KIT | KIT-Bibliothek | Impressum | Datenschutz

Maximizing the maximum degree in ordered nearest neighbor graphs

Ágoston, Péter; Dumitrescu, Adrian; Sagdeev, Arsenii 1; Singh, Karamjeet; Zeng, Ji
1 Karlsruher Institut für Technologie (KIT)

Abstract:

For an ordered point set in a Euclidean space or, more generally, in an abstract metric space, the ordered Nearest Neighbor Graph is obtained by connecting each of the points to its closest predecessor by a directed edge. We show that for every set of n points in Rd, there exists an order such that the corresponding ordered Nearest Neighbor Graph has maximum degree at least log n/(4d). Apart from the 1/(4d) factor, this bound is the best
possible. As for the abstract setting, we show that for every n-element metric space, there exists an order such that the corresponding ordered Nearest Neighbor Graph has maximum degree Ω(√︁ log n/ log log n).


Verlagsausgabe §
DOI: 10.5445/IR/1000185896
Veröffentlicht am 20.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Mathematik (MATH)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 05.2026
Sprache Englisch
Identifikator ISSN: 0925-7721
KITopen-ID: 1000185896
Erschienen in Computational Geometry
Verlag Elsevier
Band 132
Seiten 102229
Nachgewiesen in Web of Science
Dimensions
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page