KIT | KIT-Bibliothek | Impressum | Datenschutz

Strain‐Engineered Monolithic Multi‐Band LEDs for Simultaneous Short‐Wavelength and Mid‐Wavelength Infrared Emission

Jung, Hee Joon; Kim, Dongwan; Nguyen, Phuc Dinh; Kang, Sangjun ORCID iD icon 1,2; Jeon, Jiyeon; Bui, Thu Trang Thi; Yoon, Jungwon; Kim, Minkyeong; Lee, Changsug ; Sinclair, Robert; Lee, In-Ho ; Chun, Byong Sun ; Lee, Sang Jun
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)

Abstract:

Multiple quantum well (MQW) light-emitting diodes (LEDs) provide precise wavelength control, making them ideal light sources. However, achieving simultaneous short-wavelength infrared (SWIR, 1-3 mu m) and mid-wavelength infrared (MWIR, 3-5 mu m) emission from a single LED presents significant technical challenges due to lattice mismatch and reduced quantum efficiency when MQW structures with distinct bandgap energies are integrated onto a single substrate. As a result, most LEDs typically operate in only one IR band. In this study, monolithic multi-band MQW LEDs capable of simultaneous SWIR and MWIR emission are demonstrated. Strain engineering via Sb doping in the QWs induces well-distributed local lattice distortions, such as modulations of atomic bond angles and lengths, leading to balanced strain compensation and coherent epitaxy with atomically sharp interfaces within the MQWs. Reducing the QW thickness of InAsSb enhances quantum confinement, enabling simultaneous SWIR and MWIR emission at 2.87 and 3.18 mu m. To further extend the emission range, a simulation-based fabrication feasibility map is developed, and an additional monolithic LED that emits simultaneously at 2.63 and 3.34 mu m is fabricated. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000185897
Veröffentlicht am 20.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 0935-9648, 1521-4095
KITopen-ID: 1000185897
HGF-Programm 43.35.01 (POF IV, LK 01) Platform for Correlative, In Situ & Operando Charakterizat.
Erschienen in Advanced Materials
Verlag John Wiley and Sons
Seiten Art.-Nr.: e08332
Vorab online veröffentlicht am 26.09.2025
Schlagwörter 2024-033-032257, TEM, FIB
Nachgewiesen in OpenAlex
Web of Science
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page