KIT | KIT-Bibliothek | Impressum | Datenschutz

Efficient Goodness‐of‐Fit Tests for the Maxwell–Boltzmann Distribution via Stein‐Type Characterization With Applications to (Un)censored Data

Avhad, Ganesh Vishnu; Ebner, Bruno ORCID iD icon 1
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

Understanding molecular motion in an ideal gas is fundamental to thermodynamics, yet directly measuring individual molecular velocities remains impractical. The Maxwell-Boltzmann (MB) distribution provides a well-established statistical model for describing the distribution of molecular speeds. In this study, we propose efficient goodness-of-fit tests for the MB distribution with unknown parameters, leveraging a novel fixed-point characterization derived from a Stein-type identity. We derive the asymptotic distribution of the proposed test statistic and establish its consistency against a broad class of alternative distributions. Furthermore, we extend the methodology to handle right-censored data, broadening its applicability to real-world scenarios where incomplete observations are common. The performance of our approach is evaluated through extensive Monte Carlo simulations, and its practical utility is demonstrated with applications to empirical data.


Verlagsausgabe §
DOI: 10.5445/IR/1000185887
Veröffentlicht am 20.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2025
Sprache Englisch
Identifikator ISSN: 2049-1573
KITopen-ID: 1000185887
Erschienen in Stat
Verlag John Wiley and Sons
Band 14
Heft 4
Seiten Art.-Nr.: e70097
Vorab online veröffentlicht am 24.09.2025
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page