matrigel. Organoids appeared larger before transfer (Figure 2.18a-d), which
introduced challenges in growth monitoring and raised the question of how to standardize
organoid size measurements. Importantly, this apparent enlargement affected all clones
equally, with no bias toward a specific clone (Figure 2.18c,d), indicating that relative sizes
between clones remained comparable while only the absolute sizes were impacted. How-
ever, the organoid size before embedding showed a higher standard deviation compared
to after embedding, for Lab A (0.22 vs. 0.14) and Lab B (0.21 vs. 0.13). This can make
it harder to detect subtle differences between clones, especially if the variability within
groups contributes biologically valuable information. With lower variability, the data may
appear more uniform, which could lead to the impression that clones are more similar
than they truly are.

Three different approaches were considered for analyzing organoid size on day 12:

1. Using before transfer measurements yields: (i) growth from day 10 to day 12 for all
clones and (ii) shrinkage from day 12 to day 16 in clones B2A-2 and A1A-1, while
clones wt2D and TH2-7 showed growth (Figure 2.18e).
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Figure 2.17: Segmentation-based pipeline using PCA for analyzing clone diver-
sity. (a) The analysis pipeline includes image segmentation, extraction of nine 2D imaging
features from PyRadiomics characterizing organoid shape and morphology, z-score nor-
malization of features, and dimensionality reduction via principal component analysis
(PCA). (b, c) Displayed are the first two principal components from PCA conducted across
all samples from both imaging laboratories, using ground truth organoid segmentations.
(d) day-wise subsets of (b). (c) Additionally includes loading vectors for each imaging fea-
ture, where certain features are combined into a single arrow due to spatial limitations and
high similarity in loading values. Adapted from Fig. 7 in Schroeter, Deininger et al. [198],
licensed under CC BY 4.0, with new panels (a-c) and a modified layout in (d).
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2. Using after transfer measurements results in: (i) shrinkage from day 10 to day 12 for
all clones, followed by (ii) growth for all clones from day 12 to day 16 (Figure 2.18f).

3. Averaging before and after transfer sizes gives: (i) a slight shrinkage from day 10
to day 12 for all clones, (ii) shrinkage for clones B2A-2 and A1A-1 with growth for
clones wt2D and TH2-7 from day 12 to day 16 (Figure 2.18g), and (iii) to a relatively
smooth transition from day 8 over day 12 to day 16.

Altogether, averaging before and after transfer seems to be a good tradeoff when aiming
for a smooth transition. However, cultivating organoids in the same wells and continuously
with/without embedding throughout the observation period would ensure more consistent
measurements. If well transfers are unavoidable, measuring organoids both before and after
the transfer can help account for well- or embedding-specific optical effects. Additionally,
it is advisable to avoid aligning well transfers with critical measurement points to prevent
potential biases in size analysis. If transfers are necessary, they should be performed
simultaneously for all clones to ensure consistency across experimental conditions. Future
studies should investigate clone-specific optical distortions in other well and embedding
types, as such effects could introduce substantial biases in growth analysis.

For future investigations, each factor potentially influencing optical distortion should
be analyzed independently. Let W1 and W2 represent wells 1 and 2, respectively, and E1
and E2 denote without embedding and with embedding. In the current study, W1E1 (well
1 without embedding) was compared to W2E2 (well 2 with embedding), noted as W1E1-
W2E2. To delineate the optical properties of each factor, all combinations should be
examined:

« WI1E1-W1E2: To assess the optical properties of different embeddings within well 1.

W2E1-W2E2: To evaluate the optical properties of different embeddings within well
2.

W1E1-W2E1: To investigate the optical properties of the two wells, keeping the
embedding fixed at E1.

W1E2-W2E2: To compare the optical properties of the two wells, keeping the em-
bedding fixed at E2.

This systematic approach ensures that the influence of each factor can be clearly under-
stood.

2.2.4.2. Organoid Extension Beyond Imaging Borders

To continuously monitor organoids using brightfield microscopy and automated segmenta-
tion, organoids should always be entirely visible for each recording. In practice, however,
organoids can grow unexpectedly large, exceeding the limits of the selected microscope or
magnification. Standard protocols typically lack intrinsic quality control mechanisms to
detect such extension beyond imaging boundaries.
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Figure 2.18: Investigation and handling of well-transfer and embedding-induced
optical distortion. (a-b) Images of organoids from Lab A and Lab B before and after trans-
fer on day 12, shown for organoid 1 (a) and organoid 3 (b). (c-d) Comparison of organoid
sizes before and after transfer on day 12 for Lab A (c) and Lab B (d). (e-g) Development of
organoid size using three measurement strategies for day 12: images before transfer (e),
images after transfer (f), and averaging the sizes from before and after transfer (g). Scale
bar: 500 ym. Adapted from Fig. S1 in Schroeter, Deininger et al. [198], licensed under CC BY

4.0, with added panels.
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Wildtype brain organoids were monitored on days 13, 15, 19, 26, and 29 of organoid
cultivation. A period of rapid organoid growth was observed, particularly between days
13 and 19, followed by a plateau in growth after day 19 (Figure 2.19a). Further examination
of organoids and their corresponding segmentation masks revealed that organoids were
extending beyond the imaging borders (Figure 2.19c). This observation suggests that the
apparent growth plateau may not reflect a biological phenomenon but rather an artifact
introduced by the imaging protocol. Pixels classified as organoid at the image edge serve
as indicators of organoid growth extending beyond the imaging field. To automate the
detection of such growth, the ratio of segmentation mask pixels at the image edge classified
as organoid can be calculated:

Edge sum

Edge ratio = (2.11)

# Edge pixels

Edge sum = Z (M(1, j) + M(m, j)) (2.12)
j=1

+ Z (M(i,1) + M(i, n))

- M(1,1) = M(1,n) — M(m,1) — M(m,n)
# Edge pixels = 2n+2m — 4 (2.13)

}m><n

Where M(i, j) is the binary mask value at row i and column j, with M € {0, 1
with values 0 (background) and 1 (organoid), where m is the number of rows and n is the
number of columns. Equation 2.12 sums the pixel values in the top and bottom rows (first
line), sums the pixel values in the left and right columns (second line), and subtracts corner
pixels to avoid double-counting (third line).

The Edge ratio provides a means to evaluate the overall quality of the dataset. In the
dataset, all organoids on days 13 and 15 exhibited 0% Edge ratio, followed by an increase
on subsequent days, reaching up to 100% on day 29 (Figure 2.19b). For organoid 6, both
size and the Edge ratio decreased from day 26 to day 29. This reduction may be attributed
to a folding of the organoid along the z-axis, causing an apparent decrease in size, or a
displacement of the organoid outside the imaging area (Figure 2.19a-c).

Assuming that an organoid is always a connected cell compartment, a 0% Edge ratio
indicates, under the assumption of accurate segmentation and that the organoid is within
the imaging field, that the entire organoid has been imaged and segmented. One can exclude
all organoids with >0% Edge ratio to keep only full-imaged organoids (Figure 2.19d). Using
a higher Edge ratio can accommodate more organoids, but at a higher uncertainty for
accurate organoid size measurements (Figure 2.19).

Organoid size strongly correlated with the Edge ratio (r = 0.9, p = 2.3 X 107%). This
observation aligns with the expectation that as the organoid grows larger, it becomes more
likely to touch the imaging border. However, it is important to note that a higher Edge
ratio does not necessarily imply that a larger proportion of the organoid is located outside
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Figure 2.19: Concept of automated detection and handling of organoid extensions
beyond imaging boundaries. (a) Development of organoid size for 18 wildtype brain
organoids from day 13 to day 29. (b) Percentage of segmentation pixels at the image edge
classified as organoid (Edge ratio), as defined in Equation 2.11. (c) Images and corresponding
segmentations of organoids 1 (top) and 6 (bottom) across days 13 to day 29. (d-e) Organoid
size for cases with an Edge ratio 0% (d) and <30% (e).

57



2. Analysis Pipelines for Brain Organoids

the imaging field compared to a lower ratio. This could also occur if the organoid is not
centered within the imaging field and large organoid protrusions extend far beyond the
imaging border (Figure 2.20a).

O Imaging field of view
Organoid

Figure 2.20: Organoid centering in imaging field of view affects the interpretability
of the Edge ratio. (a) If an organoid is off-center and exhibits large protrusions extending
beyond the imaging border, a low Edge ratio does not necessarily imply that most of the
organoid is contained within the field of view. (b) A well-centered organoid yields a more
reliable and interpretable Edge ratio.

To ensure complete imaging, it is recommended to position organoids at the center of
the imaging field and to select an appropriate magnification that accommodates the entire
organoid. These adjustments help avoid imaging artifacts and ensure accurate segmen-
tation. The Edge ratio serves as an effective tool for automatically detecting organoid
extensions beyond imaging boundaries, enabling the flexible exclusion of organoids based
on a defined threshold of boundary contact.

2.2.5. Discussion

Brightfield microscopy continues to be a pivotal method for monitoring the growth and
size of brain organoids [61, 150, 198, 201], particularly given its accessibility and the
feasibility compared to more complex techniques like MRI (Section 2.1). However, while
this method remains widely adopted, several limitations persist, particularly in terms
of manual analysis, which can introduce substantial observer bias and time inefficiency
when dealing with large sample sizes [202]. This study addressed these limitations by
evaluating and comparing a variety of image analysis pipelines for organoid segmentation,
growth monitoring, and clone diversity assessment, focusing on both classical and deep
learning-based methods.

The deep learning-based SegFormer [111], applied here for the first time in the context
of organoid segmentation, demonstrated superior segmentation accuracy, excelling in
robustness and generalizability across labs and conditions. It consistently outperformed
classical methods like CellProfiler [130] and OrganoSeg [150], as well as the deep learning-
based MOrgAna [166], specifically designed for brain organoids, achieving higher Dice
scores across developmental stages. While SegFormer adapted well to varying experimental
conditions and imaging artifacts, MOrgAna showed greater variability, particularly in Lab
B, emphasizing the need for models that can reliably generalize across datasets.
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The likely reason for MOrgAna’s weaker performance lies in its architectural design. It
utilizes a multilayer perceptron (MLP) with two hidden layers for segmentation, classifying
it as a deep learning model. However, unlike SegFormer, which is a transformer-based
model optimized for capturing spatial hierarchies, MOrgAna relies solely on fully con-
nected layers to process pixel-wise information. While MLPs excel at learning complex
non-linear mappings, they cannot inherently capture spatial dependencies, a key advantage
of convolutional and transformer-based neural networks [203].

In terms of organoid diversity, the analysis demonstrated the utility of feature extraction
methods to quantify clone-specific morphological characteristics. The use of PCA to visu-
alize clone diversity revealed distinct morphological differences among the clones, further
supporting the value of automated analysis in identifying subtle phenotypic variations
that may not be easily observable through manual inspection.

Optical distortions from well transfers and Matrigel embedding, along with organoids
extending beyond imaging borders, can confound size measurements and growth analy-
ses. Standard protocols do not provide intrinsic quality control to detect or correct such
issues. Distortions from different well types and Matrigel embedding can cause apparent
enlargement, complicating accurate quantification. Comparing pre- and post-transfer
measurements allowed these effects to be identified and corrected, improving growth
tracking. Additionally, as organoids expand beyond imaging boundaries, accurate mon-
itoring becomes crucial. The Edge ratio metric enables the detection and exclusion of
incomplete data, ensuring only fully imaged organoids contribute to analyses, reducing
bias and enhancing reliability.

In conclusion, this work emphasizes the importance of selecting appropriate image
analysis tools and protocols for brain organoid research. The findings demonstrate that
deep learning-based methods, particularly SegFormer, offer significant advantages over
classical techniques in terms of segmentation accuracy, robustness, and ability to handle
diverse experimental conditions. Furthermore, careful attention to factors such as optical
distortion and imaging boundaries can greatly enhance the reliability of organoid growth
monitoring. Future studies should continue to refine these methods, exploring their
application across different types of stem cell models and experimental conditions.
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2.3. Epifluorescence Microscopy

This section is based on brain organoid images cultivated and imaged by Sabine Jung-
Klawitter, Julian Schréter, and Petra Richter. S.J.-K. contributed to nuclei annotation,
while she, J.S., and L.D. performed ventricle annotation. L.D. was responsible for data
processing, analysis, and the development of deep learning models.

Compared to brightfield microscopy, epifluorescence microscopy enables more detailed
structural analysis of brain organoids while remaining more accessible than light-sheet
imaging.

This section outlines a conceptual framework for deep learning-based analysis of
immunohistochemistry-stained epifluorescence images, aiming to segment nuclei and
ventricle-like structures as a foundation for assessing neuronal development (Figure 2.21,
Section 2.3.1, Section 2.3.2). High-quality images suitable for annotating neurons were
not available at the time of thesis submission, and thus, this component is deferred to
future studies. In addition, Section 2.3.3 explores registration-based 3D reconstruction
from consecutive slices, demonstrating its feasibility while identifying key challenges for
automated volumetric analysis.

Segmented nuclei

Sketch of stained IF image Segmented ventricle Nuclei in ventricle

Ventricle Neurons

Segmented neurons Nuclei in neurons :

A NZA

AN ~N

# Nuclei

N\ Ventricles Neurons

/ /

Figure 2.21: Concept for measuring brain organoid neuronal development progress
using epifluorescence microscopy. The idea is to segment nuclei, ventricles, and neu-
rons. The ratio of nuclei within ventricles to those within neurons serves as an estimate for
the progression of neuronal development.

60



2.3. Epifluorescence Microscopy

2.3.1. Nuclei Segmentation
2.3.1.1. Data

For nuclei segmentation, the data used in this study consisted of a DAPI-stained epifluores-
cence image of a cerebral organoid slice (20-30 pm thick, 900 X 900 px), acquired through
immunohistochemistry and imaged with an epifluorescence microscope (Figure 2.22a).
DAPI staining specifically labels the nuclei. The image was manually annotated to mark
the positions of nuclei by setting a single pixel within each visible nucleus (Figure 2.22b).
The annotated image was then divided into non-overlapping 32 X 32 px patches, with only
patches containing at least one annotated nucleus included for model training.

Two datasets were created for model evaluation. Dataset A includes all patches contain-
ing at least one annotated nucleus, regardless of nuclei boundary clarity (Figure 2.22c,d).
Dataset B is a subset of Dataset A, containing empirically selected patches with relatively
clear nuclear boundaries (Figure 2.22c,e). Dataset B was created to serve as a reference for
well-segmentable cases, allowing for a distinction between straightforward and challenging
segmentation scenarios.

Dataset A
Dataset B

Dataset A

d |

Figure 2.22: Data preparation and extracted patches for nuclei segmentation. (a)
DAPI-stained slice of a cerebral organoid. (b) The same image from (a), overlaid with nu-
clei annotations. (c) The image from (a) with the locations of extracted patches indicated:
orange marks for Dataset A and blue marks for Dataset B, where Dataset B is a subset of
Dataset A. (d-e) Example patches extracted for Dataset A and Dataset B.

e Dataset B
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2.3.1.2. Methods

For automated nuclei segmentation, BeadNet [108], a deep learning-based segmentation
model, was trained with its default configuration separately on manually annotated Dataset
A and Dataset B. Although pre-trained BeadNet models are available, retraining was
necessary due to differences in image characteristics. The training setup included a batch
size of 2, a learning rate of 0.006, and convolutional layers with filter sizes of 64, 128, 256,
and 512. Training was performed for up to 150 epochs, with early stopping applied if
no improvement was observed over 30 consecutive epochs. Data augmentation included
BeadNet-specific implementations of image flipping, scaling, rotation, contrast adjustment,
blurring, and noise addition to enhance robustness and generalization.

To assess the variability in model performance, five BeadNet models were trained, each
with a unique random initialization. The datasets were split into 60% for training, 20% for
validation, and 20% for testing.

Model evaluation was performed using the F1-score-inspired metric Qr (Equation 2.14),
introduced by [108], which quantifies segmentation performance in the BeadNet frame-
work. A perfect segmentation results in a Qr of 1, while the worst possible performance
yields a score of 0. Even though nuclei are annotated as single-pixel points, exact local-
ization is not required for a prediction to be considered correct. Instead, a prediction is
considered correct if it lies within a defined radius around the ground truth point. To
accommodate this tolerance, the ground truth annotations are dilated in two steps: first
with a cross-shaped, then with a square-shaped structuring element, as described in [108].
In the following, n denotes the number of test images i in the dataset:

1 20p;0r;
= — _— 2.14
Or n lzll Op;i + Or;i ( )

1< tp;
Qpi== ) —
; n;tpi+fpi

1~ tp;
Qri=— § _
l n = tpi+fnl-

tpi = Npredi = Noplit,i = Nadd,i
fpi = Ngplit,j T Nadd,i
fn,- = Nmiss,i

Npliti is the number of split nuclei (multiple predicted nuclei lie in a ground truth
nucleus) in test image i. Npiss; is the number of missing nuclei (no predicted nuclei lies in
a ground truth nuclei), and N,qq; is the number of added nuclei (a predicted nuclei lies in
ground truth background).
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2.3.1.3. Results

Inspection of the annotations revealed a concentration of annotated nuclei in the lower-
left region of the image, an area characterized by lower illumination but with nuclei that
appear better separated (Figure 2.22b). In contrast, the right side of the image contains
few annotated nuclei, despite higher illumination. In this region, nuclei are less clearly
distinguishable and generally more sparsely distributed compared to the left. This obser-
vation highlights the need to refine imaging and annotation protocols, as even manual
segmentations become inconsistent in more ambiguous regions.

BeadNet was trained and tested on datasets A and B in a cross-testing setup to evaluate
the model’s capabilities. Dataset A consisted of all patches, whereas Dataset B was a
curated subset of A, comprising patches with more clearly visible nuclear boundaries.
When trained and tested on Dataset A, the model performed poorly (Table 2.6). This
indicates that the model struggled to reproduce the annotation results on Dataset A.
Conversely, the model trained and tested on Dataset B demonstrated strong performance
on this curated subset (Table 2.6). When the same model trained on Dataset B was tested on
Dataset A, Qr dropped (Table 2.6). These substantial fluctuations in performance suggest
that the model is capable of achieving reliable results on data with clearly defined nuclear
boundaries (Figure 2.22e).

Table 2.6: Cross-testing. Qf is presented as mean + SD.

Exp Datasetrr,in Datasetyeg OF

#1 A A 0.09 +0.04
#2 A B 0.03 +0.05
#3 B A 0.13 +0.02
#4 B B 0.85 + 0.03

Qualitative evaluation shows that the model trained on Dataset A predicts only a few
nuclei in both regions with relatively clear and blurry nuclear boundaries (Figure 2.23a,b).
This may be attributed to the limited number of annotated nuclei in blurry regions, leading
the model to adopt a generally conservative prediction strategy. In contrast, the model
trained on Dataset B produces substantially more predictions in both clearly and poorly
defined regions (Figure 2.23c). Exposure to well-defined nuclei during training likely
increases the model’s confidence. Compared to the ground truth, predictions from the
Dataset B model appear more centered within nuclei and more uniformly distributed
across the field of view (Figure 2.23a,c).

It is hypothesized that the discrepancy in model performances is due to the subjective
and noisy annotations present in Dataset A. The underlying cause is likely the use of overly
thick organoid slices, which result in nuclei overlapping in the z-direction and blurred
nuclear boundaries (Figure 2.22d). To improve data quality and model performance, it is
recommended that thinner organoid slices be acquired or z-stacks be recorded to resolve
nuclei boundaries more clearly.

63



2. Analysis Pipelines for Brain Organoids

Relatively clear nuclei boundaries Relatively blurry nuclei boundaries

Ground truth

Model trained on Dataset,

Model trained on Datasetg

Figure 2.23: Model predictions from training on Dataset A and Dataset B across re-
gions with varying degrees of nuclear blurring. (a) Ground truth nucleus annotations.
(b) Predictions from model trained on Dataset A. (c) Predictions from model trained on
Dataset B. The left column represents a region with well-defined nuclear boundaries, while
the right column shows a region with blurry boundaries, allowing comparison of model
performance under different conditions. Both image patches are taken from test regions not
seen during training.
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A promising approach to estimating nuclei in regions with blurry nuclei boundaries
involves training BeadNet on patches with well-defined nuclear boundaries and subse-
quently applying the trained model to new images, including regions with blurry nuclear
boundaries. The observations indicate that raw BeadNet predictions encode valuable
information about potential nuclei positions (Figure 2.24). By manually adapting the
threshold parameters for each image based on the model’s predictions, the approach
enabled the identification of candidate nuclei even in areas with poorly defined boundaries.
As an alternative to manual adjustment, the threshold could be estimated by specifying an
approximate number of expected nuclei per image and iteratively lowering the prediction
threshold until that number is reached. The primary challenge lies in quantitative eval-
uation, as ground truth annotations are unavailable for such regions. Nonetheless, this
approach holds the potential for a semi-supervised tool for nuclei counting.

(o] BeadNet prediction
(adapted threshold)

BeadNet prediction
(default threshold)

a

b Raw BeadNet prediction

Figure 2.24: Raw BeadNet prediction encodes information about potential nuclei
positions. (a) DAPI-stained cerebral organoid slice overlaid with BeadNet predictions using
the default threshold. (b) Raw BeadNet predictions corresponding to the overlay in (a). (c)
BeadNet predictions after applying a manually adjusted threshold, highlighting additional
potential nuclei positions.

2.3.1.4. Protocol Optimization

BeadNet demonstrated reliable performance in cases with clear nuclear boundaries. Since
clear nuclear boundaries can be influenced by organoid slice thickness, future data genera-
tion efforts could focus on capturing z-stacks with a thickness approximating a single cell
diameter. This approach would help reduce nuclei stacking along the z-axis, improving
nuclei visibility and boundary delineation.

Automated quantification of protocol improvements could utilize BeadNet with ensemble-
based uncertainty to identify regions of inconsistent segmentation, highlighting data or
protocol limitations. This approach could guide iterative optimizations, such as adjusting
slice thickness or staining protocols.
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2.3.2. Ventricle Segmentation
2.3.2.1. Data

The data used in this study were acquired from immunohistochemistry preparations of
cerebral organoid slices (20-30 pum thick) imaged using an epifluorescence microscope.
This included images from 39 cerebral organoid slices, each stained with SOX2, a marker
for ventricle-like structures. Each slice originated from a distinct organoid. Since the data
was collected from multiple experiments and imaged by different individuals, the images
varied: some depicted the entire cerebral organoid, while others focused on specific areas
displaying ventricle-like structures within the organoid.

To contextualize model performance relative to human experts, annotations were pro-
vided by three annotators (A1, A2, A3). Additionally, a consensus annotation was generated
using a pixel-wise majority vote among the three annotators.

2.3.2.2. Methods

For ventricle segmentation, binary semantic segmentation was performed to separate
ventricles from the microscopy background or other organoid tissue. For automated
semantic segmentation, two methods were used: Otsu’s thresholding [105] and a SegFormer
model [111]. The SegFormer model with the MiT-B2 encoder configuration was used.
All processes for model training, evaluation, and inference utilized the implementation
from [184]. The model was trained with the AdamW optimizer, configured with a learning
rate of 0.0001, B; = 0.9, 2 = 0.999, and a weight decay of 0.1, using a batch size of 2 for a
total of 5,000 iterations. A weighted combination of binary cross-entropy and Dice loss
(ratio 1:10) was employed to guide the learning process (Equation 1.8). On-the-fly image
augmentation included four steps:

1. Image downscaling to 512 X 512 px.
2. Random horizontal flipping with a probability of 0.5.
3. Z-score normalization (Equation 2.10).

The model was evaluated using the Dice score (Equation 1.6) with leave-one-out cross-
validation (Section 1.4.5). Separate models were trained for each annotator, where Ma1-Mas
denote models trained on annotations from A1-A3, and Mac refers to the model trained
on the consensus annotation derived from the three annotators.

2.3.2.3. Results

The results show that the SegFormer performed substantially better compared to Otsu’s
thresholding (Table 2.7, Figure 2.25a). The highest performance was consistently achieved
when the SegFormer model was trained and evaluated on the same annotation. For
instance, Ma; performed best when evaluated on A1 (Table 2.7, Figure 2.25a).
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This result is expected, as models trained and tested on the same annotation also learn
annotator-specific features. However, a key question is how well these models generalize
across different annotations. For example, how does Ma; perform on A2 and A3? The
results showed that SegFormer models tested on annotations different from those they
were trained on achieved similar performance to the respective human annotators. For
instance, there was no significant performance difference between A1l and Ma; when
evaluated on A2 and A3 (Figure 2.25a). This suggests that the models performed on par
with the human annotators they were trained on.

Achieving human-level performance is already beneficial, as it allows for more efficient
analysis without sacrificing quality. Yet, an even more critical question is whether a model
can surpass human annotators, for example, by offering greater consistency. Across all
annotation sets, the model trained on the consensus annotation (Mac) consistently ranked
second-best (Table 2.7) and slightly outperformed individual annotators (Figure 2.25b).
This indicates that the consensus-trained model exceeds individual human annotators.

Table 2.7: Model and annotator performance for ventricle segmentation across
multiple annotators. The first three rows show pairwise agreement between human
annotators (A1-A3). The remaining rows report the performance of automated methods
evaluated against each annotator. Ma1-Mas: SegFormer trained on annotations A1-A3.
Mac: SegFormer trained on the consensus of the three annotators. Otsu, Otsu’s threshold-
ing. All values are reported as Dice scores (mean+SD).

Annotator / Method Al A2 A3

Al - 0.79+0.19 0.77+0.14
A2 0.79 +£0.19 - 0.76 £ 0.18
A3 0.77+0.14 0.76 +£0.18 -
Otsu 0.38+0.20 0.37+0.21 0.37 +£0.20
Ma, 0.90+0.10 0.76 +£0.19 0.76 +£0.14
Mg, 0.75+0.21 0.90+0.15 0.72+0.20
Mas 0.73+0.17 0.72+0.19 0.88 +0.16
Mac 0.83+0.13 0.82+0.17 0.80=*0.15

2.3.2.4. Protocol Optimization
Imaging

Since the data was obtained from various experiments and imaged by different individuals,
the images varied in scope—some captured the entire cerebral organoid, while others
focused on specific regions, particularly ventricle-like structures. For more conclusive
comparative analyses, acquiring full-slide microscopy images is essential for two key
reasons: (i) Imaging only parts of the organoid introduces observer bias, as selected areas
may not accurately represent the entire organoid. This bias cannot be corrected post hoc
due to the absence of full organoid images. (ii) Partial visibility of ventricles in some images
complicates the objective assessment of their presence. Full-slide imaging guarantees
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Figure 2.25: Ventricle segmentation performance across multiple annotators. Ma;-
Mas: SegFormer trained on A1-A3. Mac: SegFormer trained on the consensus of three
annotators. Otsu: Otsu’s thresholding. (b) is derived from the results in (a), ranking all
models based on their mean Dice score.
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more consistent and comprehensive data, reducing bias and improving the accuracy of
organoid analyses.

Staining

To further enhance segmentation performance, improving the specificity of ventricle-like
structure stainings is essential. Unspecific staining, which increases the visible tissue area,
is hypothesized to reduce annotation certainty. Annotation uncertainty among experts is
likely indicative of ambiguity in organoid analyses, which should be minimized whenever
possible. To evaluate this hypothesis, annotator and model certainty were calculated for all
images i of the image dataset I. Similar to prior work on model uncertainty estimation [87,
204], a certainty vector C € RVl was defined, where each component C; represents the
certainty for a specific image i € I, calculated as the mean Dice score across all pairs of
mask sets (j, k) € P:

1
C=[Cilier, Ci=— Z Dice(M; j, M) (2.15)

|P| (j.k)eP
where:
+ M; ;: Segmentation mask corresponding to image i and annotation or model j
« P: Set of all unique segmentation pairs from a available segmentations
« |Pl=(3) = a(aT_l): Number of unique segmentation pairs
The definition of P depends on the certainty type:

Annotator Certainty: P = {(Ay, Ay), (A1, A3), (A2, A3)} (2.16)
Model Certainty: P = {(Ma1, Maz), (Ma1, Mas), (Maz, Mas) } (2.17)

Higher values of C; indicate greater agreement among segmentations, and thus higher
certainty. This metric enables quantification of ambiguity in annotations or model predic-
tions at the image level.

The analysis revealed a Pearson correlation of -0.36 (p = 0.02) between annotator
certainty and tissue area (determined using Otsu’s threshold). This moderate negative
correlation indicates that as tissue area in microscopy images increases, annotation cer-
tainty decreases. Enhancing marker specificity could thus reduce annotator variability.
Additionally, model certainty showed a strong positive correlation with annotation cer-
tainty (r = 0.83,p = 5.6 X 10711).

These findings indicate that (i) Unspecific stainings and greater tissue visibility con-
tribute to higher annotator variability, and (ii) Increased annotator variability leads to
higher variability in automated segmentation. Improving stain specificity and imaging
entire organoids are therefore crucial steps toward reducing variability and enhancing
both manual and automated segmentation quality.
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Model certainty can be leveraged for protocol optimization, such as selecting markers
for organoid ventricle staining, provided the model was previously trained to detect the
same substructure (e.g., ventricle-like regions). In such cases, the model could be applied
in a one-shot manner to guide marker selection. In principle, this approach could be
extended to other aspects of protocol design, including organoid slicing. For organoid
staining, applying all markers to the same organoids is preferred (Figure 2.26a), because it
avoids issues with organoid batch-to-batch variability when comparing model certainty
across different biological samples. For each marker, predicted segmentation masks can be
used to calculate model certainty (Figure 2.26b, Equation 2.15, 2.17). By comparing model
certainties across markers, the marker with the highest certainty can be identified and
selected for subsequent comparative analyses of organoids (Figure 2.26c).
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Figure 2.26: Concept of staining-marker optimization using model certainty.
(a) Organoid stainings with different markers. (b) Calculation of marker-specific model
certainty using Equations 2.15 and 2.17. (c) The marker showing the highest model cer-
tainty is the optimal marker.

2.3.3. Registration-Based Volumetric Reconstruction

Previous measurements were based on 2D organoid slices. However, volumetric measure-
ments of organoids would be beneficial, providing a more complete and comprehensive
perspective on the global cerebral organoid organization. This section evaluates the feasi-
bility and challenges of in silico volumetric reconstruction based on serial epifluorescence
microscopy slices of cerebral organoids.

2.3.3.1. Data and Preprocessing

DAPI-stained epifluorescence microscopy images from 54 serial slices of the same cerebral
organoid were utilized. Registration-based volumetric reconstruction of cerebral organoids
presents multiple challenges. To assess feasibility, key issues were first addressed manually.
Sections 2.3.3.4 and 2.3.3.5 examine the potential for automated detection and correction of
these challenges, and discuss how they can inform the development of criteria for iterative
protocol optimization.

One challenge is tissue stretching, which requires affine transformations to achieve
accurate alignment (Figure 2.27a). Another complication arises from significant tissue
rotations (Figure 2.27b), which can misalign features and cause registration algorithms to
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Tissue stretching requires
affine transformation Significant tissue rotations Consecutive slices mirrored

Tissue folds
Global Local Tissue tearing Other artefacts

Figure 2.27: Challenges in registration-based volumetric reconstruction of cerebral
organoids. (a) Tissue stretching during sample preparation necessitates affine transforma-
tions for accurate alignment. (b,c) Tissue may be significantly rotated or mirrored between
consecutive sections due to sample handling. (d) Global and local tissue folding can obstruct
the visibility of the whole tissue or specific regions. (e) Tissue tearing hampers registration,
as corresponding substructures no longer align. (f) Other artifacts include out-of-focus sec-
tions, combinations of the aforementioned challenges, or slices that do not match adjacent
slices.

converge on incorrect solutions. This issue can be mitigated by applying pre-processing
steps, such as manual or automated rotation correction, to roughly align the images
beforehand. In this study, larger rotations were manually identified for each image pair, and
the corresponding moving image (i.e., the image to be registered) was rotated accordingly
before registration.

Sample mirroring (Figure 2.27c) introduces similar challenges. Mirrored slices can
mislead the registration algorithm, again resulting in poor alignment. Observations suggest
that mirroring often affects multiple consecutive slices, likely due to sample handling
during imaging. This results in distinct mirroring events, after which all subsequent
slices remain mirrored until another such event occurs. For manual correction of sample
mirroring, all images should be screened at the start of the analysis to detect the onset
of mirroring. From that point onward, slices can be systematically corrected using in
silico mirroring to ensure proper alignment. Additionally, when mirroring occurs, the side
of the sample with a greater number of available slices should be prioritized for further
processing. This helps minimize the impact on data integrity, as in silico mirroring may not
perfectly replicate the true appearance of the sample. If consecutive slices were observed
to be mirrored, the moving image was manually mirrored before registration.

Tissue folding is another common issue, affecting either large regions (global folds) or
smaller areas (local folds) of the tissue (Figure 2.27d). These folds can compromise data
quality by obscuring important regions and introducing artifacts. Global folds, which
obscure larger portions of the tissue, should generally be excluded from the analysis to
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maintain data quality. Local tissue folds, which affect smaller regions, may be retained or
excluded depending on their severity and impact.

Additionally, tissue tearing (Figure 2.27e) and out-of-focus sections or unexplained
artifacts that do not correspond to adjacent slices (Figure 2.27f) are challenges for registra-
tion. Depending on the severity of the tear and blurriness, affected slices may need to be
excluded. Before image registration, one global tissue fold, one out-of-focus image, and
one artifact caused by tissue tearing were manually excluded.

2.3.3.2. Methods

The volumetric reconstruction of the cerebral organoid was performed through iterative
pairwise image registration using the Python I'TK elastix library [113] (version 0.18.1). The
procedure involved registering consecutive 2D image slices from DAPI-stained microscopy
images and aligning each slice to the previous one to correct for translational, rotational,
and affine displacements. The process began by selecting the first image slice as the fixed
reference. Subsequent slices were then sequentially aligned to the fixed reference through
pairwise registration using the ITK function elastix_registration_method, with each moving
image being registered to the previously aligned (fixed) image.

The registration process utilized a multi-resolution approach with ten levels of res-
olution and incorporated three sequential transformation steps. These steps included:
translation, to correct for simple shifts between images; rigid transformation, to align
images by addressing rotation and scaling; and affine transformation, to refine alignment
by accounting for tissue skew and deformation (Figure 2.27a). For all three transformation
steps, the default parameters provided by I'TK elastix were applied. After each registra-
tion step, the newly registered image became the fixed reference for the next iteration.
Upon completing the iterative process, all registered images were stacked to create a 3D
volumetric reconstruction of the cerebral organoid.

2.3.3.3. Results

Registered images demonstrated improved alignment of ventricle-like structures compared
to non-registered images (Figure 2.28). However, certain challenges remained, such as local
tissue folds (Figure 2.28, images 4 and 6) and tissue skew (Figure 2.28, image 5, bottom-left),
which resulted in substructures that did not perfectly overlap.

2.3.3.4. Pipeline Automation

Due to the availability of only one biological sample, manual pre-registration and slice
mirroring were employed to obtain initial meaningful results. However, to transition
toward a fully automated analysis pipeline, further considerations are necessary to address
challenges that were previously resolved manually.

Significant tissue rotations can pose challenges for registration, as they can misalign
features and lead to convergence on incorrect solutions. An idea for automating the
detection and correction of rotation-induced registration issues involves identifying the
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Unregistered Registered
Overlay with previous image Overlay with previous image

Figure 2.28: Consecutive unregistered and registered tissue sections. Consecutive
sections are shown from top to bottom. The first column displays the original unregistered
images, while the third column presents the registered images. The second and fourth
columns provide overlays of the fixed image (previous image, red) and the moving image
(current image, green) to visually assess the registration quality.
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optimal pre-registration angle by minimizing the registration error across multiple tested
rotation angles (Figure 2.29). An analogous strategy can be applied to handle sample

mirroring in consecutive slices.

a=0° a=90°

a=270°

Fixed image

Moving image

Rotation by a € {0, 90, 180, 270} Fixed image Moving image

- a=180°

Registration error (MSE)

0 90 180 270
a

Pre-registration Registration

Figure 2.29: Example for registration error-guided correction of rotation-induced
registration issue.

This registration error-based approach can also be extended to detect global tissue
folds and tissue tears. Elevated registration errors can indicate the presence of such folds,
which may require exclusion from further analysis. Alternatively, deep learning provides
promising tools for automating the detection and handling of tissue artifacts. For instance,
models could be trained for binary classification to identify and exclude slices affected by
global folds or tearing, or for semantic segmentation to precisely delineate regions with
local folds or tissue tearing.

Currently, the detection and correction of these artifacts are performed manually. Mov-
ing toward full automation will require the generation of a larger, annotated dataset to train
and validate machine learning models, as well as a more comprehensive understanding of
the variability and diversity of artifacts present in larger datasets.

2.3.3.5. Protocol Optimization

Provided that additional annotations and segmentations are available, the suggested
methods could be trained to automatically evaluate overall data quality by quantifying the
following criteria:

Frequency of global tissue folds

Frequency, absolute area, and relative area of local tissue folds

« Frequency of out-of-focus images

Frequency of mirroring events
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These quantitative assessments enable direct comparisons of different sample prepara-
tion protocols, providing a basis for iterative refinement and optimization of the protocol.

2.3.4. Discussion

Fluorescence microscopy has proven to be an essential tool for analyzing cerebral organoids,
offering critical insights into the process of neuronal development. Despite the challenges
associated with generating three-dimensional (3D) reconstructions of organoids, which
require tissue clearing and advanced imaging techniques [59, 64], the segmentation-based
approach presented in this study using epifluorescence microscopy provides an alternative
for assessing neuronal development through 2D image slices. Given the limited availability
of data, this study focused on developing and evaluating analysis pipelines for nuclei and
ventricle segmentation, while also assessing the feasibility of registration-based volumetric
reconstruction of cerebral organoids.

The nuclei segmentation model trained on a curated dataset with clear nuclear bound-
aries demonstrated an Qr score of 0.85, where Qf is a variant of the F1-score used for
evaluating cell detection performance. However, the model struggled with noisy and
ambiguous data, particularly those with less well-defined nuclear boundaries, suggesting
the need for improved image quality through thinner organoid slices or z-stack imaging.
Additionally, the proposed method of threshold adaptation for BeadNet predictions offers
a promising strategy for semi-supervised nuclei counting, which could prove useful in
cases with noisy annotations.

In the case of ventricle segmentation, the use of SegFormer proved significantly more
accurate than traditional methods like Otsu’s thresholding, achieving Dice scores of 0.9,
even surpassing human performance. This improvement highlights the power of modern
deep-learning techniques in segmentation tasks. Furthermore, evaluating model certainty
can be crucial for optimizing organoid staining and further improving the reliability of
ventricle segmentation.

Lastly, the work on registration-based volumetric reconstruction underscores both the
challenges and potential solutions for generating 3D models of cerebral organoids. Due to
limited data for developing fully automated analysis pipelines, manual pre-registration
steps and artifact exclusions were necessary in this study. However, the approach suc-
cessfully demonstrated the feasibility of reconstructing 3D organoid models from 2D
image slices using image registration. Notably, a recent study successfully performed 3D
reconstructions of cortical organoids without reporting artifacts during sample prepara-
tion [205], raising the question of whether their sample preparation protocols were of
higher quality or whether problematic samples were manually excluded from their analysis.
Moving forward, automating these preprocessing steps will be essential for achieving a
fully automated pipeline. Integrating deep learning models to detect and correct issues
such as tissue rotation, mirroring, and folding could significantly enhance the robustness
and scalability of organoid reconstruction.

In conclusion, the integration of automated analysis pipelines for epifluorescence
microscopy-based segmentation and registration has the potential to transform the analy-
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sis of cerebral organoids, while also revealing limitations in current sample preparation
protocols. By automating the quantification of neuronal development and enhancing 3D
reconstructions, these methods not only provide new insights into neuronal maturation
but also offer a pathway for optimizing experimental protocols, ensuring the generation
of high-quality data for future studies.

76



2.4. Cell-Level Analysis

2.4. Cell-Level Analysis

Compared to organoid-level analyses, cell-level analysis provides deeper insights into
the composition and characteristics of distinct cell populations within stem cell-derived
models. The following section investigates single-cell RNA sequencing (scRNA-Seq) and
imaging flow cytometry, focusing on their integration into automated analysis pipelines
for brain organoid characterization and iterative protocol optimization.

2.4.1. Single-cell RNA-Seq

This analysis builds upon data preprocessed by Daniel Hannuschke for his master’s
thesis [206], which included scRNA-Seq quality control, normalization, feature selec-
tion, dimensionality reduction, and exploratory single-cell differential gene expression
and differential abundance analyses. Luca Deininger conducted a more targeted inves-
tigation focused on identifying SSADH-specific features in cerebral organoids using
complementary analysis methods, such as pseudobulk differential gene expression
analysis. Additionally, L.D. explored the dataset in the context of optimizing stem cell
model protocols. All figures presented here were generated by L.D. Figure 2.31c and
2.35a are similar in [206] due to comparable analysis steps.

In this work, scRNA-Seq data from wild-type and Succinic Semialdehyde Dehydrogenase
(SSADH)-deficient cerebral organoids were analyzed to identify disease-specific features,
demonstrate the value of cell-level analysis, and explore the potential of scRNA-Seq for
optimizing stem cell-derived model protocols.

2.4.1.1. Dataset

Cerebral organoids not previously introduced in earlier sections were cultivated from
pluripotent stem cells derived from two SSADH-deficient patients, two parents of SSADH
patients, and one Wildtype, with three replicates for each group (Table 2.8).

Organoid batches underwent scRNA-Seq at days 60 and 120 to assess differences in
temporal neural development (Table 2.8). While the Parent organoids were included for
cell annotation, they were excluded from the differential gene expression analysis and
gene set enrichment analysis due to uncertainties regarding their quality, as discussed in
Section 2.4.1.4.

2.4.1.2. Methods

Data Preprocessing

As previously mentioned in this section, for detailed information on the data preprocessing
steps before cell clustering, please refer to [206]. For all replicates, except for wildtype
replicate 2 (day 60), a count matrix could be derived. Wildtype replicate 2 (day 60) was
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Table 2.8: Number of technical replicates for single-cell RNA-Seq. Each technical
replicate corresponds to one cerebral organoid.

Group Day 60 Day 120

Patient 1 3 3
Patient 2 3 3
Parent 1 3 3
Parent 2 3 3
Wildtype 3 3

likely lost during sample preparation. Quality control included filtering for cells with at
least 200 detected genes, genes present in at least three cells, and thresholds for total read
counts and mitochondrial gene content. Specifically, cells with more than 60,000 total reads
or more than 5% mitochondrial transcripts were excluded to ensure high-quality input
for downstream analysis. The mitochondrial transcript threshold serves as an indicator
of cell integrity, as elevated mitochondrial transcript levels are commonly associated
with cell stress or apoptosis [207]. Downstream cell clustering was performed using the
Louvain [208] algorithm with a resolution of 0.8. Cluster annotation was primarily guided
by a cerebral organoid-specific scRNA-Seq tutorial, which included relevant genes for
annotating cerebral organoid cell types [209].

Pseudobulk Differential Gene Expression Analysis and Gene Set Enrichment Analysis

The pseudobulk differential gene expression analysis (DGEA) and subsequent gene set
enrichment analysis (GSEA) were performed using pairwise comparisons, with one com-
parison for each combination of cell type and day. For example, Patient organoids were
compared to Wildtype organoids for cell type X on day 60. Consequently, each group-wise
comparison (e.g., Patients vs. Wildtype) comprises # time points X # cell types individual
comparisons.

A higher cell count in cell-wise comparisons could bias the analysis, potentially leading
to the erroneous conclusion that certain genes are overexpressed simply because one
sample has more cells, thus resulting in a higher number of transcripts (Figure 2.30a).
To mitigate this issue, the first step was cell-wise subsampling of the majority class to
match the minority class (Figure 2.30b). For instance, if Wildtype had 40 cells for cell
type X and Patients had 200 cells, 40 cells were randomly drawn from the Patients to
match the Wildtype sample. To mitigate subsampling bias, ten independent subsamples
were generated for each cell type (Figure 2.30b). Then, the one exhibiting the highest
average Pearson correlation of fold changes to all other subsamples was selected as the
representative subsample (A*, Figure 2.30c). This selected subsample was then used for
subsequent pseudobulk DGEA and GSEA (Figure 2.30d).

For DGEA, DESeq2 [83] was employed. Genes with fewer than ten transcripts were
excluded before DGEA, which is a standard practice. For GSEA, the gseGO function was
applied with 10,000 permutations to assess the statistical significance of the results. The
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Figure 2.30: Workflow of pseudobulk differential gene expression analysis (DGEA)
and gene set enrichment analysis (GSEA). (a) Unequal numbers of cells per condition
for a given cell type can introduce bias in the analysis. (b) To address this, cells from the ma-
jority group were randomly subsampled to match the number of cells in the minority group.
This process was repeated ten times to estimate subsampling variability. (c) The subsample
with the highest average Pearson correlation of fold changes to all other subsamples was
selected as the representative subsample (A*). (d) Downstream DGEA and GSEA were then
performed on A* and B. The entire workflow was applied separately for each cell type.

minimum and maximum gene set sizes considered were 3 and 800, respectively. A p-value
cutoff of 0.05 was used to filter genes from the DGEA analysis, and p-value adjustment
for multiple testing was performed using the false discovery rate. To focus on neuronal
differentiation pathways, the GSEA was restricted to GO gene sets with the parent term
neuron differentiation.

2.4.1.3. Results
Cell Annotation and Distribution

To explore existing cell populations, a clustered UMAP representation was generated
from the gene expression profiles of all 43,007 cells across 36,601 genes, integrating all
experimental groups, replicates, and time points (Figure 2.31a). Aggregating the full dataset
enhances annotation quality by providing more comprehensive coverage and mitigating
potential underrepresentation of certain cell types due to batch effects. Using the Louvain
algorithm, 29 cell clusters were identified, each characterized by differential expression of
different genes essential for distinguishing cerebral organoid cell populations (Figure 2.31b).
The cell annotation revealed that the dataset included most of the expected cell types,
such as Neural Progenitor Cells (NPCs) and neurons (Figure 2.31c). Notably, NPCs were
further subdivided into several subpopulations based on their anatomical location and
cellular characteristics, including cortical NPCs, diencephalon NPCs, oligodendrocytes,
and astrocytes. The dataset also contained a variety of neuron subtypes within the cerebral
organoid, such as inhibitory neurons from the hindbrain and midbrain, excitatory neurons
from the hindbrain, and diencephalic excitatory neurons. Overall, this scRNA-Seq analysis
provides a detailed map of the cell populations within the cerebral organoid, highlighting
the diversity and complexity of its cellular composition.
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Figure 2.31: scRNA-Seq cell annotation, cell clusters, and cluster similarity. (a)
UMAP representation of single-cell gene expression profiles across 43,007 cells and 36,601
genes, integrating all experimental groups, replicates, and time points. Each data point
represents a single cell, and the cells are clustered based on their gene expression profiles
using the Louvain algorithm. Cells are color-coded by cluster identity, with distinct colors
and overlaid cluster numbers indicating the respective clusters. For visualization purposes,
300 cells were randomly sampled from the entire dataset. (b) Heatmap showing cluster-
specific expression of cerebral organoid-related genes. (c) UMAP representation from (a)
with annotated cell clusters, based on the expression data from (b). Cells are color-coded
by cluster identity. For visualization purposes, 300 cells were randomly sampled from the
entire dataset. (d) Partition-based Graph Abstraction (PAGA) analysis applied to the UMAP
in (c). The edge thickness reflects the strength of transcriptional connectivity between
clusters, with thicker edges indicating a stronger connectivity. Nodes are color-coded by
cluster identity, but the colors do not correspond to those in (a) or (c). dienc, diencephalon;
telenc, telencephalon; inhib, inhibitory; exc, excitatory; oligod, oligodendrocyte; astroc,
astrocytes; cort, cortical; signal, signaling.
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UMAP representations are non-deterministic, and the relative positioning of cell popu-
lations should, to some extent, reflect the similarity between cell clusters. To validate this,
PAGA (Partition-based Graph Abstraction) was employed, a tool designed to assess the
similarity between cell clusters. A PAGA analysis illustrated that clusters of cells that are
spatially close on the UMAP also exhibited higher similarity to each other (Figure 2.31d).
For example, NPCs formed tightly connected clusters, as did neurons. This reinforces
the idea that the UMAP preserved global relationships between cell clusters. Addition-
ally, PAGA highlights potential differentiation trajectories, tracing the progression from
proliferating cells through NPCs to various neuronal subtypes (Figure A.8).

The number of NPCs and neurons at different developmental stages serves as an in-
dicator of neuronal development in cerebral organoids. An increase in NPCs over time
was observed in Wildtype organoids, whereas a decreasing trend was detected in Pa-
tient organoids (Figure 2.32a). Additionally, Patient organoids already contained more
neurons than Wildtype organoids by day 60 (Figure 2.32b). These findings support a pre-
vious hypothesis, based on immunohistochemistry data, suggesting premature neuronal
differentiation in SSADH patients [52].
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Figure 2.32: Number of NPCs and neurons indicate earlier neuronal development
in Patients. The data are derived from cell annotations in Figure 2.31, where NPC and
neuron subtypes were aggregated to provide an overview of neuronal development. Error
bars indicate 95% confidence intervals based on three technical replicates per group and
time point, except for the Wildtype group on Day 60, which included two replicates.

Pseudobulk Differential Gene Expression Analysis and Gene Set Enrichment Analysis

The pseudobulk differential gene expression analysis and gene set enrichment analysis
were conducted to investigate SSADH-specific pathways related to neuron differentiation.
To this end, Patient and Wildtype organoids were compared at day 60 and day 120 using
cell-wise comparisons as explained in Section 2.4.1.2 and Figure 2.30. First, the number of
cell types exhibiting enriched neuron differentiation-related pathways for both Wildtype
and Patient organoids was compared at each time point. Wildtype organoids showed an
increasing number of cell types with enriched pathways related to neuron differentia-
tion over time, while Patient organoids exhibited the opposite trend (Figure 2.33a). For
example, midbrain excitatory neurons in Patient organoids at day 60 showed significant
enrichment of multiple GO pathways, such as dendrite development, axon development,
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neuron development, and neuron projection guidance (Figure 2.33b), whereas no enriched
pathways were observed in Wildtype organoids at this time point. By day 120, however,
no enriched pathways were observed in Patient organoids, while Wildtype organoids
displayed enrichment in pathways like neuron development, neuron differentiation, and axon
development (Figure 2.33c). Additional examples can be found in the Appendix (Figure A.9).
This, again, supports the hypothesis of premature neuronal differentiation in SSADH
patients.
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Figure 2.33: Gene set enrichment analysis (GSEA) suggests earlier neuron differen-
tiation in Patients. GSEA was performed on pseudobulk DGEA results comparing Patient
and Wildtype organoids, separately for each cell type and time point. (a) The number of
cell types with enriched Gene Ontology (GO) terms related to neuron differentiation dis-
tinguished between Wildtype and Patients for days 60 and 120. (b,c) Enrichment of neuron
differentiation-related GO terms in midbrain excitatory neurons, comparing Patient and
Wildtype organoids. The x-axis represents the GeneRatio, defined as the proportion of differ-
entially expressed genes in midbrain excitatory neurons that are also present in the given
GO term. (b) Day 60. There were no gene sets enriched for Wildtype. (c) Day 120. There
were no gene sets enriched for Patients.
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2.4.1.4. Protocol Optimization
Presence of Mesenchymal Cells

Recent work has shown that high-quality cerebral organoids typically contain fewer
mesenchymal cells, with proportions usually less than 30% mesenchymal cells, whereas
an increased mesenchymal cell count is associated with lower-quality organoids [210]. In
the present analysis, the fraction of mesenchymal cells was quantified across all samples,
revealing lower percentages in both Wildtype and Patient organoids (Figure 2.34). In
contrast, Parent organoids exhibited a higher percentage, with mean values of up to 70%
for Parent 1 (Figure 2.34). This suggests that the Parent organoids are at the critical
threshold for mesenchymal cell abundance. Given the biological uncertainties associated
with other transcriptomic effects from lower-quality organoids, as well as the inherent
uncertainties regarding the expected biological phenotype for SSADH parents, Parent
organoids were excluded from pseudobulk differential gene expression analysis and gene
set enrichment analysis.
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Figure 2.34: Percentage of mesenchymal cells. The percentage of mesenchymal cells is
shown per group, aggregated across all replicates. Error bars indicate 95% confidence inter-
vals based on three technical replicates per group and time point, except for the Wildtype
group on Day 60, which included two replicates.

Sample Variability

Batch-to-batch variability presents a significant challenge in the study of cerebral organoids.
To evaluate the extent of this variability, the correlation of cell counts across replicates was
assessed (Figure 2.35a). The results revealed strong correlations in cell counts for replicates
of Wildtype on day 60, Parent 1 and 2 on day 120, and Patient 1 on day 60 (Figure 2.35a,b,
Table 2.9). Moderate correlations were observed for Parent 2 and Patient 2 on day 60, while
weak correlations were found for Patient 1 and Patient 2 on day 120 (Figure 2.35a,b, Ta-
ble 2.9). Notably, Wildtype on day 120 exhibited a slight negative correlation. Additionally,
both Wildtype and Patient organoids exhibited decreasing cell count correlation over time,
which may reflect a natural diversification process as organoids mature. While cell counts
were moderately or strongly correlated on day 60, these correlations weakened on day
120 (Figure 2.35b, Table 2.9).
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— N ™ — N M «— N ™
a - M N MmN N® N YT YTYTYTTN
Lo C 11l 000 00 00 00 Q9 9 Q9o Q
O O 0O 0O 0O 0 0 0 QL OO0 OO0 OoON NN N NNNNGONONONNNN
© © ® © ©® ® ©® ® DV DV VOV OOV T »“ ¥ v - - - - T T T T oT T
T T v 0D OO OO © P DD D VDD D D U U O U v v © T T T T T
S e e S S S R
cC C C C C C cC C Cc C C C
SS go o590 0LBL2LBYLL2STSTS oS00 2L22L2
= £ 0 © © © © © © © © © © 035 T ¥ © © © © © © © © © U © ©
B O s O = O o Y O o i s o 1
Wildtype d60—1 .. )
Wildtype d60-3 @) ) M) ) ® O

Parent 1d60-1 @)@

Parent 1d60-2 @@ @ ® ) o8
Parent 1 d60-3 . oo o [ ]
Parent2d60-1 @O © © © 0@ - © [ [ ) 06
Parent 2 d60-2 (@)@
Parent 2 d60-3 (@) LI ) @ (o
Patient 1d60-1 @@ @ ~ ©©® © @ [ ] 0.4
Patient 1d60-2 (@@ )
Patient 1d60-3 @ © @ @ o
Patient2ds0-1 @) @ [ J(J - 0.2
Patient 2 d60-2 (@) o
. Patient 2 d60-3 Y o0
Aggregated correlation Wildtype d120—1.. 000 ® [ L o
b Wildtype d120-2 @) @
Witype Wildtype d120-3 (@)
| Parent 1d120-1 (@@ @ ® - -0.2
m— Parent 1d120-2 @@ Y
Parent 1 Parent 1 d120-3 . .
Day Parent 2d120-1 (@@ @ Ol ) -0.4
_— e 60 Parent 2d120-2 @@ o
— 120 Parent 2 d120-3 (@ o O
Patient 1d120-1 @) © @ © @ 0.6
atient 1 3 Patient 1d120-2 @) @
- Patient 1d120-3 (@)
Patient2d120-1 @ @ 08
Patient2 Patient 2 d120-2 (@)
-0.4 -0.2 0.0 02 04 06 08 10 Patient 2 d120-3 . -1
Pairwise replicate correlation

Figure 2.35: Correlation of cell counts across individual replicates reveals organoid
variability. Correlations are based on cell counts across 22 annotated cell types. Mesenchy-
mal cells were excluded from the analysis, as their presence is considered an indicator of
low-quality organoids [210]. (a) Pairwise correlation of all replicates. (b) Pairwise correla-
tions of replicates from the same sample type. Correlation: Pearson. Error bar, CI 95%.
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Overall, this analysis highlights the importance of integrating multiple measures to
assess the quality of cerebral organoids using scRNA-Seq. While the Parent organoids
exhibit relatively high correlation in cell counts, especially on Day 120, indicating low
variability and high reproducibility, the elevated abundance of mesenchymal cells raises
concerns about their overall quality (Table 2.9).

Table 2.9: Sample quality based on cell count correlation and mesenchymal cell
ratio. Sample quality is assessed based on the mean pairwise cell count correlation across
replicates (Qcc), categorized as low (r < 0.3), medium (0.3 < r < 0.7), and high (r > 0.7);
and the mean mesenchymal cell ratio across replicates (Qycr), considered high quality if
< 10%, medium if between 10% and 30%, and low quality if > 30%, based on [210]. It should
be noted, however, that lower Qcc at later time points may also reflect increased temporal
diversification.
Day Sample QCC QMCR
Wildtype High High
Patient 1 High High
60 Patient2 Medium High
Parent1 Medium Low
Parent2 Medium Medium
Wildtype Low High
Patient 1 Low High
120 Patient2 Low Medium
Parent 1  High High
Parent 2  High Low

2.4.1.5. Discussion

This study examined publicly available semi-automated analysis pipelines, including Seu-
rat [84] and DESeqz2 [83], for single-cell RNA sequencing (scRNA-Seq) data, customized to
identify SSADH-specific features in cerebral organoids. Consistent with prior observa-
tions in SSADH patients [52], organoids derived from SSADH patients displayed signs of
premature neuronal differentiation, supported by NPC and neuron cell counts as well as
gene set enrichment analysis, underscoring the potential of cerebral organoids for disease
modeling.

While imaging-based analysis pipelines, such as those for brightfield microscopy, pri-
marily assess organoid size and morphology, scRNA-Seq provides complementary insights
by capturing cell-wise gene expression. This enables detailed characterization of cerebral
organoid cell populations and the identification of disease-specific features. Additionally,
pathway enrichment analysis offers a functional perspective for comparing conditions,
further enhancing the biological relevance of scRNA-Seq data.

Despite increasing automation in scRNA-Seq analysis, expert input remains essential.
Pipelines like Seurat [84] and Cell Ranger [211] automate preprocessing, clustering, and
differential gene expression analysis, yet expert oversight is required for quality control,
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feature selection, and result interpretation to minimize bias. While automation streamlines
tasks such as normalization and gene set enrichment, full automation remains an emerging
field, with most pipelines providing only preliminary outputs [212].

Two key metrics are valuable for optimizing cerebral organoid cultivation: the propor-
tion of mesenchymal cells, which serves as an indicator of cerebral organoid quality [210],
and the correlation of cell counts, which provides insight into organoid variability (Sec-
tion 2.4.1.4, Table 2.9). In this dataset, the high proportion of mesenchymal cells in Parent
organoids raised concerns about sample quality, leading to their exclusion from differ-
ential gene expression and gene set enrichment analyses to reduce confounding effects.
Additionally, organoid variability was observed, with correlations in cell counts weak-
ening over time, particularly in Wildtype and Patient organoids at day 120, potentially
reflecting natural diversification. These findings underscore the importance of monitoring
mesenchymal cell proportions and cell count correlations as key metrics for iteratively
refining cerebral organoid cultivation protocols.

Compared to imaging-based modalities, scRNA-Seq enables semi-automated analysis of
cell populations, offering deeper biological insights. Advancing toward fully automated
scRNA-Seq could further enhance disease modeling and stem cell research [212]. While
multimodal characterization, such as combining brightfield imaging, MRL, and scRNA-Seq,
would offer a more comprehensive view of organoid structure and function, it remains
challenging due to the destructive nature of RNA sequencing. One practical solution is to
apply scRNA-Seq as a terminal readout (see e.g. Figure 2.2) or to perform it on separate
organoid batches. However, the latter approach introduces batch-to-batch variability,
potentially complicating interpretation. Hybrid approaches such as spatial transcriptomics
offer promising alternatives by combining transcriptomic profiling with spatial resolution,
enabling molecular analysis in a spatial context [213, 214].

In conclusion, the analysis confirmed premature neuronal differentiation in SSADH
patient-derived cerebral organoids. These findings underscore the value of cell-level
scRNA-Seq for in-depth disease understanding. However, optimizing cerebral organoid
culture protocols remains essential to enhance sample quality and reduce variability for
more robust disease modeling, with verified metrics such as mesenchymal cell proportions
and cell count correlations serving as key indicators for refinement.
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2.4.2. Imaging Flow Cytometry

Parts of this section are based on: D. Vonficht, L. Jopp-Saile, S. Yousefian, et al. “Ultra-
high scale cytometry-based cellular interaction mapping”. Accepted at Nature Methods.
2025. [215]. The segmentation and analysis pipeline was jointly conceptualized by
Luca Deininger and Angelo Yamachui Sitcheu, with AY.S. focusing primarily on cell
representation in the latent space and L.D. focusing on cell segmentation and cell
morphology quantification.

ScRNA-Seq enables detailed characterization of cellular composition by capturing gene
expression profiles at single-cell resolution (Section 2.4.1). In contrast, imaging flow cytom-
etry (IFC) provides quantitative insights into cell morphology by combining microscopy
with flow cytometry.

Here, key components of an automated analysis pipeline for imaging flow cytometry
are outlined to enable a preliminary assessment of its potential for analyzing single cells
in brain organoids. The aim is to illustrate how such a pipeline could support automated
quantification of cell distributions and morphological features.

2.4.2.1. Dataset

Due to the unavailability of brain organoid imaging flow cytometry data at the time of
thesis submission, the biological samples examined in this study consist of human blood
cells, including various immune cells such as T-cells and B-cells, which were analyzed
using imaging flow cytometry. The dataset includes two groups: a control group with
no treatment and a condition group treated with blinatumomab, a drug designed to
enhance cell-cell interactions. In total, the control group included 91,668 images, while
the condition group comprised 54,179 images. Each sample consisted of multi-channel
imaging data acquired across ten channels, including two brightfield and eight fluorescence
channels (Figure 2.36). The fluorescence channels captured multiple cell surface and
intracellular markers, including CD19-PE-Cy7 (channel 6) to identify B-cells and CD3-
BV605 (channel 9) to identify T-cells (Figure 2.36).

T- and B-cell markers are generally mutually exclusive, as lineage-specifying tran-
scription factors enforce distinct gene expression programs during lymphocyte develop-
ment [216]. Therefore, applying intensity-based thresholding on both markers using the
mean fluorescence intensity per cell should, in principle, allow for clear identification of the
underlying cell type—either T-cell (T*B) or B-cell (T'B"). However, technical issues such
as staining artifacts may occasionally result in double-positive signals (T*B™), complicating
interpretation.

Although this study was based on peripheral blood samples, many of the analytical
principles are expected to be transferable to brain organoids, especially given recent
applications of flow cytometry in this context [217, 218].

87



2. Analysis Pipelines for Brain Organoids
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Figure 2.36: Exemplary multi-channel image from imaging flow cytometry. De-
picted is a single cell imaged across ten channels, including two brightfield channels (chan-
nels 1 and 8) and nine fluorescence channels (remaining channels). The fluorescence chan-
nels visualize various surface and intracellular markers, such as CD19-PE-Cy7 in channel 6
for B-cell detection and CD3-BV605 in channel 9 for identifying T-cells.

2.4.2.2. Methods

For cell segmentation from brightfield images, the cyto2 model from the Python package
CellPose [109] was used with a manually tuned cell diameter of 20 pixels to achieve
optimal segmentation results. Although CellPose offers automatic cell size estimation, it
was not used due to limited accuracy at the time of this study. Other methods, such as
Mesmer [219], infer cell size directly from image features. However, Mesmer is specifically
optimized for tissue imaging, whereas CellPose is designed as a general-purpose model
applicable to a broader range of microscopy data. Given these considerations and the
nature of the data, CellPose was selected. Circularity was calculated based on cell area
and perimeter (Equation 2.18), with perimeter values obtained from scikit-image.

4.7 - Area

Circularity = (2.18)

Perimeter?

Mean fluorescence intensities for each channel were computed by masking the images
of the respective fluorescence channel with the cell segmentation mask. Cell type de-
termination was based on the triangle threshold [220] applied to the T-cell and B-cell
channel mean fluorescence intensities to distinguish between T* and T~ cells, and B" and
B cells. The triangle threshold was selected because it showed the smallest difference
compared to expert-annotated thresholds on small data subsets. T"B™ cells were classified
as T-cells, T'B* cells as B-cells, and T'B cells as Other. For T*B* cells, class membership
was determined by comparing the mean intensity of the T-cell and B-cell channels, with
the marker exhibiting the higher intensity dictating the class assignment. This approach
assumes that the dominant signal reflects the true underlying cell identity in cases of
ambiguous or artifactual double-positivity.
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2.4.2.3. Results

The proposed pipeline begins with the dissociation of brain organoids into single cells,
followed by IFC (Figure 2.37a,b). Brightfield images are then used for cell segmentation via
CellPose, a state-of-the-art model for cell segmentation (Figure 2.37c). Cell morphology
features, such as cell area and circularity, are subsequently extracted, along with the
mean fluorescence intensity for each cell (Figure 2.37d). In the next step, the cell type is
determined through marker-specific thresholding (Figure 2.37e, details in Section 2.4.2.2).
This process results in a feature table of size # cells X # features, which can then be used
to analyze cell populations and morphological characteristics.

Pipeline
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oo . | l # features
|, %0000 _, Imaging Flow Cell _, Feature __ Celltype y2
° o;’o Qo Cytometry segmentation extraction determination 2
(] ]
Brain Single
organoid cells
Imaging Flow Cytometry Cell segmentation
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d e
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_, - Cell circularity threshold
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- Cell diameter Cell2  0.0001 023 2

Figure 2.37: Concept for an automated analysis pipeline for brain organoids based
on imaging flow cytometry. The data shown in (b) is from blood cells, as brain organoid
imaging flow cytometry data were unavailable at the time of thesis submission. How-
ever, the pipeline is expected to be transferable to brain organoids, supported by existing
studies that have successfully applied imaging flow cytometry to progenitor cells of brain
organoids [81].

The analysis of cell distributions revealed similar proportions of cell types between the
control and condition (Figure 2.38). However, a comparison of cell morphology highlighted
significant differences in cell diameter, cell area, and cell circularity across all cell types.
For instance, cells in the condition exhibited a significantly larger diameter, particularly
for T-cells and B-cells, compared to the control (Figure 2.38). This shows that the pipeline
enables single-cell morphological readouts and facilitates direct comparative analyses
between experimental conditions.
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< 0.0001.
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2.4.2.4. Protocol Optimization

The correlation of cell distributions used for scRNA-Seq (Figure 2.35) can be similarly
applied to imaging flow cytometry data, where a high correlation of cell types reflects
lower variability and higher reproducibility. Due to the lack of multiple replicates, this
analysis was not performed here.

2.4.2.5. Discussion

This study introduces a concept for an automated IFC pipeline for analyzing single cells
from brain organoids. The pipeline involves cell segmentation, feature extraction, and
threshold-based cell type determination. The output is a comprehensive cell feature table
that enables analysis of cell distributions and morphology, providing clear insights into
cellular characteristics.

While imaging-based analysis pipelines primarily evaluate organoid morphology, scRNA-
Seq offers complementary insights by capturing cell-wise gene expression. In contrast, IFC
provides both cell distribution data, similar to scRNA-Seq, and additional morphological
information that scRNA-Seq cannot capture. These advantages position IFC as a valuable
modality for bridging the gap between molecular and morphological analyses in brain
organoid research.

Due to the unavailability of organoid data, the analysis was conducted on human
blood cells. This analysis showed similar cell distributions between control and condition
groups but revealed significant morphological differences, particularly in cell diameter,
area, and circularity. Treated T-cells and B-cells exhibited larger diameters, indicating
morphological changes induced by the treatment. These findings demonstrate IFC’s
capability to automatically detect subtle changes using the proposed pipeline.

A limitation of this study is the uncertainty regarding the pipeline’s applicability to brain
organoids. The complex morphology of brain organoid cells, particularly neurons with
branching, tree-like structures, may pose challenges for imaging and accurate segmentation.
However, previous studies have successfully applied flow cytometry to stem cells [221]
and brain organoids [217, 218], and imaging flow cytometry has been used to study neural
progenitor cells [81], which are also present in brain organoids. These findings suggest
that a similar approach may be feasible for analyzing dissociated brain organoid cells.

Overall, this pipeline is a tool for high-throughput, single-cell analysis with potential
for organoid research. This study demonstrates its effective application in determining cell
populations and morphology. Moreover, the correlation of cell counts among technical
replicates, as used in scRNA-Seq, can serve as a valuable metric for iterative protocol opti-
mization. Future experiments should explore the feasibility of applying IFC to dissociated
cells of brain organoids.
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3. Analysis Pipelines for ETiX-Embryos

Parts of this chapter are based on: P. Caldarelli, L. Deininger, S. Zhao, et al. “Al-based
approach to dissect the variability of mouse stem cell-derived embryo models”. In:
Nature Communications, Vol. 16, No. 1 (Feb. 2025). 1ssN: 2041-1723. por: 10.1038/
s41467-025-56908-5. [40]. P.C. was responsible for ETiX-embryo cultivation and data
annotation, while L.D. contributed through data processing, analysis, and development
of deep learning models.

While previous analysis pipelines have addressed phenotyping and quality control in
organ-level stem cell-derived models, comparable challenges arise in stem cell models
of whole-organism development. To extend automated analysis to these more complex
systems, existing pipeline elements must be adapted to support quality monitoring and
protocol optimization.

Here, deep learning-based analysis pipelines were developed for ETiX-embryo classi-
fication at the advanced stage around four days post-cell-seeding (Section 3.3.1), where
selection of high-quality samples is traditionally performed by human experts. Addi-
tionally, early-stage classification was explored to evaluate its accuracy for even earlier
ETiX-embryo selection and to identify embryo features predictive of future successful
development (Section 3.3.2). Al-based methods were also applied to track the development
of individual ETiX-embryos over time (Section 3.3.3). Finally, insights from the pipeline
and resulting models informed protocol adjustments, resulting in an increased proportion
of successfully developed ETiX-embryos (Section 3.5.2).

3.1. Data and Data Preprocessing

Data

A live-imaging platform was employed to monitor the development of ETiX-embryos
over the first 90 hours using confocal microscopy, capturing brightfield and fluorescence
images (Figure 3.1). To facilitate cell-type- and substructure-specific tracking during
development, fluorescent markers were applied to the three starting cell types: ESC
cells (represented in red throughout the text), ESC-iGata4 cells (in green), and TSC cells (in
blue). The images are captured as mosaics, consisting of 25 (5 X 5) tiles (Figure 3.1).
Acquisition was performed every 35.26 minutes, capturing z-stacks with a spacing of 4 ym.
At each time point, the imaging sequence followed a fixed order: for each of the 25 mosaic
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tiles, a full z-stack was acquired, beginning with brightfield and followed by the three
fluorescence channels. This process was repeated tile by tile until the full mosaic was
completed.
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Figure 3.1: ETiX-embryo live-imaging. Representative time points of live imaging
movies displaying around 320 ETiX-embryos at 0, 45, and 90 hours after seeding in the
Agarwell. Scale bar: 1,000 pm. Adapted from Fig. 1 in Caldarelli, Deininger et al. [40], li-
censed under CC BY 4.0, with added brightfield images and modified layout.

Three runs (datasets A, B, and C) were recorded, containing 306 (A), 293 (B), and 301 (C)
ETiX-embryos, respectively. Together, these runs resulted in a combined dataset of 900
ETiX-embryos. Unless stated otherwise, references in the text refer to the union of these
three datasets. Based on insights gained during pipeline optimization, two additional
datasets were subsequently generated, featuring increased initial cell counts across all cell
types: Datayx with a twofold increase (n = 306), and Datasy with a threefold increase (n =
276).

To account for the different spatial scales present in the dataset, coordinate sets were
defined separately for each image level: tile, mosaic, and extracted embryo.

+ Let X, Yiile denote the x and y coordinate sets of a single tile, with cardinalities
|Xtile| = |Ytile| = 768.

+ Let Xinos, Ymos denote the coordinate sets for the full mosaic image, formed by a 5 x5
grid of tiles with |Xi0s| = | Ymos| = 3840.
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o Let Xemb, Yemp denote the coordinate sets of an extracted embryo image (Section 3.1),
where |Xemb| = | Yemp| = 288.

« Let Z, T, and C denote the sets of z-planes (depth), time points, and imaging channels,
respectively, with |Z| = 40, |T| = 153, and |C| = 4. The four channels correspond to
one brightfield and three fluorescence channels.

At the beginning of this thesis, no comparable imaging datasets of similar scale for
ETiX-embryos were publicly available, underscoring the value of the data generated in
this study. All images preprocessed for deep learning generated for this work are publicly
available on Zenodo (https://zenodo.org/records/14605093). The code to reproduce
the results is publicly available on GitHub (https://github.com/deiluca/StembryoNet).

Preprocessing

The brightfield mosaic tiles exhibited varying brightness levels (Figure 3.1). To address
this brightness variation, the brightfield mosaic tiles were corrected by normalizing their
intensities within the same z-plane and time point. Let M denote the set of mosaic tiles
m. For each z-position z € Z and time point ¢t € T, each tile was normalized by the mean
intensity of all 25 tiles in the corresponding z-plane at time point ¢:

Mean Intensity (M, z, t)
Mean Intensity (M = {m}, z,t)

Mean Intensity (M, z,t) = M| ! Z Z Z m(x,y,z,t) (3.2)

Xl - |Ye
tllel | tllel meM x€Xgle Y€ Yiile

(3.1)

m(z, t)norm = m(zs t) :

As an alternative, shading correction with the BaSiC tool [222] was tested but produced
comparable results. Therefore, the simpler mean-based normalization was retained in this
study.

Extraction of Individual ETiX-Embryo Images

To generate a single image file per ETiX-embryo, manual segmentation was performed at
the final time point. This manual step was necessary because overlapping ETiX-embryos in
some cases made automated segmentation unreliable. Automation of this step is discussed
in Section 3.5.1. The center point of each segmented ETiX-embryo was then used to extract
individual images with dimensions |Xemp| X | Yemp| X |Z]| X |C| X |T|. This approach relies
on the implicit assumption that embryo positions remain consistent over time, which is
valid due to minimal embryo movement. In cases where ETiX-embryos were growing
within the imaging frame of neighboring ETiX-embryos, any overlapping regions were
masked. As a result, parts of the image corresponding to neighboring ETiX-embryos were
replaced with a value of 120 for brightfield and 0 for fluorescence. ETiX-embryos that
extended beyond the imaging border were excluded. Across all three runs, a total of 900
individual ETiX-embryos were obtained.

95


https://zenodo.org/records/14605093
https://github.com/deiluca/StembryoNet

3. Analysis Pipelines for ETiX-Embryos

Data Types for Deep Learning

The extracted images of individual ETiX-embryos are five-dimensional: x, y, z, channel,
and time. However, deep-learning models for image classification are primarily designed
to process three-dimensional inputs, typically including two spatial dimensions and the
channel dimension. To accommodate this constraint, various data input strategies were
investigated to compress the z-dimension and incorporate different channel combinations,
optimizing feasibility for deep learning training:

« Brightfield in-focus images: These were obtained by selecting the z-plane where
the brightfield images appeared most sharply focused. The in-focus plane was
determined using the z-plane with the maximum Laplacian variance, a commonly
applied method for automatic focus detection [223] (Figure 3.2a).

« Fluorescence in-focus images: These images were extracted from the same z-plane
where the brightfield image was in focus, identified based on the maximum Laplacian
variance. This approach was chosen as relevant structures in fluorescence images
were observed to align with the brightfield in-focus plane (Figure 3.2b).

« Fluorescence z-sum projection images: These were generated by summing pixel
intensities along the z-axis, effectively integrating information across all z-slices in
the stack (Figure 3.2c).

« Four-channel images: A four-channel representation consisting of brightfield and
fluorescence in-focus images (| Xemb| X | Yemp| X |C]).

Cc

Fluor zsum

a  BF in-focus b Fluor in-focus

Figure 3.2: Data types explored for deep learning training,. (a) Brightfield in-focus
image, (b) fluorescence in-focus image, and (c) fluorescence z-sum projection. The same
ETiX-embryo is shown in all subplots.

Annotation

ETiX-embryos were annotated based on images from the final 25 hours of time-lapse (Fig-
ure 3.3a). ETiX-embryos were classified by an embryologist as normal if they displayed
a cylindrical shape with distinct cellular compartments derived from TSCs and ESCs,
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enveloped by a monolayer of ESC-iGata4 cells. Of the ETiX-embryos analyzed in three
independent experiments, 23% met the criteria for normal development throughout the
observation period (Figure 3.3a,b), while the remaining 77% were classified as abnormal,
showing structural and developmental abnormalities (Figure 3.3a,c).

The time-lapse studies revealed asynchrony in ETiX-embryo development. To account
for this, an end time point was annotated for each normal ETiX-embryo at a comparable
developmental stage, ranging from 65 to 90 hours post-cell-seeding (Figure 3.3d-f). For
abnormal embryos, direct synchronization was not feasible. Instead, their synchronized
time points were sampled using a normal distribution with the same mean and standard
deviation as those of normal ETiX-embryos (Figure 3.3d). The resulting subset of images
is hereafter referred to as the synchronized dataset, was then used for training the deep-
learning model.

For a multi-annotator comparison, three embryologists (A1, A2, and A3) created annota-
tions. While all annotators were included for the multi-annotator comparison, annotations
from A1 were used for all other analyses. To benchmark annotation speed, the time
required by A2 and A3 to annotate the entire dataset of 900 ETiX-embryos was recorded.
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Figure 3.3: Categorization and synchronization of ETiX-embryos. (a) Bar chart dis-
playing the percentage of ETiX-embryos identified as normal or abnormal, with error bars
representing variability across datasets (95% confidence interval). (b,c) Sequential fluo-
rescence and bright field images showcasing normal (b) and abnormal (c) ETiX-embryo
development. (d) Cumulative histogram of expert-selected (synchronized) time points for
normal ETiX-embryos. (¢) Examples illustrate that normal ETiX-embryos, despite being cul-
tivated simultaneously, displayed different developmental stages at 70 hours. (f) The same
embryos as in (e), labeled with yellow numbers in the bottom-left corner of each image,
were annotated by an expert embryologist, indicating comparable developmental stages
at different time points. Scale bars: 100 ym. Adapted from Fig. 1 and Fig. S2 in Caldarelli,
Deininger et al. [40], licensed under CC BY 4.0.
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3.2. Methods

3.2.1. Advanced-Stage Classification
StembryoNet

For deep-learning-based ETiX-embryo classification at 90 hours post-cell-seeding, Stem-
bryoNet, a novel model based on the ResNet18 [95] architecture, is introduced (Figure 3.4).
It is specifically designed to be trained on synchronized data while enabling predictions on
unsynchronized data. The model retains the five sequential convolutional layers and global
average pooling of ResNet18 but replaces the original 1,000-neuron fully connected layer
with a single-neuron layer for binary ETiX-embryo classification. Additionally, the softmax
function is replaced with a sigmoidal activation function to compute class probabilities.
ResNet was chosen for its rapid and reliable convergence in image classification [172].
Furthermore, among various deep learning architectures, ResNet exhibited the smallest
standard deviation, indicating greater stability and robustness (Figure 3.7a).

A key feature of StembryoNet is its ability to predict outcomes from unsynchronized data
by processing consecutive embryo images from the last 25 hours of development (Figure 3.4,
Table 3.1). For each time point, the model outputs a probability that the ETiX-embryo
is normal. These probabilities are concatenated across time, and the maximum value is
thresholded by 6 to derive the final classification.

Input cl
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Consecutively

Figure 3.4: StembryoNet architecture. Consecutive images from the final 25 hours (65
to 90 hours post-seeding) of each embryo development are input into StembryoNet for in-
ference. StembryoNet comprises five convolutional layers, followed by a global average
pooling (GAP) layer, a fully connected (FC) layer, and a sigmoidal activation function (S).
The model predicts the probability of the normal class at each time point. These probabil-
ities are concatenated, and the maximum probability is thresholded by a parameter 8 to
determine the class. Adapted from Fig. 2 in Caldarelli, Deininger et al. [40], licensed under
CC BY 4.0, with modified layout and colors.

The StembryoNet backbone was trained on synchronized data, where an expert embry-
ologist annotated the time point of similar development for each embryo (Figure 3.3e.f,
Table 3.1). Training was performed on these synchronized time points for 200 epochs with
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a batch size of 16, using the Adam optimizer (learning rate = 0.001, f; = 0.9, 2 = 0.999,
weight decay = 0.0001) and a binary cross-entropy loss weighted by inverse class frequen-
cies. On-the-fly image augmentations comprised random rotation (0 — 360 degrees) and
color jittering (using PyTorch’s Color]Jitter), which involved adjusting the saturation (factor
= 0.1) and contrast (factor = 0.1). The images were normalized according to ImageNet
default normalization. Model training was implemented with PyTorch Lightning (version
2.0.4).

Table 3.1: Number of time points each model used for training, validation, and
testing. The 43 time points correspond to the final 25 hours of the ETiX-embryo video
sequences, which span a total of 90 hours. For unsynchronized data, the single time point
corresponds to the 90-hour mark, while for synchronized data, it corresponds to the syn-
chronized time point. * Based on synchronized data; T For model selection; ¥ For determi-
nation of best threshold (). If there is no indicator, the model uses unsynchronized data.
ResNeXt, MobileNet, GoogleNet, and DenseNet were configured identically to ResNet.

Model Training Validation Testing
ResNet 1 1 1
MViT 43 43 43
StembryoNet 1* 1%, 43% 43

The threshold 0 is chosen to maximize the F1-score on the unsynchronized valida-
tion set (Table 3.1, Algorithm 1), balancing the trade-off between precision and recall for
identifying normal embryos. To compute 0, the maximum probability over the final 25
hours is extracted from the StembryoNet backbone for each embryo in the validation set
(max_predictions). The unique values in max_predictions serve as candidate thresholds.
For each of these candidate thresholds, binary predictions (binary_predictions) are gener-
ated by classifying embryos as normal (1) or abnormal (0), depending on whether their
maximum probability exceeds the threshold. The F1-score is then calculated using the
ground truth labels and the corresponding binary_predictions. The final threshold 0 is
defined as the candidate threshold that yields the highest F1-score.

To compare with StembryoNet, several models were trained using the same training
procedure as the StembryoNet backbone. These included ResNet18, MobileNet [94],
ResNeXt [98], GoogleNet [97], and DenseNet [96], all trained on images captured at 90
hours.

For additional validation, StembryoNet’s accuracy and efficiency were compared against
three embryologists (A1, A2, and A3). StembryoNet was trained separately using each
embryologist’s annotation. The corresponding models are referred to as StembryoNeta;
(SNa1), StembryoNeta, (SNa2), and StembryoNetas (SNa3). In this multi-annotator com-
parison, A1-A3 were included, while annotations from A1 were used for all other analyses,
and StembryoNet refers to the model trained on A1’s labels. To benchmark annotation
speed, the time required by StembryoNet to predict labels for the entire dataset of 900
ETiX-embryos across five repeated 5-fold cross-validation runs was measured, using an
NVIDIA A100-40 GPU.
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Algorithm 1 Get optimal threshold (6)

Input: max_predictions // Maximum StembryoNet backbone prediction over the final 25 hours for each embryo

targets // Ground truth labels
Output: 0
Initialize 6 < None
Initialize Flpeg < 0
thresholds « Unique(max_predictions)
for each threshold € thresholds do
binary_predictions <« (max_predictions > threshold)
Flyrrent < F1_SCORE(targets, binary_predictions)
if Fleurrent > Flpes then
Flpess <= Fleurrent
0 « threshold
end if
end for
Return 0

Multiscale Vision Transformer

For the Multiscale Vision Transformer (MViT) [102], the MViT-B architecture pretrained
on Kinetics-400 was used, with a frame length of 16 and a sample rate of 4. Training was
performed on ETiX-embryo videos spanning 65-90 hours (Table 3.1) for 20 epochs, using
a batch size of 1 and the Adam optimizer (f; = 0.9, > = 0.999, weight decay = 0.0001).
The PyTorch automatic learning rate finder was applied before each training to determine
an optimal initial learning rate. To effectively utilize the pretrained weights, 16 frames
were uniformly sampled from the 65-90 hour time window for both training and testing.
MVIT training was conducted using PyTorch Lightning (version 2.0.4) and PyTorchVideo
(version 0.1.5).

Self-supervised Learning

To explore the potential of self-supervised learning for ETiX-embryo classification, a
DINO [116] model was trained on fluorescence images using the ViT},se architecture for
200 epochs with a batch size of 32. Default parameter values from the DINO GitHub
repository [116] were used for all remaining settings. For hierarchical clustering of DINO
embeddings, average linkage clustering based on Euclidean distance was applied. To assess
the effects of random hierarchical clustering, ETiX-embryo labels were shuffled, providing
a baseline comparison for evaluating DINO clustering performance. For ETiX-embryo
classification using DINO embeddings, XGBoost was trained for downstream classification
on embeddings from the 65-90 hour time period. Model training and evaluation were
performed using five times repeated 5-fold cross-validation, with class weights adjusted
based on inverse class frequencies in scikit-learn (version 0.24.2). All other parameters
followed the default settings in scikit-learn.
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Attention Maps

To generate attention heatmaps, Gradient-weighted Class Activation Mapping (Grad-
CAM) [128] was applied. Heatmaps were generated for StembryoNet at the time point
with the highest probability of the embryo being classified as normal. The last feature
extraction layer was used as the model’s target layer, and the ETiX-embryo ground truth
label was backpropagated.

Random Classifier

To benchmark against the models, a random classifier was simulated by sampling values
from a uniform distribution between -5 and 5, followed by a sigmoidal transformation to
obtain predicted probabilities for each embryo in the test set. This random classifier was
evaluated using twenty times repeated 5-fold cross-validation.

3.2.2. Early-Stage Classification

For Al-based early-stage classification, two types of models, ResNet18 and a Support
Vector Machine (SVM), were trained using both brightfield and fluorescence images. Since
the goal was to forecast whether an ETiX-embryo would develop normally by 90 hours,
embryologist annotations at that time point were used as target labels (Figure 3.5a). To
evaluate model accuracy and determine key classification features over time, models were
trained at 5-hour intervals from 0 to 90 hours, generating 19 distinct model sets (Fig-
ure 3.5a). While the ResNet models (ResNetgr, ResNetry,o,) were trained directly on the
image data, the SVMs (SVMgg, SVMpyor) Were trained on features extracted from these
images (Figure 3.5b).

ResNet

ResNetgr and ResNetpp,or Were trained with the same number of epochs, batch size, opti-
mizer, loss, and image augmentation as the StembryoNet backbone, but on unsynchronized
data.

SVM

SVMgr and SVMpyyor used a linear kernel for simplicity and interpretability of feature
weights. Using a polynomial kernel resulted in overfitting, with the model predicting only
the majority class, thus offering no performance improvement. As with ResNet, the SVM
was trained and evaluated using five times repeated 5-fold cross-validation, stratified by
ETiX-embryo class, with class weights adjusted based on inverse class frequencies. Z-score
normalization was applied to the input data. To derive predictions, the SVM values from
SVC.decision_function() were thresholded using a sigmoidal activation function, yielding
better results compared to SVC.predict_proba().
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Figure 3.5: Annotations, model training, and model input for prediction of future
normal ETiX-embryo development. (a) Diagram illustrating the approach to predicting
future developmental outcomes of ETiX-embryos and identifying key classification features
over time. Embryologist annotations from advanced-stage classification at 90 hours served
as target labels. Models were trained at 5-hour intervals from 0 to 90 hours, using 5x5-fold
CV for each interval. (b) ResNet and Support Vector Machine (SVM) models were trained
on various types of images and features. ResNet models included ResNetgr and ResNetpyyor,
trained on brightfield and fluorescence images, respectively. SVM models were based on
inferred ETiX-embryo characteristics, namely fluorescent intensity for SVMgyor and shape
features extracted from brightfield ETiX-embryo segmentations for SVMgp. Adapted from
Fig. 3 in Caldarelli, Deininger et al. [40], licensed under CC BY 4.0, with modified layout.

For interpretability of feature weights, a SVMgp. pluor model was trained on brightfield
and fluorescence features. Feature importance was determined using SVMgp.plyor coeffi-
cients (referred to as weights), with absolute coefficient values used to quantify feature
influence. SVM training and evaluation were conducted using scikit-learn (version 0.24.2).

The input to SVMgr consisted of ETiX-embryo shape features extracted from bright-
field segmentations (Figure 3.5b). Brightfield segmentation was performed using a Seg-
Former [111] model, trained on 450 selected brightfield images, which were sampled
every 20 time points from 60 randomly selected ETiX-embryos and manually anno-
tated. The training was conducted using the mmsegmentation GitHub repository [184]
(version 0.30.0) with the following parameters: MiT-B0 architecture, pre-trained on
ADE20k, a combination of Dice Loss and Cross Entropy Loss (weighted 10:1), AdamW
(learning rate = 1 x 104, f; = 0.9, B; = 0.999, weight decay = 1 x 10!), 1,000 training
iterations. On-the-fly image augmentations included two steps: random flip (p=0.5) and
z-score normalization (Equation 2.10). An 80%-20% split was used for training and testing,
ensuring that images from the same ETiX-embryo were not present in both sets to pre-
vent information leakage. The trained model was then used to infer segmentations for
the complete dataset. Binary holes in the resulting segmentations were filled using the
binary_fill_holes function from scikit-learn (version 0.24.2). In 0.2% of cases, no embryo
was detected, primarily at early time points when individual cells had not yet formed
compacted tissue. For these cases, missing values were imputed using the mean feature
value at the corresponding time point. To quantify ETiX-embryo morphology and shape,
PyRadiomics [114] (version 3.1.0) was used to extract the following 2D features: Elongation,
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Major Axis Length, Maximum Diameter, Mesh Surface, Minor Axis Length, Perimeter,
Perimeter Surface Ratio, Pixel Surface, and Sphericity.

For SVMgyor, three fluorescence intensity values were used as input, corresponding
to the sum of fluorescence intensities in the fluorescence in-focus image for each chan-
nel (Figure 3.5b).

Cell Counting

To count ESC, ESC-iGata4, and TSC cells for each ETiX-embryo at the cell-seeding time
point, the cyto3 model from the Python package CellPose [109] was applied, using a cell
pixel diameter of 7 on the corresponding fluorescence channel of the in-focus images.
Each channel, representing a specific cell type, was processed separately for prediction.
Following automated detection, the cell counts were manually reviewed and corrected by
an embryologist.

3.2.3. Model Evaluation

Model performance was assessed using Accuracy and F1-score (F1). Training and eval-
uation were conducted using five times repeated 5-fold cross-validation, stratified by
ETiX-embryo class (Figure 1.2). For each split, 75% of the training set was allocated for
model training, while the remaining 25% was reserved for validation.

3.2.4. Morphological Trajectory

Morphological trajectory analysis was performed for both normal and abnormal ETiX-
embryos. The analysis began with principal component analysis (PCA) on the nine
PyRadiomics-calculated, z-score normalized (Equation 2.10) ETiX-embryo shape features,
computed from 0 to 90 hours in steps of 5 hours, as previously described. A joint PCA was
applied to project all embryos into a common low-dimensional space.

Morphological trajectory analysis was performed using a Python implementation [224]
of the Slingshot algorithm [225]. Slingshot first constructs a minimum spanning tree
among 19 clusters, each representing samples from distinct time points from 0 to 90 hours
at 5-hour intervals, thereby establishing the global lineage structure. Using this structure,
Slingshot fits a smooth principal curve through the PCA space, starting from the 0-hour
cluster, which serves as the root. Pseudotime values are then computed by projecting
each sample onto the fitted curve, yielding a continuous, one-dimensional measure of
developmental progression along the trajectory. Two fitting epochs were used to ensure
convergence of the principal curves. Trajectories were inferred separately for normal and
abnormal ETiX-embryos to enable class-specific interpretation of developmental dynamics.

3.2.5. Improving Cultivation Efficiency

To determine the number of predicted normal and abnormal ETiX-embryos in datasets
with increased initial cell counts—Data,x (twofold) and Datasy (threefold)—predictions
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from 25 StembryoNet models trained using five times repeated 5-fold cross-validation were
applied to ETiX-embryos from Datasx and Datasx at 35 to 64 hours. Given the accelerated
development of ETiX-embryos in Datasx and Datasy (Figure 3.6), 64 hours was selected as
the final time point for evaluation of these datasets.
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Figure 3.6: ETiX-embryo growth for Data,x, Datasx, and Datasx. Higher initial cell
numbers accelerate embryo growth. Error bars represent 95% confidence intervals across
normal ETiX-embryos: 1X, n = 206; 2X, n = 85;3X, n = 173. Adapted from Fig. S5 in
Caldarelli, Deininger et al. [40], licensed under CC BY 4.0, with modified layout.

3.2.6. Analyzing Development of Individual ETiX-Embryos

To analyze ETiX-embryo development, model-predicted probabilities for the normal class
were tracked for individual ETiX-embryos throughout the observation period. Therefore, a
ResNet18 was trained using five times 5-fold cross-validation on images from every 5 hours.
For quantification, ETiX-embryos were categorized into four groups: 1) continuously
normal, 2) abnormal to normal, 3) continuously abnormal, and 4) normal to abnormal.
Categorization was based on the predicted probabilities at 0 hours and 90 hours, combined
with the slope of a fitted linear regression across all time points (Table 3.2).

Since model-predicted probabilities were observed to fluctuate for some ETiX-embryos,
the slope of the linear regression was incorporated into the classification criteria to ensure
more robust categorization. ETiX-embryos that did not meet any of the defined criteria in
Table 3.2, due to ambiguous or more complex trajectories, were placed into an Other class to
avoid making inaccurate statements about uncertain or more complex cases (Figure A.13).
In total, 23.3% of the ETiX-embryos were assigned to the Other class, while the remaining
embryos were assigned to the four defined categories. Qualitative evaluation of embryos
assigned to the Other class suggested that these represented ambiguous cases that were
also difficult to evaluate for an expert embryologist, especially given the high general
variability observed in ETiX-embryo development. Further expanding the dataset may
either help to reduce fluctuations in prediction trajectories and increase overall model
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certainty or uncover subtle, transient morphological patterns underlying these more
complex dynamics.

Table 3.2: Criteria for ETiX-embryo categorization (Data;x).
ETiX-embryo category P(Normal) at 0 hours P(Normal) at 90 hours Regression slope

Continuously normal > 0.5 > 0.5 >0
Abnormal to normal <0.5 >0.5 >0
Continuously abnormal <0.5 <05 <0
Normal to abnormal >0.5 <0.5 <0

To categorize Datayx and Datasy (Figure 3.15d), the same ResNet models trained on
Data;x were applied, using 5-hour intervals from 0 to 90 hours. Due to the accelerated
development of ETiX-embryos in Datayx and Datasy, prediction time points were adjusted
to correspond to equivalent embryo sizes, ensuring comparability (Table 3.3, Figure 3.6).

Table 3.3: Time points used for Data,x and Datasx categorization. Time points for
Data,x and Datasx were aligned based on corresponding developmental stages determined
by an embryologist. The first four time points are identical, as phenotypes are compara-
ble, for example, at 0 hours, all embryos consist of single cells undergoing aggregation, a
process that continues over the initial time points. Later, development accelerates, as also
reflected in ETiX-embryo growth (Figure 3.6). The later time points were selected by an

expert embryologist, guided by both similar embryo size and developmental stage.
Hour

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 &5
0 5 10 15 15 20 25 29 35 41 42 44 50 52 55 57 59 61

Training (Data;x)
Prediction (Datayyx/Datasy)

3.3. Results

3.3.1. Advanced-Stage Classification
Comparative Analysis

StembryoNet was compared to the state-of-the-art deep learning models ResNet18, ResNeXt,
MobileNet, GoogleNet, and DenseNet, all trained on ETiX-embryo images captured at 90
hours, as well as a Multiscale Vision Transformer (MViT) trained on videos of ETiX-embryo
development from 65 to 90 hours. To ensure an unbiased performance estimate, five times
repeated 5-fold cross-validation was applied (Figure 1.2). Detailed information on model
training and evaluation is provided in Section 3.2.

While a baseline random classifier achieved an accuracy of 50% (F1-score = 31%), Stem-
bryoNet, ResNet, and MViT all exceeded this baseline (Figure 3.7a). Notably, StembryoNet
achieved a mean accuracy of 88% (F1 = 77%), outperforming ResNet (80% accuracy, F1 =
67%) and MViT (81% accuracy, F1 = 68%). The confusion matrix for StembryoNet indicates
a recall of 83% for normal ETiX-embryos at a precision of 71% (Figure 3.7b). In comparison,
ResNet yielded more false positives, resulting in a recall of 87% and a precision of 55%
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for normal ETiX-embryos (Figure 3.7b). StembryoNet consistently outperformed not only
ResNet and MViT but also other advanced deep learning models, demonstrating significant
superiority across comparisons (Figure 3.7a). All models were trained on fluorescence
in-focus images, as adding the brightfield channel did not enhance performance, and
fluorescence in-focus images showed a superior outcome compared to fluorescence z-sum
projection images (Figure 3.7c).

Testing StembryoNet on synchronized data (pre-selected time points) did not improve
performance, indicating that StembryoNet eliminates the need for human intervention
in selecting time points (Figure 3.7d). To determine whether training on synchronized
data explains StembryoNet’s superior performance compared to ResNet, its accuracy was
evaluated on ETiX-embryos at 90 hours, achieving 79% accuracy (Figure 3.7d). These results
suggest that the performance difference is not solely attributed to training on synchronized
data but rather to StembryoNet’s ability to fuse model predictions on unsynchronized
data.

Fully supervised methods like StembryoNet rely on labor-intensive human annotations,
which makes self-supervised, annotation-free deep learning approaches an appealing
alternative. DINO, a recent self-supervised deep learning method, trains vision trans-
formers to learn meaningful visual representations without labeled data. Although DINO
performed inferiorly to StembryoNet, it was able to cluster normal and abnormal ETiX-
embryos to some extent, showcasing the potential of annotation-free approaches for the
future (Figure A.10).

The StembryoNet approach employs a straightforward classification method by selecting
the maximum prediction from a time course and applying simple thresholding. In contrast,
long short-term memory (LSTM) networks provide a more advanced deep learning strategy
for time-series classification. To leverage temporal information, the StembryoNet backbone,
which was trained on synchronized data, was used to generate raw predictions across the
final 25 hours of ETiX-embryo development, which then served as input for the LSTM. The
results showed that the LSTM significantly outperformed the ResNet, but StembryoNet
significantly outperformed the LSTM (Figure A.11). This highlights the feasibility and
effectiveness of the StembryoNet approach.

StembryoNet Cross-Testing

Model cross-testing provides valuable insights into model robustness and potential data
biases. Training and testing StembryoNet on the entire dataset using repeated cross-
validation resulted in the second-highest accuracy and the highest F1-score compared to
using one dataset as a holdout test set (Table 3.4). This outcome is expected, as larger
training sets typically improve performance. However, test performance varied across the
three holdout datasets, with the model tested on dataset B exhibiting the most pronounced
drop, a 0.09 decrease in F1-score compared to the best holdout test performance. This
suggests underlying differences between the datasets, potentially due to variations in stem
cell model cultivation or imaging conditions, which could impact feature extraction and
classification accuracy.
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Figure 3.7: Al-based ETiX-embryo classification at advanced stages of development.
(a) Performance comparison of StembryoNet to different classifiers that are trained on
single-time points (ResNet, MobileNet, ResNeXt, GoogleNet, DenseNet) and multiple-time
points: MViT, over five times repeated 5-fold cross validation (CV). (b) Confusion matrices
of random classifier, ResNet, MViT, and StembryoNet averaged across 5x5-fold CV. (c) Com-
parison of StembryoNet classification performance using brightfield in-focus images, fluo-
rescence z-sum projected images, combined brightfield and fluorescence in-focus images,
and only fluorescence in-focus images. (d) Classification performance for 1) ResNet and 2)
StembryoNet as described in the main text, 3) StembryoNetyg, trained on synchronized
data and tested on images from 90-hours, and 4) StembryoNet tested on synchronized data,
i.e., at the expert-selected time point. *p<0.05,
Welch’s t-test. Adapted from Fig. 2 and Fig. S3 in Caldarelli, Deininger et al. [40], licensed
under CC BY 4.0, with modified content and layout.
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Table 3.4: StembryoNet cross-testing. Datasets A, B, and C represent the three recorded
datasets used in this study. The performance of StembryoNet on A U B U C is based on
five times repeated 5-fold cross-validation, as reported previously. The remaining results
are obtained by training StembryoNet on two datasets while using the third as a holdout
test set, with performance variability assessed through five random 75% training — 25%
validation splits within the training data. Accuracy and F1-score are reported as mean + SD.

Datar,in Datayest Accuracy F1-score

AUBUC AUBUC 088+0.02 0.77+0.03
BuC A 0.84 +£0.04 0.76 £0.04
AUC B 0.84 £ 0.02 0.67 +£0.08
AUB C 0.89 +0.03 0.72+0.03

StembryoNet Explainability

To biologically contextualize StembryoNet’s predictions, Grad-CAM heatmaps were used
to visualize the model’s focus areas on both normal and abnormal ETiX-embryos (Fig-
ure 3.8a,b). For normal ETiX-embryos, the model predominantly focused on the regions
where the ESC-iGata4-derived tissue encircles the ESC-derived tissue (Figure 3.8a). This is
also the region considered by embryologists to assess successful development. Conversely,
for abnormal ETiX-embryos, the model’s attention varied, focusing on disparate image
parts (Figure 3.8b). This is comprehensible as abnormal development can manifest in vari-
ous ways, such as a lack of cavitation, incorrect compartment formation, mispositioned
compartments, or a combination of these factors.

In comparison to the LSTM-based approach, StembryoNet offers greater explainability
through interpretation of the time points of maximum probability for the normal class.
These time points showed strong correlations with the embryologist’s synchronized time
points (Figure A.12). This alignment indicates that StembryoNet predictions closely corre-
spond to expert annotations of similar developmental time points, enhancing confidence
in the model’s reliability and interpretability.

Comparison Across Multiple Annotators

To evaluate StembryoNet’s performance in terms of both accuracy and speed, it was
compared to three embryologists. The results show that, when using two of the three
embryologists as the ground truth, StembryoNet slightly outperformed the least accurate
embryologist (Figure 3.9a,b). For the third embryologist, StembryoNet’s performance is
slightly lower than that of the least accurate embryologist (Figure 3.9¢c). In terms of speed,
StembryoNet is 18 times faster than the embryologists (Figure 3.9d). Overall, these findings
suggest that StembryoNet achieves accuracy comparable to that of human experts but
with a substantial speed advantage, highlighting its practical utility for high-throughput
applications.

In conclusion, StembryoNet significantly enhances the ability to classify ETiX-embryos
at advanced developmental stages, achieving superior accuracy and precision compared to
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state-of-the-art deep learning models. By closely aligning with embryologist perceptions
and providing biological insights, StembryoNet represents a robust tool for the analysis of
ETiX-embryo development.

3.3.2. Early-Stage Classification

Deep-learning-based classification of normal and abnormal ETiX-embryos at 90 hours
post-cell-seeding can improve the reproducibility of ETiX-embryo selection across labora-
tories. To advance this approach and gain deeper insights into the self-organization of
normal ETiX-embryogenesis, two key objectives were pursued: (i) predicting ETiX-embryo
development outcomes at earlier stages and (ii) identifying the features most predictive of
successful development.

StembryoNet was not used for this task, as it is specifically designed for classification
at later developmental stages, where ETiX-embryo synchronization, aligning time points
based on comparable developmental stages, is feasible. A key strength of StembryoNet
lies in its training on synchronized data. However, expert-based synchronization at ear-
lier time points was not possible due to the lack of well-defined developmental criteria
and the high variability observed during early development. To address this, three ap-
proaches were tested to transfer the synchronized time points from the advanced-stage
classification task to the early-stage setting at 50 hours and train a StembryoNet model
on it. The first approach involved a direct shift of the time window of the synchronized
time points (65-90 h — 25-50 h, StembryoNet,). The other two approaches additionally
involved time-window shrinkage, linearly mapping 65-90 h to 35-50 h (StembryoNetg)
or to 45-50 h (StembryoNetc). These strategies assumed that embryos exhibit less tem-
poral desynchronization during earlier stages. However, all StembryoNet models did not
improve results compared to a baseline model trained solely on unsynchronized single-
time-point data (Table A.3). Consequently, the final approach was to proceed with training
on unsynchronized single-time-point data rather than applying StembryoNet.

Two types of models were applied to both brightfield and fluorescence images: ResNet18
and Support Vector Machine (SVM), resulting in four model variations: ResNetgg, ResNetgyyor,
SVMgg, and SVMgyyo, (Figure 3.5b). While ResNet models were trained directly on images,
SVM models were trained on pre-extracted ETiX-embryo image features. Compared to
the deep-learning-based ResNet18, SVM models provide greater explainability, as their
manually defined features can be analyzed for importance. The performance gap between
ResNet18 and SVM highlights the advantages of deep-learning-derived features over man-
ually extracted ones. To ensure unbiased performance estimates, five times repeated 5-fold
cross-validation was applied.

At the cell-seeding stage (t0), both SVMgy,or and ResNetpyy,or significantly outperformed
a baseline random classifier (Figure 3.10a). ResNetgy,or achieved an accuracy of 65% (F1
= 43%), while SVMgy,or performed comparably by achieving an accuracy of 64% (F1 =
42%). SVMFpor feature weights indicated that the red (ESCs) and green (ESCs-iGata4)
channels were most predictive (Figure 3.10b). In contrast, SVMgr performed significantly
worse than random, and ResNetgr showed no improvement over random (Figure 3.10a),
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highlighting the critical role of fluorescence information — i.e., the fluorescent labeling of
ESC, ESC-iGata4, and TSC cells — in early-stage predictions.
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Figure 3.10: Al-based prediction of future normal ETiX-embryo development.

(a) Classification performance of ResNetgr, ResNetppyor, SVMpr, and SVMpyyor at the time
of seeding (t0). (b) Absolute feature weights of different channels of the SVMgy,o, model
at the time of seeding (t0). (c) Classification performance of all models along complete
ETiX-embryo observation time, from 0 to 90 hours. (d) Absolute SVM feature weights of
SVMgF.Fluor model throughout observation time. The feature importance of brightfield
features was averaged. (c, d) Error bars represent 95% confidence intervals across 5x5-fold
CV (n = 25). *™**p<0.0001, ns: not significant, two-sided Welch’s t-test. Adapted from Fig.
3 in Caldarelli, Deininger et al. [40], licensed under CC BY 4.0, with modified layout and
colors.

As development progressed, classification accuracy improved compared to the cell-
seeding stage (Figure 3.10c). ResNetgy,o, consistently outperformed SVMgpr, SVMEyor, and
ResNetgp, particularly during later stages (i.e., 60 to 90 hours, Figure 3.10c). Over time, flu-
orescence sum values decreased in importance while ETiX-embryo shape features gained
relevance (Figure 3.10d). In particular, ETiX-embryos with normal development followed
a clear morphological trajectory (Figure 3.11b-e), displaying a higher perimeter and a
lower PerimeterSurfaceRatio, indicative of a more compact shape, as opposed to the more
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fragmented appearance of abnormal ETiX-embryos likely due to tissue mispositioning (Fig-
ure 3.11a). Trajectory analysis was conducted using the Slingshot method [225], where
ETiX-embryos from different time points (0 to 90 hours in 5-hour intervals) were clustered
and ordered based on morphological similarity. The trajectory was inferred using nine
ETiX-embryo shape features extracted from brightfield segmentations, starting from the
initial time point (0 hours). The analysis also captured radial symmetry breaking around
65 hours, where normal ETiX-embryos, initially spherical with radial symmetry, began to
elongate, while abnormal ones maintained similar sphericity (Figure 3.11a).

In summary, deep-learning approaches can predict ETiX-embryo success from the cell-
seeding stage, with fluorescence data as the key predictor. As development progresses,
prediction accuracy increases, and morphological features gain predictive importance.

3.3.3. Analyzing Development of Individual ETiX-Embryos

To assess individual ETiX-embryos and evaluate their developmental trajectories, distinct
developmental patterns were identified: continuously normal, abnormal transitioning to
normal, continuously abnormal, and initially normal-looking embryos that later exhibited
abnormalities as development progressed (Figure 3.12a-d). For instance, one ETiX-embryo
initially showed abnormal development and apparent lineage allocation failure but even-
tually readjusted after 35 hours post-cell-seeding, exhibiting a 20-hour delay compared to
a normal embryo (Figure 3.12b,e). Another ETiX-embryo, which transitioned from normal
to abnormal development, initially resembled a normal ETiX-embryo before deviating at
around 35 hours post-cell-seeding, likely due to a failure in tissue sorting (Figure 3.12d,e).

This classification revealed a spectrum of developmental outcomes, ranked from most to
least frequent: continuously abnormal, initially normal then becoming abnormal, continu-
ously normal, and initially abnormal then turning normal (Figure 3.12f). This categorization
provides deeper insight into ETiX-embryogenesis dynamics and highlights the necessity
of tracking individual ETiX-embryo trajectories over time, rather than assuming that
successful development is established early and maintained throughout the observation
period.
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Figure 3.11: Morphology and morphogenetic trajectories of ETiX-embryos. (a) Nine
ETiX-embryo shape features, based on brightfield ETiX-embryo segmentations, during de-
velopment, from 0 to 90 hours in steps of 5 hours for all 900 ETiX-embryos. (b, d) Common
Principal Component Analysis (PCA) of shape features for normal (b) and abnormal (d)
embryos during the same time interval as in (a). The PCA was conducted on the combined
dataset of normal and abnormal ETiX-embryos. The first two principal components (PC1
and PC2) explain 85.7% of the total variance. (c, €) Morphological trajectories of normal (c)
and abnormal (e) embryos with associated pseudotime (Section 3.2.4). Error bars represent
95% confidence interval across abnormal (n = 694) and normal (n = 206) ETiX-embryos.
Adapted from Fig. S6 in Caldarelli, Deininger et al. [40], licensed under CC BY 4.0, with

modified colors.
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tion period. For this application, ResNetp,or was trained on unsynchronized data at distinct
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as at the moment of the switch. For (a), the same time point as in (b) is shown, and for (c),
the same as in (d). (f) The proportion of embryos in different categories based on ResNet-
predicted probabilities throughout the observation period. Scale bar: 100 ym. Error bars
represent 95% confidence intervals across 5x5-fold CV in which the respective ETiX-embryo
was part of the test set (n = 5). Adapted from Fig. 4 in Caldarelli, Deininger et al. [40], li-
censed under CC BY 4.0, with modified colors.
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3.4. Pipeline Automation

The developed deep learning models for advanced- and early-stage classification of ETiX-
embryos provide an automated approach to selecting embryos with normal development.
However, for the main results, ETiX-embryo segmentation was performed manually
to allow greater flexibility in selecting embryos, particularly at advanced stages where
overlapping embryos posed a challenge. In this work, a workflow for automated ETiX-
embryo segmentation, Al-based classification, and prediction integration into the Zeiss
imaging software was implemented. This fully automated workflow is implemented and
publicly available on GitHub at https://github.com/deiluca/resnet_inference_zeiss.

First, the brightfield mosaic image at the corresponding time point (| Xinos| X | Ymos| X |Z])
undergoes a maximum intensity projection along the z-axis to generate a 2D image (| Xpos| ¥
| Yimos!|)- Next, individual tiles from the 5 X 5 mosaic image are extracted (Figure 3.13a).
Tile-level segmentation is then performed using the Segment Anything Model (SAM [112],
Figure 3.13b). The tile-level segmentations are subsequently combined into a single
image (Figure 3.13c). Tiles are merged based on their original grid positions, and touching
objects at tile boundaries are consolidated into single objects (Figure 3.13d). To ensure
accurate segmentation, objects at the outer edges of the imaging area are excluded as they
might be incomplete (Figure 3.13d). Using the resulting mask, individual 5D ETiX-embryo
samples are extracted by applying embryo-wise masking and five iterations of binary
dilation to account for segmentation inaccuracies. A deep learning model is then employed
to classify each ETiX-embryo as either normal or abnormal (Figure 3.13e).

Based on these segmentations and predictions, corresponding regions are identified
and re-imported into the Zeiss imaging software for experimental use (Figure 3.13f). This
enables seamless integration into experimental workflows and supports the early selection
of ETiX-embryos with Al-assisted guidance.

a b C

Tile extraction Tile-level

Correction Al prediction Import into
R 55 D0 15 segmentation

Zeiss software
Rk LDE.

_’?"" - g

Figure 3.13: Pipeline for automated ETiX-embryo segmentation, Al prediction, and
prediction import into Zeiss software. (a) Individual tiles are first extracted from the
original 5 X 5 mosaic images. (b) Segmentation is then performed on each tile using the
Segment Anything Model (SAM) [112]. (c) The segmented tiles are merged back into the
original 5 X 5 mosaic grid. (d) Touching objects at tile borders are consolidated into single ob-
jects, and label enumeration is updated. (e) The StembryoNet model is then used to classify
each ETiX-embryo as either normally or abnormally developed. (f) Finally, the locations of
normally developed embryos are imported back into the Zeiss software, visualized as red
circles on the original mosaic image. (b-d) Each detected ETiX-embryo is assigned a unique
color.
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3.5. Protocol Optimization

3.5.1. Overlapping ETiX-Embryos

Automated segmentation achieves high accuracy for intermediate to advanced stages
of ETiX-embryo development (Figures 3.13). However, at very advanced stages, such
as 90 hours post-cell-seeding, overlapping ETiX-embryos pose challenges for segmenta-
tion (Figure 3.14). One possible approach is to segment earlier time points when embryos
are smaller and not yet in contact, followed by careful binary dilation of the masks. Al-
ternatively, segmentations at very advanced stages should be reviewed and manually
corrected.

For future studies, if very advanced stages are biologically relevant, it is advisable
to prepare wells where ETiX-embryos are positioned slightly farther apart to facilitate
automated segmentation.

SAM segmentation

Figure 3.14: Automated ETiX-embryo segmentation using SAM becomes less accu-
rate at later stages due to overlapping embryos. Brightfield image at 90 hours post-cell-
seeding alongside the corresponding Segment Anything Model (SAM) segmentation. Each
detected ETiX-embryo is assigned a unique color; touching objects with the same color
indicates that they were mistakenly identified as a single embryo. Two such segmentation
errors are highlighted with gray arrows.

3.5.2. Improving Cultivation Efficiency

Inherently, the channel-wise fluorescence sum (Figure 3.5b) is an estimate of the initial
cell number and emerged as a distinguishing feature of ETiX-embryos with normal and
abnormal future development. The protocol aims for each ETiX-embryo to contain, on
average, five ESCs, five ESCs-iGata4, and sixteen TSCs at the initial cell-seeding stage.
However, achieving these exact cell numbers during seeding is challenging due to the
stochastic nature of cell distribution in each well, intrinsic to the experimental protocol.
This variability could explain the differences in cell counts observed between normal and
abnormal ETiX-embryos. Indeed, at the time of seeding (t0), an SVM model trained on the
initial number of ESC, ESC-iGata4, and TSC cells (SV M_ejicount) performed comparably to
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ResNetppyor (Figure 3.15a), indicating that the initial number of cells serves as a predictor
for successful development. Analysis of cell counts showed that, on average, abnormal
embryos had significantly fewer ESC cells (normal: 6.7 + 2.9, abnormal: 4.5 + 2.5, mean +
SD) and ESC-iGata4 cells (normal: 6.0 + 2.7, abnormal: 4.1 + 2.3, mean + SD, Figure 3.15b).

To investigate this further, additional datasets were generated by doubling (Data,x)
and tripling (Datasx) the initial cell numbers for all three cell types. This approach was
taken to explore whether increasing the overall cell count could mitigate the variability
during seeding and ensure that each ETiX-embryo receives the necessary complement
of cells for normal development. By uniformly increasing the numbers of all three cell
types, the likelihood of each embryo acquiring a sufficient number of cells was expected
to improve, thereby increasing the proportion of embryos developing normally. For this
purpose, StembryoNet was utilized to predict the proportion of normal and abnormal
ETiX-embryos for Datayx and Datasx.

The results confirmed this hypothesis, showing a higher proportion of normal ETiX-
embryos as the initial cell counts increased, with Data;x, Data,x, and Datasx exhibiting
normal ETiX-embryos proportions of 23%, 32%, and 60%, respectively (Figure 3.15c). This
suggests that increasing the initial number of cells across all lineages may enhance devel-
opmental outcomes by ensuring that each ETiX-embryo receives the minimum necessary
amount of each cell type. Additionally, deep-learning-based brightfield embryo segmen-
tation showed accelerated ETiX-embryo growth for Datayx and Datasy, allowing them
to reach similar developmental stages earlier than those in Data;x (Figure 3.6). This was
further supported by a negative correlation between the synchronized time points and the
number of ESC cells (r = —0.33, Figure 3.15e) and ESC-iGata4 cells (r = —0.27, Figure 3.15f)
in Data;x, underscoring the need for synchronization. Applying the categorization from
Figure 3.12 to Datayx and Datasx revealed higher proportions of normal ETiX-embryos,
further supporting the previous findings (Figure 3.15d).

3.6. Discussion

This study represents a significant advancement in the application of deep learning for
classifying and analyzing the experimental variability of stem cell-derived embryo models,
marking the first investigation of its kind in the field. StembryoNet, a novel deep-learning
model specifically designed for ETiX-embryo classification at advanced developmental
stages (90 hours post-seeding), achieved 88% accuracy (F1-score = 77%). This perfor-
mance significantly surpasses that of other state-of-the-art models, such as ResNet18 and
MVIT (p < .0001), confirming the robustness and reliability of StembryoNet in distin-
guishing between normal and abnormal embryonic forms. Notably, the simpler 2D ResNet
performed comparably to the more complex video classification model MViT. One possible
explanation is that MViT may require larger datasets to effectively identify key develop-
mental time points relevant for classifying an ETiX-embryo as normal or abnormal. Given
the moderate size of the dataset, the increased complexity of MViT did not yield superior
performance, suggesting that its advanced temporal resolution may be more beneficial
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Figure 3.15: The initial ESC and ESC-iGata4 cell count is predictive of future nor-
mal ETiX-embryo development. (a) The number of cells at seeding is a strong predictor
of subsequent normal development, consistent with predictions from ResNetgyo,. (b) Nor-
mal ETiX-embryos have significantly more ESC and ESC-iGata4 cells at seeding, as shown
by violin plots, where the horizontal lines indicate the 25th, 50th (median), and 75th per-
centiles. (c) Additional datasets with doubled (2X, n = 306) and tripled (3X, n = 276) initial
cell counts of ESC, ESC-iGata4, and TSC cells showed a substantial increase in the propor-
tion of embryos with normal development. Error bars represent 95% confidence intervals
across three datasets (1X) and predictions from 5x5-fold cross-validation StembryoNet
models (n = 25, 2X/3X). (d) Categorization of Datayx and Datasx ETiX-embryos into four
classes: continuously abnormal, normal transitioning to abnormal, abnormal transitioning
to normal, and continuously normal. (e-f) The number of ESC and ESC-iGata4 cells at seed-
ing is negatively correlated with the expert-defined synchronization time point. *p<0.05,
****p<0.0001, ns: not significant, two-sided Welch’s t-test. Adapted from Fig. S5 in Caldarelli,
Deininger et al. [40], licensed under CC BY 4.0, with modified colors.
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for larger datasets. Currently, StembryoNet is limited to classification at advanced stages,
as embryo synchronization — where an embryologist annotates the time point of similar
development — is only feasible at that stage. Synchronization at earlier time points may
enable StembryoNet to perform early classification in the future.

At the cell-seeding stage, the best-performing deep learning model achieved a classifica-
tion accuracy of 65% (F1=43%), significantly outperforming a random classifier (p < .0001).
The strong influence of fluorescence data at this stage suggests that early developmental
predictions are highly dependent on initial cell count. Increasing the number of ESC,
ESC-iGata4, and TSC cells by two- and threefold led to a higher proportion of normal
ETiX-embryos, highlighting the importance of precise cell seeding techniques. However,
larger datasets and enhanced imaging techniques—such as more frequent imaging intervals
and higher spatial resolution—may reveal subtle developmental cues in brightfield images
at the cell-seeding stage that correlate with successful outcomes.

As ETiX embryogenesis progresses, raw fluorescence data become less informative, and
morphological characteristics gain predictive importance. Normal ETiX-embryos follow
a distinct morphological trajectory, characterized by overall larger sizes, more compact
shapes in early stages (i.e., from 15 to 60 hours), and less spherical shapes post-radial
symmetry-breaking (i.e., from 65 hours onwards). During this period, ResNetgp,o, out-
performs ResNetgr. During this period, ResNetpy,o, consistently outperformed ResNetgg,
likely due to its ability to detect the formation of properly sorted tissue compartments,
whereas ResNetgr remained limited to overall ETiX-embryo shape.

Previous work focused on manually selected ETiX-embryos around four to eight days
after seeding for further molecular and cellular characterization, leaving the early stage of
self-organization relatively unexplored. The Al models, trained at distinct time points from
0 to 90 hours, enable the selection of embryos at earlier stages when human selection is
not feasible. For example, the model trained on data at 60 hours, achieving a classification
accuracy of 76%, can select ETiX-embryos at the time of radial symmetry breaking for
further analysis of this important developmental milestone. Furthermore, despite the
predictive power of the cell count at seeding for normal development, ETiX-embryos with
adequate initial cell setups can still fail at later stages, and vice versa. The deep learning
model successfully identified such anomalies (Figure 3.12). Future studies could utilize
single-cell RNA sequencing to explore the mechanisms underlying these developmental
deviations, which are central to the system’s highly self-organizing properties. Building
on this concept, the deep-learning-based automated selection of well-developed ETiX-
embryos could be integrated into microscope software, utilizing photoactivable dyes to
select normal ETiX-embryos at any stage for further characterization.

The models developed here enable accurate classification of ETiX-embryos at both
early and late stages of development. Incorporating insights from model predictions into
experimental workflows, such as optimizing initial cell seeding and using StembryoNet
to quantify protocol efficiency, has been shown to yield measurable improvements in
cultivation outcomes. Building on this foundation, future high-throughput experiments
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could systematically investigate additional protocol parameters to further increase the
consistency and quality of stem cell-derived embryo models.

To promote transparency, reproducibility, and community engagement, both the imaging
datasets and all code required to train, evaluate, and test StembryoNet and related models
have been made openly available on Zenodo (https://zenodo.org/records/14605093)
and GitHub (https://github.com/deiluca/StembryoNet).

In summary, this study not only enhances the ability to reliably classify and predict
ETiX-embryo development using deep learning but also deepens the understanding of the
developmental dynamics involved. These insights pave the way for a reliable selection of
ETiX-embryos for further research throughout the entire observation period, contributing
to the emerging field of stem cell-derived models’ embryology. Finally, the methodologies
and findings presented can be extended to all stem cell-derived embryo models, both in
mouse and human, broadening the impact of the work and opening new avenues for
research and clinical innovations.
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4. Implications for Measurement,
Automated Analysis, and Protocol
Optimization

In this work, stem cell model quantification was performed using multiple techniques,
including magnetic resonance imaging (MRI), brightfield and epifluorescence microscopy,
live imaging with confocal microscopy for brightfield and fluorescence capture, single-cell
RNA sequencing (scRNA-Seq), and imaging flow cytometry (IFC). Each modality provides
unique advantages and limitations, enabling comprehensive analysis tailored to different
aspects of stem cell characterization. To analyze these datasets, automated pipelines were
implemented to streamline data processing and support iterative protocol optimization.

Building on insights from Chapter 2 and 3, this chapter summarizes and discusses
key implications for measuring stem cell-derived models, automating the analysis, and
optimizing experimental protocols.

4.1. Measurement

4.1.1. Comparison of Data Modalities

Non-invasive measurement techniques allow continuous monitoring of stem cell-derived
models without sample sacrifice, enabling time-series data collection. MRI, brightfield
microscopy, and live imaging facilitate such non-invasive imaging (Table 4.1), whereas
immunofluorescence imaging, scRNA-Seq, and IFC require sample destruction, limiting
longitudinal studies. However, exposure to magnetic fields (MRI) or light (brightfield and
fluorescence microscopy) may affect cell integrity and influence results [226, 227]. There-
fore, while non-invasive techniques offer clear advantages, they also present limitations
that must be carefully considered.

Spatial resolution is a key factor in imaging-based analyses. Compared to brightfield and
fluorescence microscopy, MRI has 53-fold lower resolution (Table 4.1). For brain organoids,
MRI achieves an edge length of 50 voxels, whereas for smaller ETiX-embryos, it would be
reduced to only 3 voxels. Consequently, MRI is better suited for larger structures like brain
organoids, while higher-resolution modalities remain essential for smaller stem cell models.
Increasing MRI resolution requires stronger magnetic fields [228], while enhancing spatial
resolution in live imaging reduces the number of samples that can be processed in parallel.
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The time required per sample and the feasibility of parallel imaging affect both effi-
ciency and temporal resolution. MRI acquisition is 78 times slower than brightfield and
fluorescence microscopy and 111 times slower than live imaging (Table 4.1). In contrast,
live imaging enables automated time-series recording, reducing manual effort compared
to conventional microscopy. For non-automated methods, a trade-off exists between
imaging frequency and analytical value, while exposure to magnetic waves (MRI) or light
(microscopy) can impact sample integrity. In our studies, live imaging provided the highest
throughput, capturing the largest number of parallel samples in the shortest time.

Sample visibility and optical distortion can influence measurement accuracy (Table 4.1).
MRI ensures full sample visibility throughout imaging, whereas brightfield and fluorescence
microscopy sometimes capture only partial sample views (Section 2.2.4.2). Live imaging
maintained full ETiX-embryo visibility except at imaging borders or in overlapping samples
toward the movie’s end (Section 3.5.1). Brightfield imaging of brain organoids exhibited
optical distortions due to well transfers and Matrigel embedding (Table 2.2.4.1), whereas
live imaging, using a custom well throughout the observation period, eliminated such
distortions. Overall, sample visibility and distortion are determined by the chosen protocol.
From a measurement standpoint, using the same well for the entire observation period
minimizes distortion, but samples must also be spaced sufficiently far apart to prevent
overlap during later developmental stages.

Overall, MRI provides advantages in 3D volume capture but is limited by lower resolution
and longer acquisition times. Live imaging demonstrated the shortest recording time per
sample. Each data modality was tailored to the specific needs of brain organoids and
ETiX-embryos, optimizing analysis for each study. Future research should aim to apply all
modalities to the same biological samples to enable direct comparison. Recent protocols
have also begun to employ live imaging for brain organoids [44].

4.1.2. Differences Between Stem Cell Models

The investigated stem cell models differ in cultivation duration, size, and measurement
feasibility. Brain organoids require several months of growth, whereas ETiX-embryos
develop within just four days [26, 229]. Continuous live imaging of brain organoids is
impractical due to the prolonged use of high-tech equipment, which is typically shared
among research groups. Size differences further impact measurement strategies: brain
organoids can reach three to four millimeters in diameter [55], while ETiX-embryos
measure only 200 ym by day 4 [40]. This disparity affects imaging techniques like MRI,
where lower resolution becomes a limiting factor for smaller samples, reducing the ability
to extract detailed structural information.
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Table 4.1: Measurement and automated analysis features of different data modali-
ties. MRI, magnetic resonance imaging; BFM, brightfield microscopy; EFM, epifluorescence
microscopy; LI live imaging using confocal microscopy to capture both brightfield and flu-
orescence; scCRNA-Seq, single-cell RNA-Seq; IFC, imaging flow cytometry; h/d: hours/days
including sample preparation; !, T2*-w sequence; 2, 10x magnification; 3, edge length per
voxel/pixel; ¢, diameter, 4,000 ym [55]; °, major axis length, 200 um; , based on our studies,
but dependent on stem cell cultivation and imaging protocol; 7, for time-lapse recordings; &,
one image per organoid; °, due to sample thickness and marker unspecificity; 1, cell mor-
phology; 11 nhumber of cells X number of genes; 12 number of cells x XYC. v/, fulfilled; X,
not fulfilled; ~, partially fulfilled; NA, not applicable.

Measurement

Automated analysis

o
&

N -

= = z w5 g
Feature = M = = 2 =
Non-invasive v v X v X X
Resolution® 80 um | 1.5 pum 1.5 um 1.5um | NA | 0.5 um
Resolution for brain organoid* | 50 vx | 2,600 px | 2,600 px | 2,600 px | NA | NA
Resolution for ETiX-embryo® 3vx | 130px | 130px | 130px | NA | NA
Recording time per sample 13 min 10 s 10 s 7s h/d | min
Parallel recordings® 3 1 1 300 32 1
Entire samples visible v ~6 ~6 ~6 NA | NA
No optical distortion® v x! NA Ve NA | NA
Easy sample separation v V68 V68 ~6 v v
Quality control v v v v v v
3D volume v X X ~ NA | NA
2D morphology v v v v NA v
Substructure morphology X X ~6.9 e NA ~10
Cell count X X ~69 ~6 v v
Cell distribution X X ~6.9 ~ v v
Gene expression X X X X v X
Data dimensionality XYZ XY XYC XYZCT | U 12
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4.2. Automated Analysis

4.2.1. Comparison of Data Modalities

Different data modalities provide distinct analytical advantages and challenges (Table 4.1).
Before automated analysis, images must be preprocessed to isolate individual samples.
For the specific MRI protocol, rule-based extraction of single samples from three-sample
images is possible (Section 2.1.2), while brightfield and fluorescence microscopy inherently
capture one organoid per image, eliminating the need for separation. For live imaging,
sample separation was straightforward in the early stages but became challenging as
overlapping increased with growth (Section 3.5.1). These differences underscore how
cultivation and imaging protocols shape the feasibility of automated analysis.

Quality control is crucial for optimizing imaging protocols, with each modality offering
unique contributions. MRI and brightfield microscopy facilitate cysticity classification in
brain organoids, with MRI enabling local cyst segmentation (Section 2.1.4.5). Live imaging
allows distinguishing well-developed from abnormally developed ETiX-embryos (Sec-
tion 3.2.1), highlighting how different modalities address quality control aspects specific
to each stem cell model.

A major advantage of MRI is its ability to generate 3D images, enabling volume and
morphology analysis, including brain organoid and local cyst segmentation (Section 2.1).
In contrast, 2D morphology can be assessed across all imaging modalities (Section 2.2.3.3,
Figure 3.11). However, MRI’s limited spatial resolution restricts the detailed analysis of
biologically relevant substructures such as ventricles in brain organoids.

Beyond overall morphology, quantifying biologically relevant substructures is essential.
Fluorescence microscopy excels in imaging substructures, though ventricle-like structure
quantification in brain organoids remains challenging, and neuron segmentation requires
specific stains. Additionally, cell count quantification is hindered by sample thickness,
causing blurred nuclear boundaries. However, these issues were not encountered in live
imaging of ETiX-embryos in early stages, allowing accurate cell count estimation across
three cell types. scRNA-Seq and IFC further refine cellular characterization by identifying
cells based on gene expression profiles and fluorescence-based features, respectively.

Higher data complexity, such as increased temporal and spatial resolution or additional
channel information, expands analytical possibilities. For ETiX-embryo analysis, optimiz-
ing z-plane selection and identification of the most informative imaging channel enhances
downstream data analysis (Section 3.1). Although complex datasets demand greater com-
putational resources and efficient handling, especially across geographically distributed
research groups, this flexibility ultimately enhances analysis quality and insights.

4.2.2. Comparison of Classical and Deep Learning Models

Deep learning models are widely recognized as state-of-the-art for image classification
and segmentation. However, in certain cases—particularly when data is limited (e.g.,
Compactness for MRI, Section 2.1.4.1) or when features are relatively simple (e.g., SVMg1yor
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at 0 hours, Section 3.3.2)—classical methods relying on feature engineering can achieve
comparable or even superior performance. As dataset size increases and feature complexity
grows, deep learning approaches tend to surpass classical techniques, as demonstrated
in brain organoid segmentation in brightfield images (Section 2.2) and ETiX-embryo
classification (Section 3.3). These findings highlight the importance of selecting the
appropriate method based on data availability and feature complexity, ensuring optimal
model performance.

Model explainability is crucial for interpreting predictions and assessing decision-
making processes. In deep learning, explainability often relies on feature map analysis (Fig-
ures 2.15, 3.8), which provides a more abstract representation of model understanding. In
contrast, classical methods based on engineered features may offer greater transparency,
allowing insight into feature contributions. The principal component analysis applied
to morphological features can highlight clone diversity for brain organoids (Figure 2.17)
and class differences for ETiX-embryos (Figure 3.11). Additionally, support vector ma-
chines using manually defined feature sets can generate interpretable rankings of feature
importance, improving the understanding of underlying patterns (Section 3.3.2).

4.2.3. Model Customization, Sanity Checks, and Generalizability

Deep learning customization spans multiple levels, from model selection to architectural
refinement. Many published deep learning models offer varying levels of complexity, and
in many cases, adopting a publicly available model by cloning its code repository, preparing
data, and using default hyperparameters such as learning rate and image augmentation
provides a solid starting point (Section 2.1, 2.2). However, model architecture is a crucial
factor, as non-standard designs can lead to suboptimal performance (e.g., MOrgAna in
Section 2.2), while architectural modifications can substantially enhance accuracy, as
demonstrated for StembryoNet (Section 3.3.1). Model optimization is an iterative process
that involves establishing baseline performance, identifying strengths and weaknesses,
adjusting training data and hyperparameters, refining the architecture when needed, and
continuously improving through repeated experimentation.

Deep learning models may perform close to random depending on task difficulty, making
it challenging to distinguish between an incorrect model setup and a lack of meaningful
signal in the data. Sanity checks can help diagnose potential issues, such as overfitting
a model on a single training sample, where it should achieve near-perfect performance,
to confirm its learning capability. Another approach is training the same model config-
uration on a different dataset with a known, simpler task to verify model functionality,
as demonstrated for nuclei detection (Section 2.3.1). Additionally, testing multiple model
architectures on the same task can help determine whether poor performance stems from
model limitations or the inherent complexity of the classification problem, as illustrated for
early-stage prediction of future successful development of ETiX-embryos (Section 3.3.2).

Model generalizability can be assessed through cross-testing, for example, by training
on one dataset and testing on a separate dataset, rather than relying solely on cross-
validation (Tables 2.2, 2.5, 3.4). Ideally, these datasets should originate from different
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laboratories or follow distinct experimental protocols to robustly evaluate the model’s
ability to generalize across varying conditions.

4.2.4. Model Evaluation

Cross-validation is a widely used technique for model evaluation, providing robust per-
formance estimates and reducing the risk of overfitting. Leave-one-out cross-validation
is well-suited for smaller datasets, such as the MRI (Section 2.1) and epifluorescence mi-
croscopy datasets (Section 2.3.2), while 5-fold cross-validation is preferable for larger
datasets, including brightfield microscopy (Section 2.2) and live imaging (Chapter 3). Ad-
ditionally, cross-validation enables uncertainty estimation by generating ensemble models
from multiple validation splits, as demonstrated for epifluorescence ventricle segmenta-
tion (Section 2.3.2). To ensure unbiased generalization and prevent information leakage,
each biological sample should be assigned exclusively to either the training or test set,
particularly when data is collected across different labs (Section 2.2) or time points (Sec-
tion 2.1). Furthermore, stratification should be applied to control for biological biases and
confounding factors, such as clone origin (Section 2.2) or sample class (Chapter 3).

4.2.5. Differences Between Stem Cell Models

Differences between stem cell models influence the requirements for automated analysis.
While features such as size, growth, and overall morphology are generally transferable
across stem cell-derived models as demonstrated in Figure 2.17 and Figure 3.11, variations
in measurement, including well types and sample grouping, can impact in silico sample
separation (Section 3.1).

Quality assessment varies between stem cell models due to differences in structural
development and temporal dynamics. Brain organoid quality is primarily evaluated based
on cyst formation, which increases over time and leads to a gradual decline in structural
integrity. In contrast, ETiX-embryos are assessed at the end of their four-day cultivation,
with quality typically improving as structural organization progresses. Furthermore, the
random distribution of starting cells in ETiX-embryos introduces developmental vari-
ability, requiring the development of a custom deep learning model called StembryoNet,
which was trained on manually curated, time-synchronized datasets for phenotype recog-
nition (Section 3.3.1).

These differences underscore the need for tailored automated analysis pipelines that
account for stem cell model-specific characteristics, ensuring precise assessments and
biologically meaningful insights.

4.3. Protocol Optimization

Automated analysis can be used to iteratively improve stem cell model measurement,
cultivation efficiency, and reduce stem cell model variability.
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4.3.1. Improving Measurement
4.3.1.1. Brightfield Microscopy

Incomplete sample visibility hinders accurate growth monitoring of stem cell models.
By combining automated segmentation with the developed metric Edge Ratio, stem cell
models that extend beyond the imaging borders can be effectively detected and quanti-
fied (Section 2.2.4.2). A lower Edge Ratio per recorded dataset indicates higher protocol
quality, providing a reliable metric for evaluating cultivation protocols.

Optical distortion further complicates growth monitoring for complex stem cell model
cultivation protocols, particularly those involving well transfers and different embeddings.
Automated segmentation, as detailed in Section 2.2, facilitates the assessment of optical
distortion across different wells and sample embeddings. Conducting such analyses
requires systematic measurements where only one factor is varied at a time, allowing for
the evaluation of individual variables contributing to optical distortion.

4.3.1.2. Epifluorescence Microscopy

Epifluorescence microscopy of sliced brain organoids encountered several challenges,
including staining unspecificity and nuclei blurring due to overly thick slices (Section 2.3).
Addressing these issues is critical for reliable downstream analyses.

Nuclei segmentation is essential for quantifying cell counts and distributions. However,
large regional differences in segmentation performance necessitate recording z-stacks to
improve nuclei visibility and segmentation accuracy.

Ventricle segmentation in brain organoids is vital for assessing neuronal development.
Inter-model uncertainty could be leveraged for iterative protocol optimization, such as iden-
tifying the most specific immunofluorescence markers for ventricle staining (Section 2.3.2).
This iterative process enhances the precision and reliability of ventricle identification,
contributing to more robust developmental analyses.

Registration-based volumetric reconstruction of brain organoids provides comprehen-
sive insights into their three-dimensional organization. Automated analysis pipelines
could enable the systematic evaluation of protocol quality through key metrics, including
the frequency of global tissue folds, the absolute and relative areas of local tissue folds, the
occurrence of out-of-focus images, and the frequency of mirroring events. These quantita-
tive assessments deliver valuable information on protocol performance and consistency,
supporting iterative refinements in both organoid cultivation and analysis workflows.

4.3.2. Improving Cultivation Efficiency

As previously discussed, the first requirement is that the measurement process yields data
of sufficient quality, avoiding critical issues such as samples extending beyond the field
of view, which impairs interpretability. Once this is ensured, readouts from automated
analysis pipelines can guide the iterative refinement of cultivation protocols, aiming to
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increase the proportion of high-quality structures and reduce variability in stem cell-
derived models.

Cysticity represents an undesired differentiation pathway during brain organoid culti-
vation, necessitating accurate and automated measurement for quality monitoring and
protocol optimization. Automated analysis tools, detailed in Section 2.1, enable both global
cysticity classification and localization of cystic tissue. Robust global classification reliably
distinguishes cystic from non-cystic organoids, while local cyst segmentation provides
detailed insights into the spatial distribution and extent of cysts. These pipelines facilitate
iterative comparative analyses, guiding protocol refinements to reduce cyst formation,
improve organoid quality, and enable more reliable disease modeling,.

For ETiX-embryos, established cultivation protocols achieve efficiencies of 22% [26].
To improve this outcome, the deep learning models distinguished well-developed from
poorly developed samples. Initial analyses at the time of cell seeding revealed that normal
ETiX-embryos exhibited a higher prevalence of specific cell types compared to abnormal
embryos. This insight informed subsequent experiments, which involved increasing the
number of seeded cells. Quantitative evaluation using deep learning models confirmed that
refined protocols improved cultivation efficiency, with up to 60% of embryos classified as
normal (Section 3.5.2). The developed deep learning model not only provides an objective
measure of protocol success but also establishes a framework for further optimization
toward more efficient cultivation protocols.

4.3.3. Decreasing Variability

Batch-to-batch variability remains a significant challenge in stem cell-derived models [42,
56, 230-232]. SCRNA-Seq and IFC enable the assessment of protocol variability by correlat-
ing cell counts across technical replicates, where higher correlations indicate lower variabil-
ity and improved protocol quality (Section 2.4.1.4). Specifically for brain organoids, recent
studies have identified mesenchymal cells as markers of low-quality brain organoids [210].
Their detection through scRNA-Seq or IFC provides a reliable means to distinguish between
high- and low-quality brain organoids.

4.3.4. Differences Between Stem Cell Models

Sample visibility and optical distortion primarily stem from imaging and cultivation
protocols rather than the specific stem cell-derived model. These challenges are influenced
by factors such as well type and whether samples are imaged individually or in groups,
both of which affect segmentation and in silico sample separation.

Fluorescence microscopy, commonly used for nuclei detection across all stem cell-
derived models, faces similar technical limitations regardless of stem cell type. Many
of these challenges can be mitigated through broadly applicable protocol optimizations.
However, nuclei visibility is influenced by stem cell size: in smaller models, such as 2D
cultures, sample slicing may not be necessary, as nuclei do not overlap in the z-direction.
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Cultivation efficiency improvements also vary by stem cell model, as different factors
define quality. For instance, cysticity serves as a key quality metric for brain organoids,
while the structural organization of tissue compartments is crucial for ETiX-embryos.
This underscores the need for tailored analysis pipelines that first quantify model-specific
quality metrics before iteratively refining cultivation protocols.

4.4. Summary

This chapter outlined the broader implications of automated pipelines for the analysis,
measurement, and protocol optimization of stem cell-derived models. The choice of
imaging modality, sample preparation, and cultivation setup can introduce substantial
variation in measurement resolution, visibility, distortion, and feasibility of automated
analysis. Automated analysis pipelines offer a scalable and objective approach to assess
these factors and enable iterative refinement of experimental protocols. By quantifying
model-specific features, such as cysticity in brain organoids or successful organization in
ETiX-embryos, automated methods support protocol optimization, improve cultivation
efficiency, and reduce variability across batches, making them essential tools for the
robust and reproducible analysis of stem cell systems. At the same time, model-specific
characteristics, including size, structural organization, quality markers, and developmental
dynamics, required tailored adaptations of the automated analysis pipelines to ensure
reliable and meaningful assessments.
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5. Conclusion and Outlook

Section 5.2 is partially based on: L. Deininger, P. Caldarelli, M. Zernicka-Goetz, et al.
“From pixels to patterns: The Al revolution in stem cell-derived models”. Submitted
to Nature Methods. 2025. [1]. The article was conceptualized and written by L.D. and
P.C., with L.D. primarily responsible for the text and P.C. focusing on the figures.

5.1. Conclusion

Stem cell-derived models offer a groundbreaking approach to studying tissue develop-
ment, function, and disease, providing physiologically relevant alternatives to human and
animal tissues. However, manual analysis remains prevalent, despite being inefficient
and susceptible to observer bias, underscoring the need for automated analysis pipelines.
While automated approaches exist for certain imaging modalities, such as brightfield mi-
croscopy, gaps remain, for instance, the lack of pipelines for magnetic resonance imaging
and challenges related to robustness against imaging artifacts in existing methods. This
thesis developed automated analysis pipelines specifically designed for organ-level and
organism-level stem cell-derived models across multiple imaging modalities, addressing
these limitations and advancing quantitative assessment in the field.

Chapter 2 presents the development of automated analysis pipelines for brain organoids,
an organ-level stem cell-derived model, integrating a diverse range of data modalities,
including magnetic resonance imaging, brightfield microscopy, epifluorescence microscopy,
scRNA-Seq, and imaging flow cytometry. Building on this foundation, Chapter 3 adapts the
automated analysis approach to ETiX-embryos, an organism-level stem cell-derived model.
Finally, Chapter 4 provides broader insights and recommendations into the measurement
of stem cell-derived models, the automation of data analysis, and protocol optimization,
offering a comprehensive comparison of different imaging modalities and computational
strategies.

Summarized, the main contributions of this thesis are:

1. A novel automated analysis pipeline for brain organoids in MRI, enabling the track-
ing of organoid morphology with a Dice score of 0.92 and reliable differentiation
between cystic and non-cystic organoids for quality control, achieving a ROC AUC
of 0.98 (Section 2.1). The pipeline was further benchmarked against brightfield
imaging to highlight its advantages and limitations relative to a simpler imaging
modality.
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2. A robust and explainable automated analysis pipeline for brain organoids using
brightfield microscopy data, achieving a Dice score of 0.96. It enables reliable
monitoring of organoid size, morphology, and diversity across imaging laborato-
ries (Section 2.2). The pipeline incorporates strategies and quantitative metrics to
identify and mitigate common measurement issues, including optical distortion and
sample extension beyond imaging boundaries, to support the iterative refinement of
measurement protocols.

3. Implementation of an automated analysis pipeline for brain organoids using epi-
fluorescence microscopy, enabling the quantification of nuclei and ventricle-like
structures. Furthermore, a registration-based volumetric reconstruction method
based on serial slices of brain organoids was developed, along with strategies for
iterative measurement optimization (Section 2.3).

4. Exploration of semi-automated scRNA-Seq data analysis and automated analysis
of imaging flow cytometry data, demonstrating their potential for cell-level brain
organoid analysis and quantification of variability in stem cell-derived models,
supporting iterative protocol optimization (Section 2.4).

5. A novel automated analysis pipeline for quality monitoring of the organism-level
stem cell-based ETiX-embryos at both early and advanced developmental stages,
achieving an accuracy of 0.88. The pipeline incorporates a domain-specific learning
strategy to account for developmental differences and enables the identification of
features associated with successful development. It further supports the categoriza-
tion of developmental trajectories, and provides quantitative insights to guide the
refinement of cultivation protocols (Chapter 3).

6. Delineate the broader implications of automated quantification, measurement, and
protocol optimization for stem cell-derived models, highlighting recommendations
and best practices (Chapter 4).

7. To enable further development and usability of the proposed methods and data, the
code and data of all published studies has been made publicly available as open data
and open-source code (Section 2.1, Section 2.2, Section 2.4.2, Chapter 3)

In stem cell biology, the conventional approach has been to selectively continue cultivation
with only the most successful stem cell-derived models. However, recent studies [210,
233-236], along with the present work, reflect a growing shift toward systematic protocol
optimization aimed at improving model yield and reproducibility. The automated analysis
pipelines developed in this thesis directly address key challenges in the field by enabling
objective quality control, increasing cultivation efficiency, systematically quantifying
variability across stem cell-derived models, and providing a comparative perspective on
the strengths and limitations of different data modalities.
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5.2. Outlook

As stem cell-derived protocols mature and organoid cultivation advances, a shift from
optimization to large-scale, high-throughput screening is anticipated, enabling systematic
disease investigation, compound screenings, and accelerated drug discovery. Currently,
foundation models, large-scale Al models trained on diverse datasets to enable broad gener-
alization and adaptability across multiple tasks, are making breakthroughs in segmentation
tasks [112]. In the long run, these models are expected to evolve into versatile and gen-
eralizable tools, transforming the analysis of stem cell-derived models and advancing
biomedical imaging as a whole.

To support such Al-driven pipelines, open-source repositories of annotated stem cell-
derived datasets will be essential. These repositories not only allow public access to training
data but also enable benchmarking and reproducibility, helping to identify methodological
blind spots and improve generalizability across labs and protocols.

Another key direction is the full integration of automated analysis pipelines into ex-
perimental workflows. By detecting specific developmental patterns or morphologies
as they arise, these systems can be used for active experimental steering. Researchers
could dynamically intervene, e.g., selecting or perturbing specific structures in real time,
enabling causal linkage between early morphological features and downstream molecular
states. Such closed-loop systems would provide a powerful framework for uncovering
the mechanisms of stem cell self-organization. In particular, the integration of such tools
may lower the expertise required to operate advanced analysis pipelines, broadening
accessibility and accelerating adoption in experimental laboratories.

At the same time, generative Al is demonstrating impressive capabilities across language,
code, and increasingly, scientific domains. In stem cell research, it is already being used
for tasks such as generating synthetic training data [237]. In the future, generative models
could enable the prediction of experimental outcomes over time, either at the individual
sample level, to predict specific developmental trajectories, or at the population level, to
simulate system-wide responses under varying conditions. These tools may eventually
allow researchers to replace certain experimental steps with in silico simulations, reducing
time, cost, and resource consumption. Moreover, integrating text-based generative Al with
image-based Al systems holds strong potential for cross-modal knowledge discovery and
experimental planning, enabling automated hypothesis generation, protocol refinement,
and literature-informed interpretation of results [238].

Finally, the integration of multimodal datasets, such as live imaging with transcriptomics
or proteomics, will allow automated analysis pipelines to infer deeper structure—function
relationships. Predicting molecular signatures directly from morphology, for example,
could yield non-invasive markers for developmental potential or disease state, vastly
increasing the interpretability and utility of stem cell-derived systems.

Together, these advances indicate a broader transformation: from post hoc image analysis
toward automated experimentation in stem cell biology. By combining flexible architec-
tures, standardized datasets, and real-time and multimodal modeling, future systems may
not only interpret developmental processes but actively shape them.
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A. Appendix

A.1. Analysis Pipelines for Brain Organoids

Table A.1: 3D U-Net training and inference for organoid segmentation. The times

were measured using one NVIDIA GeForce RTX 3090 (24 GB) graphics card. Derivative of

Table S4 by Deininger et al. [178] licensed under CC BY 4.0, with modified layout.
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Figure A.1: Compactness negatively correlates with organoid cysticity. The cyst size
in voxels is based on local cyst annotations.
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Figure A.2: 2D organoid segmentation for brightfield imaging. (a-b) Model perfor-
mance. (c-e) Selected organoids based on model’s prediction performance. (c) Organoid 5
(day 13): Dice score of 0.46. (d) Organoid 7 (day 15): Dice score of 0.92. (¢) Organoid 4 (day
19): Dice score of 0.98. Image: original image, GT: Ground truth organoid location, Predic-
tion: Predicted organoid location. Derivative of Fig. S1 by Deininger et al. [178] licensed
under CC BY 4.0, with modified layout.
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Figure A.3: Organoid growth over time. The organoid volume is based on the ground
truth organoid annotation in the T2*-w sequence. Organoid 3 (day 36) has a sudden drop in
volume which is due to the disruption of one or more cystic structures. Derivative of Fig. S2
by Deininger et al. [178] licensed under CC BY 4.0, with modified layout.
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Figure A.4: Size correlation of the same organoids in MRI and brightfield mi-
croscopy. (a) Correlation of organoid sizes on day 19 and 26. For other time points, images
were not acquired on the same day, complicating direct comparisons. Brightfield imaging
was discontinued as organoids grew beyond the imaging boundaries. Organoid sizes based
on ground truth organoid segmentations in the T2*-w sequence (MRI) and brightfield im-
ages. (b) Representative brightfield images of organoid 1 on days 19 and 26, illustrating that
the organoid extended beyond the imaging field.
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Non-cystic organoids

Brightfield

MRI

Figure A.5: Brightfield and MRI images of two non-cystic and two cystic organoids.
The cystic organoids show fluid-filled cavities (or "cysts") and therefore resemble the same
phenotype as reported in [56, 79]. Scale bars: 500 ym (brightfield), 400 ym (MRI). Images are
from Datay, organoid numbers (left to right): 1, 2, 4, 8. Derivative of Fig. S3 by Deininger et
al. [178] licensed under CC BY 4.0, with modified layout.

Table A.2: Absolute and relative mean difference from ground truth organoid size.
Best model for each imaging lab and day in bold. Max dev, maximal deviation. Adapted
from Table S1 in Schroeter, Deininger et al. [198], licensed under CC BY 4.0, with modified
layout.

CellProfiler OrganoSeg MOrgAnay g pw SegFormer
Day | abs (um?) rel | abs (um?) rel | abs (um?) rel | abs (um?) rel
2 | +1,297,875 +436% +489,611 +163% +250,687 +117% -12,902 -4%
5 +207,585 +21% -22,707 -1% +59,521 +7% +222 +0%
8 +404,867 +47% +95,281 +11% +188,018 +20% +17,124 +2%
10 +414,076 +44% +136,576 +16% +29,604 +4% +60,645 +7%
12 +294,134 +32% +109,127 +10% +182,146 +30% +58,271 +6%
i 16 | +1,164,818 +133% -36,974 -3% +206,814 +18% +13,877 +1%
3 19 +685,425 +52% -1,897 0% +287,936 +21% +17,595 +1%
22 +648,911 +45% -220,978 -13% +445,152 +42% +28,237 +2%
25 +768,933 +41% -433,490 -15% +188,689 +7% -26,257 -2%
30 +456,924 +22% | -1,551,214 -44% +205,316 +11% -24,459 -1%
Best 0/10 1/10 1/10 8/10
Max dev. | +1,297,875 436% +489,611 163% +250,687 117% 60,645 7%
2 | +5218,581 +1,768% | +839,366 +303% | +1,019,063 +351% |  +9.667  +3%
5| +1,220.865  +142% | +127,355  +14% | +327,160  +33% 5343 -1%
8 | +1,474,562  +173% | +238,197  +28% | +1,119,394 +137% | +41,078  +5%
10 | +2,989,813  +334% | +57,620  +8% | +1,454328 +172% | +28,118  +4%
12 | +694,634  +72% | +52,156  +6% | +634,079  +82% |  +9,187  +1%
= 16 | +3,261,957  +362% | 47413 5% | +1,887,958 +194% |  +4363  +1%
3 19 | +1,602,653  +154% |  -62,820  -6% | +354,102  +29% 4402 -1%
22 | +2,690,624  +192% |  -41482  -3% | +1,283,918  +80% £770 0%
25 | +1,801,115  +103% | -202,161  -11% | +1,925,530 +101% | -61,049  -4%
30 | +2,075,434 +84% -415,567 -14% | +2,973,921 +115% -76,920 -3%
Best 0/10 0/10 0/10 10/10
Max dev. | +5,218,581 1,768% +839,366 303% | +1,019,063 351% +41,078 5%
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Non-cystic organoid Cystic organoid

DAPI

SOX2

MAP2

MRI

Figure A.6: Imnmunofluorescence stainings and MRI images of non-cystic and
cystic organoid from Datag. The non-cystic organoid grows more compact and shows
ventricular-like structures containing SOX2+ progenitors and surrounding MAP2+ neurons
while the cystic organoid only shows fluid-filled cavities (or “cysts”) and no generation

of neural progenitors and neurons. For better visibility, the brightness and contrast of

the immunofluorescence images were enhanced. Scale bars: 50 ym (immunofluorescence
images), 400 ym (MRI). Derivative of Fig. S4 by Deininger et al. [178] licensed under CC BY
4.0, with modified layout.
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Figure A.7: Effect of MRI on organoids. Differences of all pre- and post-MRI measure-
ments of medium from MRI organoids (Orgpmrr), and control organoids (Orgeontrol). Changes
in pH of the medium (a), partial pressure of CO; (b), partial pressure of O; (c), bicarbonate
(HCOs3") concentration (d), glucose levels (e), sodium (Na*) concentration (f), potassium
(K*) concentration (g), calcium (Ca?*) concentration (h), and chloride (Cl) concentration (i).
Control organoids did not undergo MRI, but the same transportation to the MRI scanner.
**p<0.01, ns: not significant, t-test with Bonferroni correction for multiple hypothesis test-

ing.
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Figure A.8: PAGA graph illustrating a potential differentiation trajectory from
proliferating cells through NPCs to multiple neuronal subtypes.
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Figure A.9: Gene set enrichment analysis suggests earlier neuron differentiation
in SSADH-Patients: additional examples. No neuron differentiation-related gene sets
were enriched for Wildtype organoids on day 60, and no gene sets were enriched for Patient

organoids on day 120.
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A.2. Analysis Pipelines for ETiX-Embryos

Table A.3: Performance of different strategies for transferring synchronized time
points from advanced-stage to early-stage ETiX-embryo classification. ResNet is the
baseline model trained and evaluated on unsynchronized single time points. StembryoNeta

applied a time shift of the synchronized time points. StembryoNets and StembryoNetc

combined shifting with shrinkage, assuming greater desynchronization at later stages and
lower desynchronization at earlier stages. A linear transformation was applied to shift and
shrink the original time range 65h — 90 h to a target range (e.g. 35h — 50 h), preserving the

relative temporal spacing between time points. All models were trained using five times

repeated 5-fold cross validation. Accuracy (ACC) and F1-score (F1) are reported as mean +

SD.

Classification Model Time ACC F1

Advanced-stage  StembryoNet 65h-90h 0.88 +0.02 0.77 +0.03
Early-stage ResNet 50h 0.74 £0.04 0.58 +0.04
Early-stage StembryoNety 25h-50h 0.76 £0.04 0.57 +0.05
Early-stage StembryoNetg 35h -50h 0.77 £0.04 0.59 +0.05
Early-stage StembryoNetc 45h-50h 0.78 £0.03 0.58 + 0.06
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Figure A.10: Performance of self-supervised learning model and comparison with
StembryoNet. (a) Performance comparison between an XGBoost model trained on DINO
embeddings of ETiX-embryos and the StembryoNet model. The DINO model was trained
on fluorescence in-focus embryo images captured between 65 and 90 hours. (b-c) Hierar-
chical clustering of DINO ETiX-embryo embeddings at the synchronized time point, as
annotated by the expert embryologist. Colors represent the ground truth ETiX-embryo
labels. In (b), class labels were randomly shuffled to demonstrate DINO’s clustering perfor-
mance compared to random clustering. (d) Selected samples of two sets of clustered normal
embryos from (c). Scale bar: 100 ym. ****p<0.0001, two-sided Welch’s t-test. Adapted from
Fig. S4 in Caldarelli, Deininger et al. [40], licensed under CC BY 4.0, with modified layout
and colors.
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Figure A.11: StembryoNet outperforms LSTM-based approach. For LSTM-based ETiX-
embryo classification, the trained StembryoNet backbone generates raw predictions on the
training, validation, and test sets during the final 25 hours of ETiX-embryo development.
These time-series predictions serve as input for the LSTM, which—like StembryoNet —is
evaluated using five times repeated 5-fold cross-validation with identical data splits. The
LSTM model architecture consisted of an input dimension of 2, a hidden dimension of 100,
and an output dimension of 2. Training was performed with a batch size of 64 using the
Adam optimizer with a learning rate of 0.001. A Cross-Entropy Loss weighted by inverse
class frequencies was utilized to address class imbalance. The learning rate was scheduled
using StepLR with a step size of 10 and a decay factor of 0.5. Training was conducted for 50
epochs, and the best-performing model was selected based on validation F1-score. *P<0.05,
***P<0.001, ****p<0.0001, two-sided Welch’s t-test.
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Figure A.12: StembryoNet’s predicted time point of maximum probability for
normal ETiX-embryo development correlates with the embryologist’s annotated
synchronized time point. Each subplot is based on StembryoNet test predictions across
one cross validation split. Synchronization of abnormal ETiX-embryos was not feasible;
their time points were randomly assigned, so only normal ETiX-embryos are shown. r,
Pearson correlation coefficient. Error bar: CI, 95%.

145



A. Appendix

0.6 - g

0.4 4 §

Probability Normal

0.0 — T T T T T T T T T
0 20 40 60 80 0 20 40 60 80

Time (h) Time (h)

Figure A.13: ETiX-embryo prediction trajectories in the Other class. (a, b) ResNet
predictions of the probability of being classified as normal for selected ETiX-embryos plot-
ted over the entire observation period. For this application, ResNetpy,or Was trained on
unsynchronized data on distinct time points, from 0 to 90 hours in 5-hour intervals (Fig-
ure 3.5a,b), using five repeated 5-fold cross-validation runs (5x5-fold CV). (a) Embryo
ds2_109 (abnormal) is assigned to the Other class due to contradicting slope (0.0017) and
values at 0 hours (0.25) and 90 hours (0.04). The positive slope would indicate a transition
from abnormal to normal, while the values at 0 and 90 hours indicate continuously abnor-
mal class. (b) Embryo ds2_263 (normal) is also placed in the Other class due to contradicting
slope (—0.0014) and values at 0 hours (0.86) and 90 hours (0.82). The negative slope would
indicate a transition from normal to abnormal, while the values at 0 and 90 hours indicate a
continuously normal ETiX-embryo.

146



Abbreviations and Symbols

This chapter provides an overview of the abbreviations (Section A.3) and symbols (Sec-
tion A.4) used throughout the thesis.

A.3. Abbreviations

Abbreviation Description

2D Two-dimensional

3D Three-dimensional

Adam An optimization algorithm used in deep learning

AdamW Adam optimizer with weight decay

Al Artificial Intelligence

ALDH5A1 Aldehyde Dehydrogenase 5 Family Member A1l

B2A-2 A patient-derived clone with tubulinopathy

BCE Binary Cross-Entropy

BFM Brightfield Microscopy

B-cells A type of immune cell (also called B lymphocytes)

CellPose A deep learning model for cell segmentation

CNN Convolutional Neural Network

Compactness A metric used to assess the cysticity of brain organoids

Cv Cross-Validation

DAPI Nuclei marker in fluorescence microscopy

DGEA Differential Gene Expression Analysis

Dice score A metric used to evaluate image segmentation performance
DINO Self-supervised Deep Learning model

DTI Diffusion Tensor Imaging

EFM Epifluorescence Microscopy

Edge ratio A metric for evaluating organoid extension beyond image borders
ESC Embryonic Stem Cells, occurring in ETiX-embryos
ESC-iGata4 ESC cells with the iGata4 marker, occurring in ETiX-embryos
ETiX-embryo Specific organism-level stem cell-derived model

F1 F1-score

FN False negatives

FP False positives

GAP Global average pooling
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Abbreviation Description

GeneRatio Proportion of differentially expressed genes that belong to a specific GO term
GO Gene Ontology

Grad-CAM Gradient-weighted Class Activation Mapping

GUI Graphical User Interface

GT Ground Truth

GSEA Gene Set Enrichment Analysis

IFC Imaging Flow Cytometry

LI Live Imaging

LOOCV Leave-One-Out Cross-Validation

LR Logistic Regression

LSTM Long Short-Term Memory

pm Micrometer

mm Millimeter

MiT-B0 A configuration of a SegFormer

MLP Multilayer Perceptron

MOrgAna A deep learning-based organoid analysis tool

MOrgAnaig c MOrgAna using logistic regression with classification masks
MOrgAnarrw MOrgAna using logistic regression with watershed masks

MOrgAnapp,c MOrgAna using MLP with classification masks
MOrgAnanpw MOrgAna using MLP with watershed masks

MRI Magnetic Resonance Imaging

MVIT Multiscale Vision Transformer

NA Not Applicable

NPCs Neural Progenitor Cells

OrganoSeg Organoid analysis tool

Otsu Otsu’s thresholding method

PAGA Partition-based Graph Abstraction

PC1, PC2 First and second principal components of PCA

PCA Principal Component Analysis

Pearson Pearson correlation coefficient

PyRadiomics A tool for extracting morphological features from images
pX Pixel

ResNet Residual Network

RNN Recurrent Neural Network

ROC AUC Receiver Operating Characteristic Area Under the Curve
SAM Segment Anything Model

scRNA-Seq Single-cell RNA Sequencing

SD Standard Deviation

SegFormer A deep learning-based model for organoid segmentation and analysis

SNa1, SNa2, SNas | StembryoNet models trained on annotations A1-A3
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Abbreviation Description

SOX2 Marker for neural stem cells

SSADH Succinic Semialdehyde Dehydrogenase

SVM Support Vector Machine

T2*-w T2*-weighted, MRI sequence

T-cells A type of immune cell

TH2-7 A patient-derived clone with neurotransmitter disorder
TN True negatives

TP True positives

TSC Trophoblast Stem Cells

UMAP Uniform Manifold Approximation and Projection
U-Net CNN for image segmentation

ViT Vision Transformer

VX Voxel

wt2D A healthy control clone

XGBoost Extreme Gradient Boosting

Z-score Normalization method

A.4. Symbols

The symbols follow general rules outlined at the beginning of the section. The subsequent
table lists all symbols used in the thesis, along with their descriptions, and is partly based

on metrics introduced in [108].

« Lowercase letters (e.g., x,y, 2, t, i, j) denote scalar variables, indices, and coordinates.

« Uppercase letters (e.g., M, A, B, C) denote images, masks, or sets.

« | - | denotes absolute value or set cardinality, depending on context.

« \ indicates set difference.

« () denotes the binomial coefficient, i.e., the number of unique unordered pairs

among a elements.

« p(X),0(X) denote mean and standard deviation in the image, mask, or set X.

« min(X), max(X) denote the minimum and maximum values in the image, mask, or

set X.

« log(-) denotes the natural logarithm.

« arg max returns the argument that maximizes the given expression.
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Symbol Description

a, p Weighting factors for L(y, §)

A’(ﬂrg, Agf; Organoid area, measured in ym? or px?

B, B2 AdamW optimizer parameters

C Certainty vector containing C; values for all images in the dataset
Ci Certainty value for image i

fpi False positives: split or added nuclei

fn; False negatives: missed nuclei

K Set of class labels for semantic segmentation or image classification
L(y,7) Combined loss: @ - Lgcg + f - Lpice

Lgce Binary cross-entropy loss

Lbice Dice loss

M Set of mosaic tiles in live-imaging microscopy

Maq, Mao, Mas Models trained on annotations from annotators A1-A3, respectively
Mac Model trained on the consensus annotation derived from A1-A3
M;; Segmentation mask for image i by annotator/model j

M(p) Segmentation mask value at spatial location p

m(x,y,z,t) Intensity of mosaic tile m at position (x, y, z) and time point ¢

N Total number of samples in dataset

Nsplit, Ninisss Nadd
p

p

p

P(k | p)
Qcc

Or

Omcr
Qpi, Ori

r

Spm/px

0

Lp;
Vmedium
Vorg

Xiile» Yiile
Xmoss Ymos
Xembs Yemb

A

vy

Number of split, missed, and added nuclei errors

Set of all pairwise annotation or prediction combinations

Spatial location in a 2D image (p = (x,y)) or 3D image (p = (x, y, z))
p-value from statistical hypothesis testing

Predicted probability of class k at location p

Sample quality based on cell count correlation across replicates
Quality metric for nuclei segmentation

Sample quality based on mesenchymal cell ratio across replicates
Precision-like and recall-like values for image i

Pearson correlation coefficient (Pearson’s r)

Microscopy scaling factor for unit conversion

Threshold for StembryoNet-based ETiX-embryo classification
Adjusted true positives for image i

Intensities of medium voxels

Intensities of organoid voxels

Coordinate sets for a single tile (768 X 768)

Coordinate sets for full mosaic image (3840 X 3840)

Coordinate sets of extracted ETiX-embryo image (288 X 288)
Ground truth and predicted labels or masks
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