KIT | KIT-Bibliothek | Impressum | Datenschutz

Machine Learning-Based Prediction of Dynamic Braking Torques in Dry-Running Friction Systems - A Data-Driven Approach to Optimize Industrial Brake Systems

Altstetter, Stefan 1; Bischofberger, Arne 1; Ott, Sascha 1; Düser, Tobias 1
1 Institut für Produktentwicklung (IPEK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Resource inefficiencies in safety-critical systems—such as industrial brakes in passenger elevators—often result from
conservative design approaches caused by uncertainties in predicting frictional behavior. Established industrial
methods, including flywheel tests and partial friction lining tests, frequently fail to capture the full complexity of
frictional interactions under realistic operating conditions influenced by temperature variations, surface pressure,
sliding speeds, and surface conditions. Moreover, conventional numerical methods, such as finite element analyses,
are only partially capable of modeling the complex and highly non-linear effects in frictional contact. This paper
introduces a data-driven approach leveraging machine learning techniques to predict the dynamic braking torque
curves and variability of the coefficient of friction under varying operating conditions. The methodology is based on
a modified CRISP-DM process, augmented by statistical analysis, dimensionality reduction, and clustering techniques.
Furthermore, a hybrid modeling approach systematically integrates physical-tribological prior knowledge via
... mehr


Download
Originalveröffentlichung
DOI: 10.46254/EU08.20250273
Zugehörige Institution(en) am KIT Institut für Produktentwicklung (IPEK)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator ISBN: 979-83-507-4449-1
ISSN: 2169-8767
KITopen-ID: 1000185925
Erschienen in Proceedings of the 8th European Conference on Industrial Engineering and Operations Management Paris, France, July 2-4, 2025
Veranstaltung 8th European International Conference on Industrial Engineering and Operations Management (IEOM 2025), Paris, Frankreich, 02.07.2025 – 04.07.2025
Verlag IEOM Society International
Seiten 448-459
Serie International Conference on Industrial Engineering and Operations Management
Vorab online veröffentlicht am 02.07.2025
Externe Relationen Abstract/Volltext
Schlagwörter Machine learning, brake torque prediction, friction analysis, transfer learning, hybrid modeling
Nachgewiesen in OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page