KIT | KIT-Bibliothek | Impressum | Datenschutz

Datasets to the bidirectional process prediction in the laser-induced-graphene production using blackbox deep learning

Polomoshnov, Maxim ORCID iD icon 1; Mukundan Nair, Nitheesh ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

Machine-learning techniques are highly advantageous for automation of a manufacturing process, since they facilitate prediction of the process parameters and product properties. However, the need for process-specific prior knowledge, for elaboration of complex analytical models, and for collection of a comprehensive training dataset notably limits their integration into the real-world applications. We pioneered and studied usage of a streamlined non-analytical approach to predict and optimize process parameters, radically adapted to the conditions of resource and knowledge constraints. The approach was employed for laser-induced graphene, which is an emerging flexible-electronics fabrication technique. The fabrication settings were successfully predicted and controlled by a blackbox neural network from the desired properties of the device, despite a small amount of moderate-quality training data. To prove feasibility of the concept, we designed and manufactured a functional electronic circuit. The proposed procedure is applicable for a broad range of functional materials and fabrication methods.


Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Mikrostrukturtechnik (IMT)
Lichttechnisches Institut (LTI)
Publikationstyp Forschungsdaten
Publikationsdatum 23.10.2025
Erstellungsdatum 31.08.2025
Identifikator DOI: 10.35097/rr0ja48j7cqjud5b
KITopen-ID: 1000185906
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Lizenz Creative Commons Namensnennung 4.0 International
Schlagwörter laser-induced graphene, flexible electronics, machine learning, deep learning, bidirectional prediction, blackbox prediction
Liesmich

The datasets encompas collected training, validation, and test data as well as related mesuared LIG properties. Five dataset include (A) 500 training lines, (B) 100 validation lines and (C) 13 validation rectangles, (D) 50 twofold-control lines, and (E) 10 printed lines used for the demonstrator-circuitry characterization. For each collected sample, laser-beam parameters, and corresponding product (LIG) properties are presented. "Set" indicates input data: grid-distributed in the dataset A, randomly generated in the datasets B-D, and a single calculated value in the dataset E. "Predicted" stands for the neural-network predicted output data. "Measured" represents the actual, physically and optically measured sample properties.

Art der Forschungsdaten Dataset
Nachgewiesen in OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 8 – Menschenwürdige Arbeit und WirtschaftswachstumZiel 9 – Industrie, Innovation und InfrastrukturZiel 12 – Nachhaltiger Konsum und Produktion
Referent/Betreuer Hernández-Sosa, Gerardo
Reischl, Markus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page