| Zugehörige Institution(en) am KIT | Institut für Automation und angewandte Informatik (IAI) Institut für Mikrostrukturtechnik (IMT) Lichttechnisches Institut (LTI) |
| Publikationstyp | Forschungsdaten |
| Publikationsdatum | 23.10.2025 |
| Erstellungsdatum | 31.08.2025 |
| Identifikator | DOI: 10.35097/rr0ja48j7cqjud5b KITopen-ID: 1000185906 |
| HGF-Programm | 43.31.02 (POF IV, LK 01) Devices and Applications |
| Lizenz | Creative Commons Namensnennung 4.0 International |
| Schlagwörter | laser-induced graphene, flexible electronics, machine learning, deep learning, bidirectional prediction, blackbox prediction |
| Liesmich | The datasets encompas collected training, validation, and test data as well as related mesuared LIG properties. Five dataset include (A) 500 training lines, (B) 100 validation lines and (C) 13 validation rectangles, (D) 50 twofold-control lines, and (E) 10 printed lines used for the demonstrator-circuitry characterization. For each collected sample, laser-beam parameters, and corresponding product (LIG) properties are presented. "Set" indicates input data: grid-distributed in the dataset A, randomly generated in the datasets B-D, and a single calculated value in the dataset E. "Predicted" stands for the neural-network predicted output data. "Measured" represents the actual, physically and optically measured sample properties. |
| Art der Forschungsdaten | Dataset |
| Nachgewiesen in | OpenAlex |
| Globale Ziele für nachhaltige Entwicklung | |
| Referent/Betreuer | Hernández-Sosa, Gerardo Reischl, Markus |