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Abstract

This thesis addresses a central challenge in remote sensing and Earth Observation: how
to translate multi-modal, multi-temporal EO data into ecologically meaningful, spatially
transferable, and operationally robust insight. While EO has become a cornerstone of envi-
ronmental monitoring, its integration into machine learning systems remains hindered by
issues of sensor heterogeneity, temporal misalignment, and the under-structuring of label
data. Rather than treating EO–ML as a purely technical pipeline, this work frames it as a
system of environmental inference, one requiring careful alignment between observation,
representation, and interpretation. Rather than advancing a single technique, this thesis
develops a modular but conceptually unified approach to EO–ML system design, one that
integrates feature fusion, enriched supervision, and structured evaluation as co-evolving
components. It argues that accuracy and generalisation in EO–ML are shaped less by
the depth of models than by the ecological coherence of what they learn from. Across
case studies, improvements in predictive performance consistently stemmed from design-
ing inputs and labels that reflect environmental processes, phenological timing, spatial
structure, and uncertainty, rather than from increasing algorithmic complexity alone.
Empirical analyses span three environmental domains, arid sinkhole-prone landscapes,
temperate forests, and cryospheric glacier systems, each demonstrating how environ-
mental processes can be better modelled through compositional rather than singular EO
design logic. The Combined Doline Vegetation Index exemplifies this approach, capturing
functional contrast between SAR and optical data across ecologically distinct seasons.
Likewise, the novel HELIX framework redefines label construction by embedding spatial,
temporal, and residual-based context into the supervision layer, enabling models to learn
from structured uncertainty and spatial dynamics. Benchmarking results confirm that
domain-aware fusion strategies and supervision-enriched labels yield models that are
more accurate, interpretable, and transferable, especially under spatial domain shifts.
The findings support a broader argument: that EO-based environmental modelling must
move from superficial correlation toward structural alignment, where features, labels,
and models co-evolve in relation to environmental processes. Ultimately, this thesis
reframes EO–ML not as a fixed algorithmic process, but as a grammar of environmental
representation, where syntax (features), semantics (labels), and inference (models) must
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be co-designed to reflect the dynamic, uncertain, and structured nature of the Earth
systems we seek to understand.
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Kurzfassung

Diese Arbeit befasst sich mit einer zentralen Herausforderung in der Fernerkundung und
Erdbeobachtung: Wie lassen sich multimodale, multitemporale EO-Daten in umweltrele-
vante, räumlich übertragbare und operationell robuste Erkenntnisse umsetzen? Während
die Erdbeobachtung zu einem Eckpfeiler der Umweltüberwachung geworden ist, wird ihre
Integration in Systeme des maschinellen Lernens nach wie vor durch die Heterogenität der
Sensoren, die zeitliche Fehlanpassung und die unzureichende Strukturierung der Label-
daten behindert. Anstatt EO-ML als eine rein technische Pipeline zu behandeln, wird es in
dieser Arbeit als ein System für umweltbezogene Rückschlüsse betrachtet - eines, das eine
sorgfältige Abstimmung zwischen Beobachtung, Darstellung und Interpretation erfordert.
Anstatt eine einzelne Technik voranzutreiben, wird in dieser Arbeit ein modularer, aber
konzeptionell einheitlicher Ansatz für die Entwicklung von EO-ML-Systemen entwickelt,
der die Merkmalsfusion, die erweiterte Überwachung und die strukturierte Auswertung
als sich gemeinsam entwickelnde Komponenten integriert. Es wird argumentiert, dass
die Genauigkeit und Verallgemeinerung in EO-ML weniger durch die Tiefe der Modelle
als durch die umweltbezogene Kohärenz dessen, woraus sie lernen, bestimmt wird. In
allen Fallstudien ergaben sich Verbesserungen der Vorhersageleistung durchgängig aus
der Gestaltung von Eingaben und Bezeichnungen, die Umweltprozesse, phänologische
Zeitpunkte, räumliche Strukturen und Unsicherheiten widerspiegeln, und nicht aus der
Erhöhung der algorithmischen Komplexität allein. Empirische Analysen erstrecken sich
über drei Umweltbereiche: trockene, von Dolinen geprägte Landschaften, Waldregionen
in gemäßigten Breiten und Gletschersysteme in der Kryosphäre, die jeweils zeigen, wie
Umweltprozesse durch eine kompositorische statt einer singulären EO-Designlogik besser
modelliert werden können. Der kombinierte Doline-Vegetationsindex ist ein Beispiel für
diesen Ansatz, der den funktionalen Kontrast zwischen SAR- und optischen Daten über
ökologisch unterschiedliche Jahreszeiten hinweg erfasst. Ebenso definiert das neuartige
HELIX-Framework die Konstruktion von Labels neu, indem es den räumlichen, zeitlichen
und auf Residuen basierenden Kontext in die Supervisionsschicht einbettet und es den
Modellen ermöglicht, aus strukturierter Unsicherheit und räumlicher Dynamik zu ler-
nen. Benchmarking-Ergebnisse bestätigen, dass bereichsspezifische Fusionsstrategien
und mit Überwachung angereicherte Labels zu Modellen mit einer höheren Genauigkeit,
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Interpretierbarkeit und Übertragbarkeit führen, insbesondere bei räumlichen einer räum-
lichen Übertragung. Die Ergebnisse stützen ein breiteres Argument: dass die EO-basierte
Umweltmodellierung von der oberflächlichen Korrelation zur strukturellen Ausrichtung
übergehen muss, bei der sich Merkmale, Labels und Modelle in Bezug auf die Umwelt-
prozesse gemeinsam entwickeln. Letztlich betrachtet diese Arbeit EO-ML nicht als einen
festen algorithmischen Prozess, sondern als eine Grammatik der Umweltdarstellung, bei
der Syntax (Merkmale), Semantik (Bezeichnungen) und Inferenz (Modelle) gemeinsam
entwickelt werden müssen, um die dynamische, unsichere und strukturierte Natur der
Erdsysteme widerzuspiegeln, die wir zu verstehen versuchen.
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Introduction 1
„The purpose of computation is insight, not numbers.

— Richard Hamming
Mathematician and pioneer in information theory

This chapter includes elements from the following peer-reviewed publications:

Sarah Hauser, Michael Ruhhammer, Andreas Schmitt, and Peter Krzystek. An Open
Benchmark Dataset for Forest Characterization from Sentinel-1 and -2 Time Series.
Remote Sensing, 16(3), 2024, Article 488. DOI:10.3390/rs16030488

It is cited as [147] and is marked with a green line.

Author Contribution: Sarah Hauser served as a primary contributor to study design, software

implementation, practical execution, validation, writing, editing, and visualization.

and from:

Simone Aigner, Sarah Hauser, and Andreas Schmitt. Pattern-Based Sinkhole Detection
in Arid Zones Using Open Satellite Imagery: A Case Study Within Kazakhstan in 2023.
Sensors, 25(3), 2025, Article 798. DOI:10.3390/s25030798

It is cited as [6] and is marked with a grey line.

Author Contribution: Sarah Hauser co-led the conceptualization and methodology de-

velopment, establishment of the analysis pipeline, and contributed significantly to the

investigation, supervision, and manuscript writing. She also played a key role in shaping

the experimental framework and remote sensing application.
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The International Society for Photogrammetry and Remote Sensing (ISPRS) defines
remote sensing as follows:

"Remote sensing is the science and technology of capturing, processing and analysing imagery,
in conjunction with other physical data of the Earth and the planets, from sensors in space,
in the air and on the ground" [64].

This very general definition merely states that remote sensing deals with the processing
of image-based data of the Earth’s surface. Image-based here refers to automatically
recorded properties on a regular grid. In contrast to vector data, the individual image
elements (pixels) per se have no meaning, only a location, extent, and a value. The
recorded property usually relates to the electromagnetic radiation emitted or reflected by
an object, which can still be detected by sensors from a greater distance.

As global environmental systems experience increasing stress, from climate-induced
glacier retreat to intensified forest disturbance and land degradation, Earth Observation
(EO) has emerged as a foundational tool for environmental monitoring. The ability to
repeatedly capture spatially detailed information over vast and remote regions enables
EO to serve as both an early warning system and a long-term data archive for detecting
environmental change. Yet EO alone does not equate to understanding. To translate
satellite data into insight, information must be extracted, structured, and contextualized.
This requires a conceptual and methodological pipeline: from raw EO signals and derived
indices, through increasingly complex features, into models that can learn meaningful
relationships, often under conditions of uncertainty, imbalance, or limited labels. Machine
learning (ML) has become a central enabler in this transition, unlocking the ability to
model complex processes and extract subtle patterns. However, ML is only as reliable
as the features and labels it learns from, and in EO, both are uniquely challenging. This
dual challenge stems from the complexity of EO signals, often multi-sensor, noisy, and
temporally misaligned, and the scarcity or dynamism of high-quality reference data,
which is rarely available at the right time, scale, or resolution. This thesis positions itself
at the intersection of EO feature fusion, label enrichment, and learning systems design.
It argues that progress in EO-based environmental monitoring now depends not only
on better sensors or smarter models in isolation, but on integrated pipelines that align
data, models, and targets both spatially and temporally. In particular, it explores how
combining multi-sensor, multi-temporal EO data, such as Sentinel-1 synthetic aperture
radar (SAR) and Sentinel-2 optical imagery, with dynamically structured reference data
can yield more expressive, accurate, and transferable insights into environmental systems.
The contributions span both methodological foundations and applied innovations, using
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diverse environmental case studies (vegetation and sinkhole detection, forest structure
and glacial zonation) to validate the effectiveness of feature–label–model interplay. The
structure of the thesis reflects this perspective: after motivating the EO–ML context, it
addresses fusion techniques, label modelling strategies, and experimental pipelines that
bring these elements together.

1.1 Motivation for Remote Sensing in Environmental
Monitoring

Environmental and climate monitoring increasingly rely on EO, the use of satellite remote
sensing (RS), because it offers unique advantages in scale and consistency. Unlike sparse
in-situ measurements, satellites provide global coverage with frequent revisits and fine
spatial resolution, enabling continuous tracking of environmental changes [210]. Recent
climate assessments (e.g., IPCC AR6) have highlighted EO as fundamental for observing
climate trends and filling gaps left by ground networks [169]. In practice, EO data have
been critical to detecting climate “tipping points”, for instance, revealing accelerated ice
loss in polar ice sheets and shifts in vegetation regimes, precisely because of their broad
coverage and high temporal frequency [210]. Key strengths of modern EO include:

Temporal Frequency: Many satellites, e.g., Sentinel-1, Sentinel-2, operated by the
European Space Agency (ESA), revisit the same location every few days, allowing
near-real-time monitoring of dynamic processes (vegetation phenology, glacier flow,
etc.). This frequent sampling is essential for catching abrupt events (e.g., rapid
snow-melt, forest disturbances).

Spatial Coverage: Spaceborne sensors observe entire regions and the globe uniformly.
This synoptic view is invaluable for large-scale phenomena like droughts, forest
dieback, or glacier retreat that would be impossible to survey comprehensively from
the ground.

Historical Depth and Continuity: EO programs like Landsat (since the 1970s), MODIS,
and Copernicus provide long-term archives that support retrospective analyses
of environmental change. These datasets allow for trend detection over decades,
making EO indispensable for understanding both abrupt and gradual processes
such as forest dieback, glacial mass balance trends, or vegetation regime shifts.
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Multi-Sensor Capability: Different satellite sensors (optical, thermal, radar, LiDAR) pro-
vide complementary information. For example, optical sensors capture vegetation
greenness, while radar penetrates clouds and detects surface structure. Combining
such multi-source and even multi-temporal data allows robust monitoring under var-
ied conditions. Indeed, no single sensor can do it all, hence the need for integrating
multiple EO data streams for clearer and more frequent observations.

The versatility of EO becomes especially clear when applied across diverse environmental
domains, each characterized by dynamic changes, large spatial extent, and limited ground
accessibility. This thesis investigates four such domains, focusing on real-world challenges
where EO’s multi-sensor, multi-temporal strengths directly support global sustainability
efforts.

Vegetation-Geohazard Interaction in Arid Landscapes: In southwestern Kazakhstan,
the interplay between vegetation and subsurface instability presents a complex
monitoring challenge. This karst-affected region, marked by sporadic sinkhole
formation and sparse, stress-sensitive vegetation, exemplifies how EO can capture
coupled surface, subsurface dynamics. Changes in vegetation patterns, detected
through multi-temporal indices, serve as indicators of both ecological stress and
geological anomalies, offering a cost-effective early warning system in a remote
desert environment. These EO-based insights support disaster risk reduction and
resilience planning in line with SDG 11 (Sustainable Cities and Communities),
specifically Target 11.5 (reducing disaster-related losses), and SDG 13 (Climate
Action), Target 13.1 (strengthening resilience to climate-related hazards) [327].

Forest Structure and Disturbance in Temperate Europe: Central European forests
are increasingly affected by storms, pest outbreaks, and climatic stressors, resulting
in widespread structural change and mortality. RS enables both long-term structural
mapping (e.g., canopy height, forest types) and high-frequency disturbance detec-
tion (e.g., storm damage). This work leverages multi-sensor and multi-temporal
EO data to map key forest parameters such as canopy structure and disturbance
dynamics. These capabilities inform sustainable forest management and biodiver-
sity conservation, directly supporting SDG 15 (Life on Land), particularly Target
15.2 (sustainable forest management), and SDG 13 (Climate Action), Target 13.1
(climate resilience) [327].

Glacier Zonation in the Canadian High Arctic: In the cryospheric environments of
the Canadian Arctic, EO provides a rare observational window into glacier evolution.
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With in-situ data scarce, satellite-based time series enable detailed quantification
of seasonal snow cover, ablation patterns, and mass balance change, information
essential for sea-level rise projections and climate modelling. This contributes to
SDG 13 (Climate Action), particularly Target 13.1 (adaptation to climate-related
hazards), and SDG 6 (Clean Water and Sanitation), Target 6.6 (protecting water-
related ecosystems) [327].

Satellite EO provides the scale, frequency, and diversity of observations needed for
modern environmental monitoring. It underpins international climate policy and research
by delivering unbiased evidence of change. As Prof. J. Skea (IPCC Chair) noted at
COP28, EO now “serves the crucial role of filling data gaps left by in-situ observations” in
climate monitoring [99]. This strong motivation drives the integration of EO data in
environmental science and the increasing use of advanced methods to extract actionable
information from the petabytes of satellite imagery now available.

The next sections outline how EO data is transformed into insight, moving from basic
index derivation (Section 1.1.1) through advanced ML approaches (Section 1.1.2) to
the benchmarking frameworks (Section 1.1.3) required for model development and
comparison.

1.1.1 From Spectral Indices to Feature Engineering

Satellites record raw reflectance and backscatter values, but turning those into meaningful
environmental information often requires feature extraction. The most fundamental layer
of this process involves spectral indices, mathematical combinations of spectral bands
designed to emphasize specific surface properties. These indices are computationally
simple and interpretable, making them popular for first-pass monitoring and visual
inspection. Two classic examples are:

Normalized Difference Vegetation Index (NDVI): NDVI is one of the most widely used
spectral indices for vegetation monitoring. It leverages the contrast between red and
near-infrared (NIR) reflectance to quantify vegetation "greenness," and is computed
as:

NDVI =
NIR − RED
NIR + RED

NDVI values range from −1 to +1, where higher values indicate dense, healthy
vegetation. It serves as a proxy for plant vigour, biomass, and cover. NDVI time
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series from sensors such as AVHRR, MODIS, and Sentinel-2 have enabled large-scale
analyses of ecosystem productivity, drought impact, and land degradation [325].

Normalized Difference Snow Index (NDSI): NDSI distinguishes snow and ice from
other land surfaces by exploiting their high visible and low shortwave-infrared
reflectance. It is calculated as:

NDSI =
Green − SWIR
Green + SWIR

This index is widely used in operational snow products (e.g., MODIS, VIIRS) to
generate daily snow cover maps, which are critical for hydrological modelling, cli-
mate studies, and glacier monitoring. The physical mechanism lies with the spectral
signature of snow, which is highly reflective at visible wavelengths but strongly
absorptive at SWIR wavelengths. The NDSI takes advantage of this characteristic,
by isolating bright, cold surfaces from surrounding terrain [89].

While the NDVI, the NDSI, and similar spectral indices, such as the Normalized Difference
Water Index (NDWI) for detecting surface water, or the Normalized Difference Built-up
Index (NDBI) for identifying urban areas, offer valuable low-level features derived from
only two spectral bands, they are inherently limited in complexity. These indices are
effective for visual interpretation and coarse thematic mapping, but they often lack
the expressiveness required for modelling more nuanced or dynamic environmental
phenomena.

To meet the demands of modern EO applications, feature engineering has evolved to
produce richer, higher-order representations. These include temporal descriptors such
as seasonal statistics (e.g., mean, median, percentiles), amplitude-based phenological
metrics, and spectral trajectory summaries across multiple observation dates. Spatial
features may involve structural characteristics extracted using texture measures, such as
the Grey Level Co-occurrence Matrix (GLCM), which quantifies local spatial heterogeneity
in reflectance patterns. Additionally, features that combine different sensor types, such
as SAR and optical imagery, are increasingly used to exploit complementary surface
information, particularly in areas affected by cloud cover or seasonal snow.

The evolution of EO feature engineering can be further illustrated by several widely
adopted strategies:

• Composite and Extended Indices: Beyond traditional indices, researchers have
developed variants tailored to specific contexts. For example, the Enhanced Vegeta-
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tion Index (EVI) offers improved sensitivity in high-biomass conditions and better
correction of atmospheric and soil background effects. Similarly, glacier monitoring
has benefited from adaptations such as the Adjusted NDSI (ANDSI), which modifies
the standard NDSI formula to better separate clean glacier ice from surrounding
snow.

• Multi-Index and Textural Features: Instead of relying on a single indicator, modern
pipelines often compute a suite of indices, each sensitive to different surface
properties, and combine them with texture metrics. Texture features derived from
the GLCM, for example, may capture spatial heterogeneity and structural patterns
in high-resolution imagery. These are particularly useful in characterizing forest
canopy structure, urban morphology, or agricultural heterogeneity.

• Time-Series Features: With high revisit frequencies, EO data now enable the
extraction of temporal descriptors that characterize seasonal and inter-annual
dynamics. Phenological metrics such as the timing of green-up, peak greenness,
or senescence can be derived from NDVI time series, supporting monitoring of
vegetation cycles and ecosystem responses to stress. On a global scale, long-term
datasets like GIMMS and MODIS have revealed vegetation trends, greening or
browning, linked to climate variability and anthropogenic pressure.

• Multi-Sensor Feature Fusion: Finally, the integration of data from multiple EO
sensors (e.g., optical and SAR) allows for the capture of complementary surface
characteristics. Radar backscatter and coherence provide structural information
and all-weather imaging, while optical reflectance contributes detailed spectral
signatures. Such fusion improves robustness under challenging conditions (e.g.,
cloud cover, snow) and enhances generalizability across domains.

Such engineered features move beyond simple band arithmetic, enabling the encoding
of multi-modal, multi-temporal, and spatially contextual information. Yet all of these,
whether basic indices or advanced descriptors, remain rooted in the transformation of
raw EO signals into structured, descriptive variables. As such, they represent the first and
least complex stage in the broader information extraction pipeline: a foundation upon
which higher-level inference tasks can be built. These feature representations form the
bridge between EO and ML. In relatively simple tasks, such as binary classification of land
cover types or threshold-based anomaly detection, low-level features like spectral indices
may be sufficient and even preferable due to their interpretability and efficiency. However,
as the complexity of the modelling task increases, particularly when targeting continuous
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environmental variables, temporally dynamic processes, or multi-modal interactions,
these descriptors often fall short. In such cases, ML methods are needed to capture
non-linear relationships and integrate high-dimensional, structured inputs. The next
section outlines how learning algorithms operate on these engineered EO features and
how they extend the analytical capacity of RS workflows under challenging modelling
conditions.

1.1.2 Machine Learning Methods

With ample EO data and features in hand, ML provides the tools to automatically learn
patterns and make predictions [42] (e.g., classify land cover, detect changes, estimate
environmental variables). Over the past decade, ML has become ubiquitous in RS analysis,
because it can model the complex, non-linear relationships in EO data without strict
assumptions about data distributions [364]. A wide spectrum of ML methods, from
simple linear regressions to advanced deep neural networks, has been applied to EO
data. ML has become a cornerstone in RS, significantly improving the analysis and
interpretation of increasingly complex and voluminous geospatial data. As satellite and
airborne sensors generate multispectral, hyperspectral, radar, and LiDAR datasets at
unprecedented scales, ML techniques are invaluable for identifying patterns, extracting
features, and predicting environmental variables with higher accuracy and efficiency than
traditional rule-based methods. These capabilities are essential for applications such as
land cover mapping, vegetation monitoring, urban growth detection, and climate impact
assessment. ML models are broadly categorized into supervised, unsupervised learning as
well as reinforcement learning paradigms. Supervised learning leverages labelled datasets
where the desired outputs (e.g., class labels or continuous variables) are known, enabling
models such as decision trees, support vector machines (SVM), and neural networks (NN)
to learn predictive relationships. In contrast, unsupervised learning is used when labels
are unavailable, focusing instead on pattern discovery through clustering (e.g., k-means)
or dimensionality reduction (e.g., principal component analysis). Reinforcement learning,
in contrast to supervised and unsupervised approaches, is increasingly applied to EO RS
tasks that require sequential decision-making or adaptive learning. Instead of learning
from fixed labelled data, RL models learn optimal policies through interactions with
dynamic environments, receiving feedback in the form of delayed rewards. In EO, this
applies to tasks such as adaptive image acquisition, active learning for labelling, or
intelligent data selection, where the model improves its performance by strategically
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choosing what, when, and where to observe next, leveraging methods like Q-learning
or policy gradients. These three approaches are employed in RS depending on the data
context and application goals. The success of ML in RS is closely tied to rigorous model
training and evaluation processes. One fundamental aspect is model validation, which
aims to estimate how well a model generalizes to unseen data. Common validation
strategies include the hold-out method, where data is split into separate training and
testing subsets, and k-fold cross-validation, where the data is partitioned into k subsets
and the model is trained and tested k times, each time using a different fold as the test
set. These methods help mitigate overfitting and ensure the robustness of performance
assessments. Performance evaluation depends on the type of task. For regression tasks,
commonly used metrics include mean absolute error (MAE), root mean squared error
(RMSE), mean absolute deviation (MAD), and the coefficient of determination (R2).
These metrics quantify the discrepancy between predicted and observed values, with MAE
offering a direct measure of average error magnitude, and RMSE being more sensitive to
large errors. Standard deviation (STD) of residuals is often used to understand variability
in prediction errors, and z-scores can be calculated to identify anomalies by standardizing
residuals against their mean and standard deviation. For classification tasks, evaluation
typically involves accuracy, precision, recall, F1-score, and the area under the receiver
operating characteristic (ROC) curve (AUC), depending on the problem’s balance and
nature. Confusion matrices are also essential for visualizing model performance across
classes. This section provides a structured overview of these methods, progressing from
classical approaches to modern deep learning, and highlights real-world environmental
monitoring applications (vegetation, forests, glaciers, sinkholes) along with key challenges
(high data complexity, overfitting, temporal dynamics).

Traditional Machine Learning Approaches: Traditional ML methods have underpinned
many applied EO studies. These ML methods have been applied across various tasks. For
example, support vector machines and RF were historically popular for classifying static
satellite images into land cover maps [241, 35, 302].

Linear Models: Simple linear models (e.g., ordinary least squares regression) and other
parametric approaches (like logistic regression for classification) represent the earliest
form of ML used in EO. These models assume linear relationships and specific data
distributions [18]. For instance, linear regressions have been used to relate to vegetation
indices [264], to biomass [140] or climate variables [313]. In practice, however, Earth
observation data often violate linearity assumptions, limiting the accuracy of purely linear

1.1 Motivation for Remote Sensing in Environmental Monitoring 9



models. Studies have found that while linear regression provides a baseline, non-linear
models usually yield better performance for complex EO tasks [179, 206]. Still, linear or
robust-linear variants (e.g., the Huber regression model [165]) have seen use in certain
large-scale vegetation assessments [14], owing to their simplicity and interpretability.

Support Vector Machines and SVR: SVM [90] (formerly named “Support-vector net-
works” [334], introduced a powerful kernel-based method capable of modelling non-
linear decision boundaries. SVMs became popular in RS classification, often achieving
high accuracy even with limited training data [241]. The regression counterpart, Support
Vector Regression (SVR) [90], has likewise been applied to predict continuous geophysical
variables (e.g., crop biophysical parameters from hyperspectral data) and often outper-
forms simple linear regression in capturing complex reflectance–variable relationships
[179, 206]. However, SVM/SVR models can be computationally intensive on very large
EO datasets and may require careful kernel and parameter tuning. In temperate European
forests, non-parametric models are frequently used to map forest attributes [5]; one study
found SVM could classify tree species from multi-season Landsat imagery with nearly
90% accuracy [113]. For biophysical variable estimation from remotely sensed images,
the robust ϵ-Huber cost function is included in the SVR function [55].

Tree-Based Ensembles: Decision tree ensembles have arguably become the workhorse
of EO ML due to their versatility and strong performance. Random Forests (RF) [48],
which combine many decision trees via bagging, are especially prominent. These models
generate an ensemble of diverse decision trees, each trained on a randomly selected
subset of the data and features. For prediction, every tree evaluates the input and casts a
“vote,” with the most frequent prediction across all trees becoming the final output. This
ensemble approach enhances model robustness, allowing even moderately accurate trees
to collectively yield strong performance. By iteratively refining the model with additional
trees, RF becomes more resistant to noisy training data and less informative variables
compared to single regression or regression tree models. Since RF relies on random sub-
sets of the training data for each tree, it inherently incorporates a form of cross-validation.
As a result, some argue that a separate testing dataset may be unnecessary, an especially
practical advantage when working with limited training data [314]. RF models handle
high-dimensional inputs and non-linear feature interactions well while resisting (but
not immune to) overfitting due to the weak correlation between trees in the model )
[48]. Consequently, RF has been extensively used for land cover classification, vegetation
property mapping, and more: RF and Extreme Random Tree (ERT) methods were used
to simulate the relationship between vegetation and climate elements in Mid-to-High
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latitude Asia [349]. In a study on vegetation shifts in Kazakhstan’s drylands, researchers
applied traditional ML to attribute degradation patterns to socio-environmental drivers. A
pixel-wise RF model alongside Shapley value attribution is used, to evaluate the relative
influence of factors such as grazing pressure, land use, climate change, and snow cover
variability [177]. In a comparative study, RF was top-performing for estimating forest
structural parameters like biomass and tree density, when compared to Classification
and Regression Trees (CART), SVM, and Artificial Neural Networks (ANN) while using
Quickbird imagery [366]. Even in glaciology, before the deep learning (DL) era, tech-
niques like SVMs and decision trees were applied to detect glacier changes or delineate
snow lines on RS imagery. For instance, automatic classification of glacier covers from
multi-temporal Sentinel-2 imagery using texture, topographic, and spectral data with
supervised ML (ANN, SVM and RF), was investigated, and demonstrating that RF, yielded
most accurate results [182]. In vegetation modelling, RF is employed and compared
to simulate how vegetation responds to climate changes in the Yarlung Zangbo river
basin [76], with multiple linear regression models and SVM models, demonstrating
that RF models exhibited the highest simulation efficiency. A similar study, utilizing
ML to quantify how NDVI (Normalized Difference Vegetation Index) across multiple
climate zones responds to variations in temperature and precipitation, demonstrated,
RF’s efficiency citebao:2021. Another tree ensemble, Extreme Gradient Boosting (XG-
Boost) [65], implements boosting to sequentially improve trees and often achieves even
higher accuracy. Its ability to balance bias and variance makes it effective for complex
patterns in EO data [65]. XGBoost has seen rapid adoption in EO for tasks like drought
assessment [230], biomass estimation [216], and permafrost mapping [223]. Regression
model trees have been shown to be more robust than simple regression trees and are
thus more widely applied to prediction problems [341]. However, advanced ensemble
strategies such as stacking (which combines multiple base learners) have been explored
to further boost accuracy; generally, ensemble models (bagging, boosting, or stacking
[83]) outperform single classifiers on RS tasks by leveraging diverse learners [364, 299].
The most common implementation of ensemble model trees is RF [314]. A hybrid tra-
ditional ML approach[54] combining SVM and Hidden Markov Models (HMM) [3] is
successfully applied to classify glacier surface types, bare soil, glacier ice, firn, and snow,
using multi-temporal, multi-sensor satellite data.

Deep Learning - CNN, RNN, and Hybrid Networks: With the rise of deep learning, model
capabilities for EO data have expanded dramatically. Convolutional Neural Networks
(CNN), in particular, have revolutionized analysis of spatial imagery. CNN excel at
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automatically learning features from raw pixel data through layered convolution filters,
and have been widely applied to high-resolution RS images for land cover classification
[226], semantic segmentation [337], object detection [23], deconstruction of missing
data [363], or pansharpening [233]. In these studies, CNN models effectively exploit
the spatial characteristics of the data by performing convolutions across the x and y
dimensions [255]. 1D-CNN operate over a single dimension (e.g., time or sequence), 2D-
CNN process spatial data across height and width (x, y) [255], while 3D-CNN extend this
to include depth or time (x, y, z) for volumetric or spatio-temporal analysis. CNN variants
have been tailored to diverse EO data structures. For spectral data such as hyperspectral
images (with hundreds of bands), 1D-CNN can be applied across the spectral dimension
to capture contiguous spectral signatures [161]. Likewise, for purely temporal EO data
(e.g., univariate satellite time-series like NDVI curves), temporal 1D-CNN have been
developed (TempCNN) where convolution is applied along the time axis to extract
temporal patterns [348]. These have proven effective for classifying satellite image
time-series, often outperforming traditional methods like RF on time-series classification
tasks [172]. Crucially, by using convolution, they incorporate temporal ordering and
local sequence information that static classifiers miss. There are also 3D-CNN that
simultaneously convolve across space and either spectral or temporal dimensions (or
both) [215, 139]. These spatio-temporal CNN can capture dynamic evolution of features
(e.g., seasonal changes) in a unified model. An important class of deep models for
sequential data are Recurrent Neural Networks (RNN), especially those based on Long
Short-Term Memory (LSTM) units. RNN are explicitly designed to handle sequential
inputs by maintaining internal state, making them well-suited to multi-temporal EO
problems. Indeed, LSTM-based networks have been extensively studied for classifying
optical image time series [279, 316] and multi-temporal SAR data [167, 239]. Studies
report that RNN (using LSTM) can outperform traditional classifiers like RF and SVM on
land cover sequence classification [279]. RNN are well-suited for capturing long-term
dependencies and inherently account for temporal context. However, when the task
involves predicting a single label for an entire time series, standard RNN encounter
challenges. Specifically, the need to back-propagate errors across all time steps increases
with the length of the series, which can complicate training, since early time steps are
distant from the output, and slow down convergence due to the sequential nature of
updates. Consequently, although LSTM networks are capable of modelling temporal
dynamics, they often demand extensive training data and carefully designed training
strategies to mitigate issues like vanishing gradients and overfitting in long sequences
[255]. To leverage both spatial and temporal information, hybrid architectures have
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emerged. A common design is CNN–RNN hybrids (e.g., CNN-LSTM networks), where a
CNN first extracts spatial features from each image in a time sequence, and then an LSTM
processes the sequence of feature vectors to model temporal dynamics [173]. Hybrid deep
networks are also being explored in cryosphere applications, one recent proof-of-concept
used a CNN (in an AlexNet form) on pairs of SAR images to learn matching features for
glacier velocity estimation, effectively replacing the traditional cross-correlation method
with a learned approach to track ice motion [373]. Another example is the detection
of glacier snow lines: a combination of image processing, RF classification, and neural
network-based segmentation was proposed to automatically identify the end-of-summer
snow line altitude on alpine glaciers [261], which is crucial for understanding glacier
mass balance and dynamics.

Challenges and Considerations: Advances in artificial intelligence have facilitated the
widespread integration of diverse variables and datasets. Within this framework, non-
parametric ML algorithms have shown strong capabilities in managing complex, non-
linear relationships, gaining increasing attention for big data classification in RS [12].
While advanced models like ANN and DL offer high performance, traditional machine
learning methods have proven to be reliable and relatively simple alternatives, particularly
for large-scale classification tasks such as forest mapping [34]. Despite their successes,
ML methods for EO come with challenges. Data complexity and volume are chief
among them: EO datasets are often high-dimensional (many spectral bands, pixels, or
timesteps) and heterogeneous. Traditional models can struggle with such complexity
unless dimensionality reduction or feature selection is applied. Also, in terms of tree-
based Models, large tree structure [298] and spatial autocorrelation of the data [232]
may induce model overfit, especially with small training data sets [79]. Additionally,
standard RF models lack built-in prediction-level uncertainty estimates and treat missing
values simplistically unless explicitly modified [129]. Because RF outputs are based
on majority votes from tree ensembles, the degree of agreement among trees is not
quantified, limiting interpretability [341]. In contrast, Bayesian tree-based methods like
BART provide credible intervals for predictions, offering clearer uncertainty quantification
at the pixel level [260], which is particularly useful in interpreting cover estimates from
EO data. Deep networks can ingest raw data but demand even larger training samples to
generalize [234, 297], raising issues of data scarcity for labelled tasks. This leads to the
risk of overfitting, especially when complex models are trained on limited ground-truth
data [356]. For instance, when the training dataset is too small, the model’s learned
parameters may fail to capture the true distribution of the overall data. Alternatively, the
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model might overfit to noisy samples during training, overlooking portions of the correct
data. As a result, the model performs well on the training set, but poorly on unseen data.
Another persistent challenge is handling the temporal structure inherent in many EO
problems. Simply stacking multi-temporal data into a vector for an RF or SVM ignores
sequential dependencies. However, they can still be valid when EO features and target
labels are temporally aligned, that is, when both refer to the same time-step. In such
cases, each instance is treated as an independent snapshot, and temporal structure is not
required for the prediction task. However, when multi-temporal features are stacked to
predict outcomes that depend on temporal evolution, such as crop type at harvest based
on year-round spectral data, this approach ignores the sequential nature of the data. In
these cases, models capable of learning temporal patterns, such as TempCNN, RNN, or
Transformers, are more appropriate and may yield better generalization by capturing
trends, seasonality, and temporal dependencies, but can be difficult to train on long
sequences and may still miss very long-term trends [255]. Additionally, irregular time
sampling (due to cloud cover or varying sensor revisit times) can complicate temporal
modelling. Developing architectures that efficiently capture long-range temporal patterns
without enormous data requirements is an active research area. Computational scalability
is also a practical issue: advanced models (e.g., 3D-CNN or CNN-LSTMs) can be resource-
intensive in both memory and processing. Training these on global-scale EO data demands
significant computing power (GPUs/TPUs) and optimization [297]. Efforts are underway
to create lighter or more efficient models (including lightweight ensembles or using
pre-trained networks on EO data) to alleviate these burdens [309]. Lastly, interpretability
of ML models in EO should be considered. Simpler models (linear, decision trees) offer
more transparency in how inputs relate to outputs, whereas deep networks are often
black boxes. This can be problematic in environmental decision-making contexts where
understanding the drivers of a model’s prediction (e.g., which spectral bands indicate a
pest outbreak) is important. Techniques like feature importance in RF or saliency maps in
CNN can provide some insight, but bridging the gap between model complexity and user
interpretability remains important. ML methods have greatly advanced the analysis of EO
data, enabling higher accuracy and new capabilities across a range of applications, from
monitoring vegetation in Central Asia’s rangelands to mapping old-growth European
forests, tracking Arctic glacier changes, and detecting hazardous sinkholes. Linear models
and kernel methods laid the foundation, tree ensembles brought robustness and ease
of use, and DL now offers unprecedented modelling power for spatial, spectral, and
temporal data. The state-of-the-art continues to evolve rapidly, with hybrid models and
ensemble strategies pushing the frontiers of predictive performance. Ongoing research
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is addressing current challenges like data efficiency, overfitting control, and temporal
dynamics handling. These developments ensure that ML will remain at the core of
extracting actionable information from EO, supporting better environmental monitoring
and management grounded in big data from space.

However, the power and progress of ML in EO are ultimately constrained by the quality
and availability of data, specifically, the reference labels and feature–label pairings used
for training and evaluation. Regardless of model complexity, reliable inference requires
a foundation of well-structured, representative datasets that capture the variability of
both EO inputs and environmental targets. As modelling tasks become more ambitious,
spanning multiple regions, temporal scales, or sensor types, the need for transparent,
reproducible benchmarking grows more urgent. Benchmark datasets enable not only
fair comparison between ML approaches, but also foster generalizability, scalability, and
methodological rigour. The following section thus outlines the central role of benchmark-
ing in EO–ML workflows and introduces the challenges involved in constructing and
using such datasets effectively.

1.1.3 The Need for Benchmarking

Benchmarking is a foundational requirement for the development, evaluation, and
comparison of ML methods. At its core, benchmarking relies on structured datasets
that pair EO-derived features with well-defined reference labels, allowing algorithms to
learn, validate, and generalize across environmental conditions. Without standardized
benchmarks, it becomes difficult to assess model performance, quantify uncertainty, or
ensure reproducibility, particularly as methods grow more complex and datasets span
multiple regions, time frames, and sensor modalities. In EO, where reference data are
often sparse, noisy, or inconsistent, the creation and curation of benchmark datasets is
not just a technical formality, but a central scientific need.

Inspired by benchmark-driven advances in computer vision (e.g., ImageNet [81], COCO
[220]), the EO community has begun developing large, curated datasets that pair satellite
imagery with ground-truth annotations. These datasets typically contain aligned EO
features (e.g., Sentinel imagery) and reference labels (e.g., land cover, vegetation met-
rics), providing a shared testing ground for machine learning models across spatial and
temporal scales. Three notable examples illustrate the range and growing sophistication
of EO benchmarks:
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• BigEarthNet and reBEN: A large-scale benchmark archive of Sentinel-2 (later ex-
panded to Sentinel-1/2) imagery designed for multi-label land cover classification.
BigEarthNet [315] includes 590,326 image patches ( 120×120 m) across Europe,
each annotated with one or more CORINE-based land cover classes. To reduce
label noise, original labels were condensed into 19 super-classes. BigEarthNet
has become a go-to resource for training and evaluating deep learning models
in scene classification and fusion [315]. A recent refinement, the reBEN dataset
[70], improves on BigEarthNet [315] by providing 549,488 Sentinel-1/2 patch
pairs with enhanced atmospheric correction and pixel-level reference maps derived
from the updated 2018 CLC inventory. The patches (1200 m × 1200 m) are pro-
cessed using the Sen2Cor tool to improve optical image quality. reBEN introduces
a geographical-based train/validation/test split strategy to mitigate spatial auto-
correlation, significantly enhancing the robustness of DL model evaluation. It also
supports both scene-level and pixel-wise learning tasks, making it well-suited for
multi-label and semantic segmentation experiments. Code, data, and pre-trained
weights are openly available, further promoting reproducibility and cross-study
comparison [70].

• SEN12MS: SEN12MS [291] is a large-scale, globally distributed benchmark dataset
introduced through the IEEE GRSS Data Fusion Contest. It consists of 180,662
georeferenced triplets, each containing a dual-polarized Sentinel-1 SAR patch, a
multispectral Sentinel-2 patch, and a MODIS land cover label map, all at 10 m
resolution. The dataset spans over 100 sites across all inhabited continents and
includes samples from all meteorological seasons, making it one of the most diverse
EO benchmarks to date. By leveraging freely available Copernicus Sentinel data and
the cloud infrastructure of Google Earth Engine, SEN12MS addresses key limitations
of earlier datasets, particularly with respect to spatial coverage, environmental
diversity, and sample volume. Its design explicitly supports research in multi-
sensor data fusion, scene classification, and semantic segmentation for land cover
mapping. The multi-modal nature of the dataset enables the development and
testing of deep learning models that combine optical and radar data, offering
robustness in scenarios where single-sensor inputs are affected by cloud cover or
seasonal variability [291].

• Wald5Dplus: Wald5Dplus is a distinctive, open, multi-modal benchmark dataset for
mid-European forests. It integrates time-series data from Sentinel-1 (C-band SAR)
and Sentinel-2 (optical MSI) with detailed airborne observations, including LiDAR

16 Chapter 1 Introduction



and UAV-based multispectral imagery, to produce a high-resolution, semantically
labelled dataset for forest monitoring. The "5D" refers to the combination of spatial
(north–south and east–west), polarimetric (Sentinel-1), spectral (Sentinel-2), and
temporal dimensions, all integrated into an Analysis Ready Data (ARD) cube. The
"plus" denotes the inclusion of semantic labels derived from airborne campaigns,
specifically tree species, crown area, crown height, initial crown height, and tree
count. Unlike traditional land cover classification datasets, Wald5Dplus is designed
to support regression-based modelling of continuous forest variables, making it
one of the first EO benchmarks in the domain to move beyond nominal or ordinal
labels. It enables detailed evaluation of ML models for forest parameter prediction,
aiding in biomass estimations, and even spatio-temporal change detection under
real-world multi-sensor conditions. Funded by the German Aerospace Center (DLR)
and the Federal Ministry for Economic Affairs and Climate Action, Wald5Dplus
represents a significant advance in high-quality EO benchmarking [147, 148].

While these datasets mark major progress, the construction of EO benchmarks remains
highly challenging. Label acquisition is often expensive, labour-intensive, or reliant on
secondary sources like land cover inventories, which can introduce noise. Temporal
and spatial inconsistencies, sensor misalignments, and cloud or snow coverage further
complicate dataset design. Benchmark datasets must also be representative, capturing
diverse environmental conditions, seasons, and biomes, to support robust generalization
and fair testing.

High-Quality and Well-Labelled Data: Foremost, a fundamental requirement in the field
of RS pertains to the availability of high-quality datasets that are meticulously labelled.
This precision ensures that AI algorithms can be effectively trained and validated on
information that is both accurate and dependable. It is notable that machine learning, a
cornerstone of AI, relies heavily on data quality. This aligns with findings from research
emphasizing that the successful utilization of ML techniques in RS applications necessi-
tates high-quality data, particularly well-labelled datasets [362]. Such well-labelled data
serve as the bedrock upon which AI models can be constructed and validated.

Accessibility of Publicly Available Datasets: A pivotal requirement arises from the
accessibility of publicly available datasets, accompanied by validation data. These datasets
serve as indispensable benchmarks for the development and validation of algorithms,
allowing researchers to evaluate their methods against established standards. This aligns
with the notion that publicly available datasets with validation data are crucial for
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researchers to verify their developed algorithms and compare them with state-of-the-art
methods. In various standard RS applications, frequently employed datasets serve as
reference points for algorithm testing. The abundance of such datasets underscores the
importance of making high-quality training samples available, as highlighted in literature
[111, 1, 221].

Diversity and Representativeness: Training data should encompass a wide range of
scenarios to enable AI models to generalize effectively. This diversity is crucial in the field
of RS, where real-world conditions can vary significantly. Machine learning techniques,
which are foundational in AI, rely on diverse training data to ensure models can adapt
to different conditions and achieve robust generalization. In this context, the need for
variations in land cover, seasonal changes, and different environmental conditions is
essential to ensure AI models can effectively handle the intricacies of RS applications
[212].

Spatial and Temporal Coverage: The training dataset should provide comprehensive
spatial and temporal coverage [212, 170], ensuring that AI models can effectively adapt
to diverse regions and monitor temporal dynamics with precision. High-quality training
samples, representative of a wide range of geographic locations and temporal changes,
are fundamental in addressing the challenges of RS data, especially in the context of
forests. The utilization of data with broad spatial and temporal coverage aligns with the
need to capture fine-grained spatial and temporal changes in RS applications.

Data Resolution: Training data should align with the spatial and temporal resolution
of the RS data used for analysis. This matching resolution is essential for enabling AI
models to capture and respond to temporal changes with accuracy, as highlighted in the
literature. Aligning training data resolution with RS data resolution is a crucial aspect of
ensuring the effective application of AI in RS [221].

Quantity and Sample Size: Adequate training samples are pivotal for optimizing AI
models [362, 21]. The quantity of training data should align with the complexity of the
analysis task and the specific requirements of the AI model under consideration. The
importance of having an ample sample size to mitigate the risk of model underfitting is
well-established in the field of machine learning, including in the realm of RS.

Consistency and Continuity: Consistency in labelling and data quality [170] throughout
the training dataset is imperative for ensuring the reliability of AI models in RS tasks,
especially those involving time-series data. Additionally, maintaining continuity in data
collection is essential for effectively monitoring changes and trends. Such consistency
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and continuity are essential components of robust AI model development, as recognized
in the existing body of literature.

Annotated Metadata: Annotated metadata [221, 58], providing comprehensive infor-
mation regarding the data’s source, acquisition date, geographical location, and any
preprocessing steps applied, enhances the interpretability and utility of training data.
This metadata is vital in providing context to the training data, enabling researchers to
better understand the information used for AI model development. Researchers in the
field have acknowledged the critical role that annotated metadata plays in the effective
utilization of training data.

Data Balance: Maintaining a balanced representation of classes or categories within
training data is vital, especially in classification tasks. Unbalanced datasets can present a
substantial obstacle in the process of model optimization, especially when specific classes
are infrequent or not well-represented [192, 170]. Ensuring equitable representation
of classes is a recognized strategy to prevent biases and skewed results. Achieving data
balance is crucial for accurate classification of RS data, a concept well-supported by prior
research [362].

Moreover, emerging tasks such as change detection, regression-based prediction of
continuous variables (e.g., biomass, tree height), and ordinal or dynamic labelling (e.g.,
forest structure classes over time) demand new forms of annotated data. Wald5Dplus
[147, 148], for example, provides one of the first structured datasets supporting pixel-wise
regression of forest attributes in cardinal scale, an essential step for advancing continuous-
label EO modelling. Benchmarking, therefore, is not merely a matter of evaluation, but a
structural prerequisite for progress. Well-curated, representative, and accessible datasets
underpin the development of robust, transferable models. In the chapters that follow,
this thesis contributes to that direction by advancing dataset design, training pipeline
integration, and evaluation strategies that reflect the evolving complexity of EO-based
environmental monitoring Taken together, these criteria define what constitutes a high-
quality EO benchmark, one capable of supporting advanced modelling workflows and
fostering methodological innovation.
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1.2 Application Domains and Labelled Datasets

This section presents the key environmental domains examined in this study, alongside
related work and the labelled datasets used for model development and evaluation.
This thesis investigates environmental modelling across three ecologically and geophys-
ically distinct Areas of Interest (AOIs), each selected for its relevance to a specific RS
challenge.

The southwestern region of Kazakhstan, located within the southeastern part of the
Mangystau Province near the Caspian Sea, represents an arid, karst-affected landscape
characterized by sinkhole formations and sparse vegetation. Central European forests
serve as representative temperate ecosystems, with reference data drawn from three
forested regions: the Bavarian Forest National Park, the Steigerwald, and a small forest
near Kranzberg. While forest structural modelling incorporates all three sites, large-scale
disturbance analyses are limited to the Bavarian Forest National Park. The Canadian High
Arctic provides a cryospheric setting for modelling seasonal and short-term glacier zone
dynamics.

Together, these AOIs span semi-arid, temperate, and cryospheric environments, enabling
a multi-domain evaluation of the methods developed in this thesis. Their inclusion
supports both methodological generality and ecological relevance, ensuring that remote
sensing and machine learning approaches are assessed under diverse environmental
conditions. In the following subsections, each AOI is described in more detail, including
its geographic context, relevant prior research, and the associated reference datasets used
as labelled targets throughout this work.

1.2.1 Southwestern Kazakhstan

Karst landscapes in arid regions pose a unique challenge for environmental monitoring:
they are subject to both abrupt geomorphological change, such as sinkhole collapse, and
subtle ecological stress reflected in sparse vegetation. These dual dynamics often co-occur
and interact, making it difficult to isolate drivers of surface anomalies without integrated,
multi-temporal EO analysis. Traditional approaches struggle in such regions due to
their remoteness, limited in-situ monitoring, and complex subsurface–surface feedbacks.
Remote sensing offers a rare observational lens into these systems, yet detecting and
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interpreting geohazard signals amid natural vegetation variability remains an open
methodological challenge.

A wide range of techniques has therefore been explored to detect and analyse sinkholes,
each offering distinct advantages depending on the geological setting, data availability,
and scale of application:

Traditional sinkhole detection methods include field-based, geophysical, and GIS-
based approaches, each offering distinct strengths and limitations. Visual inspection
and speleological exploration remain foundational, providing direct insight into surface
features and subsurface karst structures, but are labor-intensive, subjective, and often
impractical in vegetated or remote areas [19, 184, 251]. Geophysical methods such
as electrical resistivity imaging (ERI) and ground-penetrating radar (GPR) allow non-
invasive detection of subsurface voids and density variations, particularly in shallow
karst settings [59, 117, 263]. Gravimetry and magnetometry support broader anomaly
detection [180, 280], while boreholes and trenching offer ground-truth validation at
high cost and spatial limitation [340, 60]. GIS-based analyses have further expanded
sinkhole mapping by integrating topographic, historical, and environmental datasets.
Terrain-derived features from maps help identify depressions [20, 50], while archival
and multi-temporal maps reveal masked or former sinkholes now obscured by vegetation
or urbanisation [134, 33]. Despite resolution constraints and manual interpretation
challenges, GIS remains central to regional-scale sinkhole research.

RS techniques have become indispensable for detecting and analysing sinkholes, partic-
ularly for large-scale or inaccessible areas. These methods rely on data captured from
satellites, aircraft, or drones to identify surface features and subsidence patterns indica-
tive of sinkhole activity. Optical imagery is one of the most widely used remote sensing
tools, where satellite data such as Landsat [318], RapidEye [312], and IKONOS [168]
are analysed to detect surface anomalies. GIS platforms also integrate remote sensing
imagery with morphometric parameters to analyse the spatial patterns of sinkholes over
time. Historical aerial images and satellite data such as Landsat and Sentinel-2 data
have been used to track the evolution and frequency of sinkhole formation, correlating
these trends with environmental or anthropogenic factors [108, 250]. In northwest Mo-
rocco, for instance, regions prone to karstification were identified by deriving vegetation
and water indices from satellite images, highlighting areas with higher surface water
input [323]. Similarly, aerial photographs combined with orthorectified images and GIS
platforms are used to identify historical or masked sinkholes and assess their temporal
evolution [49, 108]. Digital tools such as digital elevation models (DEMs) are extensively
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used to analyse the topography and morphology of sinkholes. High-resolution DEMs
derived from LiDAR (light detection and ranging) or satellite imagery allow researchers
to automatically detect and characterise sinkholes based on geometric parameters like
depth, perimeter, and slope [183]. LiDAR provides high-resolution topographic data,
enabling the detection of sinkholes and associated features even in vegetated or remote
areas. LiDAR-derived DEMs allow for the automatic mapping of sinkholes by analysing
their geometric properties, such as depth and diameter. This method is particularly
effective for morphometric characterisation and detecting subtle subsidence patterns that
may precede sinkhole formation [238, 370]. Furthermore, LiDAR has been successfully
applied in Slovenia, where high-resolution data increased sinkhole detection accuracy to
83.5% [183]. Aerial photographs, combined with DEMs, help validate and refine sink-
hole mapping by visually confirming subsidence features and vegetation changes [41].
Furthermore, swath bathymetry, a specific form of DEM analysis, is applied in underwater
environments to detect sinkholes on lakebeds or ocean floors [321]. Techniques like
automatic mapping and photogrammetry further enhance detection accuracy, enabling
efficient sinkhole monitoring over large areas [88]. Radar-based techniques, such as
InSAR (interferometric synthetic aperture radar), are used to monitor ground deforma-
tion over large areas. Differential interferometry (DInSAR) is particularly effective for
measuring subsidence rates and temporal changes in karst regions. In the Ebro Valley,
Spain, DInSAR velocity maps were cross-referenced with sinkhole inventories to assess
doline activity and predict future collapses [118]. Although radar methods excel at
capturing broad subsidence patterns, small active sinkholes or rapid collapses may be
overlooked due to their spatial resolution limitations. Recent advancements, such as
the Sinkhole Scanner method [196], address some of these limitations by employing a
two-dimensional Gaussian function to detect sinkhole-related spatio-temporal patterns
in InSAR deformation time series. This method, tested on Sentinel-1A data, successfully
detected sinkholes even in challenging environments, demonstrating stability in arid
regions and improved detection in vegetated areas, a key advantage for addressing
the dual challenges of sinkhole monitoring in such conditions. However, the Sinkhole
Scanner is not without limitations. Its reliance on a Gaussian kernel assumes specific
deformation shapes, potentially missing irregular or complex sinkhole patterns. Fur-
thermore, the method may struggle to detect very rapid collapses without precursory
signals, and its computational intensity can be a limiting factor when analysing large,
high-resolution datasets. While it improves detection in vegetated areas, challenges like
signal decorrelation persist, especially in regions with dense vegetation. Multispectral
and hyperspectral imaging further enhance sinkhole detection by revealing vegetation
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stress, soil moisture changes, or water pooling, indirect indicators of subsurface karst
processes. Airborne multispectral scanning, for example, has shown promise in detecting
subtle environmental changes linked to sinkhole formation [75]. These remote sensing
techniques are often complemented by manual processing in GIS environments or field
verification to confirm suspected sinkholes. However, their reliance on high-resolution
datasets and specialised software can make them resource-intensive and less accessible
for widespread or continuous monitoring. Despite these challenges, remote sensing
remains a cornerstone in modern sinkhole research, particularly for large-scale mapping
and long-term monitoring. In order to be accessible for all potential users, the data should
be open. Additionally, to guarantee large coverage, the data have to be globally available.
Preceding studies have shown that optical data are most promising. Three satellite
missions fulfil these requirements: Sentinel-2 [96], Landsat [318], and MODIS [97].
According to the literature, the spatial resolution is playing a key role in the detection of
sinkholes, whereas the temporal resolution is negligible. In this sense, Sentinel-2 (10 m
pixels every 5 days) outperforms existing open sources such as Landsat (30 m every 16
days) and MODIS (250 m every 1–2 days). AI is increasingly being applied to sinkhole
detection and mapping, offering a new paradigm for automating complex analyses and
enhancing accuracy. ML and DL techniques, in particular, have shown significant promise
by processing large datasets, identifying patterns, and predicting sinkhole-prone areas
with minimal human intervention. One of the most notable applications of AI is in image
recognition and object detection. For example, the YOLO (you only look once) algorithm
has been used to detect sinkholes in satellite and aerial imagery with handsome results.
In a study conducted in Kazakhstan, YOLO achieved a detection accuracy of 74% for sink-
holes and 86% for geological pre-sinkhole features such as takyr depressions [277]. Also,
a sinkhole-tracking methodology that employed CNN transfer learning on FIR imagery
was successfully implemented [155]. These methods enable rapid, large-scale detection,
outperforming traditional manual and semi-automated techniques in both speed and
efficiency. Supervised learning algorithms have been employed to classify land features
and identify potential sinkhole zones. These models are trained using labelled datasets of
known sinkholes and environmental variables such as topography, hydrology, and geology.
Once trained, the models can predict high-risk areas by analysing similar patterns in
new datasets. While highly accurate, this approach requires comprehensive and reliable
training data, which can be difficult to obtain for regions with sparse sinkhole docu-
mentation. Unsupervised learning and clustering methods are other emerging avenues.
These techniques analyse unlabelled data to identify anomalies or clusters indicative
of sinkhole-prone regions. They are particularly useful for preliminary assessments in
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regions where ground truth data are limited. AI also plays a critical role in temporal
analysis, helping to track sinkhole evolution and predict collapses. Time-series data from
remote sensing platforms, such as LiDAR or InSAR, can be fed into RNN or LSTM models
to detect subtle deformation trends and assess the likelihood of future events. Despite
these advances, challenges remain in the widespread application of AI to sinkhole studies.
The creation of robust and diverse training datasets is often labour-intensive, and the
computational demands of deep learning models can be prohibitive for smaller research
teams or institutions. Additionally, the interpretability of AI models is sometimes limited,
making it difficult to understand the underlying decision-making process and validate the
results.

Detecting sinkholes poses significant challenges with respect to low data availability,
spatial resolution constraints, and large extents. The problem is becoming topical as
there are plans to develop former unused land in places such as the Mangystau area in
Kazakhstan. Research on sinkhole formation mechanisms and hazards in Kazakhstan
remains sparse [27, 9], and the precise delineation of sinkholes at finer scales contin-
ues to be an unsolved topic [141]. Digital terrain models (DTMs), especially those
derived from LiDAR [183, 187], are widely regarded as the optimal data source for
sinkhole detection. These models provide high-resolution representations of the bare-
earth surface, crucial for identifying the subtle depressions characteristic of sinkholes.
However, high-resolution DTMs are often unavailable, even in regions with advanced
geospatial infrastructure. For instance, in Bavaria, DTMs with 1 m resolution are typically
limited in temporal and geographic coverage [112]. This lack of temporal consistency
hinders long-term monitoring and dynamic geo-hazard assessment. In Kazakhstan, the
absence of high-resolution DTMs presents a significant barrier to applying conventional
detection methodologies. Kazakhstan’s geographic scale amplifies these challenges. Cov-
ering over 2.7 million square kilometres, it is among the largest countries globally, but
its low population density makes large-scale mapping and monitoring logistically and
economically prohibitive. Even smaller, resource-rich regions like Bavaria struggle to
maintain consistent, high-quality geospatial data, illustrating the difficulty of conducting
geomorphological studies at Kazakhstan’s scale. In the absence of DTMs, digital elevation
models are often used as substitutes [141]. However, unlike DTMs, DEMs include surface
features such as vegetation and structures, which can obscure the underlying terrain
and limit their effectiveness for detecting small-scale geomorphic features. While DEMs
can capture larger deformations, their typically coarse resolution (e.g., 30 m in widely
available datasets like the Copernicus DEM) restricts their utility for identifying subtle
or small sinkholes. Additionally, inconsistent spatial and temporal availability further
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reduces their effectiveness for large-scale or continuous geohazard monitoring. The lack
of high-resolution DTMs and the limitations of DEMs highlight a critical research gap in
Kazakhstan. Traditional sinkhole detection approaches, reliant on detailed terrain data,
are poorly suited to the region’s data-sparse context. These challenges require innovative
and cost-effective methods that utilise widely available resources such as freely accessible
remote sensing imagery.

Yet, one of the most persistent challenges in this context is the spectral and morphological
ambiguity between sinkholes and natural vegetation patterns. In arid and semi-arid karst
environments like southwestern Kazakhstan, sparse or stress-sensitive vegetation can
exhibit surface expressions, such as dark NDVI anomalies or local depressions, that visually
resemble collapse features. This complicates automated detection, particularly when
relying on single-sensor or mono-seasonal imagery. Addressing this confusion requires a
more integrated approach that combines multi-seasonal and multi-sensor observations to
disentangle the geophysical and ecological signals. A comparable challenge is encountered
in recent large-scale efforts to map desert shrublands using medium-resolution satellite
data. For instance, in a recent study it was demonstrated that sparse vegetation in
Northern China’s deserts is often under-represented in land-cover products due to its
low spectral contrast and fragmented distribution [369], similar to vegetation inside
or around sinkholes. Their study combined manually labelled high-resolution samples
with similarity-based sample expansion and applied traditional ML (e.g., RF) using multi-
temporal composites of medium-resolution EO data (Sentinel-2) and DEM (Copernicus
DEM) data to significantly improve classification accuracy [369]. However, unlike the
under-representation problem in shrubland mapping, the core difficulty in sinkhole/shrub
detection lies not in data sparsity but in spectral ambiguity: vegetation and collapse
features may share similar optical characteristics, especially under dry conditions or when
vegetation colonizes sinkholes. This highlights the need for more nuanced approaches that
integrate spectral, temporal, and topographic cues to disentangle overlapping geophysical
and ecological signals. In another study, targeting desert vegetation in Northern China
further illustrates the difficulty of distinguishing sparse dry shrubs from surrounding
bare soil under intense illumination and complex topography [310]. In their case,
typical vegetation indices derived from visible-light UAV imagery (e.g., EXG, VDVI)
were insufficient due to strong shadow textures and the low reflectance of dry, low-
stemmed shrubs, conditions similar to vegetation found within or around sinkholes. To
improve detection accuracy, they proposed a novel HSV-based green-enhancement index
(HSVGVI), which leveraged the hue–saturation–value (HSV) color space and channel
enhancement. This approach substantially outperformed traditional RGB-based indices,
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achieving over 95% classification accuracy in shaded and shrub-dominated scenes [310].
While their method focuses on UAV imagery at very high spatial resolution (10 cm), the
underlying insight is relevant for satellite-based mapping in optically ambiguous terrains
like Mangystau: traditional vegetation indices may misclassify vegetated sinkholes or fail
to detect subtle vegetation changes altogether. As such, their work supports the argument
that spectral confusion in sparse desert vegetation requires adapted indices or fused,
multi-source methods, especially when class boundaries (vegetation vs. sinkhole) are
entangled in both spectral and spatial domains.

Study Area and Environmental Characteristics

As a geologically dynamic and ecologically sparse environment, the southwestern re-
gion of Kazakhstan (see Figure 1.1 presents a uniquely challenging test-bed for remote
sensing-based sinkhole and vegetative feature detection. Characterised by arid climatic
conditions, minimal vegetation, and widespread karstic subsurface activity, this area
allows the evaluation of data fusion strategies in extreme terrain. Unlike vegetated forest
environments, karst regions such as these exhibit ambiguous spectral and structural
surface signals, necessitating tailored approaches to data preprocessing, temporal fusion,
and label integration.

The Ustyurt Plateau, covering approximately 5000 square kilometres near the borders of
Turkmenistan and Uzbekistan, is adjacent to the Ustyurt National Reserve but falls outside
the protected area. This region’s sparse development and lack of significant human
settlement, evidenced by minimal infrastructure and occasional pathways observed via
satellite imagery [22, 328], underline its status as a largely untouched and unexplored
landscape. Geological investigations are crucial here to address potential challenges and
opportunities presented by the area’s complex subsurface features.

The prevalent soil type in the study area is Calcisol, which is typical of arid environments
and characterised by high calcium carbonate content near the surface. These soils often
support only sparse vegetation, such as drought-resistant shrubs and grasses, and exhibit
circular vegetation patterns that correspond to subsurface karst structures, including
sinkholes [8]. In addition, the region contains takyr plains, which are clay-rich surfaces
with polygonal cracking patterns. These plains reflect a history of marine sedimentation,
often bearing salt deposits, and their unique surface texture makes them important for
understanding hydrological processes and subsurface stability [204]. The climate in
Mangystau is arid and desert-like, with significant contrasts between humid and arid
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seasons. Precipitation is rare and irregular, and temperatures show dramatic seasonal
variation. Winters are relatively mild due to the moderating influence of the Caspian
Sea, while summers are extremely hot and arid, often accompanied by strong winds
that drive erosion and sediment redistribution [191]. The sparse vegetation in the
area is dominated by shrubs and grasses [163, 189], with more robust growth near
depressions or along the edges of takyr plains, where water may temporarily accumulate.
These climatic and vegetative conditions are significant for understanding surface and
subsurface processes in the context of sinkhole detection.
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Figure 1.1.: Overview of the Study Area in Southwestern Kazakhstan.

Reference Data and Labels

Accurate reference labels are essential for training and validating EO-based detection
pipelines, particularly in data-scarce regions like southwestern Kazakhstan. Given the
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area’s remoteness and limited historical documentation, the generation of reliable ground-
truth data required the integration of locally acquired field measurements and high-
resolution visual sources. In this study, two complementary sources were used to construct
label datasets: GNSS-verified sinkhole locations and high-resolution satellite imagery
for vegetation classification. These resources provide spatially precise and visually
interpretable inputs for supervised learning and model evaluation.

To validate the identification of sinkholes, reference data were provided by Svevind
Energy Group [319]. This ground-truth dataset includes a shapefile containing GNSS-
based measurements of 13 known sinkholes, collected on-site in 2023 using handheld
GNSS equipment. These measurements were performed by a regional topographer to
provide precise geospatial locations for these features. In addition to the GNSS data,
georeferenced imagery of the sinkholes [319], also captured in 2023, is available. These
combined datasets represent the confirmed ground-truth information for sinkholes in the
study area and serve as primary references for the analysis.

High-resolution World Imagery [100] was utilised to analyse vegetative patterns across
the study area. This dataset, provided by Esri, offers detailed satellite and aerial imagery
with a spatial resolution ranging from 0.3 m to 15 m globally, depending on the source and
location. The imagery includes contributions from multiple commercial and governmental
sources, seamlessly integrated into a global mosaic. Vegetative features such as dense
and sparse vegetation were visually derived from this dataset, allowing for the precise
identification and delineation of vegetation classes that are difficult to map in remote
or semi-arid environments. The high level of spatial detail provided by World Imagery
enabled the analysis of fine-scale vegetative patterns across the study area, serving as a
critical reference for understanding land cover dynamics in southern Kazakhstan.

1.2.2 Temperate Central European Forests

Amidst the growing recognition of the immense value of forest ecosystems in combating
climate change and supporting biodiversity, the demand for rapid, precise, and robust
methods to monitor these vital ecosystems is on the rise [270]. Forests, which shelter
the majority of terrestrial biodiversity, span approximately 4.06 billion hectares, covering
31% of the world’s land surface. They function as crucial carbon reservoirs and play an
indispensable role in climate regulation [102]. To effectively track the progress toward
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these goals, as well as to monitor deforestation, degradation, and forest responses to cli-
mate change, there is an increasing need for large-scale, cost-effective monitoring, ideally
with automated data collection and processing up to the final information product. The
past decade has witnessed a surge in the availability and utilization of RS technologies,
offering data at resolutions high enough to identify individual trees. While this presents
opportunities for enhancing our understanding of forests, it also poses challenges in data
interpretation [222]. The field’s expansion has resulted in an influx of intricate datasets,
demanding the development of innovative data science approaches to efficiently extract
ecologically significant information. Additionally, the lack of universally acknowledged
benchmarking datasets has impeded methodological advancement and posed difficulties
in comparing different studies. This perspective underscores the advantages of estab-
lishing and applying benchmarking datasets while outlining the key attributes that can
optimize their value for the wider scientific community.

Central Europe’s temperate forests, such as those in Bavaria, Germany, are under growing
pressure from biotic and abiotic stressors, including storms, prolonged drought, and insect
infestations. These forests represent critical ecosystems for biodiversity conservation,
carbon sequestration, and regional economies. Maintaining their resilience in the face of
climate change requires robust monitoring tools that can detect both acute disturbance
events and more gradual structural changes. Traditionally, forest monitoring in Bavaria
has relied on ground-based inventories and periodic aerial surveys conducted by forestry
agencies. While highly accurate, these methods are limited by spatial coverage, cost,
and temporal resolution. As a result, subtle or rapid changes, such as early-stage bark
beetle attacks or post-storm canopy damage, are often missed. RS provides a scalable,
repeatable, and wall-to-wall alternative, especially when combined with ML to detect and
interpret complex spatial-temporal patterns. RS has a long tradition in forest science but
remains underutilised in operational forestry practice in Bavaria [159]. Notably, airborne
RS has been integrated into monitoring programs in protected areas such as the Bavarian
Forest National Park since the 1980s [153]. Space-borne RS, however, offers broader
scalability. Sentinel-2, for instance, provides 10 m resolution multispectral imagery with
a 5-day revisit cycle, making it suitable for near-real-time monitoring across the state’s
2.5 million hectares of forest [147]. Forest RS applications are increasingly addressing
diverse topics: tree species mapping, biomass estimation, canopy health monitoring,
phenology tracking, and biodiversity assessment [104, 159].

The contemporary realm of forest management witnesses the growing significance of
the fusion between RS and forestry. This symbiotic relationship leverages the power of
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ML and DL in handling vast, diverse datasets commonly found in RS images. ML and
DL techniques aim to distil intricate image information into straightforward semantic
interpretations, such as identifying a single pixel as a coniferous tree through time series
analysis. These approaches, however, necessitate hyperparameterization to accommodate
data variability and imperfections. This flexibility can lead to optimal adaptation to
specific challenges but may also result in overfitting, necessitating a substantial number
of training samples, analogous to the layers of a deep neural network. While three
primary approaches are prevalent: (1) crafting comprehensive training datasets, which
is labour-intensive and costly, (2) employing data augmentation to introduce artificial
data variations, and (3) utilizing pre-trained networks with supplementary adaptation
layers, it is important to note that method (1) is often indispensable for DL approaches,
which often require extensive training data. In contrast, some ML methods can work
with smaller datasets. Ongoing research delves into capitalizing on symmetries and
commonalities within network layers to enhance decision-making and model robustness.
However, methods (2) and (3) entail manual, non-standardized alterations to either the
training data or the network architecture, rendering them suitable for specific applications
but unsuitable for benchmarking ML and DL algorithms. Therefore, extensive training
datasets (1) are indispensable, enabling the training of new algorithms, potentially even
without prior knowledge, similar to pre-trained networks. Several benchmark datasets
have already been established and made available to facilitate advancements in the field.
Ongoing research is attempting to leverage symmetries and similarities within network
layers to enhance or simplify decision-making by analyzing model zoos [295]. While
such techniques are predominantly applied in DL, where they capitalize on the intricacies
of network architectures, they are less common in conventional ML. This highlights a
key difference between ML and DL: the flexibility and depth of DL networks, which
enable the exploitation of these symmetries and commonalities. As both steps (2) and
(3) require manual and non-standardized modifications of the training data (2) and/or
the network (3), they are well-suited for specific applications but not for ranking ML
and DL algorithms. This distinction underscores the need for standardized and extensive
training datasets, particularly when benchmarking the performance of various ML and
DL models in forest management. In 2018, the International Society for Photogrammetry
and Remote Sensing (ISPRS) released a widely used benchmark dataset consisting of true
orthophotos, surface models, and semantic labels for apparent land cover types such as
impervious surfaces, buildings, low vegetation, trees, and vehicles [274]. This dataset has
served as a standard reference for evaluating and comparing machine learning algorithms.
More recently, the ML4Earth platform introduced the MDAS dataset, a new multi-modal
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RS benchmark that integrates SAR, multispectral, and hyperspectral imagery alongside a
surface model. Annotated land cover classes include pavement, low vegetation, soil, trees,
roofs, and water. The dataset incorporates data from Sentinel-1, Sentinel-2, and EnMAP
sensors [162], facilitating studies that span multiple spectral and sensor modalities. Most
existing benchmark datasets focus on semantic segmentation tasks that classify pixels
into nominal categories. However, efforts are emerging to capture ordinal information as
well, for example, by assigning forest stands to hierarchical height classes such as low,
medium, and tall, or by representing canopy density levels as sparse, moderate, or dense.
One such approach was introduced in 2022 [194].

In Bavaria, bark beetle disturbances have been among the most intensively studied topics,
reflecting their ecological and economic importance [74]. Early detection is critical, as
trees in the green-attack stage show no visible symptoms, and outbreaks can escalate
rapidly. Recent methodological advances show promising results:

• Time-Series Change Detection: Sentinel-2 vegetation index (VI) time series are
analysed to detect abrupt drops in canopy greenness or structure, indicating dis-
turbances. For example, change detection frameworks have been used to flag
windthrow and early bark beetle activity in Bavarian forests, with validation against
forest agency records [181].

• Multi-Sensor Fusion: Combining Sentinel-2 optical imagery with Sentinel-1 SAR
data improves robustness under cloud cover. While SAR alone underperforms (max.
accuracy: 0.62), fusion approaches can enhance detection of canopy structure
changes. However, in one large-scale comparison, Sentinel-2 alone outperformed
all fusion setups for detecting bark beetle infestations (max. accuracy: 0.93) [198].

• ML and Deep Learning: RF and CNN have been trained to classify bark beetle
infestation stages using multi-temporal and spectral inputs. CNN-based methods
have detected early infestation signals up to three weeks before field-confirmed
emergence. Spectral indices related to water stress, particularly in the NIR and
SWIR ranges, show the highest sensitivity [229].

• Structural Modelling: Regression models link EO features to forest parameters
such as canopy height and biomass, allowing estimation of key attributes at scale.
For example, Sentinel-2 data have been used to derive wall-to-wall maps of forest
structure for Bavaria [74].
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Despite clear progress, several key limitations persist in EO- and ML-based forest moni-
toring. First, benchmark datasets remain scarce, particularly those offering dense time
series, high-quality airborne reference labels, and multi-sensor alignment. As outlined
in Section 1.1.3, standardized datasets are essential for enabling reproducibility, model
comparison, and fair evaluation across geographic and phenological conditions. Recent
advances, such as Wald5Dplus [147, 148], mark a notable step forward by providing
ARD cubes, harmonized Sentinel-1 and -2 stacks, and wall-to-wall forest attribute labels
derived from airborne LiDAR and UAV data. Which is crucial, as label acquisition remains
a bottleneck. Generating pixel- or plot-level reference data is costly and logistically
demanding, especially for continuous variables such as biomass or canopy height. Even
where ground inventories exist, they often differ in format, resolution, and acquisition
date, limiting their direct usability for EO model training and evaluation. In Wald5Dplus,
the image stacks are normalized and encoded as UInt8 for storage and compatibility
with common GIS and ML tools [289]. Which directly addresses a third limitation. The
volume and dimensionality of time-series EO data introduces both computational and
methodological challenges. Dense Sentinel-2 observations (every 5 days) and multi-
sensor fusion (e.g., with Sentinel-1 or Landsat) can lead to terabyte-scale datasets over
even moderate AOIs. Cloud-based platforms like Google Earth Engine (GEE) or OpenEO
are essential for processing at this scale, yet ML model portability, memory constraints,
and reproducibility across platforms remain unresolved technical hurdles. Fourth, cloud
cover, terrain shadow, and seasonal snow reduce data quality and increase missingness
in optical imagery, especially in mountainous or high-latitude regions. Radar sensors
help mitigate this issue, but their interpretation requires specialised preprocessing and
often lower spatial resolution. Fifth, temporal misalignment between reference data
and satellite observations introduces uncertainty in supervised learning. For instance,
forest inventory data may be several months or even years out of sync with EO image
acquisition, making label validity questionable, especially for fast-evolving disturbances
like windthrow or bark beetle spread. Finally, while ML and DL models are effective in
extracting complex patterns, interpretability and generalizability remain open challenges.
Many models are tailored to local conditions or trained on specific forest types, limiting
transferability. Additionally, uncertainty estimation is often lacking in DL pipelines, which
reduces confidence in their use for decision-making in forest management or policy
contexts.

RS and ML, when combined, enable scalable, near-continuous forest monitoring. While
not yet a full replacement for field inventories, they provide essential complements,
especially in remote areas or during rapid outbreak events. The integration of these
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methods into routine forest management will be key to adapting Central Europe’s forests
to future climatic challenges.

Study Area and Environmental Characteristics

Each of the selected sites, Bavarian Forest National Park, Steigerwald, and Kranzberg
Forest, offers distinct ecological and spatial features that significantly contribute to the
richness and heterogeneity of the dataset. These attributes are further complemented by
targeted field campaigns that include geotagged photographs (see Figure 1.6), visually
documenting forest conditions as described in regional ecological studies. For example,
images from the Bavarian Forest National Park highlight the widespread occurrence of
deadwood [147], a key factor linked to increased vulnerability to infestations by the
European spruce bark beetle [331, 199]. The Bavarian Forest National Park along the
border between Germany and the Czech Republic is part of an approximately 2,000
square kilometres, densely wooded, middle-high mountain range in Central Europe.
The altitudes range from 650 to 1,453 m a.s.l. This landscape belongs to the so called
“Bohemian Masse”, a very old mountainous region built of crystalline rocks such as gneiss
and granite. Climatic conditions are cool and humid, with a mean annual temperature
varying from 6.5 °C in the low mountain ranges to 3–4 °C at high elevation and an annual
precipitation varying from approximately 1,000 mm in the valleys to 2,500 mm at high
altitude. Long and cold winters with a lot of snow are typical for this region. Poor, acid and
stony soils predominate. Wet and swampy soils play an important role, resulting in the
development of peat bogs. 97% of the Bavarian Forest National Park is covered by forests.
The most important forest communities are montane beech (Fagus sylvatica L.) forest
with silver fir (or fir; Abies alba Mill.) and spruce (52%), subalpine spruce forest (19%),
spruce–fir forest on wet mineral soils in the valleys (8%), and spruce forest on wet organic
soils (6%) [152]. This susceptibility exposes the forest to recurrent disturbances caused
by storms. As a national park, Bavarian Forest National Park intentionally resembles
a "jungle" or primaeval forest, introducing substantial fluctuations in the ecosystem
dynamics, thereby challenging model predictability. In contrast, the geotagged photos
from Steigerwald [147] emphasize the forest’s high density of deciduous trees and the
outcomes of intensive forest management, particularly in its northern regions [245].
The Steigerwald Forest is located in northern Bavaria, Germany, and forms part of
the Franconian escarpment landscape known as the “Fränkisches Schichtstufenland.”
Elevation ranges from approximately 190 to 500 m a.s.l., with the terrain shaped by the
layered structure of Keuper formations, including sandstone and marl. The region is
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characterized by a temperate climate, with mean annual precipitation ranging from about
650 mm in the forelands to up to 750 mm in the forested highlands. Eastern areas are
drier, with rainfall decreasing toward the Regnitz Valley. The climate is relatively mild,
but influenced by orographic effects along the Steigerwald escarpment. Soils vary widely,
including nutrient-rich Gipskeuper substrates in the west and more acidic, sandy soils in
the east. Forests cover large parts of the area and represent a structurally diverse and
ecologically valuable landscape. Dominant forest types include montane beech (Fagus
sylvatica L.) stands on mesic sites, mixed deciduous forests with oak (Quercus robur L.,
Quercus petraea Mattuschka) and hornbeam (Carpinus betulus L.) on lower slopes and
terraces, and pine (Pinus sylvestris L.) forests on dry, sandy substrates of the eastern
escarpment. Remnants of traditional coppice-with-standards management (Mittelwald)
still persist in parts of the forest and contribute to the structural diversity. Many areas are
characterized by near-natural and old-growth beech forests. The Steigerwald region is
part of the Naturpark Steigerwald and hosts several nature reserves and Natura 2000
sites. The combination of geological heterogeneity, forest cover, and cultural land use
history has resulted in a high level of biodiversity. The forest plays an important role in
regional conservation, offering habitat continuity, high structural complexity, and climate
resilience [45]. With 43% cover, beech Fagus sylvatica is the dom-inant tree species in
the investigated section of the“Steigerwald” forest, followed by oak Quercus petraeawith
20%. Deciduous trees cover more than 70% [245]. This leads to a characteristic forest
structure and a comparatively stable forest environment, which in turn enhances the
reliability and accuracy of predictive modelling outcomes [147].

Despite its limited spatial extent, Kranzberg Forest features a notably balanced com-
position of tree species, primarily dominated by spruce (Picea abies) and beech (Fagus
sylvatica), as evidenced by the geotagged field photographs. Kranzberg Forest (Longitude:
11° 39' 42" E, Latitude: 48° 25' 12" N, Altitude 490 m a.s.l.) is situated in southern
Germany, approximately 35 km north-east of Munich. While its small size may restrict its
use for large-scale modelling applications, it nonetheless provides meaningful insight into
species coexistence within a compact forest system. The accompanying geotagged images
add a valuable visual context to the dataset, reinforcing the documented forest structure
with in-situ observations and enhancing the ecological depth of the data [147].
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Reference Data and Labels

These landscapes represent a gradient of forest types, from managed to near-natural
stands, offering a comprehensive foundation for forest characterization and monitoring.
The selected forests span a wide range of structural and ecological attributes, including
deciduous, coniferous, and mixed stands, as well as disturbed areas affected by natural
and anthropogenic factors. Forests rank among the most ecologically complex and vital
terrestrial ecosystems, serving critical functions in biodiversity preservation, carbon cy-
cling, and climate regulation. As environmental pressures mount globally, the demand
for accurate, scalable, and high-resolution forest monitoring solutions is growing. RS
has become a core tool in this domain, enabling consistent, large-scale observation. Yet,
the utility of RS-derived insights is fundamentally constrained by the quality, granularity,
and representativeness of the reference data used to train and validate models. The
Wald5Dplus dataset [147, 148] addresses this need by providing a comprehensive, mul-
timodal benchmark for forest characterization, bridging the gap between raw satellite
data and meaningful ecological insight. In particular, it emphasizes individual tree-level
annotation using airborne laser scanning and multispectral data, enabling the derivation
of critical forest attributes at scale. High-quality reference datasets are available for
these regions, supporting a wide range of forest monitoring applications. These include
continuous structural parameters such as tree height, crown volume, and crown area, as
well as complementary field-based inventories. In addition to these detailed structural
features, semantic disturbance labels, such as bark beetle infestations, enable a dual
focus on both forest composition and dynamic processes. While Wald5Dplus serves as the
conceptual foundation for structural characterization, this thesis integrates additional
reference datasets to extend the scope of analysis, particularly with respect to forest
disturbance monitoring and ecological interpretation. A key supplementary source are
datasets provided through the Bavarian Forest National Park’s Datapool initiative [203].
The next sections provide an overview of both labelled datasets used in this thesis.

Wald5Dplus Labels: Three well-defined AOI were systematically investigated, as shown
in Figure 1.4. The reference data used in the analysis is directly aligned with these
selected regions.

A overview of these AOIs, including their subdivisions referred to in this thesis, associated
EO data years, and relevant tile information, is provided in Table 1.1 and Figures 1.2
and 1.3. For the Bavarian Forest National Park, both field transects (Transects 1–4)
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and rasterized tiles (NP_T00–T11 for structural variables, NP_D01–D06 for deadwood
variables) are distinguished, reflecting the dual structure of reference data in this region.
While the label creation process is described for all AOIs, it is important to note that for
the Bavarian Forest National Park, the field transects are described, however, by using the
same procedure this was extended across the full national park area ( 29400 ha).
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Figure 1.2.: Overview of Steigerwald (AOI 1) and it’s subdivisions.

38 Chapter 1 Introduction



Figure 1.3.: Overview of the AOI 2 and it’s subdivisions. (a) Raster tiles NP_D01–D06 cov-
ering deadwood variables in the Bavarian Forest National Park; (b) Raster tiles
NP_T00–T11 covering structural forest variables; (c) Field transects 1–4 correspond-
ing to ground reference measurements.

Table 1.1.: Overview of AOIs, Subdivisions, and Associated EO Data Years

AOI No. AOI Name Subdivision

1 Steigerwald Sub-AOI 1 – 2020, 2021

Sub-AOI 2 – 2020, 2021

Sub-AOI 3 – 2020, 2021

Sub-AOI 4 – 2020, 2021

Sub-AOI 5 – 2020, 2021

Sub-AOI 6 – 2020, 2021

2 Bavarian Forest
National Park

Transects 1–4 (Reference Plots) – 2020,
2021

Tiles NP_T00–T11 (8-band, structural
variables) – 2020, 2021

Tiles NP_D01–D06 (2-band, deadwood
variables) – 2020, 2021

3 Kranzberg Forest Core Region – 2020, 2021
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Collection and Characteristics of Polygon Reference Data:

Figure 1.4.: Map of study sites displaying the three designated areas of interest

The reference data, represented in the tree polygons, comprise labelled tree segments,
meticulously generated from full-waveform LiDAR and multispectral data within the
designated research areas in accordance with the specifications delineated in Table 1.2.
The utilization of full-waveform LiDAR data is instrumental segmenting single trees in
different forest layers. The generation of tree segments is achieved through the application
of a sophisticated normalized cut algorithm that systematically partitions the LiDAR point
cloud into point cloud segments until predefined criteria are met and single trees are
found. These tree segments encompass a multitude of calculated attributes, including
tree height, crown diameter, crown volume and crown base height. The computation of
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crown base height entails a meticulous process of distinguishing between crown points
and ground points, subsequently stratifying the crown points into discrete 0.5-meter
layers and ascertaining their respective crown point counts. The crown base height is
then accurately determined as the height corresponding to 15% of the total number of
tree points, as expounded in [271].

Table 1.2.: Characteristics of the examined Areas of Interest

AOI Name Coordinates Platform Year Area Trees

1 Steigerwald 48°25’N, 11°40’E Helicopter 2017 2,600 ha 1,106,073

2 Bavarian Forest National Park 49°15’N, 13°15’E Airplane 2016 1,443 ha 512,489

3 Kranzberg Forest 49°53’N, 10°32’E UAV 2020 7 ha 1,467

The tree segmentation generated from the LiDAR point cloud harmoniously integrates
with the multispectral data to facilitate feature extraction. By employing projected
polygons of the segmented trees in combination with multi-spectral data covering the
AOIs, a diverse array of classifications and feature sets is deployed, with the overarching
goal of distinguishing between deciduous and coniferous trees, in addition to detecting
deceased standing trees and snags, as comprehensively discussed in literature [15].

The individual tree polygons encapsulate critical information pertaining to each tree,
encompassing details such as tree type, distinguishing between deciduous, coniferous, or
identifying it as deadwood (=standing dead trees and snags). These polygons, which
can partially overlap, further provide insights into the crown volume, the tree height, the
specific crown base height as well as the crown volume. Validation of this approach was
systematically conducted in Amiri et al. [15] and Krzystek et al. [193]. In a recent study
[82], a novel tree detection method based on the Detection Transformer (DETR) was
applied. The results demonstrated the potential of this approach, with F1-scores of 83 %
for coniferous, 86 % for mixed, and 71 % for deciduous plots, outperforming significantly
four baseline methods in all forest types. In summation, these validation endeavours
affirm the robustness and adaptability of this approach across a spectrum of forest
structures and environmental conditions. The holistic integration of full-waveform LiDAR
data, adaptive algorithms, and advanced instance segmentation techniques collectively
embodies the potential to markedly elevate the precision of tree segmentation. This
heralds a notable stride forward in the realm of RS and forest-focused applications.
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Rasterization Process for Use in EO Modelling:

In the endeavour to transition the properties encapsulated within the single-tree polygons,
which initially comprise information, i.e., labels relating to leaf type, crown volume, tree
height, and crown base height, onto a raster format without a substantial loss of detail, a
conscientious aggregation process unfolds.

The procedure is implemented as follows: Employing a QGIS model, the input label data
is extracted from the single tree polygons. These labels encompass crucial insights into
the nature of the trees, distinguishing between deciduous and coniferous varieties, as
well as identifying those categorized as deadwood. Furthermore, the polygons encompass
attributes detailing the crown volume, tree height, and crown base height. Of notable
significance is the generation of a model output raster, consisting of ten distinct bands,
each conveying distinct metrics derived from the tree segments. These bands encapsulate
the core information extracted from the single tree polygons. It is essential to emphasize
the seamless integration of this model output raster with the input satellite raster. This
integration operates harmoniously with a 10-meter grid meticulously aligned with its
spatial coordinates. The Bavarian Forest AOI adheres to UTM zone 33N (EPSG: 32633),
while the other two AOIs lie within UTM zone 32N (EPSG: 32632) due to the inherent
characteristics of the satellite data. The primary challenge encountered during this
intricate process lies in the development of a method capable of robustly extracting single
tree polygon information and accumulating the associated values within the new raster
cells. The resulting raster bands are presented in Table 1.3.
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Table 1.3.: Rasterized single-tree polygon bands capturing key forest attributes in a 10 m grid
format.

Band Variable Unit Value Range

1 Sum crown area of deciduous
trees

m2 0–170

2 Sum crown area of coniferous
trees

m2 0–170

3 Sum crown area of dead trees m2 0–120

4 Count of deciduous trees Count 0–9

5 Count of coniferous trees Count 0–9

6 Count of dead trees Count 0–7

7 Tree area coverage % 0–100

8 Sum crown volume m3 0–3000

9 Mean tree height m 0–43

10 Mean crown base height m 0–24

The calculation of values related to crown volume involves multiplying the crown volume
by an area factor. For the three tree type count bands, the area factor is summed for
each tree type. These calculations are executed through the derivation of an area ratio.
This ratio represents the proportion of an attribute’s area within a raster cell concerning
the total area of the same attribute in the intersected polygons. Applying this area ratio
method results in an adjustment of crown volume values based on the extent of the
intersection between tree segments and raster cells.

The area ratio method described above can be mathematically expressed through weighted
sums that adjust attribute values according to their spatial intersection with raster cells.
Specifically, the adjusted crown volume and mean tree height per raster cell are calculated
using area-weighted values.

The adjusted crown volume (Vadj) is computed as:

Vadj =
n

∑
i=1

Vi · ri (1.1)
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Similarly, the adjusted mean height (Hadj) is derived using:

Hadj =
∑n

i=1 Hi · ri

∑n
i=1 ri

(1.2)

In these expressions:

• Vi and Hi represent the crown volume and height of the i-th tree segment, respec-
tively.

• ri is the area ratio, i.e., the proportion of the tree’s crown area within the raster cell.

• n is the number of tree segments intersecting the raster cell.

Equations (1.1) and (1.2) ensure that crown volume and tree height values are properly
weighted based on the degree of overlap between each tree segment and the raster grid
cell.

For tree height and crown base height, a weighted arithmetic average calculation, as
defined in Eq. 1.3, is implemented for each intersected raster cell.

h̄ =
∑n

i=1 ai · hi

∑n
i=1 ai

(1.3)

Within the equation, a represents the area of the intersected polygons, and h represents
either tree height or crown base height, depending on the specific attribute being calcu-
lated. Equation 1 is applied to all polygons within a raster cell. The area of the intersected
polygons thus serves as a means to proportionally adjust the attribute heights in accor-
dance with the portions of their area within a given raster cell. The tree type labels,
categorizing trees as deciduous, coniferous, or deadwood, have their areas calculated
per pixel. This is achieved by aggregating the area of all polygons with their respective
tree type within a pixel grid. The counts of these areas are summarized for each tree
type, with the previously described area ratio method applied per tree type. In addition
to the tree type areas, a percentage value denoting the tree type coverage of a pixel is
calculated. The resulting value represents the proportion of the grid cell’s area occupied
by tree segments, with each cell standardized to 100 square meters. It is important to
note that this calculation does not consider overlapping polygons.
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Figure 1.5.: Exemplary aggregation results of the tree segments onto the 10 m grid of the raster
data, displaying the tree class (l.) and the crown volume (r.) of a subset in the
Bavarian Forest National Park test site (AOI 2).

Figure 1.5 illustrates the exemplary results of aggregating individual tree segments onto
the 10 m raster grid, showing (l.) the tree class distribution (coniferous vs. deciduous)
and (r.) the corresponding crown volume estimates within a subset of the Bavarian Forest
National Park test site (AOI 2).

Ground truth from Field campaigns: As consistency and continuity are two key features
of training datasets, the labels generated from LiDAR points clouds and multi-spectral
images acquired by airborne sensors are checked during several field campaigns. Repre-
sentative forest stands within the test sites were documented by field-walking and taking
geotagged photos (see Figure 1.6). Using the saved coordinates and the orientation, the
forest stands can be qualitatively assessed.
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Figure 1.6.: Ground truth from Field campaigns in the three designated study sites (a) Steiger-
wald, (b) Bavarian Forest National Park, and (c) Kranzberg Forest.

Deadwood and Bark Beetle Disturbance Labels: In addition to this described static ref-
erence dataset, further reference labels are available within the Bavarian Forest National
Park (Figure 1.4 and Table 1.2). These datasets include temporal dynamic bark beetle-
affected areas, distributed by the Datapool Initiative [203].

The deadwood dataset encompasses all forest areas identified as standing deadwood
from 1989 to 2023. It is updated annually based on aerial image interpretation and
provides temporal resolution at the scale of one year. Each polygon includes three key
attributes:

• Not_Before – the last confirmed date when the area was intact forest

• Not_After – the first date the area was classified as deadwood

• Change_Year – the year, whereas the transition from forest to deadwood was
observed
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The attribute Change_Year refers specifically to the period of visible transition in aerial
imagery, typically occurring between late summer of the change year and early summer
of the following year. For instance, a Change_Year value of 2020 indicates that tree
mortality became visible sometime between August 2020 and June 2021. Due to the
dataset’s reliance on annual imagery surveys, the exact timing of mortality events within
this interval cannot be resolved more precisely.

The dataset also indicates whether deadwood was removed or left standing. Given
the National Park’s strict non-intervention policy, removal is rare and generally limited
to buffer zones near park boundaries. While species information is not included, it is
assumed that most deadwood results from Ips typographus infestations in Norway spruce
(Picea abies), which have driven extensive dieback events, especially since the early
2000s. Other disturbance agents were not systematically mapped during the observation
period.

1.2.3 Canadian High Arctic

Glaciological research plays a vital role in environmental monitoring, particularly in
light of ongoing climate change. Glaciers and ice sheets are among the most responsive
indicators of both natural climate variability and human-induced warming [46], making
their observation essential for understanding trends in global sea-level rise, freshwater
availability, and regional climate effects. The retreat of glaciers contributes to heightened
local geohazards [136] and has far-reaching consequences for marine [160] and terres-
trial ecosystems [109, 47], regional hydrological systems [166], and the global water and
energy balance [338, 87]. Alongside the Greenland and Antarctic ice sheets, mountain
glaciers are major contributors to both current [307, 28] and projected [275, 231, 158]
sea-level rise. Around the year 2000, glaciers excluding the two continental ice sheets
spanned approximately 706,000km2 worldwide [272], with a combined ice volume
estimated at 158,170±41,030km3, corresponding to a potential global sea-level rise of
324 ±84mm [103].

Glaciers form in regions where long-term snow accumulation exceeds the amount lost
through melting and sublimation. The key processes involved are accumulation, ablation,
and the development of the glacier tongue [306]. The accumulation zone is located above
the equilibrium line altitude (ELA) and is permanently covered by snow. In this zone,
snow is added through precipitation, firnification, and wind transport. The equilibrium
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line marks the altitude where accumulation and ablation are balanced on average. Below
the equilibrium line lies the ablation zone, where snow and ice are lost through melting,
runoff, sublimation, calving, and wind erosion. The glacier tongue represents the lower
end of the glacier and often serves as the origin of meltwater streams. Its shape and extent
are influenced by the glacier’s mass balance, valley morphology, and size [306]. Snow
metamorphism refers to the physical changes that snow undergoes after deposition. Two
main types of metamorphism are recognized. Destructive metamorphism occurs through
melting, refreezing, mechanical compression, and sublimation, leading to a reduction
in snow crystal size and surface energy. Constructive metamorphism occurs under cold
conditions, where water vapor deposition causes the growth of faceted crystals such as
depth hoar. The density of snow increases as metamorphism progresses. Fresh snow
typically has a density below 0.1 g/cm3, while old snow may reach densities between
0.2 and 0.4 g/cm3. Firn, snow that survives at least one summer, has a density between
0.4 and 0.83 g/cm3. Glacier ice, formed from the compression of firn, typically has a
density between 0.83 and 0.917 g/cm3 [137]. Glacier facies [36, 244], such as bare
ice, superimposed ice, or firn, also called glacier zones, are parts of a glacier that differ
in characteristics such as structure, density, percolation properties or albedo. Together,
they form either the accumulation or ablation zone of a glacier (i.e., a zone where a
glacier either gains or loses mass in a given time span) [72]. Changes in the extent of
a glacier zone at the end of an ablation season (late summer and autumn) are one of
the indicators of glaciers’ state and their response to climate change. Due to physical
differences between glacier zones, information about their extents can support studies of
glacier mass balance, hydrology, and other components of the surrounding environment.
This concept of glacier zones was developed through field studies on the Greenland Ice
Sheet and Arctic glaciers. These zones categorize areas of a glacier based on physical
snow and ice characteristics, primarily influenced by snow metamorphism and mass
balance processes [36, 253]. This commonly adopted classification scheme distinguishes
the following glacier zones:

• Dry Snow Zone: An area where no melting occurs throughout the year, and snow
undergoes only mechanical and thermal metamorphism.

• Percolation Zone: An intermediate zone where surface melting occurs during
summer, and meltwater refreezes within the snowpack, forming ice lenses and
layers.

• Wet Snow Zone: A zone where the entire seasonal snowpack melts during the
ablation season, resulting in saturated snow and supraglacial water features.
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• Superimposed Ice Zone: A region where refrozen meltwater accumulates as an
ice layer on top of the glacier surface.

• Bare Ice Zone: The lowermost glacier area where seasonal snow completely melts,
exposing bare glacier ice.

EO has become a central tool for glaciological research, enabling the continuous and
large-scale monitoring of glaciers across remote and often inaccessible regions. The use
of EO allows researchers to systematically observe key glacier parameters such as extent,
surface properties, flow dynamics, and mass balance changes over various temporal
and spatial scales. EO datasets are crucial for documenting the response of glaciers to
climate change, tracking glacier retreat, quantifying mass loss, detecting surface elevation
changes, and understanding surface melt processes. The ability to acquire frequent
and consistent data has significantly enhanced long-term glacier monitoring programs
and complements traditional fieldwork by extending observations beyond ground-based
limitations [256].

EO techniques applicable to glaciology primarily include optical, thermal infrared, and
active microwave systems. Each technology provides distinct information critical for
understanding glacier systems: Optical sensors such as those on Landsat, Sentinel-2, and
MODIS platforms provide data in the visible and near-infrared spectral ranges. They are
primarily used for:

• Mapping glacier extent and delineating glacier boundaries [143].

• Monitoring seasonal snow cover [4] and surface albedo changes [106]

• Identifying supraglacial lakes [156], debris cover [186], and meltwater features
[247].

However, optical observations are limited by atmospheric conditions, cloud cover, and
the need for daylight, particularly problematic in polar regions. Thus Optical and SAR
RS data are increasingly used in combination to monitor, e. g. the seasonal evolution of
supraglacial lakes, which influence glacier dynamics through enhanced melt and basal
lubrication. Multi-sensor approaches have proven effective for generating consistent time
series of lake area and linking these patterns to climatic drivers such as temperature and
precipitation anomalies [353]. Thermal infrared sensors capture the surface temperature
of glaciers and are useful for:

• Detecting surface melt onset and identifying melt zones.
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• Characterizing thermal anomalies and supraglacial water bodies.

• Supporting energy balance studies on glacier surfaces.

Thermal data contribute to understanding the spatial variability of melting processes and
energy fluxes in glaciated environments [256].

Active radar systems, especially SAR are indispensable for glaciological studies due to
their ability to acquire data independent of illumination and weather conditions. SAR is
particularly valuable for:

• Measuring glacier surface velocities through feature tracking and interferometry
(InSAR, DInSAR).

• Mapping accumulation and ablation zones based on radar backscatter variations.

• Monitoring surface roughness, meltwater presence, and changes in snowpack
structure.

Radar data allow precise tracking of glacier motion and deformation over time, and
enable mass balance assessments over large areas [240]. Paterson [253] introduced
the concept of glaciological snow zones based on field observations, while Rau et al.
[268] expanded this framework by associating them with characteristic radar responses
observed through remote sensing (see Figure 1.7). Although radar observations provide
valuable data, the fundamental understanding of glacier zones remains rooted in in-situ
physical measurements. Complete sequences of glacier zones are rare but can occasionally
occur under specific climatic conditions, such as on Ellesmere Island or Axel Heiberg
Island [267].

Nonetheless, their delineation has been increasingly supported by advances in SAR
RS, particularly under polar conditions where optical imagery is often limited due to
persistent cloud cover or polar night [36, 244, 72, 17]. Several SAR-based methods are
employed for glacier zone detection:

• Backscattering coefficient (σ0): This commonly used SAR metric reflects mi-
crowave energy from glacier surfaces and subsurfaces, and has been applied exten-
sively with dual-pol C-band SAR data for glacier zone mapping [201, 7].

• Pauli decomposition: This method separates SAR returns into odd-bounce, even-
bounce, and volume scattering components, enabling structural interpretation of
glacier facies [252, 300].
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Figure 1.7.: Schematic representation of glaciological snow zones based on Paterson [253] and
corresponding radar glacier zones based on Rau et al. [268].

• H/A/α decomposition and H/α segmentation: These techniques analyze entropy
(H), anisotropy (A), and the mean scattering angle (α) to identify dominant scat-
tering mechanisms. The H/α segmentation proposed [71] has been widely used,
with later enhancements using Wishart and K-Wishart classifiers for unsupervised
classification [71, 207].

• Unsupervised classification methods: Algorithms such as K-means and Gaussian
Mixture Model–Expectation Maximization (GMM-EM) are utilized to cluster SAR-
derived features (e.g., σ0, Pauli components) into glacier zone classes [30, 53, 31].

Advances in EO include the fusion of optical, thermal, and radar datasets to enhance
glacier mapping and monitoring accuracy. High-resolution sensors enable the study of
smaller glaciers and detailed surface processes. The increasing application of ML and DL
techniques allows for automated glacier classification, change detection, and time-series
analysis, significantly accelerating data processing workflows. New EO products, such
as TanDEM-X DEM change maps, provide highly precise surface elevation change data,
which are instrumental in quantifying glacier mass loss over time. However, while EO
offers unprecedented coverage and data richness, the availability and quality of training
and reference datasets remain a major bottleneck. Especially in glaciology, where surface
conditions are highly dynamic, labels must be temporally synchronized with the EO
acquisitions to avoid outdated or inconsistent ground truth. Glacier facies can shift
rapidly over months or even weeks due to seasonal melt, snowfall, or dynamic processes

1.2 Application Domains and Labelled Datasets 51



like surging. Consequently, pre-processing of reference datasets, including temporal
validation, dynamic filtering, and careful interpolation, is critical to ensure that ML
models are trained on temporally relevant and physically consistent information. EO is
therefore not only essential for modern glaciological research but must be complemented
by robust, time-aware label engineering to fully unlock its potential. Together, EO data
and temporally aligned reference information contribute to a comprehensive and scalable
framework for monitoring glacier dynamics, assessing climate change impacts, and
supporting informed scientific and policy decisions.

Study Area and Environmental Characteristics

The glaciology-focused AOI in this study comprises two Arctic islands in the Canadian
High Arctic: Axel Heiberg Island and Devon Island (see Figure 1.8. These islands form
part of the Queen Elizabeth Islands, a cluster located in Nunavut and the Northwest
Territories. With Ellesmere Island, they account for approximately 14% of the global
glacier and ice cap area, excluding Greenland and Antarctica, highlighting their global
significance for cryospheric and climate research [301].

52 Chapter 1 Introduction



Figure 1.8.: Overview of the Canadian High Arctic glacier study areas, comprising Axel Heiberg
Island and Devon Island.

Geologically, the Queen Elizabeth Islands are composed of folded and eroded Cambrian to
Upper Devonian sedimentary rocks, with intense orogenic features giving rise to mountain
ranges exceeding 2,000 m in elevation, particularly on the eastern islands. The diversity
of landforms and permafrost conditions across these islands provides a valuable natural
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laboratory for investigating glacier dynamics under varying environmental influences.
Roughly one-fifth of the land area is ice-covered, with the largest ice masses located on
Ellesmere, Axel Heiberg, and Devon Island

Axel Heiberg Island (approx. 43,000 km2) features a rugged topography dominated by
the Princess Margaret Range, peaking at Outlook Peak (2,210 m a.s.l.). Roughly 35%
of the island is permanently ice-covered. Its glacier systems include two major ice caps,
the Müller and Steacie Ice Caps, as well as numerous outlet and valley glaciers such as
Iceberg, Airdrop, Thompson, Strand, and White Glacier. These glaciers vary substantially
in morphology, with calving termini (e.g., Iceberg Glacier) and land-terminating outlets
(e.g., White Glacier), making them ideal for comparative analysis of glacial responses to
climatic changes.

White Glacier, located near Expedition Fjord, is a key focal point in this thesis due to its
well-documented long-term observational record. The glacier spans an elevation gradient
from 1782 m to 100 m a.s.l., with a wide accumulation zone narrowing into a steep valley
tongue. The glacier’s polythermal structure, featuring a cold upper shell and temperate
base, makes it especially valuable for evaluating multi-sensor remote sensing data over
heterogeneous glacial conditions [44].

The regional climate is defined by polar desert conditions, with mean annual temperatures
around −19.7 ◦C and mean July maxima of +5.4 ◦C, based on data from EUREKA station
on nearby Ellesmere Island. Although annual precipitation averages only 64 mm at low
altitudes, accumulation rates can reach up to 370 mm a−1 at higher elevations on Müller
Ice Cap [73]. Long-term records confirm significant warming since the 1970s, particularly
during winter, along with an increase in annual precipitation [211].

Devon Island, to the south-east, complements this Arctic AOI cluster by offering a
contrasting glaciological setting in the form of the Devon Ice Cap, Canada’s largest ice
cap entirely situated on a single island. Encompassing approximately 14,000 km2, it is
located on a high-elevation plateau that provides a relatively stable and well-stratified
glacial system. Its gentle dome-shaped topography facilitates the formation of extensive
firn zones and well-preserved accumulation layers, which are key for reconstructing past
climate variations and validating radar-penetrative remote sensing techniques. The ice
cap drains through several large outlet glaciers, including Belcher and Sverdrup Glaciers,
which terminate in fjords and occasionally calve into the ocean.

The Devon Ice Cap features clear stratigraphic zonation: an upper accumulation zone
with persistent firn cover, a transitional percolation zone, and a lower ablation zone
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affected by strong seasonal melt. This structure supports a range of applications in glacier
mass balance modelling and SAR-based classification. Long-term monitoring has shown
a consistent trend of mass loss, particularly at the termini of its outlet glaciers, aligning
with pan-Arctic glacial retreat patterns. Its accessibility, extensive research history, and
stable internal dynamics make Devon Island a valuable calibration and validation site for
multi-temporal EO studies.

Collectively, Axel Heiberg and Devon Islands encompass a diverse spectrum of glacio-
logical environments, ranging from fast-flowing valley glaciers with steep gradients to
expansive, slow-changing ice caps. Their spatial and climatic diversity enables com-
prehensive evaluation of remote sensing techniques, particularly for multi-temporal,
spectro-polarimetric fusion and classification. The combination of documented historical
observations (e.g., on White Glacier), strong topographic gradients, and ongoing climate-
driven changes make this AOI uniquely suited for high-dimensional glacier research
within this thesis.

Reference Data and Labels

The glacier zone reference dataset used in this thesis was produced as part of a thesis by
[311], which developed and applied a robust methodology for classifying glacier facies
across the Canadian High Arctic. This classification approach is based on TerraSAR-X
(TSX) ScanSAR imagery collected between 2017 and 2023, with a revisit interval of 11
days and a ground sampling distance of 40 meters. The resulting dataset provides a high-
resolution, multi-temporal characterization of glacier surface zones over Axel Heiberg
Island and Devon Island. Five radar glacier zones were defined and mapped across all
three AOIs, adapted from established literature and calibrated for local glaciological and
radiometric conditions:

• Dry Snow Zone – consistently snow-covered, low radar backscatter;

• Frozen Percolation Zone – refrozen melt layers, enhanced volume scattering;

• Superimposed Ice Zone – surface refreezing, moderate radar return;

• Bare Ice Zone – exposed glacial ice with high backscatter;

• Wet Snow Zone – saturated snow with low backscatter due to signal attenuation.
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The threshold calibration for facies classification followed a histogram-based approach
using HH-polarized backscatter values expressed in Gamma-Naught (γ0) [311]. Winter
TSX scenes were prioritized for threshold detection due to their minimal variability
in surface conditions, which allowed clear identification of class-specific peaks in the
backscatter distributions. This approach, while methodologically simple, proved highly
effective for detecting consistent zone separations over time. In addition, a earlier work
[146, 145, 273, 352] served as a conceptual and empirical guide for class boundary
definition, e.g., for Axel Heiberg Island [146, 145], offering initial benchmarks for radar
zone properties under similar climatic and topographic conditions.

To generate a consistent and scientifically valid glacier zone product, the following
auxiliary datasets and technical procedures were employed [311]:

• GLIMS glacier outlines [269, 126] were used to spatially constrain classification
and ensure that only glacier-covered areas were analyzed;

• Copernicus DEM (GLO-30) [98] elevation data were used to calculate elevation
statistics for each glacier zone. Due to differing pixel resolutions between the DEM
and SAR imagery, DEM values were assigned to SAR pixels using a nearest-neighbor
method based on minimum centroid distance;

• Scene-specific histogram analysis was applied to detect peak clusters in backscat-
ter values, which were then assigned to glacier facies based on elevation stratifica-
tion and temporal behaviour;

• Multi-temporal SAR filtering and Gamma-Naught radiometric terrain correction
were applied to reduce speckle, normalize for topographic effects, and ensure
radiometric comparability across acquisition dates and glacier geometries;

• Multi-SAR preprocessing [38] was used to standardize data input formats and
ensure compatibility across the large multi-scene time series.

While unsupervised clustering methods (e.g., k-means, EM) were explored, they were
ultimately not adopted due to their limitations when applied to univariate backscatter
data. Instead, the peak-based thresholding approach, supported by literature values
and local calibration, was found to provide more stable and interpretable results (see
Table 1.4) [311].
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Table 1.4.: Thresholds for Glacier Zones Derived by Histogram Peaks Method [311]

Glacier Zone Transition Threshold (dB)

Dry Snow Zone > -1.5

Frozen-Percolation Zone > -5.7

Superimposed Ice Zone /
Bare Ice Zone

> -10.4

Wet Snow Zone < -15.0

The final reference product consists of spatially explicit, zone-labelled glacier masks at a
roughly 7-day intervals for all two AOIs. These maps not only allow detailed assessment
of seasonal surface dynamics but also form a reliable reference for the supervised training
and validation of glacier zone modelling within this thesis.

1.3 Main Objective and Research Goals

The overarching goal of this thesis is to advance ML-based environmental monitoring by
systematically exploring the interplay between EO and ML in a multi-modal, multi-model,
and temporally explicit manner. Central to this exploration is the evolution of EO feature
representations, from spectral-only setups, to polarimetric, to fused spectral–polarimetric,
and ultimately to multi-temporal, multi-modal fusion using hypercomplex algebra [289].
This progression enables a systematic EO to ML based predictive task evaluation of forest-
related parameters. Another focus of this thesis lies also in the exploration of temporal
fusion strategies as a means to extract deeper information from EO data. Rather than
treating time merely as a sequence, intra- and inter-seasonal acquisitions are deliberately
fused under various configurations. These scenarios are evaluated not only for their
predictive utility but also for their capacity to reveal latent spectral–structural interactions
across time. This systematic analysis culminates in the development of a novel, cross-
seasonal, multi-modal EO index, designed to capture land surface characteristics such
as vegetation–sinkhole interactions in arid karst systems with improved robustness
and ecological relevance. Another critical challenge addressed by this thesis is the
underexplored bottleneck of label quality, temporal consistency, and structural design in
EO-based ML workflows. While much progress has been made on model architecture and
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feature engineering, label-side innovations have lagged behind. To address this gap, the
HELIX framework is introduced, a modular system for context-aware label enrichment.
HELIX systematically enhances weak or sparse labels by integrating multi-scale spatial
statistics. By including this way model-informed residuals, this enables conventional
ML models to exploit nuanced structural and temporal patterns without requiring costly,
handcrafted architectures. By directly linking EO input and label design, the HELIX
supports robust learning in challenging supervision regimes. This alignment enables
traditional ML models to effectively leverage temporally structured EO inputs without
requiring complex temporal architectures, such as LSTMs.

The work is guided by the following core research aims:

• To evaluate the predictive capacity of individual, multi-modal and multi-
temporal EO modalities, by progressing from individual modality inputs, including
Sentinel-2 spectral bands, their Kennaugh-like transformations, and Sentinel-1 po-
larimetric Kennaugh elements (including TSX and ALOS), to spectral–polarimetric
fusion using hypercomplex algebra, and ultimately to fully fused spectrally, polari-
metrically and temporally representations. Whereas, these strategies are bench-
marked across diverse predictive models, including both intra-AOI and full spatial
transfer scenarios.

• To investigate discrete temporal fusion strategies, such as intra-seasonal and
cross-seasonal fusion, with an emphasis on capturing phenological-and structural
variation and improving robustness across varying observation conditions.

• To develop and validate HELIX-based label enrichment methods, which spatially
and temporally align dynamic reference labels with EO features, and enrich them
using if possible local spatio-temporal context. In modelling, these methods incor-
porate spatial context (e.g., neighbourhood statistics) and residuals from baseline
models to encode uncertainty and structural ambiguity. This enriched supervision
enables more informed learning, especially in complex or under-annotated scenar-
ios. The framework is applied across diverse domains, including forest structure
regression, bark beetle and storm disturbance detection, and seasonal glacier zone
classification, demonstrating its flexibility and impact.

Together, these objectives define a coherent experimental framework that systematically
probes the relationship between EO feature complexity, label design, and predictive model
performance. The resulting insights inform the development of scalable, modular EO–ML
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pipelines that are suited for real-world environmental monitoring tasks, particularly
under conditions of data sparsity, label uncertainty, and dynamic change.

1.4 Thesis Outline and Contributions

This thesis is organized into eight chapters, each contributing a distinct conceptual and
methodological layer to the overall research goal: improving environmental monitoring
through systematic integration of EO features, reference labels, and ML techniques.
Figure 1.9 illustrates the structural logic and thematic progression. Chapters 2 and 3
establish the two foundational pillars of the thesis, EO feature engineering and reference
data design, while Chapters 4 to 7 build upon them through targeted methodological
innovations and applied experimental analyses.

Chapter 1: Introduction — This chapter motivates the scientific and operational rel-
evance of EO-based environmental monitoring. It introduces the methodological
landscape (EO, ML, benchmarking), outlines the application contexts (vegeta-
tion–sinkhole systems, forests, glaciers), presents the AOI and associated reference
datasets, and defines the overarching research objectives.

Chapter 2: Consistent EO Feature Generation — This chapter lays the foundation
for EO feature design. It introduces multi-level fusion strategies (pixel-, feature-,
and decision-level), with a strong focus on temporal-aware fusion schemes. Hyper-
complex algebra [289] is introduced as the core mechanism to jointly represent
spectral, polarimetric, and temporal signals.

Chapter 3: Labelling Foundations and Challenges — This chapter addresses the often-
overlooked bottleneck in EO–ML pipelines: the quality, structure, and temporal
alignment of reference data. It surveys key challenges in label temporality, noise,
sparsity, and task-definition, setting the stage for structured label engineering.

Chapter 4: The Novel Helix Framework for Dynamic Label Data — Building on
Chapter 3, this chapter presents the HELIX framework, a modular system for
context-aware label enrichment. The HELIX aligns labels with EO features across
space and time, treating labels as a dynamic string of voxel-wise annotations, and
enriches them using spatial context (e.g., local neighbourhood statistics) and model-
informed residuals. It provides a scalable strategy to enable robust learning in
weakly supervised, temporally dynamic settings.
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Chapter 5: Temporal Dynamics in EO Feature Engineering — This chapter explores
the impact of different temporal fusion strategies on EO feature quality. Through
a specific use case, arid-zone sinkhole–vegetation monitoring, it evaluates intra-
seasonal vs.cross-seasonal configurations, showing how fusion timing affects EO-
based land cover identification.

Chapter 6: Foundational Analysis of EO Modality–Model Interactions — This
core chapter systematically benchmarks EO-modality–model configurations for
continuous label prediction using the Wald5Dplus Label dataset. It compares
individual modalities (Sentinel-1, Sentinel-2, TSX, ALOS), and their fusion using
hypercomplex methods. Transferability across spatial settings is also evaluated,
revealing the trade-offs between EO complexity and model generalization.

Chapter 7: Context-Aware Label Enrichment and Multi-Scale Learning with the
HELIX Framework — Expanding on Chapters 4 and 6, this chapter assesses how
enriched labels influence prediction quality across multiple applications. HELIX
is evaluated in tasks such as forest structure regression, bark beetle predictive
modelling, and seasonal glacier zone mapping.

Chapter 8: Conclusion and Outlook — The final chapter synthesizes key findings across
the experimental setups, revisits the methodological implications of temporal-aware
feature engineering and label enrichment, and outlines directions for future work
in operationalization, generalization, and transfer learning in EO–ML pipelines.

This structure enables a layered exploration, from foundational data representations
to enriched label supervision, offering a modular contribution to the development of
scalable, robust EO–ML workflows for environmental monitoring.
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Figure 1.9.: Thesis Structure and Thematic Flow: The thesis is grounded in the systemic integra-
tion of EO features, reference labels, and ML methodologies. Chapter I establishes
this foundation. Chapters II and III address the two core data pillars: multi-sensor EO
features and robust labelling strategies. Chapter IV introduces the HELIX framework
for dynamic label enrichment, while Chapter V explores temporal fusion and feature
behaviour. Chapter VI systematically benchmarks EO modality–model interactions
for continuous label prediction, while Chapter VII extends this analysis by evaluating
the impact of context-aware label enrichment and multi-scale learning using the
HELIX. The thesis concludes in Chapter VIII with a synthesis of findings across all
experimental dimensions.

This thesis is guided by the following hypotheses, each addressing a fundamental aspect
of how label data quality, syntactic feature design, and ML models interact in the context
of large-scale EO:

The selection of ML algorithms critically determines the operational viability
and transferability of fused EO datasets. RF, due to their interpretability and
resilience, are hypothesized to outperform more complex or specialized alternatives
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(e.g., SVRs, 1D-CNN) across spatially heterogeneous environments and varying
label complexities.

Syntactic fusion configurations, across spectral, polarimetric, and temporal dimen-
sions, profoundly influence model performance and feature interpretability.
Integrating complementary EO observables through hypercomplex algebra is ex-
pected to yield models that are simultaneously more accurate, more stable, and
more physically interpretable than models based on unimodal inputs.

Dynamic reference data preprocessing via structured frameworks, such as the Helix,
constitutes a breakthrough for scaling EO-based predictive modelling. Proper
temporal synchronization, structural consistency, and variance preservation of labels
are hypothesized to substantially improve model accuracy, generalization, and
robustness, particularly for dynamic phenomena like forest disturbance monitoring
and glacier evolution tracking.

Temporal alignment of reference labels with EO acquisition dates significantly
enhances the reliability of models for monitoring seasonally dynamic pro-
cesses. Especially in tasks sensitive to vegetation phenology or cryospheric changes,
temporally synchronized labels are hypothesized to outperform static or seasonally
mismatched reference datasets.

Comprehensive syntactic fusion and dynamic label preprocessing together enable
true spatial transferability in ML-driven environmental monitoring. When
spectral, polarimetric, and temporal fusion are combined with properly managed
dynamic labels, predictive models are expected to generalize effectively across
distinct geographical domains, addressing a long-standing limitation of current EO
pipelines.

The central contributions of this thesis advance the frontier of machine learning in
EO by jointly tackling the twin challenges of high-dimensional feature representation
and complex, dynamic label design, two pillars often treated in isolation. Through the
systematic integration of multi-sensor, multi-temporal EO data, this work demonstrates
how information-rich, yet operationally tractable representations can be constructed for
large-scale environmental monitoring.

In parallel, it introduces the HELIX framework: a novel approach to label enrichment that
transforms sparse, temporally misaligned, or weakly annotated supervision into robust,
context-aware learning targets. By aligning spatial and temporal structures between EO
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features and reference labels, HELIX enables conventional ML architectures to operate
effectively in data-scarce and uncertainty-prone settings, eliminating the need for overly
complex models such as LSTMs or transformers in many applied scenarios.

These contributions are validated across diverse applications, from forest structure mod-
elling and bark beetle outbreak detection to karst feature mapping and seasonal glacier
zone classification, demonstrating not only methodological rigour but also broad domain
relevance. The thesis further delivers a reproducible, modular benchmarking ecosys-
tem, the Wald5Dplus dataset, providing community-ready data, code, and experimental
protocols to support future research [148]. Taken together, this work defines a scalable
and superior paradigm for EO–ML integration: one that unlocks the full informational
richness of EO while remaining grounded in practical, generalizable ML workflows.

1.4 Thesis Outline and Contributions 63



64



Consistent EO Feature
Generation

2
„Out of clutter, find simplicity. From discord, find

harmony.

— Albert Einstein
Physicist, Nobel Laureate

This chapter includes elements from the following peer-reviewed publication:

Sarah Hauser, Michael Ruhhammer, Andreas Schmitt, and Peter Krzystek. An Open
Benchmark Dataset for Forest Characterization from Sentinel-1 and -2 Time Series.
Remote Sensing, 16(3), 2024, Article 488. DOI:10.3390/rs16030488

It is cited as [147] and is marked with a green line.

Author Contribution: Sarah Hauser served as a primary contributor to study design, software

implementation, practical execution, validation, writing, editing, and visualization.

Over the past few decades, the landscape of EO has been transformed by an explosion
in sensor diversity and deployment platforms. Today’s sensors vary immensely: they
can capture anything from a few square meters to nearly half the planet in a matter of
seconds. Spatial resolutions span from kilometres to sub-centimetre precision, while
spectral coverage extends from ultraviolet (around 200 nm) to long-wavelength radar
bands just below one meter (e.g., P-band), all within usable atmospheric windows.
Bandwidths range from broad thermal channels, like those in Landsat, to ultra-narrow
hyperspectral bands spanning just a few nanometres. Meanwhile, revisit intervals, from
satellite platforms alone, can vary from once a month to daily acquisitions. In the radar
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domain, the variety is just as striking, encompassing everything from single-polarization
to fully quad-polarimetric systems, as well as both mono- and bistatic interferometric
configurations now available in operational settings. Given this vast ecosystem of sensors
and configurations, one might assume that selecting a single, optimal sensor would
suffice for any given application. However, this assumption overlooks a critical reality:
maximizing performance in one dimension often requires trade-offs in others.

Consider the TSX satellite. While it is capable of delivering sub-meter resolution (50 cm)
imagery, this mode restricts coverage to a mere 5×5 km area and introduces scheduling
limitations that preclude continuous acquisitions. In contrast, when configured for wider
area monitoring at a 100 km swath, the spatial resolution drops significantly to 16 m [93].
Such trade-offs are inherent to sensor design, no single system can simultaneously deliver
peak performance across all spatial, temporal, spectral, and radiometric dimensions.
This constraint gives rise to the imperative for data fusion: the strategic integration
of complementary observations from multiple sensors. By combining their respective
strengths, fusion enables the construction of richer, more informative EO products than
any single source can provide.

Image fusion, as originally defined by [333], refers to the process of merging two or more
distinct images into a single, enhanced representation through algorithmic techniques.
Subsequent refinements of this definition and methodological developments can be found
in the foundational works of [339] and [290].

2.1 Data Fusion Approaches

Given the growing diversity of fusion techniques in RS, maintaining a clear conceptual
overview has become increasingly challenging. To manage this complexity, fusion methods
are typically organized based on their operational principles. However, the classification
frameworks used across the literature often differ significantly, depending on the authors’
perspectives and application domains.

One of the most widely adopted classification schemes categorizes fusion strategies by
their stage within the processing pipeline. In this framework, methods are grouped
into three core levels: pixel-level (operating directly on raw image data), feature-level
(focusing on extracted descriptors), and decision-level (fusing outcomes from independent
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classifiers or detectors). The decision-level fusion usually involves objects or entities
already delineated within the data.

This three-tiered structure is supported by numerous studies, including those by [125,
259, 2, 123, 190, 214, 330, 290, 367]. Some reviews streamline this framework by
merging the feature and decision levels into a single category termed “high-level fusion”
[361]. Alternative naming conventions also exist. For instance, the levels are sometimes
referred to as low, mid, and high fusion [94, 262], or described in conceptual terms as
iconic, symbolic, and knowledge-based fusion [92].

In certain cases, authors introduce an additional signal-level fusion stage that precedes the
pixel level [133, 175]. This involves combining raw sensor signals, prior to rasterization,
to enhance the signal-to-noise ratio or to derive an improved signal representation. An
overview of these various classifications and their corresponding terminology is provided
in Table 2.1.

Table 2.1.: Classification of image data fusion approaches according to various publications. The
most common and consistently described classification in the literature is by pixel,
feature, and decision level.This table is adapted from [360].

Level 1 Level 2 Level 3 Publication(s)

Pixel Feature Object [32]
Pixel Feature Decision [125, 259, 2, 123, 190, 214, 330, 290,

367]
low middle high [94, 262]
iconic symbolic knowledge [92]
signal iconic symbolic, knowledge [133, 175]
raw low medium, high Abstraction level or processing level

Given the wide range of pixel-level fusion techniques, researchers have proposed several
classification schemes to bring structure to this field. One widely cited system groups
methods into two primary categories: colour-based approaches and statistical or numer-
ical techniques, along with their possible hybrids [259]. Another common taxonomy
divides methods into Component Substitution, Multi-Resolution Analysis, and Model- or
Modulation-based categories [119, 178]. A fourth group, hybrid approaches, is also often
acknowledged [361, 125]. Some authors additionally introduce classes such as “Relative
Spectral Contribution” [330], or separate “Bayesian” and “Variational” methods [225].
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An alternative organizational scheme is based on the operational domain: image ver-
sus frequency domain [214, 94, 133, 190]. While image domain techniques fuse
data by directly combining pixel values, frequency domain methods (including wavelet-
based fusion) operate on transformed data, merging local frequency components before
converting back to the image domain [133]. Beyond these, several authors have pro-
posed domain-specific taxonomies, including DL-based [289], statistical [26], and
optimization-based approaches [135]. Building on these foundations, this introduces a
new three-dimensional classification scheme [360] that includes the application context
as a central axis, recognizing that the utility of a fusion strategy is strongly linked to its
intended use case. This builds on earlier frameworks by [125, 133], shifting the focus
from improving isolated data products to enhancing overall information extraction. The
new classification is structured along three axes [360]:

• Abstraction Level: This includes four levels, pixel, feature, decision, and hybrid.
The signal level is excluded, as basic registration already alters raw data. Follow-
ing [138], pixel-level fusion treats each pixel independently, whereas feature-level
approaches account for spatial or spectral context (e.g., neighbourhoods or multi-
band features).

• Application Domain: This axis specifies the target of fusion:

– Spatial–temporal fusion

– Spatial–spectral fusion

– Spatial–spectral–temporal fusion

• Methodological Complexity: This reflects increasing levels of preprocessing, algo-
rithmic sophistication, automation potential, and computational demand.

Pixel-level fusion is the simplest approach, involving direct pixel-wise operations. It
is highly flexible, fast, and suitable for automated workflows. Such methods enable
on-demand fusion, for instance, merging raw hyperspectral and panchromatic imagery
only when needed, thus reducing storage requirements.

Feature-level fusion enables integration of heterogeneous sources and modalities but
demands more complex preprocessing and incurs higher computational cost. Flexibility
and automation are somewhat reduced compared to pixel-level methods.
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Decision-level fusion is applied after independent analysis of each input. It combines
outcomes such as classifications or change maps. As this level deals with interpreted
outputs, it is largely independent of the original data’s spatial or spectral resolution.

The following sections discuss selected methods from each category in greater detail.

2.1.1 Pixel-Level Fusion

Pixel-level fusion operates at an early stage in the data processing chain, combining
images that have undergone only minimal corrections, typically geometric and radio-
metric adjustments, to ensure co-registration and physical consistency [290, 361, 259].
This level of fusion often involves direct pixel-wise operations without intermediate
transformations, though exceptions exist, e.g., hypercomplex bases [289] or component
substitution, which introduce auxiliary representations but are still classified as pixel-level
methods.

Below, key categories of pixel-level fusion approaches are outlined, followed by a repre-
sentative method in each.

Arithmetic Combinations: This class uses straightforward mathematical operations,
such as addition, subtraction, averaging, or ratios, to merge images [259]. A well-known
method is the Brovey transformation, which enhances RGB images with high-resolution
panchromatic input. Each RGB band is multiplied by the panchromatic image and then
normalized by the sum of the multispectral bands [135].

Component Substitution: These techniques replace a structural component in a trans-
formed image, typically intensity, with a higher-resolution version from another source.
The method involves:

1. Transforming the multispectral image to a new domain (e.g., IHS or PCA) [361],

2. Replacing the intensity or spatial component with high-resolution input (e.g., PAN),

3. Reconstructing the image via inverse transformation [122, 125].

This approach is especially common in PAN-sharpening. In IHS fusion, for instance,
spatial detail is injected into the intensity channel, and the result is converted back to the
RGB domain [26, 133, 110].
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Recent DL Advances: DL has significantly expanded the potential of pixel-level fusion.
CNN are now widely used in pan-sharpening and super-resolution tasks [283]. For
instance, S2Sharp [305] fuses Sentinel and Landsat imagery at 10 m resolution. GAN-
based methods generate synthetic high-resolution imagery from coarser sources [62],
while deep blind fusion networks learn fusion mappings without explicit transforma-
tions [346]. Hybrid strategies like Hybrid Color Mapping (HCM) combine statistical and
DL techniques to improve fusion quality [197]. CNN-based spatio-temporal fusion has
also been used for applications such as cloud removal [296].

These developments demonstrate a shift toward adaptive, data-driven fusion strategies
that enhance spectral-spatial resolution and robustness across scenes and sensor types.

2.1.2 Feature-Level Fusion

While individual pixel values offer limited insight, their interpretation significantly im-
proves when contextualized spatially. Feature-level fusion integrates multi-source and
multi-temporal information with spatial features to enhance classification performance.
Typically, relevant features are first extracted, such as geometric, spectral, or textural de-
scriptors, before fusion is performed. Since these features already carry semantic meaning,
returning to the original image domain is often unnecessary [138, 330, 259].

Commonly used features include edges, textures, spectral indices (e.g., NDVI [325]),
and geometric attributes derived via segmentation techniques. One notable approach is
Multiresolution Segmentation (MRS) [24], implemented in eCognition, which merges
pixels into hierarchical segments based on scale, shape, and compactness. For instance,
in [37], object primitives were generated through quadtree segmentation, refined with
MRS, and fused using descriptors like NDVI and elevation to classify land cover.

Feature-level fusion techniques align and combine features from heterogeneous sources
based on statistical, structural, or semantic similarity [125, 32].

Multiresolution Analysis: This category fuses spatial detail into multispectral images
using multiscale representations, such as pyramids or frequency-based transforms [125,
361]. After decomposition and fusion, the image is reconstructed via inverse transforma-
tion. For example, Fourier-based methods place spectral information in low-frequency
bands and spatial detail in high-frequency components [124]. Curvelet transforms,
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such as FDCT [266], offer an efficient way to represent directional and curved fea-
tures [246, 69, 355], enabling fine-scale spatial enhancement during fusion [287].

Model-Based Fusion: Model-driven approaches utilize statistical frameworks to capture
spatial dependencies and uncertainties. Markov Random Fields (MRF) have been applied
for edge-preserving fusion and multi-image integration [354]. Extensions like Non-Local
Means (NLM) [326] fuse spatially similar regions regardless of location. More complex
implementations embed segmentation results into MRF priors using Bayesian models
for spectral-spatial classification [127], or integrate multi-sensor imagery (e.g., SPOT
and Landsat) using learned fusion weights and SVMs [308, 25]. Spatio-temporal fusion
models, such as STARFM [120], combine high-resolution spatial data with high-frequency
temporal sources. STAARCH [154] and ESTARFM [371] improve on this by modeling
land cover change dynamics using spectral transformations and temporal coefficients.
Later enhancements, like STNLFFM [68], introduce non-local filtering and regression-
based prediction using dual-date imagery, addressing variability and noise in time-series
fusion [185].

DL and Transformer-Based Methods: Recent advances in DL and attention-based
architectures offer powerful tools for feature-level fusion. These models learn hierar-
chical representations directly from raw inputs, reducing the need for manual feature
engineering.

• Transformer Architectures: Multimodal Transformer Cascaded Fusion integrates
UAV and satellite data to capture long-range dependencies [345], while Spectral-
Spatial-Elevation Fusion Transformers enhance hyperspectral classification by incor-
porating elevation [107].

• CNN–Transformer Hybrids: Dual-branch models leverage local patterns via CNN
and global structure via Transformers to fuse complementary inputs [347].

• Contrastive and Interaction Learning: Approaches such as text-supervised con-
trastive fusion [357] align semantic labels with RS features, while interaction-based
fusion architectures model multi-source dependencies using attention and residual
blocks [130].

These data-driven strategies outperform traditional stacking or rule-based fusion methods,
offering improved classification accuracy, better generalization across contexts, and higher
adaptability to complex remote sensing tasks.
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2.1.3 Decision-Level Fusion

Decision-level, or interpretation-level, fusion operates at the highest level of the data
processing hierarchy. Each image source is first processed independently to extract
relevant information, which is then combined using decision rules [259]. This approach
is particularly effective when dealing with heterogeneous data sources that differ in
modality, resolution, or acquisition timing.

A recent example is the automated building footprint detection processor by [293], which
processes Sentinel-1 and Sentinel-2 separately, accounting for their differing temporal
availability due to cloud cover, and reconciles outputs via logical operations. Such rules
can be extended with fuzzy logic to incorporate uncertainty. Fuzzy decision fusion uses
graded membership values (ranging from 0 to 1) and weighting schemes that prioritize
reliable sources, allowing for context-aware, probabilistic classification [105, 125].

Multicriteria Decision Analysis (MCDA) frameworks, such as the Analytical Hierarchy
Process (AHP) [281], are also applied at the decision level. In [258, 257], AHP was
used to identify suitable reintroduction habitats for the European oyster in the German
Bight EEZ by weighting multiple environmental criteria derived from remote sensing
data.

Decision-level fusion is also effective for applications beyond classification. In [286],
polarimetric and structural metrics from multiple viewing angles were combined to
detect informal settlements, using histogram-based probability estimation and similarity-
based probability fusion. In another study [350], glacial lake extents on the Baltoro
Glacier were estimated using optical (Sentinel-2, PlanetScope) and SAR data (Sentinel-1,
TerraSAR-X), with sensor-specific biases corrected through decision-level adjustment.

A similar framework was used to monitor Lake Tabalak’s water dynamics using multi-
temporal SAR datasets from six different sensors [38]. Processed through the Multi-SAR
system [288, 164], all inputs were standardized (e.g., via orthorectification, radiometric
calibration, Kennaugh decomposition) before generating consistent binary water masks
for each sensor-date pair. This highlights decision-level fusion’s utility in producing
harmonized outputs from disparate and temporally misaligned data sources.

Recent literature highlights the integration of AI models into decision-level fusion
pipelines, notably through ensemble and hybrid learning strategies:
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• Classifier Ensemble Methods: Fuzzy multiple classifier systems using decision
templates have been proposed to integrate hyperspectral and LiDAR classifications
[40]. Ensemble strategies such as the Rotation Forest have also been applied to
multi-sensor data for species classification tasks [56].

• Graph- and Rule-Based Fusion: Graph-based approaches have been developed
to integrate morphological and structural features from diverse sources, enabling
more informed higher-level classification decisions [218].

• Decision-Based Filtering and Edge Preservation: Edge-preserving filtering com-
bined with guidance maps has been introduced to improve decision-level fusion
outcomes, especially in pansharpened image analysis, helping to preserve both
spatial and spectral fidelity [282].

• Reinforcement Learning in Fusion: Reinforcement learning strategies have been
applied to optimize decision fusion pathways, using dynamic environment–state
interactions to outperform traditional fusion approaches in hyperspectral and LiDAR
scenarios [343].

• Neural Decision Layers: Recent encoder-decoder network architectures for seg-
mentation integrate decision-level fusion directly into their decoding layers, partic-
ularly effective for combining very high resolution (VHR) imagery with point cloud
data [132].

These innovations demonstrate how rule-based and probabilistic methods are now being
augmented by learning-based inference and decision pipelines, marking a clear shift
toward hybrid, data-driven decision fusion. Such architectures are particularly advanta-
geous in multi-sensor EO scenarios, where direct data- or feature-level fusion is hindered
by disparities in spatial resolution, acquisition time, or sensor-specific noise characteris-
tics. For instance, in land cover classification, separate models trained on Sentinel-1 and
Sentinel-2 data may yield different class probability maps. A decision-level ensemble then
consolidates these predictions, using learned confidence scores or probabilistic fusion,
into a robust final classification. Moreover, recent workflows increasingly integrate meta-
learning frameworks that adaptively combine model outputs depending on local data
quality or contextual uncertainty. These decision-level fusion strategies are particularly
valuable in time-critical applications such as flood mapping, rapid damage assessment, or
disaster monitoring, where asynchronous data availability or partial occlusions (e.g., due
to cloud cover) require flexible and sensor-agnostic fusion solutions.
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2.1.4 Temporal-Aware Fusion

Temporal taxonomy refers to the systematic classification of remote sensing data according
to their acquisition time-frames and seasonal contexts. Rather than treating time as a
passive metadata attribute, this approach acknowledges that remote sensing signals
encode seasonally dependent variations, not only due to actual surface change, but
also due to temporal shifts in vegetation phenology, moisture regimes, snow cover, or
atmospheric conditions, all of which interact with sensor-specific spectral and structural
sensitivities.

Temporal-aware fusion strategies thus seek to actively harness this temporal diversity by
combining observations across multiple time points in structured ways. These strategies
can span several dimensions: intra-seasonal (within the same season), inter-seasonal
(across seasons), and cross-temporal (across years or phenological stages). Each configu-
ration enables different insights: from short-term change detection to the stabilization of
features across variable conditions or the extraction of temporally persistent patterns.

The following section systematically explores these temporal fusion strategies in RS.
They investigate how time-structured feature stacks contribute to enhanced predictive
modelling, whether by improving classification robustness, supporting temporal gen-
eralization, or enabling novel indices that combine multi-temporal and multi-modal
observations.

This concept plays a foundational role across all levels of data fusion, pixel, feature, and
decision, by providing a structured way to manage and exploit temporal diversity in
multi-sensor integration. Particularly in hypercomplex fusion [289] approaches, where
data from different modalities (e.g., SAR and optical) are combined into a unified,
multi-dimensional feature space, temporal taxonomy ensures that fusion strategies are
guided not by acquisition simultaneity alone, but by ecological relevance and information
complementarity. A key insight is that datasets acquired at different times may offer
unique and non-redundant perspectives on the landscape, especially when drawn from
contrasting phenological or hydrological phases. For instance, SAR data captured during
the dry season can provide stable structural information free of moisture-induced noise,
while optical data from the wet season can highlight vegetation dynamics with high
spectral separability. Temporal taxonomy formalizes this logic by distinguishing between
types of fusion based on timing and seasonality:
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• Single-Date Fusion: This approach involves the fusion of sensor data acquired
on the same or closely aligned dates, often within a few days, to ensure temporal
coherence between modalities. It is a standard practice in EO due to its ability to
preserve surface consistency across sensors, minimizing noise from phenological
changes, atmospheric variability, or land use activity. Particularly suitable for
monitoring rapid, onset phenomena, such as flooding, fire, or deforestation, this
fusion strategy ensures high geometric and spectral alignment. However, the
strength of temporal coherence can become a limitation in applications that benefit
from seasonal or phenological contrast, such as ecosystem mapping, crop stage
detection, or landform-vegetation interaction studies. In such cases, single-date
fusion may offer redundant or temporally shallow information. In forestry, single-
date SAR-optical fusion has shown clear benefits under limited data conditions,
when only a single Sentinel-2 scene is available, adding Sentinel-1 features boosted
tree species classification accuracy by 4.7 percentage points [205]. Single-date
fusion is computationally simple and avoids temporal mismatches; however, it
may miss phenomena that manifest over time (phenology, gradual changes, etc.).
Thus, while single-date fusion is useful for quick assessments or when data is
scarce, it often serves as a building block for more advanced multi-temporal fusion
approaches.

• Multi-Date Fusion: Multi-date fusion combines acquisitions from different dates
within a relatively stable period, commonly the same season, to increase temporal
depth and improve resilience against noise or data gaps. It is particularly effective
in cloud-prone regions or in scenarios requiring data compositing, such as vege-
tation monitoring, precision agriculture, or urban expansion analysis. However,
when environmental conditions vary significantly between acquisition times (e.g.,
rainfall, irrigation events, phenological shifts), multi-date fusion can suffer from
temporal decorrelation, leading to inconsistencies in the fused product. Thus,
temporal normalization or phenological alignment is often needed to preserve
class separability and thematic accuracy. A notable example is the Pixel R-CNN
(Recurrent CNN) model, which learns spectral–temporal features from a Sentinel-2
time series for land cover and crop type mapping [235]. This pixel-based R-CNN
achieved an overall classification accuracy of 96.5 %, significantly outperforming
non-temporal models on the same task [235]. The high accuracy illustrates how
multi-date fusion “adds information”, e.g., capturing crop growth stages or tree
phenology, that a single-date approach may not capture. Even simpler multi-date
strategies, like using a few well-chosen dates, yield improvements: in one study,
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using all Sentinel-2 images across a growing season raised tree species mapping
accuracy to 83% (vs. lower accuracy on any single date) [205]. Overall, fusing data
across multiple dates increases robustness to outliers (like a cloudy image) and
enables change detection and trend analysis. The trade-off is higher data volume
and complexity, calling for methods to handle irregular time steps, cloud gaps,
and sensor differences. Nonetheless, multi-date fusion has become standard in
vegetation and forest assessments, land-cover mapping, and hazard monitoring due
to the clear gains in accuracy and insight.

• Seasonally Disparate Fusion: This fusion type explicitly combines data from
distinct seasonal periods, such as leaf-off vs. leaf-on in temperate forests, dry vs.
wet periods in savannas, or snow-covered vs. snow-free surfaces in alpine or boreal
regions. The objective is to leverage ecological or environmental divergence across
time to enrich the feature space. For example, SAR acquired under low-vegetation
conditions may provide optimal structural information, while optical data from peak
vegetative phases delivers strong spectral signals. This strategy has demonstrated
value in land cover classification, change detection, geomorphological mapping, and
wetland delineation, where surface dynamics are central to interpretation. Despite
a drop in strict temporal coherence, the increase in semantic contrast between
classes can enhance the discriminatory power of fused features. In forestry, for
example, leaf-off (e.g., winter) imagery can expose ground or deciduous/conifer
differences that are masked in summer imagery. Conversely, leaf-on summer
imagery highlights active vegetation. Fusing the two can improve tree species or
forest type discrimination. A multi-season approach was demonstrated by selecting
the most informative Sentinel-2 scenes from spring, summer, and autumn and
combining them (with SAR) to classify diverse tree species in Austria [205].

• Annual Aggregation: Annual aggregation encompasses the integration of time
series data across a full annual cycle. Instead of capturing a moment in time, it aims
to represent phenological, hydrological, or structural trends over the year, whether
through statistical descriptors (e.g., max-NDVI, mean backscatter) or higher-order
transformations (e.g., harmonic analysis, hypercomplex accumulation). This ap-
proach supports applications such as land use monitoring, ecosystem trend analysis,
or climate resilience assessment, offering temporally smoothed or seasonally nor-
malized insights. While aggregation may obscure short-term dynamics, it enables
robust, scalable analyses at regional to global levels, particularly where temporal
density is prioritized over instantaneous fidelity. In glaciology, method to map

76 Chapter 2 Consistent EO Feature Generation



alpine glaciers by fusing all Sentinel-1 and -2 data around the yearly peak ablation
period (late summer when glaciers are most exposed) was introduces [29]. They
compiled a Sentinel-2 mosaic of that period’s snow/ice conditions and a Sentinel-1
multi-temporal coherence composite (indicating moving ice), then combined them
to delineate glacier outlines. By aggregating data annually at the most relevant
season, they achieved 92% accuracy for glacier mapping, including debris-covered
ice [29].

Most operational fusion pipelines prioritize temporal proximity, aligning data as closely
as possible in time, under the assumption that this reduces discrepancies. While this
assumption holds for applications like change detection or dynamic monitoring, it can
be limiting in tasks where structural and spectral signals evolve independently and
asynchronously. In such cases, ecological complementarity may prove more informative
than temporal coherence. This is particularly relevant in semi-arid or ecologically dynamic
regions, where vegetation cycles and surface moisture vary significantly over the year.
As shown in later sections, the most effective fusion configurations in this study did not
align temporally, but instead spanned seasonal boundaries, leading to stronger class
separability and improved geomorphological discrimination. Temporal taxonomy thus
serves not only as an organizational framework, but as a design principle for intelligent
data fusion. It encourages RS practitioners to think critically about the ecological meaning
behind their acquisition windows, and to move beyond simplistic assumptions of temporal
simultaneity. This is especially pertinent when fusing modalities with distinct sensing
characteristics, such as radar and optical imagery.

2.2 Hypercomplex Bases

While pixel-, feature-, and decision-level fusion methods each offer specific advantages
depending on the application context, they also come with inherent limitations. Pixel-
level fusion often struggles with sensor-specific artifacts or noise, especially when spatial
resolutions or acquisition times differ. Feature-level fusion relies on prior extraction and
alignment of interpretable attributes, which can introduce bias or result in loss of detail.
Decision-level fusion, on the other hand, operates at the highest level of abstraction,
but may fail to leverage complementary information across sources at earlier stages of
processing.
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To address these limitations, fusion on hypercomplex bases (HCB) [289] presents a
unified framework that can operate seamlessly across all fusion levels. On the following
pages, its application is primarily demonstrated at the pixel level, as this is the form
most directly used and evaluated within this thesis. The methods of hypercomplex bases
also use only basic arithmetic operations, but within a fixed mathematical structure:
the transformations are always orthogonal, and the resulting elements can be output
both linearly and logarithmically through corresponding normalization, or as indices
normalized to a fixed value range.

The approach builds upon the concept of Kennaugh elements, which have already been
successfully used in the processing of SAR images [288] and in SAR sharpening [286],
and later on explained as hyper-complex bases (HCB) in detail [289]. This method
extends the Kennaugh framework for SAR images [288] and SAR-optical fusion in SAR
sharpening [286], offering stable sums and sensitive differences. The transformation
matrix applied for optical data is also known as the Hadamard transform. It proves to
be a discrete implementation of the Fourier transform that decomposes a signal into
oscillations of varying wavelength [289].

Kennaugh elements are derived from the coherency or covariance matrix of polarimetric
Synthetic Aperture Radar (SAR) data and provide a systematic approach to describing the
scattering properties of observed targets [288]. While originally developed for polarimet-
ric SAR applications, the Kennaugh framework has since been extended to accommodate
multi-spectral optical data as well, thereby enabling a unified representation for the
fusion of SAR and optical datasets [289]. In this context, Kennaugh elements are essen-
tial in hypercomplex data fusion, as they provide the parameters required to integrate
spectral, polarimetric, and temporal information. Their application to both polarimetric
and spectral domains has led to the development of so-called spectral Kennaugh-like ele-
ments, which preserve the structural coherence of the original framework while enabling
modality-agnostic feature representation. Hypercomplex data fusion uses hypercomplex
numbers, such as quaternions, to represent and integrate multi-dimensional data from
different sensors like Sentinel-1 and Sentinel-2.

The core principle of HCB is to express input channels through their shared and divergent
components. This concept is mathematically formalized using the transformation matrix
shown in Equation (2.1):
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C =

[︄
1 1
1 −1

]︄
(2.1)

The normalization factor
√︂

1
2 ensures orthogonality, such that the matrix is symmetric and

its transpose equals its inverse. This property allows for a reversible transformation that
preserves the structure of the original spectral space without distortion. When applied to
a vector, the first row of the matrix computes the sum, and the second the difference of
the two input channels, regardless of whether these represent radar intensities or spectral
reflectances. Rooted in complex number theory, this representation can be extended to
higher dimensions. For example, using a quaternion basis yields the four-dimensional
matrix shown in Equation (2.2):

Q =

[︄
C C
C −C

]︄
=

⎡⎢⎢⎢⎢⎣
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤⎥⎥⎥⎥⎦ (2.2)

This framework can be recursively expanded to define even higher-dimensional spaces
such as octonions (eight dimensions) and sedenions (sixteen dimensions), enabling
progressively richer representations of multi-channel data [289].

Polarimetric Kennaugh Elements for SAR Data: To extract meaningful physical proper-
ties from polarimetric SAR data, the scattering matrix is often transformed into Kennaugh
elements, a reduced and interpretable representation of the radar backscatter. These
elements are derived from the real-valued components of the coherency matrix and are
commonly used to characterize different scattering mechanisms and surface structures
[288].

Depending on the polarization configuration (HH/VH or VV/VH), the Kennaugh
elements k0, k1, k5, and k8 are computed as follows [288], see Equations (2.3) and
(2.4). The VV/VH configuration is predominantly used in temperate forest applications
(cf. Section 1.2.2), while the HH/HV configuration is relevant in cryospheric settings,
as applied in the High Canadian Arctic glacier zone mapping (cf. Section 1.2.3).
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For HH/VH polarization:
k0 = |SHH |2 + |SVH |2

k1 = |SHH |2 − |SVH |2

k5 = Re{SHHS∗
VH}

k8 = Im{SHHS∗
VH}

(2.3)

For VV/HV polarization:
k0 = |SVV |2 + |SHV |2

k1 = |SVV |2 − |SHV |2

k5 = Re{SHVS∗
VV}

k8 = −Im{SHVS∗
VV}

(2.4)

where Spq represents the complex backscatter coefficient for transmit polarization p and
receive polarization q, with p, q ∈ {H, V}. Each Kennaugh element describes a distinct
physical characteristic [288]:

• k0: Total backscatter power, indicating the overall signal intensity.

• k1: Power difference between co- and cross-polarizations, used for distinguishing
surface types.

• k5: Real part of the complex correlation term, reflecting volume scattering and
dielectric variations.

• k8: Imaginary part (or negative thereof), capturing asymmetries and orientation-
related features.

This Kennaugh representation facilitates the integration of SAR data with other sensor
modalities and serves as the foundation for the hypercomplex data fusion methods
discussed later in this thesis.

Spectral Kennaugh-like Elements: When applied to four-band aerial imagery or the
10-meter spectral bands of Sentinel-2, the visible and near-infrared channels, Blue, Green,
Red, and NIR, can be transformed into Kennaugh-like elements using HCB. Typically,
these spectral bands are visualized as True Colour Images (TCI; R: Red, G: Green, B: Blue)
or Colour Infrared (CIR; R: NIR, G: Red, B: Green). The transformation disentangles
brightness from chromatic information, as described in Equation (2.5):
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Kspectral = Q ·

⎡⎢⎢⎢⎢⎣
Blue

Green
Red
NIR

⎤⎥⎥⎥⎥⎦ (2.5)

Based on this transformation, optical images, purely with respect to their numeric
intensity values, become structurally compatible with multi-polarized radar imagery (e.g.,
Sentinel-1), which is often stored in Kennaugh format via processors such as the German
Aerospace Center’s Multi-SAR system [38, 288]. This compatibility facilitates direct and
lossless fusion of radar and optical modalities [289].

Hypercomplex Data Fusion: The joint fusion of spectral and polarimetric information is
performed as shown in Equation (2.6):

Kfused =

[︄
Kspectral + Kpolarimetric

Kspectral − Kpolarimetric

]︄
△
= C ·

[︄
spectral

polarimetric

]︄
(2.6)

This fusion yields a total of eight hypercomplex channels, four from each modality, pre-
serving the original signal content due to the orthogonal properties of the transformation.
By construction, this approach ensures lossless integration of spectral and structural
information across sensors.

In this context, the spectral input Kspectral is first derived from the four Sentinel-2 re-
flectance bands by applying the quaternion-based Hadamard matrix Q (see Section 2.2),
resulting in four spectral Kennaugh-like elements. These are then fused with the four
polarimetric Kennaugh elements from Sentinel-1 (Kpolarimetric) using the two-dimensional
Hadamard matrix C, as defined in Equation (2.1). This two-step process, first the spectral
transformation with Q, followed by modality fusion with C, ensures orthogonality and
preserves the full information content across both sensor types.

The fused features are constructed as in Equation (2.7):
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F =

[︄
S1 + Q · S2

S1 − Q · S2

]︄
where

S1 =

⎡⎢⎢⎢⎢⎣
k0

k1

k5

k8

⎤⎥⎥⎥⎥⎦ , S2 =

⎡⎢⎢⎢⎢⎣
B2

B3

B4

B8

⎤⎥⎥⎥⎥⎦ , Q =

⎡⎢⎢⎢⎢⎣
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤⎥⎥⎥⎥⎦
(2.7)

Each resulting fused element in F represents a specific spectral–structural combination of
optical and SAR information. The Hadamard matrix Q ensures orthogonality, allowing
a lossless and interpretable transformation of the input features, resulting in a fused
dataset consisting of one total intensity element (Kfused,0) and seven spectral/polarimetric
elements (Kfused,1−7), as detailed in [289] and illustrated in Figure 2.1. The fused
Kennaugh representation bridges spectral, structural, and geometric features into a stable
8-dimensional feature space. It leverages the orthogonal nature of hypercomplex bases,
preserving information content while offering interpretable, compact descriptors for EO
applications such as classification, anomaly detection, and structural mapping. Each
channel provides semantically distinct information, enhancing robustness and reducing
redundancy in downstream ML pipelines.

Input:
Sentinel-1 Polarimetric

Features

e.g., HH/HV

Polarimetric
Kennaugh Elements (S1)

k0, k1, k5, k8

Kennaugh

Input:
Sentinel-2 Spectral

Bands

e.g., B2, B3, B4, B8

Spectral
Kennaugh-like Elements (S2)

Spectral ki

Q

Output:
Spectral–Polarimetric

Fused Vector (F)
Kfused,0−7

F =

[︃
S1 + Q · S2
S1 − Q · S2

]︃

Figure 2.1.: Stepwise example of hypercomplex spectral–polarimetric fusion. Sentinel-1 dual-pol
inputs are first transformed into four polarimetric Kennaugh elements (S1), while
Sentinel-2 reflectances (shown here as example bands B2–B8) are transformed into
four spectral Kennaugh-like elements (S2) using the quaternion-based Hadamard
matrix Q. Note that the optical input is not limited to these four bands; additional
or alternative spectral channels can also be used following the same principle.
Finally, both feature vectors (S1, S2) are orthogonally fused into the 8-dimensional
spectral–polarimetric feature vector F, as described in Equation (2.7).
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Temporal Fusion in Hypercomplex Data Fusion: Temporal fusion extends the hyper-
complex framework beyond spectral and structural integration by incorporating multi-
temporal observations into a unified orthogonal representation [289]. Starting from the
fused spectral–polarimetric feature vector F, obtained through a quaternion-based (i.e.,
4×4 Hadamard) transformation that combined Sentinel-1 and Sentinel-2 inputs (cf. Fig-
ure 2.1), the temporal fusion applies an orthogonal Hadamard matrix QT ∈ RT×T across
all T temporal acquisitions, as shown in Equation (2.8) and illustrated in Figure 2.2. This
process enables the extraction of both persistent patterns and dynamic variations across
time, all within a compact, information-preserving hypercomplex basis.

Given a time series of fused spectral–polarimetric feature vectors Ft ∈ R8, one for each of
the T temporal acquisitions (e.g., 64 Sentinel-1/-2 observations per year), the temporal
fusion is performed by applying an orthogonal Hadamard matrix QT ∈ RT×T to the
stacked time series:

Ftemporal = QT ·

⎡⎢⎢⎢⎢⎣
F1

F2
...

FT

⎤⎥⎥⎥⎥⎦ (2.8)

This temporal transformation directly continues the use of the fused feature vector F,
introduced in Section 2.2, now extended along the temporal axis. Conceptually, QT

represents the temporal analogue to the previously described hypercomplex bases [289]:
depending on the number of temporal acquisitions T, the transformation follows the
same family of orthogonal Hadamard-type bases, namely:

• C for T = 2 temporal steps (complex basis),

• Q for T = 4 steps (quaternion basis),

• O for T = 8 steps (octonion basis),

• S for T = 16 steps (sedenion basis),

• and higher-order Hadamard bases for larger T, such as T = 32, 64, or 128, as
required for dense time series analysis.
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The matrix QT ensures orthogonality and allows a lossless, reversible, and interpretable
decomposition across time, analogous to the spectral–polarimetric fusion previously
performed using Q in Equation (2.7).

Within the resulting temporal feature space:

• The first component F0 corresponds to the temporal mean, representing average
surface properties across all acquisitions,

• The remaining components F1, F2, . . . , FT−1 represent orthogonal modes of temporal
variation, capturing dynamic processes such as phenological, hydrological, or
structural changes throughout the observation period.

This temporal transform thus extends the hypercomplex data fusion framework into the
time dimension, while preserving the full information content of the original time series
for subsequent tasks like classification, trend analysis, or anomaly detection.

In the specific case of the Wald5Dplus dataset, this temporal fusion framework was applied
to a combined Sentinel-1 and Sentinel-2 time series. Here, the spectral–polarimetric
fusion step yielded 8-dimensional feature vectors (Ft ∈ R8) for each of the T = 64
temporal acquisitions available over one year. Applying the corresponding temporal
Hadamard matrix QT ∈ R64×64, the dataset was transformed into a temporally fused
representation Ftemporal ∈ R64×8, capturing both the mean surface properties and the
orthogonal modes of temporal variation across the full annual time series.

The following example illustrates this concept for the Wald5Dplus benchmark:

The joint image thus comprises one total intensity (Kfused,0) and seven spectral/polarimet-
ric elements (Kfused,1−7). In the same way, the 64 acquisitions gathered during one year
can be fused temporally on HCB to K∗,0−64. The big advantage is the availability of one
mean image K∗,0 which is representative for the whole year (similar to the total intensity)
and 63 elements K∗,1−63 describing the temporal variations throughout the year, e.g., K0,0

stands for the mean reflectance over all channels over the whole year whereas K0,∗ also
includes all its variations throughout the year. The final normalization allows for the
loss-less and space-saving archiving of the image data as UInt8 digits [289], which can
be displayed and processed by each image processing or GIS software.

Sentinel-1 only 256 channels composing of 64 times 4 polarimetric Kennaugh elements
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Sentinel-2 only 256 channels composing of 64 times 4 spectral Kennaugh-like elements

Sentinel-1 & -2 512 channels composing of 64 times 8 fused Kennaugh-like elements

This method preserves the full information content of the original time series and enables
a compact yet expressive decomposition suitable for subsequent learning tasks. Similar to
spectral fusion, this temporally fused representation supports tasks such as anomaly
detection, trend extraction, and spatio-temporal classification. Such hypercomplex
temporal fusion supports advanced EO tasks such as monitoring phenological cycles,
mapping dynamic land cover changes, and detecting long-term trends in high-dimensional
satellite time series [147]. The full Python-based implementation used for data processing
is provided in the appendix A.2.1 and is publicly available alongside the benchmark
dataset [148].

Input:
Spectral–Polarimetric

Fused Vector (F)
Kfused,0−7

F =

[︃
S1 + Q · S2
S1 − Q · S2

]︃

Input:
Temporal Hadamard Transform

of F (QT · F)
K∗,0−(T−1)

Hadamard QT over T dates

Figure 2.2.: Temporal extension of hypercomplex data fusion. Starting from the spec-
tral–polarimetric fused feature vector F (Kfused,0−7), a Hadamard-based temporal
transform (QT) is applied across all T time steps. This results in a temporally
enriched T × 8-dimensional dataset (K∗,0−(T−1)), capturing both persistent and dy-
namic modes of variation. The temporal Hadamard matrix QT ∈ RT×T follows the
same family of orthogonal hypercomplex bases (e.g., C, Q, O, S) as used in the
spectral–polarimetric fusion, now extended to the temporal domain. The illustrated
example shows T = 4; for the Wald5Dplus application, T = 64 acquisitions were
used.

Hypercomplex Fusion on different Data Fusion Levels: Hypercomplex data fusion offers
a unified mathematical framework capable of integrating multi-sensor, multi-temporal,
and multi-dimensional data across the three canonical levels of fusion: pixel-level, feature-
level, and decision-level. This section outlines how hypercomplex representations adapt
to each level while maintaining semantic coherence and mathematical integrity.
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• Pixel-Level Fusion: At this level, raw or preprocessed data from different sensors
are directly combined on a per-pixel basis. Hypercomplex methods integrate
spectral, polarimetric, and temporal information by projecting all sensor inputs into
a shared hypercomplex domain. This approach retains full spatial and signal fidelity
across dimensions. A prominent example of this is the Wald5Dplus project [147, 148,
144], which applied quaternion-based fusion to combine Sentinel-1 polarimetric
backscatter with Sentinel-2 surface reflectance across 64 dates, producing an eight-
element, temporally stacked data cube [147]. The result is a pixel-wise fused
representation capturing yearly dynamics in both spectral and radar domains, ideal
for time series classification, vegetation phenology, or change detection.

• Feature-Level Fusion: Here, fusion occurs after relevant features are extracted
from the pixel-level dataset. Hypercomplex representations serve not just as raw
signal combinations but also as higher-level descriptors from which semantically
meaningful indices can be derived. These can include vegetation-sensitive combi-
nations, geomorphological response patterns, or coherence-based feature spaces
designed to isolate specific surface phenomena. This level of fusion facilitates
dimensionality reduction while preserving informative content and can be tailored
to tasks such as object detection or landform characterization. A typical outcome is
the derivation of fusion-based indices that integrate both spectral and polarimetric
responses for advanced class separation, used without relying on pixel values alone
[6].

In this framework, HCB serve a critical function in facilitating consistent integration
at the feature level. Spectral descriptors frequently adopt the form of normalized
difference indices [151], constrained within the interval ]− 1,+1[. This normal-
ization offers multiple benefits, including enhanced radiometric comparability,
improved visualization, and increased compatibility with machine learning algo-
rithms, particularly those, like SVM, that perform optimally with standardized input
features.

To maintain this normalization post-fusion, integral and differential Kennaugh oper-
ators have been introduced [285]. Similar to pixel-level Kennaugh formulations, the
feature-level fusion employs the following definitions, as shown in Equations (2.9)
and (2.10):
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sk =
ka + kb

1 + ka · kb
∈ (−1,+1) (2.9)

dk =
ka − kb

1 − ka · kb
∈ (−1,+1) (2.10)

These operators preserve the normalized scale, making them particularly effective
for subsequent tasks such as classification or regression. Importantly, the approach
is not restricted to SAR-based Kennaugh or Kennaugh-like metrics, it generalizes to
any normalized feature index, offering versatile applicability across diverse fusion
pipelines. Notably, this method is not limited to SAR-based Kennaugh or Kennaugh-
like elements, it can be extended to any normalized feature index, offering broad
flexibility for application-specific fusion workflows [278].

• Decision-Level Fusion: At the highest level, the outputs of multiple classifiers,
algorithms, or rules are combined into a coherent decision-making system. In the
hypercomplex context, this involves using previously fused pixel- and feature-level
data as inputs into classification schemes that are augmented with rule-based logic
or ensemble methods. For example, a classifier may exploit both the raw fused layers
and precomputed indices, incorporating expert rules (e.g., thresholds for sinkhole
likelihood or vegetation vigour) to refine output masks. This integrative process
enhances robustness, especially in complex semi-arid landscapes where individual
layers may be ambiguous. Applications include ecological monitoring, anomaly
detection, and risk mapping, where fusion supports both data-driven learning and
domain-specific interpretability [6]. An intriguing direction for future research is
to interpret temporally fused Kennaugh (or Kennaugh-like) elements not as fixed
feature values, but as empirical probability density functions (PDFs) over time. In
this view, each fused element (e.g., K1) at a given pixel is treated as a distribution
of values sampled across multiple acquisitions. This would enable the modelling
of pixel-level uncertainty and dynamic variability explicitly, rather than collapsing
temporal signals into single deterministic vectors. For instance, pixels with narrow,
uni-modal PDFs might indicate stable vegetation, while bi-modal or skewed PDFs
could signify phenological shifts or latent disturbance signatures. These temporal
PDFs could then serve as probabilistic priors in decision-level fusion, enriching
classification or risk mapping tasks with statistically grounded confidence estimates.
While still conceptual, this approach aligns well with the interpretability goals
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of decision fusion and opens new avenues for integrating time-aware statistical
reasoning into remote sensing pipelines.

Hypercomplex data fusion not only unifies multi-sensor inputs but also scales across
analytical levels, from raw signal combination to high-level semantic reasoning. Its
versatility allows practitioners to tailor fusion workflows according to the demands of
specific tasks, data availability, and computational context.

88 Chapter 2 Consistent EO Feature Generation



Labelling Foundations and
Challenges

3
„Information is the resolution of uncertainty.

— Claude E. Shannon
Mathematician, Father of Information Theory

This chapter includes elements from the following peer-reviewed publication:

Sarah Hauser, Lena Augner, and Andreas Schmitt. Perfect Labelling: A Review and
Outlook of Label Optimization Techniques in Dynamic EO. Remote Sensing, 2025, 17,
1246. DOI:10.3390/rs17071246

It is cited as [149] and is marked with a cyan line.

Author Contribution: Sarah Hauser was instrumental for the full study design and concep-

tualization presented in this work, including the independent development of the HELIX

framework for spatio-temporal label preprocessing. She led the investigation and con-

tributed substantially to the manuscript’s review and editing.

Having established the foundations of EO data fusion and its role in generating rich,
multi-modal feature representations, we now turn to the other half of the learning
equation: the reference data. Reference data, referred to throughout this thesis as
labels, forms the conceptual and practical backbone of ML in RS. Labels act not only
as the empirical ground truth against which models are trained and validated, but also
as a kind of translation layer: a semantic dictionary that allows raw EO signals to be
interpreted in terms of real-world phenomena such as forest biomass, vegetation stress,
or land use change. In this sense, labels bridge the gap between unstructured sensor data
and meaningful environmental understanding. Their quality directly influences model
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reliability, high-quality, well-aligned labels enable robust generalization, while noisy,
inconsistent, or outdated labels can propagate errors, bias predictions, and undermine
the operational utility of a system. This is particularly critical in EO applications, where
temporal and spatial complexity is high, and decisions often hinge on subtle patterns.
This chapter examines the foundational role of labels in EO–ML pipelines, focusing on
core dimensions such as accuracy, consistency, completeness, spatial-temporal alignment,
and ecological validity. It also explores the practical and methodological challenges of
generating, maintaining, and adapting reference datasets in dynamic environmental
contexts.

3.1 General Differences in Label Preparation by Model
Type

Label preparation is fundamental to the success of ML, DL, AI, and FM in EO applications.
However, the way reference data is prepared, structured, and utilized varies significantly
across these model types. These differences arise due to variations in feature extraction
requirements, data volume, annotation strategies, and the need for static or dynamic
labels.

Common ML models rely heavily on manually curated reference data [237] to establish
relationships between predictor variables and target outputs. These models require
well-structured predictor-label pairs, where reference data quality plays a crucial role in
ensuring model reliability [294]. In EO applications, domain experts define features such
as spectral indices like NDVI (Normalized Difference Vegetation Index), spatial texture
metrics, and aggregated temporal statistics, including vegetation indices over a growing
season [227]. These models assume that data points or pixels are independent unless
temporal dependencies are explicitly introduced through engineered features. Since
ML models require structured training data, label preparation often involves a meticu-
lous manual annotation or expert-driven classification process [294]. A key advantage
of ML models is their ability to perform well with smaller datasets when meaningful,
structured features are available [294]. However, the reliance on manually crafted fea-
tures and static training labels limits ML’s flexibility when applied to highly complex,
multi-temporal, or multi-source EO datasets. Since conventional ML models lack the
ability to automatically extract hierarchical features from raw data, their performance
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is heavily dependent on the quality and completeness of the reference data. Despite
the pivotal role of preprocessing temporal reference data, research on these steps for
traditional ML models like RF remains limited, even though they are widely used in
EO [188]. Poor preprocessing can introduce inconsistencies [336], yet comprehensive
guidelines for handling multi-temporal reference data in traditional ML are still lacking.
While DL models often include structured preprocessing pipelines, similar frameworks
for classical models like RF are underexplored. Most literature on handling time series
data focuses on specialized models like LSTMs (LSTM), a Recurrent Neural Network
(RNN) specialized in long-term dependency modelling, leaving a gap in how simpler,
yet powerful, methods can be adapted to spatio-temporal complexities [303]. This
gap underscores the necessity for further innovation in preprocessing approaches that
reconcile the demands of dynamic, multidimensional EO datasets with the operational
simplicity and lower computational footprint of classic algorithms. Overall, failing to
capture or correctly process temporal and spatial dependencies can yield biased esti-
mates and reduced predictive power. As data volume continues to grow, robust and
efficient workflows for creating and maintaining dynamic reference datasets will become
even more essential. A lack of standardized, scalable methodologies for handling time-
sensitive or multidimensional EO data effectively undermines the potential of even the
most sophisticated AI/ML architectures. Addressing this concern requires automating
dynamic labelling, mitigating data inconsistencies introduced by multi-sensor fusion, and
explicitly integrating spatio-temporal dependencies into the preprocessing pipeline. DL
models, in contrast, can learn representations directly from raw EO data, eliminating
the need for explicit label engineering [322]. CNN, RNN, and Temporal Convolutional
Networks (TempCNN) operate on high-dimensional datasets such as multispectral time
series, learning hierarchical patterns from large-scale, annotated datasets [255]. While
ML approaches typically rely on structured, discrete class labels, DL models demand
pixel-wise or spatially dense annotations, particularly in tasks like land cover classifi-
cation and semantic segmentation. Unlike ML, which can cope with relatively small
datasets if structured features are available, DL models require extensive training data
to generalize well. This poses a significant challenge in EO applications where obtain-
ing high-resolution, expert-annotated reference data is time-intensive and costly [342].
In many cases, synthetic data generation, transfer learning, or pre-training on related
datasets are employed to mitigate the lack of labelled samples. Furthermore, inconsis-
tencies introduced by human annotators can significantly affect DL model performance,
requiring strict quality control during the labelling process. FM introduce a fundamental
shift in AI-based EO applications, addressing many of the limitations of ML and DL
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models in reference data preparation [228]. Unlike traditional AI approaches, which
require manually labelled datasets, FM leverage large-scale self-supervised learning to
learn feature representations without relying on explicit annotation. Recent advances in
FM, such as the Segment Anything Model (SAM) [66], a promptable segmentation model
capable of generating high-quality masks for any image region without task-specific
training, and DINO [61], a self-supervised Vision Transformer trained without labels,
have demonstrated the ability to generate pixel-wise labels automatically, significantly
reducing the need for manual labelling. FM demonstrate strong adaptability in handling
label noise and evolving class definitions, reducing the reliance on static reference labels
in multi-temporal EO applications. In dynamic environments such as land cover change
detection and vegetation monitoring, where traditional labels quickly become outdated,
FM leverage self-supervised learning to refine and adapt training labels over time. Models
like Changen2 [368] can generate supervisory signals for label correction, while recent
evaluations show that FM remain label-efficient and generalize well in EO applications,
even under limited annotation scenarios [242, 84]. Unlike DL models, which require
fine-tuning with extensive labelled datasets, FM can generalize more effectively, adapting
to new classes with minimal labelled examples through few-shot and zero-shot learning
[13, 265].

Table 3.1.: ML methods to reduce dependency from exhaustive labelled datasets.

Method Key Mechanism Applications in EO

Transfer
Learning

Adaptation of models pre-trained
on related tasks to EO-specific
problems [320, 248].

Land cover classification, drought
assessment [320].

Self-
Supervised
Learning

Creation of supervisory signals
from within the data itself, en-
abling feature learning [78].

Vegetation monitoring, anomaly
detection [78].

Active
Learning

Model identifies high-uncertainty
samples and queries experts for tar-
geted labelling [91].

Semantic labelling, urban morphol-
ogy analysis [91].

While the labelling needs of ML, DL, and FM differ, various methods have been developed
to mitigate dependence on exhaustive manual annotation. Table 3.1 summarizes these
key techniques and their applications in EO. Despite their differences, both ML and DL
approaches require robust reference data preparation to ensure training accuracy. In ML,
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manual feature engineering remains a crucial step, demanding consistency across datasets
and expert domain knowledge to define meaningful features. In contrast, DL’s reliance
on massive training datasets makes label availability, annotation quality, and scalability
primary concerns. While ML models excel in structured, well-defined scenarios where
labelled data is limited, DL models thrive in high-dimensional, data-rich environments
where learning complex spatial and temporal patterns is essential [217].

3.2 Nature and Temporality of Labels

Labels are not singular entities; they exist across multiple dimensions, varying in type,
scale, and temporal dynamics. Understanding these dimensions is crucial for designing
effective models that generalize well across different spatial and temporal contexts.
In many cases, multi-output ML and DL models must handle multiple target variables
simultaneously, necessitating structured approaches to label representation. These models
rely on clearly defined label types to extract meaningful relationships across different
scales and temporal dependencies. To systematically describe the nature of labels, we
classify them based on their measurement scale, temporal behaviour, and attribution
structure.

The structured reference labels presented in Table 3.2 offer a comprehensive example for
categorizing tree polygons into clearly defined data types, supporting systematic analysis
in EO applications. Each data type reflects distinct measurement scales, analytical
characteristics, and temporal implications. Since these labels are often derived from
multi-source reference datasets, such as field surveys, airborne LiDAR, and multi-temporal
satellite imagery, they integrate numerical properties like height, biomass, and spectral
reflectance, as well as categorical attributes such as species, tree type, and vegetation
health. Beyond these, environmental and climate-related labels may include variables
like soil moisture, atmospheric conditions, and ecological succession stages, all of which
require tailored preprocessing to ensure consistency across datasets.

Nominal data refer to categories without inherent order, such as "Tree Type" (coniferous
or deciduous) and "Species" (e.g., Norway spruce, oak, Douglas fir). These labels facilitate
forest type classification and biodiversity assessments by clearly distinguishing distinct
groups without implying any ranking or hierarchical structure. Ordinal data are labels
organized into ranked categories, where the order signifies progression or intensity
without requiring equal numerical intervals. Examples in the provided dataset include
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Table 3.2.: Example of structured reference labels for tree polygons in an exemplary attribute
table with the respective scale level assigned in the last row.

ID Type Species Age Height InfestationDate
Not Be-
fore –
Not After

1 Coniferous Norway
Spruce

Young 6m Yes
2025-
03-03
14:49:43

2024-03 –
2025-03

2 Deciduous Oak Mature 12m No
2024-
09-15
09:42:39

2023-09 –
2024-09

3 Coniferous Scots
Pine

Mid-age 8m No
2023-
06-22
13:19:27

2022-06 –
2023-06

4 Deciduous Beech Young 5m Yes
2022-
12-11
07:57:29

2021-12 –
2022-12

5 Coniferous Douglas
Fir

Mature 20m No
2023-
05-18
10:02:11

2022-05 –
2023-05

6 Deciduous Birch Mid-age 9m Yes
2024-
07-07
08:26:48

2023-07 –
2024-07

7 Coniferous Larch Mature 15m No
2023-
08-30
11:23:46

2022-08 –
2023-08

...
...

...
...

...
... ...

...

nominal nominal ordinal relational binary continuous interval

"Age," categorized into growth stages such as young, mid-age, or mature, and "Height,"
measured in meters, which indicates relative growth status from shorter to taller trees.
These ordinal categories enable assessments of forest structure and succession stages.
Relational data represent associations or relationships, such as those indicating spatial
or contextual interactions between labelled entities or their environment. However, in
this provided table, the relational aspect appears limited or not explicitly defined. If
intended, relational labels might indicate proximity or contextual relationships, such
as adjacency to disturbed areas, roads, or water bodies. Such information would need
explicit representation, which appears missing from the current table. Binary data
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contain only two possible states, typically representing "yes/no" or "presence/absence"
conditions. The provided example dataset includes an infestation status indicating
whether a tree is infested ("Yes") or not ("No"). This binary categorization directly
supports analyses of forest health, infestations, and risk assessments related to pest
outbreaks. Continuous data represent values measured on a numerical scale with precise,
meaningful intervals. The provided table uses continuous data in the form of the exact
"Date" of observation (e.g., "2025-03-03 14:49:43"), enabling precise temporal alignment
with remote sensing observations or environmental events. Interval data define ranges
or timeframes, specifying periods during which labels remain valid or applicable. In
this dataset, the "Not Before – Not After" attribute (e.g., "2024-03 – 2025-03") indicates
the temporal validity or applicability of the label. This ensures temporal consistency
during analyses, especially when integrating multiple sources of satellite data collected at
different intervals or for long-term environmental monitoring. Together, these structured
labels provide a clear and coherent basis for preprocessing reference data, facilitating
accurate analysis and consistent integration across diverse EO datasets and model types

The temporality of the labels themselves is another factor, which significantly affects the
model’s ability to generalize and adapt to evolving conditions. Static labels are often
insufficient for tasks that involve temporal variability, while dynamic labels enable more
robust modelling of time-sensitive phenomena. Static labels, typically created for one-time
use, are suitable for environments with minimal change. Examples include static land
cover maps, topographical surveys, and soil-type classifications. In such cases, ML models
can perform well if the input data remains aligned with these static labels. However,
static labels become problematic in dynamic environments characterised by temporal
phenomena such as seasonal vegetation changes, urban development, or disaster events
[57]. For instance, in vegetation monitoring, static labels fail to account for fluctuating
indices like the NDVI and EVI, which track plant health over time. Seasonal cycles,
comprising phases such as green-up, peak biomass, and senescence, introduce a temporal
variability which static datasets cannot represent. As a result, models trained with
static labels may generalize poorly across seasons. Dynamic labelling, which continuously
updates reference labels to reflect real-time changes, enables models to effectively capture
phenological events and seasonal cycles, thereby enhancing long-term predictive accuracy.
For example, TempCNN has been successfully employed for vegetation monitoring. By
integrating time-stamped labels, these networks have detected complex seasonal patterns
in Sentinel-2 time series data [255]. However, the observed performance gains of
TempCNN over RF and RNN (1–3% higher overall accuracy) were attributed in that study
to its ability to model temporal dependencies in Satellite Image Time Series (SITS), rather
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than differences in labelling. Their study compares different model architectures while
keeping the reference labels fixed for validation and testing, meaning that the accuracy
gains reflect architectural improvements rather than an effect of dynamic labelling. While
dynamic labels have been shown to improve generalization in long-term monitoring tasks,
their impact was not a variable tested in that specific study. Similarly, dynamic labels
are critical for land use and land cover change detection. In the So2Sat LCZ42 dataset,
dynamic local climate zone (LCZ) labels were periodically updated to account for urban
infrastructure development and population shifts across 42 global regions. This approach
allowed models to analyse urban morphology consistently, minimizing errors caused by
label obsolescence [372].

3.3 Challenges in Dynamic Labelling

Dynamic labelling frameworks often employ pseudo-labelling and active learning, where
labels are iteratively refined based on model predictions and feedback from new obser-
vations [342]. These strategies are particularly effective in scenarios requiring adaptive
label handling, such as drought monitoring, flood mapping, and crop assessment [195].
Their role in structuring training samples for EO classification has also been emphasized
in broader reviews on remote sensing preprocessing techniques [213]. Incorporating
dynamic reference data, which captures temporal variations, is essential for improving
model adaptability in EO applications. Static labels, although easier to manage, often
fail to represent rapidly changing conditions such as those found in disaster monitor-
ing or seasonal land cover dynamics. By contrast, spatio-temporal labelling strategies
allow models to learn from evolving patterns, improving classification robustness and
generalization across time [365]. Dynamic data evolves over time and includes variables
like daily temperature, precipitation, or vegetation indices. Dynamic reference data is
essential for capturing temporal patterns, making it critical for applications like crop
monitoring or phenology studies. However, it requires more sophisticated handling to
maintain temporal dependencies, and its integration with static data can be complex
[63, 365]. To summarise, unlike static reference data, dynamic labels evolve over time,
enabling ML, DL and or AI models to track and predict real-world changes in land cover,
vegetation growth, and natural disasters. This flexibility is substantial in applications
such as deforestation monitoring, crop growth assessment, and flood detection, where
past conditions may no longer be representative of the present. In consequence, the
transition from static to dynamic reference data introduces several challenges related
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to temporal consistency, data quality, computational efficiency, and model adaptability.
These challenges must be addressed to fully leverage dynamic labelling in EO applications.

3.4 Methodologies in Data Labelling and Processing

The mutual adaption of features and labels is crucial to any data-driven applications,
serving as the foundation for effective data analysis. This holds true across various
domains, including remote sensing. While labelling has been an interactive task for a
long time in the case of deterministic classification methods such as Maximum Likelihood
Estimation (MLE), the need for automated labelling strategies increases with the increased
use of ML and DL techniques. Reference data are often affected by incompleteness, noise,
inconsistencies, and multi-source integration challenges, all of which can reduce a model’s
performance if not properly addressed. Table 3.3 provides a structured summary of these
challenges and their implications. The following sections then span the basic requirements
for labels and present common methods for label engineering, followed by a discussion
of the simultaneous use of labels and features.
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Table 3.3.: Challenges in reference data collection and their implications for ML models.

Problem Category Component Description Interpretation / Role

Excessive Data
Complexity

High-dimensional feature space,
irrelevant attributes, large
dataset sizes [292], mixed
categorical/numerical data, noisy
measurements.

Increases computational
burden and risk of
overfitting; requires
dimensionality reduction,
feature selection, and data
filtering to retain relevant
information.

Insufficient Data
Coverage

Missing values, small sample
size, incomplete or
underrepresented attributes in
labels [292, 114, 116].

Leads to poor model
generalization and
increased overfitting risk;
necessitates imputation,
data augmentation, or
synthetic data generation
to ensure robustness.

Inconsistent and
Heterogeneous Data

Incompatible data formats,
multi-source integration
challenges [359], discrepancies
in spatial and temporal
resolutions.

Introduces inconsistencies
in training data; requires
harmonization,
resampling, and
normalization techniques
to ensure data consistency
and compatibility across
datasets.

Requirements for Labels

Given the challenges outlined in Table 3.3, RS reference data must meet specific require-
ments in order to ensure accuracy, consistency, completeness, and temporal relevance in
AI- and ML-driven applications. Given the high level of accuracy needed for predictions
across spatial and temporal scales, the requirements for reference data are stringent.
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Ensuring that a model learns the correct mapping between input features (such as satellite
imagery) and target outputs (labels such as land cover types or tree height) requires
highly accurate reference datasets. Inaccurate reference data can introduce systematic
errors, resulting in unreliable or misleading predictions. For example, misclassified land
cover data could lead to incorrect estimates of deforestation rates or vegetation health
[115]. Consistency across different datasets and time periods is equally important. In
EO, where data is sourced from multiple sensors, discrepancies can introduce noise and
degrade model accuracy. This issue is particularly critical when merging datasets collected
at different times or from varied sensors, which may exhibit radiometric differences unless
properly calibrated. Ensuring data harmonization through preprocessing techniques is
essential for model generalization. Completeness of reference datasets is another key
requirement. In cases where data are incomplete, imputation methods such as K-nearest
neighbours or DL-based techniques can be used to reconstruct missing values, although
these methods introduce uncertainties [10]. Temporal relevance plays a pivotal role
when dealing with dynamic environmental variables. Models trained on outdated or
temporally misaligned data may yield erroneous predictions as environmental patterns
shift over time. This is particularly critical in applications such as deforestation monitoring,
precision agriculture, and phenological studies, where multi-temporal reference data
significantly enhances classification accuracy and model robustness by capturing seasonal
variations and land cover dynamics [324]. Studies have shown that leveraging multi-
temporal datasets improves classification performance by reducing errors associated with
single-date observations, which may not fully capture environmental variability [324].
However, single-date reference data remain valuable for classification tasks where short-
term assessments or immediate land cover mapping are required. The aforementioned
study successfully classified crop types using vegetation indices from a single RapidEye
image, demonstrating that while single-date datasets provide meaningful insights, they
have inherent limitations in capturing temporal variations [329]. In addition to these
factors, reference data must be suitable for the specific task at hand. Furthermore,
dynamic reference data in remote sensing applications often need to reflect evolving
environmental conditions. Proper label engineering techniques must be employed to
ensure multi-temporal consistency of the reference labels in order to prevent temporal
drift that may negatively impact ML models.

The requirements for reference data in ML are therefore exceptionally demanding, par-
ticularly in RS, where spatial and temporal complexity is high, and small errors can
propagate into large uncertainties. In the context of benchmarking datasets, these criteria
are introduced and exemplified in detail in Section 1.1.3.
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Label Engineering

Because EO data form the basis for many labels in the geoinformation context (e.g.,
the CORINE land cover maps of the Copernicus program [335]), reference labels in EO
datasets may not always be as completely independent as desired. In addition, EO data
are generally prone to data quality issues such as missing values, noise, and redundancy,
which can propagate into the labelling process and potentially bias downstream ML
and DL models. This subsection focuses on how preprocessing steps ranging from gap-
filling to data fusion can support the production of accurate and consistent reference
datasets. Missing values are common in EO-derived labels due to temporary sensor
outages, atmospheric interference (e.g., cloud cover), and irregular data collection
intervals. Effective interpolation methods help to mitigate these gaps by estimating or
reconstructing missing label information.

For reference labels that evolve seasonally or exhibit complex temporal dynamics, ad-
vanced smoothing (e.g., Savitzky–Golay) can help to retain longer-term patterns while
filtering short-term fluctuations [249]. These methods are crucial in applications such
as phenological monitoring, where incomplete or noisy label data may otherwise ob-
scure subtle vegetation changes. Because reference labels in EO can represent diverse
data types, including land cover classes, vegetation indices, temperature, or biophysical
parameters, they may inherit noise from sensor limitations, atmospheric disturbances,
or inconsistencies in manual or automated annotation. Strategies for mitigating these
issues include filtering techniques in raster-derived labels such as Gaussian smoothing,
which is suitable for reducing random noise, as well as median filtering, which is suitable
for removing outliers while preserving major structural features. When constructing
reference datasets, one sensor alone may not achieve the necessary spatial or temporal
resolution. Thus, data fusion leverages complementary information, such as combining
high-resolution Landsat imagery with frequent MODIS observations, in order to generate
more complete and robust labels [121]. Table 3.4 outlines typical strategies.
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Table 3.4.: Label engineering techniques and their effects in EO workflows.

Method Key Mechanism Effects in EO

Raster Aggregation Sums up labels from
neighbouring pixels to form a
coarser but smoother raster.

Useful for creating coarse
yet stable label datasets in
complex terrains [259].

Segment
Aggregation

Aggregates measurements on
predefined reference polygons,
stabilizes label assignment, and
enhances thematic consistency.

Applied to forest stands or
field parcels in land-cover
classification or
object-based labels [43].

Cross-Sensor
Interpolation

Combines different data sources
with varying characteristics to
enhance the temporal sampling.

Used for bridging Landsat
revisits [371], densifying
NDVI time series [276],
and analyzing glacier
dynamics [351].

Spatio-temporal
Filtering

Smooths continuous labels via
spatio-temporal aggregation for
noise reduction.

Effective in removing
short-term variations in
meteorological
measurements [143].

Normalization Standardizes value range,
semantic depth, and numerical
coding.

Supports comparability
and transferability across
datasets.

Outlier Detection Identifies and removes
inconsistent or improbable
values within the labels.

Helps correct for sensor
failure or wrong
timestamps in ground
truth data [209].

Systematic Error
Correction

Detects and adjusts for
systematic deviations in the
labels.

Mitigates issues like
overestimated local
temperatures in
crowdsourced data [208].
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Outliers in reference labels occur when inconsistent or improbable values emerge within
the labelled dataset itself. For instance, if a crop type label assigned in a given year
contradicts known crop rotation patterns or historical land use records, this may indicate
a labelling error. Similarly, reference biomass values that deviate significantly from
expected seasonal trends may suggest inconsistencies in the labelling process. Identifying
and correcting such outliers using statistical validation, spatial consistency checks, or
ML-based anomaly detection can enhance label quality before model training.

In addition to outlier correction, data fusion strategies enhance label consistency and
accuracy in large-scale or long-term monitoring. Table 3.4 outlines key methods used to
stabilize reference labels and improve spatio-temporal coherence. These approaches are
particularly valuable for tracking both short-lived events (e.g., forest disturbances) and
broader environmental changes. A detailed discussion of such fusion strategies has been
presented in the literature [360], particularly in the context of integrating multi-source
remote sensing data for EO applications [289, 286, 288] for applications such as forest
monitoring, which requires robust handling of both spatial and sensor variability, in turn
helping to avoid propagation of errors into the derived labels. Optimizing data quality in
reference labels involves balancing corrective measures with the need to preserve critical
information about local variability, temporal patterns, and class distinctions. Unlike
classical feature engineering, label engineering focuses on ensuring that reference data
accurately reflect the intended classification task rather than just optimizing predictor
variables. By reducing redundancy at the labelling stage, models can achieve better
generalization and interpretability without unnecessary inflation of label complexity.

3.5 Understanding Challenges and Best Practices in
Dynamic Data Processing for Labelling

Figures 3.1–3.5 highlight the practical challenges associated with reference data prepro-
cessing. These visual representations underscore the importance of addressing the specific
requirements of labelled data from external sources for real-world EO applications.

102 Chapter 3 Labelling Foundations and Challenges



Simultaneous Use as Labels and Features

Comparing preprocessing methods for the labels presented above to common feature
engineering reveals wide agreement; the mathematical approaches are identical, and
only depend on the scale level of the respective input variable (Table 3.2). With respect
to gap-filling approaches such as cross-sensor interpolation (Table 3.4), which estimate
missing measurements from one sensor using potentially different measurements from
another sensor, the features of one might act as labels when using the features of one
other. Table 3.5 lists certain EO variables that have been used as both features and as
labels, where certain transformations and selections may apply at each stage. Traditional
ML models often rely on hand-crafted label definitions that require domain expertise.
For instance, thresholds or discrete classes might be derived from carefully curated
spectral–spatial indices. As an example, vegetation health classifications might use NDVI
thresholds (e.g., NDVI > 0.6 for dense vegetation, 0.3–0.6 for sparse vegetation, and
<0.3 for barren land), while forest type classification might integrate spectral information
with elevation and climate variables to distinguish between deciduous and coniferous
forests. Similarly, in urban heat island studies, thermal infrared data combined with
land surface temperature and impervious surface fractions can define thresholds for
categorizing heat stress zones [209].

3.5 Understanding Challenges and Best Practices in Dynamic Data
Processing for Labelling
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Table 3.5.: EO data dimensions that serve as a source of both input features and reference labels.

Dimension Description

Spectral Spectral features originate from sensor bands (visible, infrared,
near-infrared, etc.) and are widely used in remote sensing
applications. Classic examples include the NDVI [57, 52],
Green Chlorophyll Vegetation Index (GCVI), and EVI [249, 67].
The Land Surface Water Index (LSWI) is used for assessing
water content, aiding in drought and flood monitoring [52].

Spatial Spatial patterns—such as texture metrics like contrast, entropy,
correlation, and variance—are critical for differentiating urban
areas, forests, and agricultural fields [57]. These features help
refine label boundaries by emphasizing spatial consistency,
especially in object-based labelling workflows that rely on
segment homogeneity.

Temporal Time series data reveal dynamic processes such as crop
growth, forest phenology, and seasonal hydrological cycles
[57]. Incorporating temporal statistics (e.g., annual
maxima/minima, NDVI frequency peaks) helps refine
reference classes by clustering areas with similar phenological
trends across years.

Specific These features incorporate domain-specific knowledge—e.g.,
topography, meteorological data, or socioeconomic layers. In
forest fire risk applications, slope orientation and wind speed
can directly support label design or rule-based logic [57]. By
integrating these with core EO features, labelling becomes
more robust and context-aware.

The possible exchange of features and labels exhibits one basic problem: redundancy in
features is commonly accepted and even integrated into models, as it naturally arises
in multispectral and hyperspectral remote sensing acquisitions. In contrast, redundancy
is not considered at all in labels, as they are originally handcrafted and mostly seen
as an ideal error-free reference. Exchanging labels and features also exchanges their
respective characteristics; for instance, it has been found that NDVI and vegetation cover
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are understandably highly correlated in forest fire modelling, leading to the removal of
one attribute to prevent redundancy [57]. In label engineering, redundancy can arise
when multiple reference labels provide overlapping information, which may complicate
class interpretation, introduce bias, or create inconsistencies in supervised learning tasks.
To ensure that labels remain distinct and meaningful, redundancy detection strategies
can be applied.

The structured refinement of labels from features offers several advantages. Properly
defined labels that align closely with the predictive objective help to reduce ambiguity,
thereby improving model generalization. Removing redundant or poorly correlated
attributes also enhances interpretability, allowing users to better understand how land
cover categories and other reference classes are defined. In addition, streamlined label
design improves scalability in large EO datasets by reducing unnecessary complexity in
training and inference. By carefully adapting techniques from reference data validation,
practitioners can ensure that the labels meaningfully represent the target variables,
leading to more reliable model performance in EO applications ranging from resource
management to environmental hazard prediction.

Integration of Irregular Reference Labels with Raster Data

One of the primary challenges in dynamic labelling is integrating irregular vector-based
reference labels with regularly-gridded raster datasets. The labels collected through
terrestrial (Figure 3.1), airborne PolInSAR (Figure 3.2), LiDAR (Figure 3.3), and airborne
photography surveys (Figures 3.4 and 3.5) contain both numerical and categorical
information. For example, raw LiDAR data provide continuous numerical values such as
height, return intensity, and point density; however, when classified into vegetation types
(e.g., ‘coniferous’, ‘deciduous’), land cover categories (e.g., ‘urban’, ‘forest’, ‘water’), or
object classes (e.g., ‘building’, ‘tree’, ‘road’), these are transformed into categorical data.
Similarly, PolInSAR-based land cover classification outputs discrete labels that require
encoding before being processed in ML/DL models. To ensure compatibility, categorical
labels must be transformed into numerical representations:

Preprocessing: Before model training, categorical labels require encoding (e.g., one-
hot or ordinal encoding). Alternatively, structural attributes (e.g., tree height, crown
diameter) or spectral properties (e.g., NDVI values) can serve as numerical predictors.

3.5 Understanding Challenges and Best Practices in Dynamic Data
Processing for Labelling
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Postprocessing: After inference, numerical model outputs (e.g., fractional land cover
predictions) must be reclassified into discrete categories to match thematic mapping
requirements.

The choice of transformation depends on the specific ML/DL task. Not all applications
require categorical-to-numerical conversion, and alternative methods such as multivariate
regression can effectively leverage continuous data.
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Figure 3.1.: Labels from terrestrial surveys in the rural community of Hochstadt (Bavaria, Ger-
many) in comparison to different EO data sources: (top-left) land use labels as pro-
vided by the Bavarian Surveying Administration (Bayerische Vermessungsverwaltung)—
www. geodaten. bayern. de (accessed on 1 February 2025) (top-right) digital
orthophoto 20 cm (DOP20 by the Bavarian Surveying Administration (Bay-
erische Vermessungsverwaltung)—www. geodaten. bayern. de (accessed on 1 Febru-
ary 2025); (bottom-left) Sentinel-2 (©ESA (2023)) true colour image (TCI); and
(bottom-right) Sentinel-1 (©ESA (2023)) total intensity (K0). The figure elucidates
the impact of image resolution and geometric co-registration on the usability of
labels. On the one hand, the DOP20 shows much more details than the labels
require; on the other, the satellite images are too coarse to capture the relatively
narrow polygons of (e.g.) the traffic class. Regarding Sentinel-1, the signatures of
high-rise objects like the buildings or trees are spatially overlaid with neighbouring
polygons.
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Figure 3.2.: Labels from an airborne PolInSAR flight campaign over the German Wadden See
around the island of Baltrum (Lower Saxony, Germany) in comparison to multi-
temporal spaceborne optical acquisitions in the visible and near-infrared spectral
range: (top-left) land cover labels [157] (accessed on 1 February 2025) with digital
orthophoto 20 cm in the background (LGLN (2024)), and Colour Infrared (CIR)
images by Sentinel-2 on September 2nd, 4th, and 7th (©ESA (2023)) as multi-
temporal features. The figure impressively visualizes the high temporal variability
of features acquired by spaceborne EO sensors due to the immanent tidal range
opposite the temporally stable land cover classes.
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Figure 3.3.: Labels from airborne LiDAR in the Bavarian Forest National Park conditioned for use
with spaceborne sensors: (top-left) single tree polygons derived from point clouds
that contain the tree geometry and further characteristics as attributes. These labels
concerning the Bavarian Forest National Park were provided by the Bavarian National
Park Research under the Bohemian Forest Datapool Initiative [203] (accessed on 29
February 2024); (top-right) the 10 m pixel grid of the satellite data; (bottom-left)
tree characteristics aggregated on the grid by the Wald5Dplus project [147] for use
as labels; and (bottom-right) Kennaugh elements 1 to 3 of the 512 bands included
in the Analysis-Ready Data (ARD) cube provided by Wald5Dplus [148] (accessed on
1 February 2025) for use as features. The figure addresses the two main labelling
problems of Wald5Dplus: first, the gridded labels represent geospatial statistics
instead of single tree characteristics; second, the multi-temporal EO features contain
structures that are not visible in the mono-temporal labels and vice versa.

3.5 Understanding Challenges and Best Practices in Dynamic Data
Processing for Labelling

109



376,000 377,000 378,000
5,

43
9,

00
0

5,
44

0,
00

0
5,

44
1,

00
0

376,000 377,000 378,000

5,439,000
5,440,000

5,441,000

376,000 377,000 378,000

5,
43

9,
00

0
5,

44
0,

00
0

5,
44

1,
00

0

Windthrow labels after storm Kyrill (Jan 2007)

376,000 377,000 378,000

5,439,000
5,440,000

5,441,000

Single tree windthrow Areal windthrow Massive group windthrow

Landsat 5 TCI in summer 2007

Landsat 5 TCI in summer 2009 Landsat 8 TCI in summer 2020

Figure 3.4.: Labels from airborne photography: (top-left) manually drawn wind-throw areas after
storm Kyrill in January 2007 categorized in single-tree, group, and areal wind-throw
in the Bavarian Forest National Park. The labels concerning the Bavarian Forest
National Park were provided by the Bavarian National Park Research under the
Bohemian Forest Datapool Initiative [203] (accessed on 29 February 2024), with
the ESRI World Topo Map in the background. The other sub-figures show Landsat
True Colour Images (TCI) taken from space in the years 2007, 2009, and 2020 in
parts (top-right sub-figure) with some clouds (Landsat 5 and 8 images courtesy of
the U.S. Geological Survey). The reference data consist of overlapping polygons,
which inhibits the assignment of clear label to pixels. Although the satellite image
from summer 2007 takes up the structures of the labels, many more areas appear
very similar to the mapped wind-throw areas, which underlines the necessity of
multi-temporal features and/or the inclusion of static labels. The image from 2009
indicates clearing after the storm, whereas the image from 2020 reveals regrowth.
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Figure 3.5.: Multi-temporal labels from airborne photography: yearly deadwood after barkbeetle
infestation mapped by a human interpreter based on stereoscopic images acquired
during yearly airborne flight campaigns. The polygons delineate dead trees, catego-
rized by the last date on which they were classified as healthy. Labels concerning the
Bavarian Forest National Park were provided by the Bavarian National Park Research
under the Bohemian Forest Datapool Initiative [203] (accessed on 29 February
2024). The raster image in the background contains the multi-temporal Normalized
Difference Vegetation Index (red: NDVI in spring; green: NDVI in summer; blue:
NDVI in autumn) from Sentinel-2 images (©ESA (2018, 2020, 2022, 2024)). The
brightness shows the healthiness of the vegetation, whereas the hue shows its tem-
poral variation, e.g., red stands for high photosynthetic activity in the spring and
reduced photosynthetic activity in the summer and autumn. Dark areas stand for
low-to-negligible photosynthetic activity throughout the year. This figure illustrates
the challenges of temporal alignment; some upcoming deadwood areas are already
visible in the space-borne time series, even though they are still classified as healthy
by the yearly manual assessment. Thus, the image from 2024 (bottom-right) shows a
composition of deadwood and regrowth areas that only partially match the reference
polygons due to the increasing time lag.
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Spatial Alignment, Projection Distortions, and Resolution Challenges

To ensure usability, labels must be spatially aligned with EO-derived data such as high-
resolution digital orthophotos (e.g., 20 cm DOP, Bavarian Surveying Administration—www.
geodaten.bayern.de and raster-based satellite products (e.g., Sentinel-1 and Sentinel-2).
However, vector-to-raster transformations introduce distortions that require harmoniza-
tion techniques. Figure 3.1 highlights various challenges:

Projection distortions: High-rise objects cause layover effects in optical and radar data,
leading to misalignment between objects and their corresponding labels. In Figure 3.1
(top-right), the forest shifts into the neighbouring meadow.

Resolution mismatches: High-resolution imagery (e.g., DOP20) captures detailed land
structures, while satellite images (e.g., Sentinel-2) are too coarse to represent narrow
traffic polygons. Radar images (bottom-right) introduce additional complications, with
buildings overlaid onto neighbouring polygons.

To mitigate these issues, Figure 3.2 demonstrates a possible solution in the form of a
buffer implemented around the reference polygons to minimize pixel-mixing errors. Addi-
tionally, spectral and radiometric discrepancies (e.g., between Sentinel-1 and Sentinel-2)
necessitate normalization to ensure label consistency. Figure 3.3 exacerbates resolution
issues, as the gridded labels represent geospatial statistics instead of individual tree
properties. One grid cell may contain multiple overlapping polygons, complicating the
extraction of independent descriptors. This highlights the necessity of advanced spatial
statistics to effectively handle polygon overlaps.

Temporal Misalignment and Dynamic Label Challenges

Temporal discrepancies between reference labels and EO data present a fundamental
challenge. Static land use labels (Figure 3.1) and land cover labels (Figures 3.2 and
3.3) do not capture seasonal or short-term variations in landscape features. Meanwhile,
dynamic EO-derived features such as Sentinel-1 and Sentinel-2 provide near-weekly revisit
times, revealing vegetation cycles and environmental changes. Figure 3.2 illustrates this
issue, showing that temporally stable land cover labels contrast with rapidly changing
tidal ranges. Similarly, Figure 3.5 highlights inconsistencies in airborne reference labels;
while manual interpretation classifies areas as healthy, Sentinel-2 NDVI trends indicate
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early signs of tree stress and dieback. To improve temporal alignment, preprocessing
strategies include the following:

Temporal interpolation: Estimating missing or delayed label updates based on surround-
ing timestamps.

Change detection and trend extrapolation: Identifying trends in EO features to better
align with reference labels.

Adaptive temporal grouping: Aggregating neighbouring observations to improve label
consistency across time.

It is important to keep in mind that both the appearance of an object and its semantic class
may change independently with time, i.e., from ‘healthy’ to ‘threatened’ in vegetation
monitoring. These changes are not necessarily visible in EO data.

Uncertainty and Ambiguity in Label Assignments

Reference data inherently contain uncertainty due to overlapping polygons, ambiguous
class assignments, and spectral mixing in lower-resolution EO products. For example,
Figure 3.4 presents overlapping wind-throw polygons that make pixel-level classification
ambiguous. Similarly, Figure 3.5 visualizes inconsistencies between multi-temporal
Sentinel-2 NDVI and manually annotated deadwood polygons. To address these issues,
best practices emphasize the following:

Probabilistic labelling: Assigning probability values rather than strict class assignments
to improve robustness.

Confidence-weighted annotations: Including model-based uncertainty measures in
label assignments.

Multi-label fusion: Combining labels from different sources to enhance label consistency.

By proceeding in this way, contradictions and inaccuracies are ignored, instead being
adequately mapped in the annotated labels.

3.5 Understanding Challenges and Best Practices in Dynamic Data
Processing for Labelling
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Scalability and Computational Challenges in Large-Scale ML Workflows

As EO datasets grow, label preprocessing becomes computationally expensive. Unlike
static labels that require one-time annotation, dynamic labels must be continuously
updated, introducing substantial processing demands. Challenges include:

High-dimensional data processing: Multi-temporal EO datasets require scalable archi-
tectures (e.g., distributed computing, cloud-based workflows).

Automated label updates: Techniques such as active learning, transfer learning, and
weak supervision aim to reduce manual intervention but also introduce complexities in
model retraining.

Metadata management: Proper documentation of label transformations is necessary for
reproducibility.

Recent advancements in graph-based labelling, dynamic pseudolabelling, and spatio-
temporal data integration frameworks show promise for improving scalability, but require
further refinement prior to widespread adoption.

Despite these challenges, the datasets analysed in Figures 3.1–3.5 exhibit high-quality
reference data from well-structured surveys. The accessibility of datasets such as the
PolInSAR-derived land cover labels [157] and Wald5Dplus tree characteristics [148]
supports reproducible EO research such as [278]. However, restricted access to high-
resolution commercial datasets currently limits large-scale ML model generalization.
For a standardized preprocessing framework, robust workflows must incorporate the
following:

• Schema matching to align label structures across datasets.

• Spatial alignment techniques to mitigate projection and resolution discrepancies.

• Adaptive resampling to harmonize multi-temporal and multi-resolution data sources.

• Dynamic updating mechanisms to ensure long-term consistency in evolving datasets.

• Hybrid labelling strategies that integrate categorical and continuous reference data,
improving model adaptability by incorporating multiple label types within a unified
framework.
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Hybrid labelling enhances the adaptability and robustness of reference data by integrating
categorical and continuous classifications as well as static and dynamic labels. Many
EO applications require structured harmonization of numerical and discrete data; for
instance, land surface temperature models benefit from linking continuous temperature
measurements with categorical land cover classes, while vegetation indices such as NDVI
improve crop growth stage identification when combined with crop type classifications.
In addition to numerical-categorical integration, hybrid labelling merges static labels
such as historical land use maps with dynamic labels like satellite-derived flood extents,
ensuring adaptability to real-time changes. For example, crop monitoring leverages static
soil maps alongside dynamic NDVI-based classifications to capture both long-term soil
properties and short-term vegetation shifts. Additionally, hybrid labelling enables trans-
formed representations that better reflect environmental complexity. Fuzzy classification
assigns probabilistic weights to land cover types, facilitating smooth transitions between
categories, while continuous degradation scores in vegetation health assessments offer
a more nuanced representation of environmental stressors. These approaches enhance
model generalization, improve data reliability, and support more accurate predictions in
EO applications. These best practices improve label consistency, model interpretability,
and overall robustness, paving the way for scalable, high-quality reference data in various
learning-based applications for EO.

3.6 Dynamic Labelling and Sampling Strategies: Temporal
and spatio-temporal Perspectives

Below, several approaches are presented, including various research works that deal
with the dynamics of time series and offer different perspectives. These methods vary
in complexity, automation, and applicability, providing tailored solutions depending on
the analytical tasks and data availability. Tables 3.6 and 3.7 provide an overview of key
dynamic labelling techniques in EO, outlining their methodological characteristics and
their relevance to either temporal or spatio-temporal applications.

3.6 Dynamic Labelling and Sampling Strategies: Temporal and
spatio-temporal Perspectives

115



Table 3.6.: Temporal dynamic labelling methods in EO.

Method Description

Time-Lagged Labels Labels are assigned based on past observations to account
for delayed responses in environmental processes, such
as NDVI changes driven by precipitation. This approach
ensures that historical dependencies are incorporated
into model training, improving predictive accuracy in
applications such as climate–vegetation studies and hy-
drological forecasting. However, these labels remain
static after being assigned and do not adapt dynamically
to changing conditions. They are commonly used to
structure reference data for time-series analysis [171].

Sliding Window Technique This technique segments time series into structured sub-
sets to support anomaly detection, data imputation, and
dynamic label generation. It extends time-lagged la-
belling by refining structured temporal dependencies,
ensuring consistency in training labels while capturing
meaningful temporal variations. Selecting an appropriate
window size is necessary to balance short-term fluctua-
tions with long-term trends. It is widely applied in hydro-
logical monitoring and preprocessing for remote sensing
classification, where it enhances temporal consistency in
training datasets [195, 213].

Although these methods offer robust frameworks for handling dynamic labels, each
approach comes with inherent limitations. For instance, while pseudolabelling reduces
manual annotation, it can introduce noisy labels if iterative refinements are not properly
managed or if confidence thresholds are miscalibrated [342]. Time-lagged labels effec-
tively capture temporal dependencies but remain static once assigned, which may lead
to mismatches in fast-changing environments [171]. Sliding window techniques ensure
temporal consistency, but are sensitive to parameter selection, particularly the window
size, which can distort long-term trends or miss short-term anomalies [213, 195]. Auto-
GeoLabel provides real-time label generation from geospatial data, enhancing scalability
and reducing manual workload. However, several critical limitations must be addressed
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when applying this method: (1) the spatial representativeness of the generated labels
is constrained by the coverage and sampling of the LiDAR or remote sensing inputs,
potentially introducing geographic bias if certain regions are underrepresented; (2) in
applications involving vegetation phenology or seasonal dynamics, labels generated at
different time points may not reflect consistent environmental states, reducing temporal
reliability; (3) label accuracy is highly sensitive to the quality and resolution of the input
data, with sparse or misaligned sources leading to incomplete or noisy labels; and (4)
independent validation using ground truth data is essential in order to avoid propagating
misclassifications into downstream ML/DL models [11]. Finally, resampling and data
fusion, while addressing multi-resolution inconsistencies, risk introducing errors from
mixed pixels or misaligned temporal data points. These limitations indicate a clear
need for a unified and scalable methodology that can dynamically adapt labels across
diverse EO applications and maintain accuracy while addressing the temporal and spatial
complexities inherent in environmental datasets.

3.6 Dynamic Labelling and Sampling Strategies: Temporal and
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Table 3.7.: spatio-temporal dynamic labelling methods in EO.

Method Description

Pseudolabelling Iteratively refines weakly supervised object detection by generating
instance-level annotations from spatial and temporal information.
The process includes: (1) training a weakly supervised localization
model to generate Class Activation Maps (CAMs); (2) computing
pseudolabels based on pixel intensities, assigning confidence scores;
(3) applying adaptive thresholding using category-specific confi-
dence histograms; and (4) refining pseudolabels through iterative
integration using Proposal Cluster Learning (PCL). Prior to pseudola-
belling, datasets are typically resampled and fused to ensure spatio-
temporal consistency across sensors like Sentinel-1 and Sentinel-2.
This reduces dependency on fully annotated datasets and improves
detection performance across iterations [342].

AutoGeoLabel Automatically derives reference labels from geospatial data via sta-
tistical feature extraction from LiDAR and multispectral imagery.
Variables such as reflectivity, elevation, and return counts inform
classification rule generation for land cover differentiation. The
method supports dynamic environmental monitoring (e.g., flooding,
vegetation), adapting to real-time changes. Data alignment and
resolution are critical for label accuracy, necessitating preprocess-
ing steps such as fusion and resampling. Label quality is validated
against ground truth to mitigate classification bias and downstream
error propagation. AutoGeoLabel is increasingly used for scalable,
automated labelling in geospatial applications [11].

The challenges outlined in the previous sections highlight the need for a structured
and unified approach to dynamic labelling that can integrate multi-source data while
addressing spatial, temporal, and categorical inconsistencies. To meet these demands, we
introduce the HELIX, a comprehensive spatio-temporal label preprocessing framework
designed to standardize and enhance EO-based training data.
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The Novel Helix Framework for
Dynamic Label Data

4
„We are drowning in information, while starving for

wisdom.

— Edward O. Wilson
Biologist, Ecologist

This chapter includes elements from the following peer-reviewed publication:

Sarah Hauser, Lena Augner, and Andreas Schmitt. Perfect Labelling: A Review and
Outlook of Label Optimization Techniques in Dynamic EO. Remote Sensing, 2025, 17,
1246. DOI:10.3390/rs17071246

It is cited as [149] and is marked with a cyan line.
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tualization presented in this work, including the independent development of the HELIX

framework for spatio-temporal label preprocessing. She led the investigation and con-

tributed substantially to the manuscript’s review and editing.

The challenges outlined in the previous chapter highlight the need for a structured and
unified approach to dynamic labelling that can integrate multi-source data while address-
ing spatial, temporal, and categorical inconsistencies. To meet these demands, this section
introduces the novel HELIX concept, a comprehensive spatio-temporal label preprocessing
framework developed specifically to standardize and enhance label data. As an original
contribution of this thesis, HELIX provides a systematic and scalable solution to one of
the most persistent bottlenecks in EO–ML integration: the lack of temporally aligned,
structurally coherent, and context-aware reference labels. Beyond its role as a practical
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tool, HELIX also functions as a conceptual framework: it provides a foundation for trans-
forming, enriching, and aligning label data based on spatio-temporal understanding. This
abstraction enables reuse and adaptation in other environmental domains or modelling
pipelines that require structured label data across dynamic conditions.

The proposed HELIX framework provides a comprehensive spatio-temporal approach
to data preprocessing that is intended for but not limited to EO applications. HELIX
addresses the need for a unified preprocessing workflow as well as the limitations of
purely static or purely dynamic datasets. Drawing its name and inspiration from the
intertwined structure of a DNA helix, the proposed framework is conceptualized as an
evolving sequence of data points interlaced along both spatial (x,y) and temporal (t)
coordinates. By structuring label data within a spatio-temporal grid, each referencing a
specific (x,y,t), the proposed framework effectively captures the continuous changes of
environmental phenomena over time while preserving spatial consistency and contextual
integrity. This design is pivotal for EO tasks that demand high temporal resolution (e.g.,
seasonal vegetation changes, tidal fluctuations) and spatial precision (e.g., delineating
tree polygons, detecting wind-throw damage, identifying deadwood). Whereas static
datasets fail to incorporate ongoing environmental dynamics and purely real-time datasets
can disregard historical context, this pipeline harmonizes both, providing a balanced
pipeline for integrated multi-source EO data. The HELIX framework in Figure 4.1 consists
of multiple interlinked modules, each fulfilling a distinct purpose in the dynamic labelling
workflow.
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Static Labels
(gridded or irregular)

Dynamic Labels
(gridded or irregular)

EO Data
(multi-temporal)
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Spatio-Temporal
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Spatial Scale
Reconciliation
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resampling)

Temporal Scale
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(e.g., linear resampling)
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Rolling Window
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bel Engineering
(Lags, Historic
Data, Fourier)

Spatial Label
Engineering
(Pixel Area)

Helical Feature
Engineering

(Spatio-Temporal
Representation)

Uncertainty
Quantification

Enriched Labels

Figure 4.1.: Conceptual framework of the proposed HELIX framework, illustrating the integration
and preprocessing pipeline for static and dynamic labels.
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4.1 Framework Formalization and Design Principles

4.1.1 Hybrid Integration of Static and Dynamic Labels

The HELIX framework integrates various label sources into a unified hybrid dataset,
irrespective of their original formats, including irregular vector data, gridded raster data,
and georeferenced structured datasets (e.g., CSV). This integration effectively harnesses
the complementary strengths of both temporally static data (e.g., soil maps, historical land
use data) that provide stable long-term baseline conditions and temporally dynamic data
(e.g., climate variables, vegetation indices) that capture environmental changes over time.
The combination of diverse datasets regardless of their temporal characteristics (static
or dynamic) or data types (numerical, categorical) is highly advantageous for training
robust models in ML, DL, AI, and FM contexts. The HELIX framework automatically
manages different data types, transparently encoding categorical labels into numerical
forms to ensure traceability and reproducibility. By preprocessing all these diverse
datasets within a single coherent pipeline, HELIX simplifies data handling, enhances
model training efficiency, and maintains consistent label quality. This hybrid integration
approach also adaptively addresses temporal variability, dynamically selecting between
stable representations for persistent landscape features and dynamic representations
for capturing short-term environmental fluctuations. For instance, Figure 3.5 illustrates
scenarios where manually annotated static labels lag behind the frequently updated
dynamic labels derived from Sentinel-2 NDVI data. Similarly, Figure 3.2 underscores the
necessity of dynamic labels for accurately representing rapidly changing environments
such as tidal zones.

In many real-world environmental datasets, labels are not always provided as neatly
formatted numerical values. Instead, they often appear as categorical descriptors, such as
vegetation types, disturbance events, or administrative classes, which must be interpreted
and standardized before they can be used in machine learning workflows. To address
this, the HELIX includes a mechanism for systematically processing and normalizing such
non-numeric labels across heterogeneous data sources. Rather than assuming a uniform
input schema, HELIX allows for fine-grained selection of which categorical fields should
be included in the label processing workflow, drawing from multiple sources such as static
land-use maps, dynamic event records, or historic annotations. These fields are then
transformed into a consistent numerical format to ensure compatibility with downstream
models. Importantly, this transformation is designed to retain interpretability: each
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category is assigned a unique integer code, and mappings between original class labels
and their encoded counterparts are preserved and exported for later use, such as decoding
predictions or inspecting feature contributions. The design choice to use compact integer
encodings, rather than more expansive one-hot representations, reflects both the scale of
the data HELIX is intended to process and the types of models it supports. Integer encod-
ing is highly memory-efficient and aligns well with many common modelling approaches
(e.g., decision trees, ensemble methods) that can inherently interpret categorical codes
without additional transformation. This approach allows HELIX to balance computational
efficiency with semantic transparency. To avoid ambiguity and ensure full provenance
tracking, each processed field is labelled using a consistent prefixing scheme that denotes
the origin of the data, for example, whether it comes from a primary dataset, a static
reference layer, or a dynamic time series. This guarantees clear separation between label
sources while preventing naming conflicts during feature merging or model interpretation.
Moreover, users can configure whether or not to retain the original raw label fields in
the final output, allowing flexibility between model efficiency and auditability. Through
these design principles, HELIX ensures that categorical information, often messy and
inconsistent in its original form, is transformed into a clean, interpretable, and scalable
format that supports robust environmental modelling across diverse data sources.

4.1.2 Spatio-temporal Scale Reconciliation

Many EO datasets and vector-based reference sources inherently exhibit misalignment
across both spatial and temporal domains, complicating their direct integration into ML
and DL models, AI-driven geospatial analytics, and FMs. The HELIX framework explicitly
addresses these misalignments by systematically reconciling discrepancies between the
reference labels, regardless of whether they are static, dynamic, or a combination of both,
and the EO-derived features (e.g., satellite imagery). Practically, this is achieved by first
extracting a reference grid, including coordinate reference systems (CRS), from the EO
data, then identifying relevant temporal intervals corresponding to EO data availability.
Spatial reconciliation involves precisely aligning vector-based labels to a defined EO
raster grid using geometric alignment methods, such as affine transformations combined
with appropriate resampling methods (e.g., nearest neighbour, bilinear interpolation).
Temporal alignment is achieved through linear interpolation and resampling techniques,
aligning the label timestamps precisely with those of the EO-derived features. This dual
spatial and temporal reconciliation step enhances label quality, consistency, and adaptabil-
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ity, making it suitable for a wide range of model types. For example, Figure 3.1 illustrates
spatial misalignment issues where detailed terrestrial labels require spatial resampling
to match coarse satellite grids. Similarly, Figure 3.2 highlights temporal discrepancies
arising from rapid tidal fluctuations, demonstrating the necessity of temporal alignment
techniques provided by the HELIX framework.

Spatial Component:

At the heart of this reconciliation is the generation of a canonical grid derived from a
reference raster. The raster’s affine transformation matrix defines how each pixel index
corresponds to real-world coordinates, allowing the framework to discretize geographic
space into uniformly sized cells. Formally, each cell Cij is located by computing the cell’s
bounding box via the affine mapping:

(xmin, ymax), (xmax, ymin) = T · (col, row) (4.1)

where T denotes the affine transformation matrix provided by the raster metadata. This
procedure yields a regular spatial lattice that serves as the base layer for all subsequent
projection and aggregation operations.

Since input datasets may originate from different spatial reference systems, all external
geometries are reprojected into the CRS of the canonical grid. This harmonization ensures
that spatial overlays and geometric operations are mathematically valid, eliminating
distortions due to mismatched projections:

CRSinput −→ CRSgrid (4.2)

By reprojecting all inputs into a shared CRS, the HELIX framework guarantees that topo-
logical relationships, such as containment, intersection, or adjacency, can be meaningfully
and consistently interpreted.

Given the scale of EO data, where thousands of spatial features may need to be processed
over large grids, computational efficiency becomes critical. Rather than computing
all possible polygon-grid cell intersections directly, HELIX leverages a spatial indexing
mechanism known as STRtree. This structure organizes polygon geometries hierarchically
by their bounding boxes, allowing the framework to rapidly preselect likely intersecting
candidates and skip irrelevant comparisons. In computational terms, this optimization
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reduces complexity from O(n · m) to approximately O(n log m), where n is the number
of grid cells and m the number of polygons (Figure 4.2). 1

Root
MBR

Internal Node
MBR1

Leaf
MBR1a

Polygon P1

Leaf
MBR1b

Polygon P2

Internal Node
MBR2

Leaf
MBR2a

Polygon P3

Leaf
MBR2b

Polygon P4

Figure 4.2.: Illustration of STRtree hierarchy: Leaf nodes store bounding boxes of polygons
(MBRs), which are grouped into internal nodes. The root node covers all inputs.
Queries first test against parent MBRs to prune unnecessary comparisons.

To illustrate this, a simplified example is showcased in Figure 4.3.

Cij

MBR(P1)

MBR(P2)

MBR(P3)

Figure 4.3.: STRtree spatial filtering: the raster cell Cij (blue) queries polygon candidates by
overlapping bounding boxes (dashed), reducing the need for unnecessary geometric
operations.

This spatial pruning allows the HELIX to scale to tens of thousands of polygons and grid
cells without brute-force computation.

Once potential intersections are identified, the framework computes the precise geometric
overlap between each polygon Pk and grid cell Cij. The total area of intersection is
accumulated per cell:

1Unlike a k-d tree, which partitions data along coordinate axes and is best for point-based nearest-neighbour
search, an STRtree is an R-tree variant tailored to 2D spatial indexing. It organizes spatial objects by
their minimum bounding rectangles (MBRs), hierarchically grouped into a tree. When querying which
polygons intersect a given raster cell, the tree first checks for bounding box overlap, a fast, approximate
check, and only performs exact geometric intersection for candidates that pass. This dramatically reduces
the number of expensive geometric computations.
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Aij = ∑
k

area(Pk ∩ Cij) (4.3)

This raw area value is subsequently normalized by the cell’s area to produce a probability-
like spatial coverage estimate:

Pij =
Aij

Acell
(4.4)

In parallel, a binary indicator flag is assigned to capture the presence or absence of any
intersecting geometry:

Eij = 1[Aij > 0] (4.5)

These three outputs, area, normalized coverage, and binary label, offer different levels
of semantic richness, accommodating a variety of downstream modelling approaches
including probabilistic learning and event classification.

The structured alignment of spatial data within HELIX thus enables a principled trans-
formation of heterogeneous spatial inputs into a consistent, high-resolution analytic
representation. By anchoring all labels on a common geospatial grid, reconciling coordi-
nate systems, and employing efficient spatial filtering, the framework not only ensures
geometric validity but also supports scalability and statistical rigour. This spatial layer
forms the bedrock upon which temporal logic and dynamic label enrichment are later
constructed.

Temporal Component:

Temporal reconciliation in HELIX builds on the spatial foundation by ensuring that
each label observation is temporally aligned with the corresponding EO data in a way
that respects both event semantics and the temporal nature of EO series. Real-world
phenomena, like vegetation growth, storm damage, or human activity, unfold over time,
and so do the observations that capture them. HELIX introduces a set of strategies to
handle these temporal aspects systematically: standardization of date formats, filtering
of temporally valid labels, backtracking through historical events, matching labels to
EO data within a defined lag window, and optionally interpolating between sparse time
steps.

126 Chapter 4 The Novel Helix Framework for Dynamic Label Data



To begin, timestamps are extracted from all reference layers, regardless of whether the
input is a raster time series or a vector dataset. Raster-based dates are commonly encoded
in file names, from which HELIX parses structured patterns using regular expressions.
Vector-based annotations, on the other hand, typically contain explicit fields for event
onset or validity (e.g., Not_Before, Not_After). These fields define temporal intervals
during which an event or class label can be considered active. Labels are then filtered
according to whether the processing date falls within the declared validity window:

tstart ≤ tprocessing ≤ tend (4.6)

This condition ensures that only temporally relevant records are associated with each
grid cell at a given time step.

In scenarios where a more enriched temporal context is desired, HELIX enables back-
tracking across previous time points. For a given target date t, the framework supports
retrieval of historical labels observed at earlier dates {t − 1, t − 2, . . . , t − n} up to a
configurable lag horizon. These historical snapshots are appended as lagged features,
enabling models to capture persistence, recovery, or delayed effects. Importantly, this
enrichment applies only to the label layer, not to EO input features, which maintains a
clear separation between predictor and target domains.

Yet even when events and EO acquisitions are aligned chronologically, mismatches in
their precise timestamps often persist. Atmospheric effects, sensor gaps, or annotation
delays introduce inevitable asynchrony. HELIX mitigates this by implementing a lag-aware
matching mechanism: for any EO observation at time t, the system seeks the closest label
time t′ such that:

|t − t′| ≤ τ (4.7)

where τ denotes the allowed temporal offset. If no valid label is found within the
threshold τ, the record is skipped. This tolerance-based alignment offers a flexible
solution for pairing observational features with temporally proximate reference data
without sacrificing semantic relevance.

Finally, HELIX optionally supports temporal interpolation for cases where label records
are missing entirely between two known points in time. If values are available at t1 and
t2, but not at t ∈ (t1, t2), the framework interpolates intermediate values using:
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Xt = (1 − α)Xt1 + αXt2

α =
t − t1

t2 − t1

(4.8)

This linear interpolation is limited to continuous fields and respects semantic constraints.
Categorical labels are not interpolated numerically but handled by forward filling or
nearest-neighbour methods to preserve interpretability.

4.1.3 Spatio-temporal Label Enrichment and Engineering

The HELIX framework further enhances label quality by leveraging sophisticated spatio-
temporal enrichment techniques, providing significantly enriched reference datasets
tailored for robust model training. Utilizing spatial and temporal dimensions simultane-
ously, the HELIX calculates additional derived features, including probabilities of specific
classes or labels within defined spatial grid cells. For instance, it enables the calculation
of label probabilities, such as the fractional area occupied by a particular class within
each raster grid cell, thereby improving the interpretability and robustness of training
labels.

Central to this enrichment is the configurable spatio-temporal windowing technique,
in which both spatial extent (e.g., neighbourhood radius) and temporal duration (e.g.,
number of previous or subsequent time steps) are fully user-definable. This flexibility
allows users to comprehensively integrate local context from spatially neighbouring pixels
or polygons and temporal context from historical observations such as past land-use
changes, trends, or seasonal cycles. Utilizing these configurable windows, the HELIX
enables computation of novel and contextually rich features capturing the dynamic
interplay between labels across space and time. Specifically, the HELIX supports the
following processing steps:

Spatial Aggregation: Calculation of neighbourhood statistics (mean, median, mode) to
ensure consistency when integrating high-resolution vector labels with lower-resolution
EO raster grids, as demonstrated in Figures 3.3 and 3.4.

Temporal Windowing: Employing rolling or sliding windows that capture short-term and
long-term temporal dependencies, allowing for the detection and analysis of changes and
trends over defined periods. The temporal window size and spacing are user-configurable.
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Helical Feature Framework: At the heart of HELIX’s enrichment logic lies a transition
from atomic observations to structured spatio-temporal reasoning. Each label, initially
indexed at a single grid cell and timestamp, is situated within a broader analytical
neighbourhood, a localized 3D volume defined jointly over space and time. Conceptually,
this volume is not arbitrary: it is designed to represent the evolving environmental and
semantic context around an observation, allowing the label to be interpreted not in
isolation but as part of a continuous surface of change.

This contextual volume is operationalized through what HELIX terms a helical window,
a cylindrical, symmetric sampling construct centered around a spatio-temporal point.
The helix metaphor reflects the structure’s dual anchoring in space (via a spatial radius
r) and in time (via a temporal window width 2w). For each target cell C(t)

ij , HELIX
computes statistical summaries across this window, capturing the local distribution of a
given feature x:

µ
(t)
ij =

1

|N (t)
ij |

∑
(m,n,t′)∈N (t)

ij

x(t
′)

mn (4.9)

σ
2(t)
ij = Var

(m,n,t′)∈N (t)
ij

(︂
x(t

′)
mn

)︂
(4.10)

Sum(t)
ij = ∑

(m,n,t′)∈N (t)
ij

x(t
′)

mn (4.11)

These expressions represent, respectively, the mean, variance, and sum of values within
the neighbourhood N (t)

ij , defined by:

√︂
(i − m)2 + (j − n)2 ≤ r and t′ ∈ [t − w, t + w]

That is, only spatial cells (m, n) within a Euclidean distance r of the target cell (i, j) and
timestamps t′ within the window centred at t are included. This mathematical structure
encapsulates HELIX’s core enrichment principle: labels are interpreted through their local
history and neighbourhood, enforcing smoothness while preserving edge dynamics.

Figure 4.4 visually illustrates this helical window. A central target cell C(t)
ij is shown

alongside its counterparts at earlier and later time steps (t − 1, t + 1), with spatial
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neighbours highlighted at each time slice. The combined structure forms a regular, multi-
scale context cylinder that travels with the spatio-temporal centre of mass, providing a
moving frame of reference.

C(t)
ijC(t−1)

ij C(t+1)
ij

SPATIAL_RADIUS

TIME_WINDOW

Time
t − 1 t t + 1

Figure 4.4.: The helical window around a grid cell C(t)
ij . Here, C(t)

ij represents the target cell
at position (i, j) and time step t. The helical window aggregates data from spatial
neighbours within a radius at each time step across a symmetric temporal window.
This produces contextual statistics for both space and time around each target
cell, enabling robust modelling of local dynamics such as gradual deforestation or
vegetation change.

Importantly, this structure is not limited to static aggregation. Because HELIX recalculates
the window per cell and per timestamp, the resulting representation is dynamic and
responsive to both local structure and global trends. In effect, HELIX builds a moving
frame of semantic reference, one that adapts to the scale and rhythm of the underlying
environmental process. The resulting enriched features, such as the mean, variance, and
cumulative sum, serve as higher-order label descriptors that enhance stability, allow for
contextual regularization, and support robust supervised learning under noisy, incomplete,
or coarse annotation regimes.

Fourier-Based Temporal Encoding: In many EO contexts, temporal patterns are gov-
erned by natural cycles, such as vegetation phenology, snow cover, or agricultural rota-
tions, that follow periodic rhythms. To model such recurring structures, HELIX employs a
temporal encoding strategy based on Fourier transformations of the day-of-year (DOY).
Instead of treating dates as ordinal or categorical variables, HELIX maps them onto the
unit circle using sine and cosine functions. This approach preserves the cyclical nature of
time while enabling smooth transitions at the artificial boundary between calendar years
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(e.g., between December 31st and January 1st). Mathematically, for a given periodicity P
(e.g., 365 for an annual cycle), the DOY of time step t is transformed as:

xsin(P)
t = sin

(︃
2π · DOYt

P

)︃
xtcos(P) = cos

(︃
2π · DOYt

P

)︃
(4.12)

These encodings yield a continuous, two-dimensional representation of seasonal position.
As shown in Figure 4.5, using only sine or cosine results in ambiguous mappings (e.g.,
both DOY 1 and 365 map to zero), while their combination produces unique angular
coordinates around the unit circle.

sine (sin)

(a) Only sin(DOY)

cosine (cos)

(b) Only cos(DOY)

cos

sin

(c) Combined sin + cos

Figure 4.5.: Comparison of Fourier encodings. The joint embedding preserves seasonal smooth-
ness across time.

The Fourier projection thus supports temporal generalization by enabling models to infer
phase-dependent relationships (e.g., spring emergence vs. autumn dieback) that recur
annually. This approach is particularly effective in long-term monitoring tasks, where
annual repetitions are meaningful and where models must remain invariant to calendar
shifts.

Spatio-Temporal Dynamic Width Aggregation: In practice, the availability and density
of labels across time can vary substantially. Temporal sparsity, whether due to infrequent
surveys, missing observations, or uneven event occurrence, can degrade the quality of
contextual features if treated uniformly. To address this, HELIX adapts the size of the
temporal window used for aggregation in response to local data availability.

The central idea is to expand the temporal window in regions where reference labels
are sparse, allowing the enrichment process to draw from more distant but still relevant
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observations. Conversely, in regions with dense temporal coverage, a narrower window
is maintained to preserve the precision and temporal locality of changes. This approach
forms a key part of HELIX’s data-aware design philosophy.

Figure 4.6 visually demonstrates this behaviour. For time step t3 (with ample data), a
narrow window suffices. For t6 (with sparse observations), the window widens to capture
distant context. These dynamic adjustments help smooth irregular sequences and avoid
overfitting to limited samples.

Time
t1 t2 t3 t4 t5 t6

short window

expanded window

Figure 4.6.: Temporal window width adjusts to label sparsity, improving robustness in low-density
intervals.

This adaptive aggregation implicitly encodes a lag-based flexibility: rather than enforcing
a fixed look-back period, the system adapts to how far back it must reach to capture
sufficient context. In this sense, dynamic width acts as a data-driven alternative to
hard-coded lagging, generalizing across both temporally regular and irregular datasets.

Cross-Time Interaction Features: While smoothing and periodic encoding introduce
contextual continuity, HELIX also incorporates mechanisms to explicitly highlight tempo-
ral change. In many applications, such as disturbance detection or land-use transitions,
the primary signal of interest is not the absolute state but the deviation from previous
states. To capture such dynamics, HELIX computes cross-time interaction features that
compare present and past values of the same label dimension. The most canonical form
of interaction is the absolute difference between time steps:

∆pixel = x(t)main − x(t−1)
historic (4.13)

This simple yet informative feature quantifies the net change between consecutive time
points, enabling models to learn temporal transitions, emerging disturbances, or recovery
trends. By exposing both the direction and magnitude of change, HELIX enhances the
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temporal expressiveness of the label space, making it especially useful for event-based
learning scenarios, such as post-fire recovery or seasonal vegetation shifts.

Figure 4.7 illustrates this concept by comparing pixel values between consecutive time
slices.

t-1 t

x(t−1) x(t)
∆ or ratio

Figure 4.7.: Cross-time comparisons encode temporal transitions, critical for dynamic event
understanding.

Probabilistic Labelling and Uncertainty Modelling: HELIX further extends its enrichment
capabilities by providing probabilistic representations of label confidence and uncertainty,
critical for scenarios involving label noise, ambiguous boundaries, or mixed land cover
types.

Fractional Probability Estimation: For any labelled polygon L intersecting a grid cell
(i, j), HELIX computes a spatial class probability P(L)

ij based on the proportion of the cell
covered:

P(L)
ij =

A(L)
ij

Acell
(4.14)

where A(L)
ij is the area of label L overlapping with cell (i, j), and Acell is the full cell

area. These probabilities are especially useful in regions where multiple labels overlap or
where partial coverage implies class uncertainty. Figure 4.8 illustrates this concept across
multiple cells and overlapping labelled polygons. In the centre cell, two polygons intersect,
and their fractional contributions can be separately computed to support multi-class or
soft-label scenarios.
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Figure 4.8.: Fractional spatial probability estimation. Two polygonal labels (Label A and Label
B) overlap a shared grid. For each cell, the fraction P(L)

ij is computed by dividing

the intersected area A(L)
ij by the cell area Acell, allowing soft, probabilistic label

assignment.

Neighbourhood-Based Uncertainty Estimation: To complement the probability field,
HELIX estimates local uncertainty by measuring variance across a configurable space-time
neighbourhood . The local mean and variance for any feature x are computed as:

µ
(t)
ij (x) =

1

|N (t)
ij |

∑
(m,n,t′)∈N (t)

ij

x(t
′)

mn (4.15)

Var(t)ij (x) =
1

|N (t)
ij |

∑
(m,n,t′)∈N (t)

ij

(︂
x(t

′)
mn − µ

(t)
ij (x)

)︂2
(4.16)

This neighbourhood-aware variance highlights unstable regions, e.g., class boundaries or
transient artifacts, enabling downstream tasks like label refinement, uncertainty filtering,
or confidence-weighted training. Figure 4.9 illustrates how uncertainty is calculated
across a cell’s spatial or spatio-temporal neighbourhood, with stronger shading indicating
higher local variance.
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P(t)
ijunstable moderate

stable

Neighbourhood window

Figure 4.9.: Illustration of local variance estimation. The variance value computed for the centre
cell P(t)

ij reflects the degree of heterogeneity within its surrounding neighbourhood

window N (t)
ij . Shading indicates the underlying spatial distribution of neighbour

values contributing to the calculation: red for highly variable (unstable) neighbors,
green for homogeneous (stable) areas.

4.1.4 Structured Learning Targets

Soft Thresholding and Reclassification Logic: HELIX accommodates the inherent fuzzi-
ness of real-world labels through a dynamic soft thresholding mechanism. Instead of
applying a fixed binary cut-off to probabilistic label scores (e.g., 0.5), HELIX supports
adaptive thresholding schemes that account for both class imbalance and contextual
uncertainty. For instance, a land cover class with known boundary ambiguity (e.g., wet-
lands) may require a lower threshold for positive inclusion, while highly distinct classes
(e.g., water vs. urban) can be assigned more conservative thresholds. Soft thresholding is
often used in tandem with the neighbourhood-based uncertainty metrics described earlier.
For regions with high local variance, thresholds can be relaxed or deferred, whereas in
low-variance zones, stricter reclassification rules may apply. This process allows HELIX to
perform context-aware reclassification that reflects both the probability and stability of
label assignments, rather than relying on brittle decision boundaries.

Fuzzy Boundary Modelling: To further enhance semantic realism, HELIX supports the
generation of fuzzy boundaries where labels transition gradually rather than abruptly.
This is achieved by interpreting probability fields not as deterministic masks but as soft
surfaces. For example, a transition from forest to shrubland may span multiple cells with
intermediate probability values, producing a smooth gradient rather than a binary edge.
These fuzzy boundaries are especially useful in ecological applications, where mixed
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vegetation types, succession states, or disturbance gradients are common. HELIX enables
downstream models to consume these gradients directly, preserving uncertainty and
promoting robustness. In classification workflows, fuzzy zones can be masked, weighted,
or treated as distinct transitional classes depending on analytical needs.

Integration into Model Training and Outputs: HELIX’s enriched labels, whether proba-
bilistic, smoothed, or uncertainty-weighted, are designed to be fed directly into machine
learning pipelines. In training, these labels can be used as:

• Soft targets for probabilistic classification tasks

• Sample weights to emphasize stable and high-confidence regions

• Masking layers to exclude or down-weight ambiguous zones

For output evaluation, HELIX’s probabilistic representations support more nuanced perfor-
mance metrics, such as Expected Calibration Error (ECE), fuzzy accuracy, or class-specific
uncertainty curves. This allows models to be evaluated not only on hard correctness,
but also on how well they handle ambiguity and noise. In addition, HELIX’s structured
and time-aware enrichment enables flexible downstream modelling across a wide range
of architectures. Importantly, HELIX decouples the need for complex temporal models
such as LSTMs or transformers by explicitly engineering temporal dynamics, e.g., lag
features, change indicators, seasonality embeddings, into tabular representations. This
means that conventional ML models such as RF, gradient boosting machines, or shallow
NN can effectively utilize temporally structured EO data without needing specialized
recurrent or attention-based mechanisms. By doing so, HELIX broadens the accessibility
of spatio-temporal modelling to non-deep-learning workflows, reducing computational
overhead while preserving temporal expressiveness and interpretability. This alignment
makes it easier for models to generalize, reduces overfitting to label artifacts, and ensures
that downstream predictions remain interpretable and actionable.

4.1.5 Operational Design for Scalability and Integration

HELIX is engineered as a modular and scalable system for EO label enrichment, with
particular emphasis on practical usability across large datasets and long temporal spans.
It bridges the analytical pipeline between raw EO inputs and ML-ready outputs by offering
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both semantic depth and technical efficiency. At the core of its integration logic is the use
of the Parquet format, a compressed, columnar file structure optimized for fast reading
and selective querying. Each HELIX output represents a single time step and is saved
using a consistent naming convention that facilitates automated indexing. These Parquet
files can be rapidly loaded and manipulated via tools such as pandas, Dask, or PyArrow,
making them accessible both in local research environments and scalable cloud workflows.
Each column in the output grid is tagged with informative suffixes to encode its role.

This structured naming convention simplifies downstream operations such as feature
selection, normalization, and masking. HELIX’s architecture is also tailored for ML
integration. The enriched tables serve as direct inputs for popular ML frameworks
like scikit-learn, XGBoost, PyTorch, and TensorFlow. Practitioners can filter feature
columns via pattern matching or schema-aware logic, select valid training targets, and
exclude ambiguous regions using generated uncertainty scores. For spatial visualization
or validation, any output column can be rasterized back into GeoTIFF using rasterio,
supporting interpretability and diagnostics.

Scalability is not merely a design goal, it is an operational imperative. HELIX incorporates
a number of strategies to handle large volumes of EO data efficiently:

First, spatial intersection operations are accelerated using STRtree spatial indexing.
This avoids expensive brute-force comparisons and allows the system to quickly identify
relevant geometries for each grid cell. Next, all major processing tasks, including grid
construction, enrichment, Fourier encoding, and aggregation, are parallelized via joblib,
with user-configurable control over the number of parallel workers.

For numerically intensive tasks, HELIX leverages Numba, a just-in-time (JIT) compiler
that translates Python functions into optimized machine code. This dramatically boosts
performance for array operations such as rolling statistics and window-based feature
computation, making HELIX viable for terabyte-scale workloads.

Memory management is also a first-class concern. Instead of loading the entire dataset
into RAM, HELIX operates in adaptive batches. Chunk size and memory thresholds are
exposed as configuration parameters, allowing users to fine-tune performance for their
specific computing environment. When enabled, intermediate steps (e.g., interpolated
rasters, enriched grids) are cached to disk, providing resilience against job failures and
enabling checkpoint-based processing.
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Finally, HELIX automatically adapts to the spatial resolution and geographic extent of the
input data. This is essential when working with multi-source EO datasets that vary in
pixel size, from coarse-resolution MODIS (250 m) to high-resolution Sentinel-2 imagery
(10 m). Rather than requiring manual tuning, HELIX derives the spatial grid dimensions
directly from raster metadata and adjusts memory allocation, enrichment windows,
and processing chunk sizes accordingly. This resolution-aware behaviour ensures that
the same logic and algorithms can be reused across scales, preserving methodological
consistency while optimizing computational efficiency. It also facilitates comparative
studies across sensors or sites without changing the enrichment pipeline.

Together, these design choices make HELIX both robust and agile: capable of handling
large EO workloads while remaining modular, interpretable, and integration-ready.

4.2 Future Directions

Future research directions should not only address the challenges discussed in previous
sections but also pioneer new approaches that integrate labels and EO-derived features
in a unified framework. In current workflows, labels and EO data are often developed
and processed separately, which may limit the overall performance and adaptability
of ML and DL models. Future systems should enable joint optimizations of labels and
features in which both the ground truth and EO measurements are iteratively refined and
harmonized through other integrated preprocessing pipelines.

However, the independent validation of data is essential for ensuring the robustness and
credibility of EO-based ML/DL models [202, 224]. Regarding such methodologies, it is
of utmost importance to implement safeguards that maintain statistical independence.
Without such safeguards, label optimization risks being overly influenced by feature distri-
butions, leading to biased models that lack external generalizability. Several approaches
can help to mitigate these risks while allowing for improved label–feature consistency.
One potential direction is the use of regularized loss functions [358] to enforce stability in
label optimization. Loss function constraints can be designed to ensure that labels remain
homogeneous across time and space, preventing abrupt shifts that may be artifacts of
sensor inconsistencies rather than actual environmental changes. Multitask loss functions
[131] could further help to balance label fidelity with other predictive objectives, allow-
ing models to learn from additional supervision while maintaining independent label
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structures. Additionally, uncertainty-aware loss formulations [174] can be used to down-
weight highly uncertain labels, reducing the risk of unreliable training data distorting
model predictions. In addition to loss function constraints, hybrid validation strategies
offer another pathway to preserving independent validation while refining label-feature
coherence [224]. Instead of allowing labels to be iteratively updated without external
benchmarks, structured validation frameworks should incorporate holdout-based label
validation, in which a subset of reference data remains untouched to act as an inde-
pendent assessment benchmark. Similarly, domain-specific cross-validation approaches
can be applied, ensuring that models are tested on geographically or temporally distinct
regions rather than being evaluated solely within the training domain. Multi-source
validation, in which generated labels are compared against alternative independent
datasets such as ground truth surveys, crowdsourced data, or multi-sensor observations,
can further help to prevent label optimization from reinforcing model biases.

Another promising avenue is the application of probabilistic [77] and Bayesian methods
in label refinement. Unlike fixed categorical labels, probabilistic frameworks allow for
the modelling of uncertainty in reference data, ensuring that transitions between classes
or temporal variations are captured without forcing deterministic label assignments.
Bayesian inference enables iterative label updates while incorporating independent
prior knowledge, preventing labels from drifting toward overfitting feature distributions.
Similarly, soft-labelling techniques [284] can assign probability distributions instead of
discrete class assignments, allowing models to handle ambiguous or transitional regions
(e.g., vegetation shifts, land cover change dynamics) with greater flexibility. Post hoc
label calibration [39] offers another strategy for maintaining label independence while
benefiting from refined representations. Residual label correction can help to detect
systematic biases in label assignments after model training, ensuring that errors linked to
specific geographic or environmental conditions do not propagate into future predictions.
Additionally, contrastive label alignment techniques, in which labels generated under
different modelling conditions are compared, can reveal inconsistencies that might other-
wise go unnoticed. These methods are particularly useful in remote sensing applications
where multiple sensors provide different perspectives on the same environmental variable,
enabling a reconciliation process that respects external validation sources.

A further consideration for future research is the role of explainability and interpretability
in label optimization [142]. As dynamically generated labels increasingly originate from
prior ML/DL models rather than from direct human annotation, ensuring transparency
in their construction is essential for scientific credibility in EO. In this context, feature
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explainability techniques that are typically used in feature engineering could also inform
label engineering, particularly in cases where a prior model generates the reference data
for subsequent learning processes. For instance, feature attribution methods such as
Shapley Additive Explanations (SHAP) and Gradient-weighted Class Activation Map-
ping (Grad-CAM) can be used to assess whether label refinements capture meaningful
geophysical signals rather than overfitting to latent model biases. Similarly, integrating
Explainable AI (XAI) into label validation workflows could provide insights into whether
dynamically optimized labels retain their conceptual and physical relevance, ensuring
that feature-label dependencies remain interpretable and scientifically grounded.

In line with this vision, the HELIX framework is especially well positioned to incorporate
such logic. It can be extended to support consensus-based reasoning, dynamic soft
thresholding and cross-validation capabilities, as described below:

Agreement-Based Confidence Adjustment: As the HELIX integrates an increasing num-
ber of label sources, such as manual annotations, automated detections, and historic
reference layers, conflicting or overlapping labels may arise for the same pixel and time
step. Future versions of the HELIX could incorporate agreement-based logic to derive
confidence scores from such overlaps.

For categorical labels, this may involve majority voting or entropy-based scoring to reflect
consensus strength. For continuous or probabilistic labels, inter-source agreement could
be used to weight predictions based on variance or signal consistency. In both cases,
regions with strong agreement among sources would be assigned higher label confidence,
while conflicting inputs would trigger lower certainty scores (Figure 4.10).

×

××

High confidence

Medium confidence

Low confidence

Overlapping Label Sources & Confidence Estimation

Figure 4.10.: Visual example of how confidence scores could be derived from label agreement.
Multiple overlapping shapes represent input labels from different sources. Higher
overlap implies higher agreement and thus higher label confidence.
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Such confidence-aware estimates could then guide downstream applications to treat
uncertain regions more cautiously, e.g., applying label smoothing, skipping low-confidence
regions in training, or flagging areas for human review.

Conflict Detection and Resolution: As within the HELIX can process increasingly hetero-
geneous datasets, conflicting labels will become inevitable. Future enhancements could
include built-in mechanisms to:

• Flag binary disagreements (e.g., has_conflict = 1);

• Compute entropy metrics to quantify categorical dispersion;

• Log timestamped conflict summaries for versioning and audit trails.

Such capabilities lay the foundation for automated resolution pipelines, including dy-
namic source weighting, expert correction workflows, or semi-supervised refinement
strategies.

Dynamic Soft Thresholding: Another promising extension of the HELIX framework
involves adaptive thresholding strategies that transform probabilistic class scores into
categorical labels. Currently, label binarization is based on fixed, globally applied thresh-
olds. While simple and reproducible, this approach may misrepresent label boundaries
in regions with temporal variation or low-confidence classifications. Future versions of
the HELIX could implement dynamic soft thresholding, in which thresholds are adapted
based on:

• Local feature distributions (e.g., mean and variance across a spatial neighbour-
hood);

• Historical class presence or auxiliary prior probabilities;

• Label uncertainty or inter-source agreement confidence.

Such a logic would support more flexible labelling pipelines in dynamic environments,
such as seasonal snow zones, vegetation boundaries, or disturbance regimes. For instance,
the classification of glacier zones may require temporally aware thresholds that reflect
year-to-year shifts in ice coverage. These adaptive schemes could improve the resilience
and realism of binary label assignments derived from soft probability fields, especially in
regions of geophysical ambiguity.
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Multi-Temporal Cross-Validation Logic: To improve generalization and robustness, the
HELIX can be extended to support automatic cross-validation strategies across space,
time, and source. These may include:

• Cross-temporal validation (e.g., training on 2017–2020, validating on 2021);

• Spatial out-of-fold testing using distinct ecoregions or land use types;

• Source-wise benchmarking to detect systemic bias or spatial misalignment.

This functionality would transform the HELIX framework into not only a preprocess-
ing engine, but a full-fledged reference data validation and assurance framework. As
EO applications increasingly rely on multi-source, multi-year training corpora, these
consensus-based capabilities will be critical for scaling trustworthy, transparent, and
replicable remote sensing models.

Future research on label optimization must prioritize statistical independence and ex-
ternal validation as core principles. While integrating labels with EO-derived features
offers potential advantages in model consistency, it is imperative that optimization strate-
gies do not undermine the integrity of independent reference data. By employing a
combination of loss function constraints, hybrid validation frameworks, probabilistic
techniques, post hoc refinements, and explainable AI approaches, researchers can ensure
that future labelling methods enhance model generalizability and maintain credibility
in EO-based ML/DL applications. These advancements will be essential as automated
dynamic labelling becomes more prevalent in large-scale geospatial modelling.

Currently, EO data is typically available in gridded format; however, an increasing amount
of EO information is being captured as segmented high-definition data at fine scales
(e.g., individual trees). Integrating such detailed EO data with corresponding labels
is a pivotal future step in enhancing model performance and adaptability. Automated
label verification involves the use of ensemble-based validation techniques to detect and
correct inconsistent labels. By leveraging multiple model outputs and cross-validating
with independent data sources, such techniques can significantly improve the quality and
reliability of the reference data. This is crucial for ensuring that model training is based
on accurate, consistent ground truth. The development of self-adapting labelling systems
represents a promising research direction. Algorithms that dynamically adjust labels
based on feedback from real-world observations can continuously refine the training data.
Techniques such as self-supervised learning and domain adaptation are key to achieving
this dynamic refinement over time. Such systems could both update labels in response
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to evolving environmental conditions and help in identifying and correcting systematic
errors. A major future challenge is the current separation between label generation and
EO data feature extraction. Future approaches should aim to integrate these processes
into a single co-adaptive framework. By processing labels and EO data simultaneously in
a unified pipeline, it would be possible to accomplish several goals:

Enhanced data consistency: Joint processing would allow for simultaneous correction
of spatial and temporal misalignments, ensuring that both labels and EO features are
well-aligned.

Improved label quality: Iterative refinement based on the combined insights from both
data types could lead to more accurate and representative labels.

Increased adaptability: A unified system could more readily adapt to changes in the
environment, dynamically updating both labels and features in near real-time for future
onboard processing.

Such an approach would represent a paradigm shift in which preprocessing not only
prepares data for training but also continuously improves the quality of the reference data
based on the EO observations. By tackling these challenges, dynamic labelling and joint
data development can unlock the full potential of ML and DL in EO applications. Enhanced
real-time environmental monitoring, improved land use prediction, and more effective
disaster response capabilities are just a few of the potential benefits. The transition from
static to dynamic labels and from separately processed labels and features to a joint
development approach is not merely a technical evolution but a necessity for building
more responsive and adaptable geospatial modelling systems. As strongly advocated for
in previous studies, the future of EO data processing lies in creating robust, scalable,
and integrated frameworks that not only address current challenges but also pave the
way for more advanced and adaptive ML/DL applications in environmental monitoring.
However, as emphasized by [292], the distinct nature of EO data necessitates frameworks
that are tailored to its domain-specific complexities, including sensor characteristics,
spatio-temporal dependencies, and physical data constraints. Unlike general computer
vision applications, EO label engineering must integrate a deep understanding of remote
sensing principles to ensure that dynamically generated labels remain scientifically valid
and physically meaningful. Therefore, selecting analytical and geoprocessing frameworks
for label optimization must prioritize EO-specific considerations in order to maintain the
integrity and interpretability of reference labels.
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While the HELIX framework currently processes labels independently of EO-derived
features, its modular architecture is inherently extensible toward a co-adaptive pipeline.
Future implementations could support joint optimization of features and labels, inte-
grating model feedback, probabilistic confidence adjustment, and ensemble-based label
verification. This would enable dynamic refinement of labels over time, accommodate
high-resolution segmented EO inputs, and allow for continuous learning from evolving
environmental signals. Such capabilities position the HELIX as a foundational com-
ponent for scalable, semi-supervised, and self-correcting EO model ecosystems, where
preprocessing evolves from a static stage into an adaptive, intelligence-driven process.

Conclusions

The HELIX framework constitutes a principled infrastructure for transforming fragmented,
heterogeneous EO labels into a harmonized, temporally-aware, and spatially-consistent
analytic format. Through the joint resolution of spatial and temporal scale mismatches,
HELIX offers more than just preprocessing; it implements a full semantic reconciliation
across dynamic EO environments.

By anchoring all label data on a canonical, multi-resolution spatio-temporal grid and
enriching them via statistically grounded neighbourhood functions, HELIX ensures that
both persistent features (e.g., land cover classes) and ephemeral events (e.g., disturbances,
phenological transitions) are represented in context. HELIX’s design is inherently multi-
scale, not only in spatial geometry, but also in semantics and temporal representation. By
supporting label interpretation across levels (e.g., pointwise, neighbourhood-aggregated,
probabilistic), HELIX bridges the gap between fine-grained annotations and the broader
generalization required for scalable modelling, while providing essential contextual and
semantic depth.

Importantly, HELIX introduces a helical abstraction that fuses spatial and temporal prox-
imity into a unified analytical volume. This supports downstream models in leveraging
not only what is observed at a given time and place, but also what surrounds it in both
space and history. The resulting enriched label structures act as dynamic carriers of
environmental meaning, capable of encoding uncertainty, highlighting transitions, and
preserving periodicity via Fourier transforms.
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From a methodological standpoint, HELIX serves as a form of intelligent data augmen-
tation. It extracts latent structure from label data, generates synthetic yet semantically
grounded features, and enables conventional ML models, such as RF, XGBoost, or even
tabular NN, to exploit temporal information without requiring temporally recursive archi-
tectures like RNN or transformers. This expands the range of accessible spatio-temporal
modelling options, lowering computational barriers while maintaining interpretability
and statistical rigour.

HELIX is not just a framework but a general-purpose layer of abstraction for EO analytics.
It converts label noise into structure, sparsity into smoothness, and categorical chaos
into probabilistic clarity, transforming raw environmental labels into robust, context-rich
learning targets. As such, it lays the groundwork for a new generation of spatio-temporal
EO models that are both methodologically sound and operationally scalable.
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Temporal Dynamics in EO
Feature Engineering
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„Information consists of differences that make a

difference.

— Gregory Bateson
Anthropologist, Systems Theorist

This chapter includes elements from the following peer-reviewed publication:
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in Arid Zones Using Open Satellite Imagery: A Case Study Within Kazakhstan in 2023.
Sensors, 25(3), 2025, Article 798. DOI:10.3390/s25030798
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investigation, supervision, and manuscript writing. She also played a key role in shaping

the experimental framework and remote sensing application.

Building on the temporal fusion foundations introduced in Section 2.1.4, the following
chapter systematically explores the practical implications of distinct temporal fusion
configurations. By leveraging the principles of temporal taxonomy, it demonstrates how
feature-level integration, via hypercomplex methods, can be strategically optimized.
This leads to the development of the Combined Doline Vegetation Index (CDVI), a
novel multi-sensor, seasonally-informed EO index designed to capture the interaction
between vegetation dynamics and geomorphological structures in arid karst environments.
The methodological context for sinkhole and vegetation detection, from traditional
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approaches to remote sensing-based methods, is presented in Section 1.2.1. The ecological
and geophysical setting of the study area in southwestern Kazakhstan is described in
Section 1.2.1, while Section 1.2.1 details the reference datasets used.

Motivated by the preceding methodological and ecological considerations, this chapter
formulates several guiding research questions aimed at systematically evaluating the
impact of temporal fusion strategies on land surface classification in arid and semi-arid
environments:

RQ1: How does the ecological timing of multi-sensor data acquisitions influence the separa-
bility of land cover classes in arid regions?

RQ2: Can seasonally disparate fusion of SAR and optical EO data outperform temporally
aligned fusion in detecting subtle geomorphological features?

RQ3: What temporal configurations maximize the statistical discriminability of sinkholes,
vegetation, and bare ground in semi-arid landscapes?

RQ4: To what extent can a temporal taxonomy inform the design of data fusion pipelines
beyond strict temporal coherence?

RQ5: Can a tailored index, based on seasonally informed, multi-sensor data fusion, be
developed to distinguish sinkholes from spectrally and structurally similar land cover
types, and how effective is it in arid environments?

5.1 Comparative Evaluation of Temporal Fusion Settings

To determine the most effective temporal configuration for hypercomplex data fusion
in arid environments, multiple Sentinel-1 and Sentinel-2 acquisition date combinations
were tested. These combinations reflect a range of temporal alignments, including intra-
seasonal, inter-seasonal, and cross-seasonal pairings. The rationale for this investigation
was to identify the optimal synergy between structural (SAR) and spectral (optical)
information under varying environmental conditions, with the goal of enhancing class
separability, particularly between sinkholes, vegetation, and background surfaces.

148 Chapter 5 Temporal Dynamics in EO Feature Engineering



5.1.1 Materials

All EO feature datasets originate from freely available ESA missions. Sentinel-1 ac-
quisitions were obtained in Interferometric Wide (IW) swath mode and processed as
Single Look Complex (SLC) data, which preserves the full amplitude and phase informa-
tion necessary for radar-based feature extraction, especially within the HCB framework.
Sentinel-1 captures C-band SAR data in both VV (co-polarised) and VH (cross-polarised)
modes, which are responsive to structural features around 5 cm in scale. VV polarisation
generally produces the highest backscatter intensity over land surfaces, while VH polari-
sation is more sensitive to volume scattering, making it particularly effective in detecting
vegetation-related structures [6].

Optical data was acquired using Sentinel-2 Level-2A products, which provide Bottom-Of-
Atmosphere (BOA) surface reflectance after atmospheric correction. All optical scenes
used in this study exhibited minimal cloud contamination (≤ 0.37%). The specific
acquisition dates and configurations for each fusion scenario are detailed in Table 5.1.

Ground-truth data for sinkhole identification and land cover classification were obtained
from the Svevind Energy Group [319] and high-resolution World Imagery [100].
The dataset includes GNSS-located sinkholes, georeferenced imagery, and manually
delineated vegetation and bare surface classes. These references form the basis for
evaluating detection performance. Section 1.2.1 provides full details on the reference
datasets used.

5.1.2 Methods

The selected temporal windows were strategically designed to match seasonal dynamics
specific to the Mangystau region of southern Kazakhstan. This area is characterized
by pronounced seasonal contrasts: summers (June–August) are arid and marked by
senescent vegetation, while winters and early springs (February–March) represent the
wet season, when vegetation regrowth and moisture availability are at their highest. This
ecological variability allows fusion configurations to explore not only temporal coherence
but also seasonal complementarity. Table 5.1 summarizes the six tested fusion scenarios,
detailing acquisition dates, inferred seasons, and Sentinel-2 cloud cover.
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Table 5.1.: Overview of the six temporal fusion configurations tested, including acquisition dates
with respective seasons and cloud cover for Sentinel-2.

Fusion Scenario Sentinel-1 Sentinel-2

Intra-Seasonal Fusion I 06 Aug 2023
(Dry)

07 Aug 2023
(Dry, 0% cloud)

Intra-Seasonal Fusion II 07 Feb 2023
(Wet)

13 Feb 2023
(Wet, 0.37% cloud)

Cross-Seasonal I 06 Aug 2023
(Dry)

13 Feb 2023
(Wet, 0.37% cloud)

Cross-Seasonal II 06 Aug 2023
(Dry)

30 Mar 2023
(Wet, 0% cloud)

Inverse Seasonal Fusion 07 Feb 2023
(Wet)

07 Aug 2023
(Dry, 0% cloud)

Transition Fusion 07 Feb 2023
(Wet)

30 Mar 2023
(Wet, 0% cloud)

In this workflow, Sentinel-2 reflectance values are initially normalised to balance the
spectral channels by reducing the influence of the NIR band. These normalised values are
then converted into Kennaugh-like elements (see Section 2.2) via linear combinations
[286], resulting in one total reflectance element and three spectral elements. The complex
SAR images were preprocessed based on the freely available framework [148], which is
based on the Multi-SAR processor [38]. This process calculates four Kennaugh elements
(see Section 2.2) k0, k1, k5, and k8, preserving the complete polarimetric information
[288]. These elements, representing intensities and intensity differences, were geocoded
to the respective geographic zone. Final normalisation ensures consistent data ranges and
allows the efficient storage of UInt16 digital numbers, analogous to the Sentinel-2 data.
The datasets are subsequently fused using the linear HCB approach (see Section 2.2),
producing a fused and normalised dataset consisting of one total intensity element
(Kfused,0) and seven spectral/polarimetric elements (Kfused,1−7), as detailed in [289].

5.1.3 Results

To quantify the separability of key land cover classes (sinkholes, vegetation, and bare
surfaces), each fusion configuration underwent a comprehensive battery of statistical tests.
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These included parametric and non-parametric analyses: t-Tests for mean separability,
Pearson’s r for linear correlation, Kendall’s Tau and Spearman’s Rho for rank correlation,
and ANOVA F-statistics to assess between-class variance, see 5.1.
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Figure 5.1.: Statistical test results (t-Test, Pearson, Kendall, Spearman, ANOVA) for all fusion
configurations across bands Kfused,0 to Kfused,7. CDVI (SAR August + Optical March)
yields consistently superior performance across metrics, especially in bands Kfused,2,
Kfused,4, Kfused,5, and Kfused,6.
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Intra-Seasonal Fusion I: This configuration combined SAR and optical data from August
2023, during the arid dry season. Despite relatively uniform surface conditions and senes-
cent vegetation, the fusion achieved moderately strong separability. High ANOVA values
for Kfused,4 (F = 23.33) and substantial rank correlations for Kfused,5 and Kfused,6 (e.g.,
ρ = −0.81) indicate that SAR-derived structural features, particularly those emphasizing
co-/cross-polarization contrasts and phase coherence, were effective in distinguishing
geomorphological depressions from surrounding terrain. Although NIR and Red bands
within Kfused,0 and Kfused,6 offered some spectral separation, the lack of active biomass
limited vegetation-related contrast. Nevertheless, this setting demonstrated the value of
structural information under low-reflectance optical conditions.

Intra-Seasonal Fusion II: Acquired in early February 2023, this fusion scenario represents
a temporally coherent but environmentally noisy wet-season configuration. Across most
bands, statistical separability was weak. While Kfused,0 and Kfused,7 reached moderate
ANOVA values (F > 11), correlation metrics remained low (e.g., ρ = 0.43 in Kfused,0,
ρ = 0.37 in Kfused,7. High soil moisture likely impaired SAR coherence, while early-stage
vegetation lacked strong spectral contrast. The limited variability in both structural
and spectral domains made it difficult to resolve fine-scale features such as dolines.
This highlights that temporal alignment alone does not guarantee fusion efficacy when
seasonal expressiveness is low.

Cross-Seasonal Fusion I: This inter-seasonal setup fused August SAR with February
optical data. Statistical gains were apparent, especially in SAR-optical combinations
like Kfused,4, Kfused,5, and Kfused,6, where non-parametric metrics such as Spearman’s
ρ = −0.75 in Kfused,2 and ANOVA values up to F = 26.82 (in Kfused,7) marked a clear
performance jump over intra-seasonal fusions. This improvement can be attributed to
the complementary nature of structural features captured during arid, low-vegetation
conditions and the spectral softening of early-season regrowth. The SAR signal remained
clean due to low moisture, while optical NIR and Red bands began reflecting vegetation
recovery.

Cross-Seasonal Fusion II: This scenario, August SAR fused with late March optical
data, achieved the strongest results across all tests. Nearly all bands showed excellent
performance: for example, Kfused,4 reached an ANOVA peak (F = 30.69), and Spearman’s
ρ exceeded 0.77 in Kfused,2 and Kfused,5. This configuration maximized seasonal contrast:
SAR backscatter was unaffected by moisture, capturing fine-scale surface roughness,
while optical reflectance, especially NIR, was enriched by mature vegetative cover. The
success of this pairing illustrates the power of fusing temporally disparate yet ecologically
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complementary datasets. As such, it forms the conceptual and empirical basis for the
CDVI, detailed in the following section.

Inverse Seasonal Fusion: Pairing February SAR with August optical data resulted in
poor separability across most bands. For instance, Kfused,2 had negligible correlation
(ρ = −0.14) and low variance contrast (F = 1.22). The wet-season SAR acquisition
introduced significant noise due to moisture-related decorrelation, while the August
optical data offered weak spectral differentiation due to vegetation senescence. This
fusion setting thus suffers from a lack of temporal and ecological alignment, underscoring
that unbalanced seasonal pairing, especially when SAR is acquired under wet conditions,
can suppress both structural and spectral discriminability.

Transition Fusion: This fusion scenario spanned SAR from February and optical data
from March, both within the wet season. While it slightly outperformed Intra-Seasonal
Fusion II, it remained inconsistent. Some bands such as Kfused,4 and Kfused,7 showed
moderate statistical relevance (e.g., ρ = 0.51, F = 14.28), but others delivered minimal
contrast. Vegetation likely had not reached peak chlorophyll content in early March, and
SAR backscatter remained affected by residual soil moisture. As a result, the dataset only
weakly differentiated between geomorphic depressions and vegetated surroundings. This
indicates that partial seasonal shifts may not suffice to enhance separability when sensor
modalities are not optimally phased.

Among all configurations, Cross-Seasonal Fusion II emerged as the most effective. It
consistently delivered the strongest performance across statistical tests, especially in
bands representing Red and NIR contrast combined with polarimetric SAR elements
Kfused,2, Kfused,4, Kfused,5, Kfused,06. These elements leverage the stable, high-texture radar
signal from dry-season acquisitions and the vibrant, high-contrast spectral information of
spring vegetation.

In contrast, fusions involving wet-season SAR, Intra-Seasonal Fusion II, Inverse Sea-
sonal Fusion, and Transition Fusion, performed poorly. Elevated soil moisture introduces
decorrelation in the radar signal, masking the subtle topographic or surface roughness
cues critical for doline detection. Simultaneously, non-optimal vegetation states limit
spectral differentiation. These findings reinforce the idea that fusion success arises not
from sensor simultaneity but from ecological complementarity: structurally informative
SAR under dry conditions, paired with spectrally expressive optical data during periods
of vegetation vitality.
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5.1.4 Discussion

The discriminative power of fused Kennaugh elements is not merely a function of sensor
modality or acquisition simultaneity, but is predominantly driven by ecological comple-
mentarity. Among all evaluated configurations, the Cross-Seasonal Fusion II setting,
integrating dry-season Sentinel-1 SAR (August) with early spring Sentinel-2 optical data
(March), consistently activated the most informative Kennaugh combinations. In par-
ticular, fused bands such as Kfused,2, Kfused,4, Kfused,5 and Kfused,06 demonstrated superior
separability across parametric (ANOVA) and non-parametric (Spearman’s ρ, Kendall’s τ)
metrics. This fusion setting effectively harnessed the stable radar backscatter conditions
of the dry season together with the phenological richness of the wet season’s spectral
reflectance, particularly in the NIR band associated with chlorophyll abundance. The
result was maximized contrast between vegetated and non-vegetated surfaces, as well as
enhanced delineation of geomorphological depressions.

From a phenological standpoint, optical imagery acquired in March corresponds to a
critical phase of early vegetative regrowth in the Mangystau region of southern Kaza-
khstan. As a semi-arid steppe environment, this region experiences its highest moisture
availability and photosynthetic activity during late winter and early spring. Vegetation
begins to recover rapidly following winter precipitation, producing strong reflectance
in the near-infrared (B8) and red-edge portions of the spectrum. In contrast, February
acquisitions, though also situated within the wet season, typically capture vegetation in an
earlier growth stage, characterized by sparse canopy development and lower chlorophyll
content, resulting in flatter spectral signatures.

The advantages of dry-season SAR acquisitions are equally important. August SAR
data are characterized by low soil moisture and senescent vegetation, which minimizes
dielectric variability and improves phase stability. This leads to cleaner polarimetric
decomposition and more coherent structural information in radar-derived Kennaugh
elements such as Kfused,1, Kfused,5, and Kfused,6. Conversely, SAR data acquired in February
amid higher subsurface moisture suffer from temporal decorrelation and noise, diminish-
ing the interpretability of surface structures and polarization-based distinctions.

Fusion configurations marked by ecological redundancy, such as Intra-Seasonal Fusion
I and II, where both SAR and optical data were acquired under dry or wet conditions
respectively, tended to produce muted or overlapping information. These scenarios
captured either uniformly low vegetation (in August) or early, indistinct growth (in
February), leading to lower statistical contrast across classes. The weakest performance
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was observed in the Inverse Seasonal Fusion setting, which combined wet-season SAR
with dry-season optical data. This temporal inversion introduced both spectral ambiguity
and radar decorrelation, resulting in limited separability between sinkholes, vegetation,
and background surfaces.

The future trajectory of dryland ecosystems under climate change remains highly un-
certain, with potential outcomes ranging from desertification to regreening, driven by
complex and interacting environmental factors. In response, ecohydrological and ecologi-
cal modelling communities have developed a variety of physically grounded frameworks
to simulate vegetation pattern formation and its sensitivity to water availability. For
instance, studies based on reaction, diffusion models such as the Klausmeier, Rietkerk,
and Gilad frameworks have explored how soil moisture redistribution, scale-dependent
feedbacks, and plant, water interactions can lead to self-organized vegetation structures
across spatial scales [304]. More recently, researchers have started to bridge the gap
between these process-based models and EO data by estimating model parameters di-
rectly from time series of satellite-derived vegetation density, using approaches such
as differentiable programming [332]. While these efforts remain focused on model
calibration and do not directly tackle EO-based classification, they reinforce the idea that
vegetation dynamics in drylands are deeply shaped by physical processes that unfold
across time and space.

Although the here present experimental setup does not implement process-based ecohy-
drological modelling or inversion techniques, the underlying logic of the cross-seasonal
and cross-sensor fusion was indirectly informed by this body of research. Specifically,
the selection of temporally and sensor-diverse datasets was conceptually guided by an
awareness of the seasonal controls on surface moisture, vegetation greenness, and struc-
tural roughness, factors that also play a central role in ecohydrological feedback models.
By intentionally pairing SAR acquisitions from dry, low-moisture periods (to emphasize
surface structure) with optical data from peak vegetation phases (to maximize spectral
contrast), the fusion strategy reflects a "process-aware" approach to remote sensing data
integration. This conceptual alignment, though empirical in implementation, echoes
broader trends towards physically informed observation strategies in EO science.

These findings underscore the strategic value of a temporal taxonomy in remote sensing
fusion: not simply to synchronize acquisition dates, but to exploit ecological divergence
across sensor modalities. By leveraging phenologically informed windows of maximum
vegetation vitality and radar coherence, fusion approaches like the CDVI can generate
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synergistic feature spaces supporting robust classification and enhanced detection of
geomorphological and ecological features in semi-arid environments.

Building on these temporally and ecologically informed fusion strategies, the next step
involves translating the multi-dimensional, pixel-level Kennaugh representations into
a higher-order, feature-level descriptor. The CDVI exemplifies this progression: rather
than treating each band as an isolated signal, it integrates structurally and spectrally
complementary components into a targeted index. This derivation moves beyond raw
fusion by extracting semantically meaningful patterns specifically tailored to enhance the
joint detection of vegetation and geomorphological anomalies such as sinkholes.

5.2 Combined Doline Vegetation Index

The Combined Doline Vegetation Index (CDVI) was developed to address the specific
challenge of detecting sinkholes in Kazakhstan’s arid and semi-arid regions, where
overlapping spectral and structural characteristics of vegetation, bare surfaces, and takyr-
like areas complicate conventional detection methods. In particular, vegetation in these
landscapes may appear in small-scale, shrub-like or roundish forms, potentially leading
traditional filtering approaches to confuse them with sinkholes.

5.2.1 Materials

Accurate detection of sinkholes and vegetative features in arid landscapes requires input
data that capture both fine-grained structural variations and seasonal vegetation dynamics.
As outlined in Section 5.1, different temporal fusion settings were comparatively evaluated
to identify optimal configurations for enhancing separability and robustness. The EO-data
materials used in this study are primarily introduced in Section 5.1.1. A mixed-temporal
(multi-season), multi-sensor fusion approach (see Section 5.1.2 based on ESA’s Sentinel-1
SAR and Sentinel-2 optical data is utilized:

This fusion utilises the strengths of both sensors, SAR for structural characteristics and
multispectral optical data for spectral detail, while also addressing seasonal variabil-
ity [360]. Arid-season Sentinel-1 data (e.g., 6 August 2023) highlight backscatter differ-
ences due to sparse vegetation and low soil moisture, whereas humid-season Sentinel-2
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data (e.g., 30 March 2023) provide key information on vegetation status in the NIR and
visible bands.

In addition to the EO data, reference data, used for both vegetation and sinkhole valida-
tion, are described in detail in Section 1.2.1.

5.2.2 Methods

Based on extensive statistical testing (e.g., T-tests, ANOVA, correlation analyses), the CDVI
was defined to maximise the separability between sinkholes, vegetation, and background
classes. The final formula is expressed as in Equation (5.1):

CDVI =
Kfused,5 + Kfused,7

2
− Kfused,1 +

Kfused,0 + Kfused,6 + Kfused,7 − Kfused,1 − Kfused,2

3
(5.1)

Each term in Equation 5.1 contributes uniquely to suppressing irrelevant features while en-
hancing geomorphologically significant patterns. Their roles are summarised in Table 5.2,
which details the underlying logic and effect of each component.
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Table 5.2.: Roles of individual components in the CDVI formula.

CDVI Term Component Description Interpretation / Role

Kfused,5+Kfused,7
2 Kfused,5:

spectral/structural
coherence

Kfused,7: volumetric
scattering

Enhances vegetation
overlays and sinkhole
edges via
structural–spectral
integration.

−Kfused,1 Kfused,1: intensity contrasts Reduces specular
effects; strengthens
vegetation and sinkhole
discrimination.

Kfused,0+Kfused,6+Kfused,7−Kfused,1−Kfused,2
3 Kfused,0: total intensity

Kfused,6: spectral contrast
Kfused,7: volumetric

scattering
Kfused,1, Kfused,2: noise

suppressors

Balances spectral and
structural inputs;
prioritises
landform-specific
signatures.

The CDVI thus serves as a tailored index for geomorphological detection in arid zones,
optimally balancing seasonality, structural properties, and vegetation indicators. The
strength of the Combined Doline Vegetation Index lies in its integration of structurally
and spectrally complementary data collected across seasonal boundaries. By combining
dry-season SAR data with humid-season optical observations, the CDVI captures both the
geomorphological contrasts of sinkholes and the vegetative nuances of the surrounding
landscape. To assess its effectiveness, the index was rigorously validated against indepen-
dent land cover references, including Proba-V vegetation cover data and in-situ sinkhole
mapping. The following section presents the quantitative and spatial evaluation of the
CDVI, demonstrating its reliability for identifying sinkholes and vegetation dynamics in
arid regions.
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5.2.3 Results

The effectiveness of the CDVI is assessed through comparison with reference data and
visual inspection across representative sinkhole sites. These verification results are
presented in the following.

The CDVI was rigorously validated using multiple reference datasets to ensure its robust-
ness and applicability across varied land cover types, including sinkholes, takyr surfaces,
and vegetation. These reference datasets provided a solid foundation for assessing the
CDVI’s performance in distinguishing key features and land cover types in arid and semi-
arid environments. The CDVI’s capability to distinguish sinkholes and other land cover
classes is depicted in Figure 5.2. Boxplots illustrate the variability and central tendencies
of CDVI values for dominant land cover types, including sinkholes, takyr surfaces, dense
vegetation, sparse vegetation, and bare ground. The distinct ranges highlighted in the
boxplots demonstrate the CDVI’s robustness in reducing misclassification and ensuring
clear separability between these classes.

Figure 5.2.: Distribution of CDVI values for dominant land cover classes in the study area:
sinkholes, takyr surfaces, dense vegetation, sparse vegetation, and bare ground.
Boxplots show distinct value ranges, highlighting strong class separability.

The spatial visualisation in Figure 5.3 further highlights the CDVI’s effectiveness in
delineating sinkholes and vegetation patterns: (a) zoomed-in view of a sinkhole with
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sparse vegetation and its corresponding CDVI values overlaid on WorldImagery [100],
showing a clear correspondence between vegetation patterns and CDVI values; and (b)
the same sinkhole area without the CDVI overlay, providing a direct comparison to raw
imagery. These visualisations underscore the CDVI’s capacity to accurately map sinkholes
and surrounding vegetation, offering practical insights into its spatial applicability.

Figure 5.3.: Spatial visualisation of CDVI performance: (a) CDVI values overlaid on World
Imagery [100] for a sinkhole with sparse vegetation; (b) the same area without
overlay for comparison. The CDVI distinguishes structural and vegetative features
clearly.

To validate the performance of the CDVI in detecting vegetation presence, its results
were compared with the Proba-V LC100 global land cover product from 2019 [51]. The
Proba-V dataset, part of the Copernicus Global Land Service, provides fractional grass and
shrub cover values (0–100%) at a spatial resolution of approximately 100 m. While Proba-
V is tailored to estimate grass and shrub coverage, the CDVI was designed to broadly
detect vegetation presence, including grasses and small greenery, in arid and semi-arid
landscapes such as southern Kazakhstan’s Mangystau region. A binary vegetation mask
was derived from the CDVI using a threshold determined in Figure 5.2. This classified
vegetation presence as 1 (vegetation) and absence as 0 (no vegetation). To facilitate direct
comparison with Proba-V, the CDVI raster was reprojected and aligned to the Proba-V grid
(100 m resolution). Using a summation resampling method, the number of 10 × 10 m
vegetation pixels (1) within each Proba-V cell was counted. The fractional vegetation
cover was then calculated for each Proba-V cell by dividing the vegetation pixel count by
the total number of valid pixels in the cell. To smooth spatial variations and reduce noise,
a Gaussian filter (σ = 10) was applied to the CDVI fractional vegetation cover data. This
step produced a continuous raster surface comparable to Proba-V’s coarser resolution
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datasets. A Total Proba-V Vegetation Cover Fraction raster was calculated by summing
the Proba-V Grass and Shrub Cover Fractions at each pixel. Values exceeding 100% were
capped at 100%, and pixels marked as NoData in either layer were excluded from the
calculation. This raster provides a combined measure of vegetation presence, serving as a
reference for validating CDVI results. The validation was conducted using quantile-based
analysis. Proba-V Total Vegetation Cover Fractions were divided into quantiles based on
the 25th, 50th, and 75th percentiles, representing low, medium, and high vegetation
cover (Quantiles Q1–Q3). CDVI results were then compared to Proba-V datasets (Grass,
Shrubs, and Total Vegetation). Mean cover fractions, ranges, and quantile sizes for
each dataset were computed. Spearman’s correlation coefficients (r) were calculated to
quantify the relationship between CDVI and Proba-V datasets (Grass, Shrubs, and Total
Vegetation). Strong correlations were observed, with the highest correlation between
CDVI and Total Vegetation (r = 0.67, p < 0.001). Figure 5.4 compares the mean fractional
vegetation cover derived from CDVI and Proba-V [51] datasets across Total Vegetation
quantiles (Q1–Q3). The results reveal a close alignment between CDVI and Proba-V Total
Vegetation, with a slightly weaker correlation for Proba-V Grass and Shrubs. Numerical
annotations highlight the mean values for each dataset within each quantile.

Figure 5.4.: Comparison of CDVI and Proba-V LC100 [51] vegetation cover fractions across
quantiles (Q1–Q3). CDVI correlates strongly with Proba-V Total Vegetation (r =
0.67), with slightly weaker correlation for Grass and Shrub fractions.

Figure 5.5 presents spatial difference maps, visualising the discrepancy between smoothed
CDVI fractional vegetation cover and each Proba-V [51] dataset (Grass, Shrubs, and
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Total Vegetation). These maps reveal localised mismatches in vegetation cover, which
may reflect CDVI’s finer resolution and broader vegetation detection capabilities.

Figure 5.5.: Spatial differences between smoothed CDVI vegetation cover and Proba-V
LC100 [51] Grass, Shrub, and Total Vegetation layers. Brown hues indicate higher
CDVI values; green hues indicate higher Proba-V values.

The statistics for Total Vegetation quantiles, shown in Table 5.3, highlight the alignment
between CDVI and the calculated Proba-V based [51] Total Vegetation data. CDVI
provides detailed fractional vegetation cover estimates, capturing finer variations within
each quantile.

The CDVI demonstrates strong agreement with Proba-V [51] datasets, particularly Total
Vegetation (r = 0.67), confirming its ability to effectively detect vegetation presence in
arid and semi-arid landscapes. The weaker correlation with Shrubs (r = 0.30) suggests
that the CDVI is less tailored to detect sparse woody vegetation. These results highlight
the complementary nature of the CDVI and Proba-V [51] datasets, with CDVI excelling
in capturing smaller-scale vegetation patterns, such as interspersed grasses.

Table 5.3.: Total Proba-V [51] vegetation cover fraction (Grass and Shrubs) and corresponding
CDVI vegetation statistics across quantiles.

Quantile
Range (%)

Quantile
Size (%)

Proba-V
Mean (%)

Proba-V
Range (%)

CDVI
Mean (%)

CDVI Range
(%)

35–40 22.01 37.89 36–40 28.51 2.6–59.3

40–46 28.00 44.01 41–46 38.55 6.6–63.5

46–62 21.66 49.21 47–62 47.04 16.1–68.5
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The practical utility of the CDVI is illustrated in Figure 5.6, where the index is overlaid
on Sentinel-2 imagery. Vegetation is represented in green, sinkholes in red, and known
sinkholes [319] in orange. This example underscores the CDVI’s role as a plausibility
control tool for vegetation and sinkhole mapping.

reference sinkholes
Background: Sentinel-2 sinkholevegetation

Figure 5.6.: CDVI overlay on Sentinel-2 (©ESA 2023) imagery. Green areas indicate vegetation,
red areas mark detected sinkholes, and orange outlines show GPS-based sinkhole
references [319].

The CDVI’s fine resolution and multi-seasonal design make it an effective tool for ecologi-
cal and geomorphological research, enabling the precise mapping of vegetation patterns
in challenging environments, such as sparse grasses mixed with bare ground, which
are characteristic of southern Kazakhstan’s landscape [163, 189], and serving as a
supplementary reference for sinkhole detection in this study.

5.2.4 Discussion

The results presented confirm the suitability of the CDVI for identifying sinkholes and
vegetation patterns in arid and semi-arid environments. By integrating structural infor-
mation from Sentinel-1 SAR with spectral detail from Sentinel-2 optical imagery across
distinct seasonal periods, the CDVI effectively compensates for the spectral ambiguity
often observed in takyr-like and sparsely vegetated landscapes.

One of the core advantages of the CDVI lies in its ability to reduce misclassification
between geomorphologically relevant depressions and spectrally similar land cover types.
The distinct value ranges observed in boxplots (Figure 5.2) demonstrate that the CDVI
achieves clear separability between sinkholes, takyr surfaces, and different vegetation
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densities. Visual overlays (Figure 5.3) further validate this distinction, highlighting the
spatial correspondence between CDVI values and known sinkhole features.

The CDVI also showed a strong statistical correlation with external vegetation data sources.
In particular, the comparison with Proba-V fractional vegetation cover (Figure 5.4)
reveals consistent trends, especially in the Total Vegetation product, where a Spearman
correlation of r = 0.67 was observed. This supports the reliability of the CDVI for
general vegetation detection, especially in heterogeneous, dryland settings where subpixel
vegetation can be challenging to delineate. The observed differences in spatial patterns
between CDVI and Proba-V (Figure 5.5) are likely attributable to their differing spatial
resolutions and design objectives, highlighting the CDVI’s finer sensitivity to localized
vegetation signatures.

Despite these strengths, some limitations are evident. The CDVI’s correlation with Proba-
V Shrubs (r = 0.30) suggests reduced sensitivity to sparse or woody vegetation types,
potentially due to its temporal fusion strategy or the generalized formulation of the index.
Moreover, while the CDVI provides excellent separation for major land cover classes, it
may benefit from further calibration or adaptive thresholding in transitional zones or
under varying soil moisture conditions.

Nonetheless, the CDVI offers a robust and interpretable framework for the remote
sensing of subtle geomorphological and ecological features. Its utility extends beyond
sinkhole detection and holds promise for broader applications in dryland monitoring,
land degradation assessment, and seasonal vegetation analysis.

5.3 Conclusions

This chapter explored the role of temporal fusion in enhancing EO feature engineering,
particularly in the context of detecting geomorphological features like sinkholes in semi-
arid environments. By introducing a temporal taxonomy and systematically evaluating
different fusion strategies, this study setup demonstrated how phenological complemen-
tarity between SAR and optical data can be leveraged to maximize class separability. The
development and validation of the CDVI served as a practical outcome of this approach,
illustrating the value of temporal and ecological insight in the fusion design process.
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The following subsections summarize key lessons learned, revisit the central research
questions in light of the findings, and offer closing reflections on the implications and
potential extensions of this work.

5.3.1 Lessons Learned

This study setup presented several practical insights into temporal fusion design, feature
selection, and the interpretability of RS models in complex environments. The lessons
outlined below reflect both methodological considerations and broader implications for
future research and operational applications:

• Temporal Taxonomy as a Design Principle: Effective remote sensing fusion
benefits not from strict simultaneity but from ecologically meaningful temporal
diversity. Phenological and hydrological differences between acquisitions enhance
information richness.

• Ecological Complementarity Outperforms Temporal Coherence: Fusions across
seasonal phases (e.g., dry SAR + wet optical) yielded superior class separability
compared to temporally aligned (intra-seasonal) fusions.

• Cross-Seasonal Fusion Maximizes Discriminative Power: The best results were
achieved when combining dry-season SAR (high structural stability) with peak wet-
season optical data (high spectral vitality), particularly in semi-arid environments.

• Wet-Season SAR Degrades Radar Signal Quality: SAR acquisitions during high
soil moisture periods showed reduced coherence and poorer separability, impairing
structural information retrieval.

• Phenological Timing is Critical for Optical Data: Optical images captured during
early regrowth or peak vegetation phases (e.g., March) significantly improved
spectral contrast and feature discrimination.

• Annual or Seasonal Aggregation Needs Careful Handling: While annual aggre-
gation smooths noise, strategic multi-season selection (not averaging) proved more
effective for class-specific enhancement.

• Temporal Inversion Should Be Avoided: Pairing wet-season SAR with dry-season
optical data (inverse seasonal fusion) led to the poorest results due to misaligned
ecological signals.
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• Temporal Fusion Strategy Must Match Landscape Dynamics: Semi-arid land-
scapes with strong seasonal contrasts benefit most from ecologically informed
temporal fusion, rather than merely temporally simultaneous data integration.

• Combined Doline Vegetation Index (CDVI) Validates This Approach: The CDVI,
based on cross-seasonal fusion, successfully demonstrated the practical advantage
of temporal taxonomy by maximizing sinkhole and vegetation separability.

5.3.2 Research Questions Revisited

To structure the analyses, the following research questions were posed at the beginning
of the chapter. The results presented throughout provide the following answers:

RQ1: How does the ecological timing of multi-sensor data acquisitions influence the separa-
bility of land cover classes in arid regions?
The ecological timing, particularly the contrast between dry- and wet-season acquisi-
tions, was shown to be a critical factor. Fusion configurations that spanned seasonal
boundaries (e.g., dry-season SAR and wet-season optical) provided significantly
higher separability between sinkholes, vegetation, and background surfaces than
temporally aligned acquisitions within the same season.

RQ2: Can seasonally disparate fusion of SAR and optical EO data outperform temporally
aligned fusion in detecting subtle geomorphological features?
Yes. Seasonally disparate fusion strategies consistently outperformed intra-seasonal
approaches. The most effective configuration (dry SAR + March optical) achieved
the highest statistical discriminability across all tested Kennaugh bands and im-
proved detection of small-scale geomorphological depressions.

RQ3: What temporal configurations maximize the statistical discriminability of sinkholes,
vegetation, and bare ground in semi-arid landscapes?
The cross-seasonal configuration combining dry-season Sentinel-1 (August) and
peak wet-season Sentinel-2 (March) proved optimal. It leveraged the structural
clarity of SAR under dry conditions and the spectral vitality of vegetation under wet
conditions, resulting in the best overall performance across ANOVA and correlation
metrics.
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RQ4: To what extent can a temporal taxonomy inform the design of data fusion pipelines
beyond strict temporal coherence?
Temporal taxonomy provided a critical framework for evaluating fusion not by
simultaneity, but by ecological complementarity. This setup demonstrated that
fusions informed by seasonal understanding yield more meaningful feature spaces,
especially in landscapes with strong phenological variability.

RQ5: Can a tailored index, based on seasonally informed, multi-sensor data fusion, be
developed to distinguish sinkholes from spectrally and structurally similar land cover
types, and how effective is it in arid environments?
Yes. The Combined Doline Vegetation Index (CDVI) was successfully derived
from cross-seasonal fusion of SAR and optical data using the Hypercomplex Bases
framework. It achieved clear separability between sinkholes and surrounding
vegetation or bare surfaces. Correlation with Proba-V vegetation fractions (r = 0.67)
further validated its effectiveness for fine-scale vegetation mapping in semi-arid
regions.

5.3.3 Closing Remarks

The findings of this chapter challenge the conventional emphasis on temporal proximity
in EO data fusion. Instead, they support a paradigm shift toward ecologically driven
fusion strategies that embrace seasonal divergence and phenological dynamics. By
formalizing temporal taxonomy as a design principle, this work provides a conceptual and
empirical foundation for more intelligent, task-specific fusion configurations, especially
in regions where seasonal processes dominate landscape change. The CDVI illustrates
how meaningful information can be derived from cross-seasonal, HCB-fused EO features,
demonstrating that valuable structural and spectral signals exist at the feature level.
However, as this study also shows, such indices can be complex to design and tune
manually. This underscores the role of ML as a scalable and adaptive approach to extract
such latent information, building a conceptual bridge between handcrafted indices and
automated learning pipelines, as introduced in Sections 1.1.1 and 1.1.2.
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Foundational Analysis of EO
Modality–Model Interactions

6
„Everything should be made as simple as possible,

but not simpler.

— Albert Einstein
Physicist, Thinker

This chapter includes elements from the following peer-reviewed publications:

Sarah Hauser, Michael Ruhhammer, Andreas Schmitt, and Peter Krzystek. An Open
Benchmark Dataset for Forest Characterization from Sentinel-1 and -2 Time Series.
Remote Sensing, 16(3), 2024, Article 488. DOI:10.3390/rs16030488 It is cited
as [147] and is marked with a green line.

Author Contribution: Sarah Hauser served as a primary contributor to study design, software

implementation, practical execution, validation, writing, editing, and visualization.

and from:

Michael Ruhhammer, Sarah Hauser, Andreas Schmitt, and Anna Wendleder. Forest
parameter estimation from dual-frequency polarimetric SAR. Proceedings of the 15th
European Conference on Synthetic Aperture Radar (EUSAR), Munich, Germany, 2024,
pp. 966–971. It is cited as [278] and is marked with a light-green line.

Author Contribution: Sarah Hauser co-led the conceptualization and served as a primary

contributor to the modelling methodology development, establishment of the analysis

pipeline, and contributed significantly to the investigation, supervision, and manuscript

writing.
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This chapter establishes the methodological foundation for understanding how different
EO modalities interact with various ML models when predicting continuous forest vari-
ables. Using the Wald5Dplus dataset [148] as a standardized label source, as described
in Section 1.2.2, the analysis systematically explores which combinations of EO input and
learning strategy yield the highest predictive performance.

The central question guiding this chapter is: Which EO–model configurations yield the
most accurate predictions of continuous forest attributes? To address this, a modular
experimental framework was designed that incrementally explores EO inputs and mod-
elling strategies. The configurations range from mono-temporal, single-sensor inputs to
fully fused spatio-temporal representations, allowing for both isolated comparisons and
cumulative insights into how predictive performance evolves with added data richness
and methodological sophistication. At the core of this progression lies the Wald5Dplus
configuration [147], which employs Sentinel-1 and Sentinel-2 data fused spectrally, po-
larimetrically, and temporally using HCB [289]. This represents the most advanced setup
and serves as a performance benchmark. All subsequent configurations are evaluated
as simplified variants or baselines, designed to test the value added by specific data
dimensions or fusion strategies.

The structure of this chapter proceeds through the following experimental tiers:

Sentinel-1 and -2 (Spectral, Polarimetric, and Temporal Hypercomplex Fusion): The
most comprehensive configuration, combining full temporal sequences, polarimetric
SAR, and spectral data through hypercomplex fusion.

Sentinel-1 + Sentinel-2 (Hypercomplex Fusion): A multi-modal fusion setup that in-
tegrates structural (SAR) and spectral (optical) information using a hypercomplex
algebraic framework. (mono-temporal)

Sentinel-2: A spectral-only baseline assessing the predictive power of optical data, includ-
ing a Kennaugh-like transformation of Sentinel-2 inputs to maintain comparability.
(mono-temporal)

Sentinel-1: A radar-only baseline that examines model selection under controlled, mono-
temporal conditions using standard Sentinel-1 polarimetric inputs.

TerraSAR-X and ALOS-2: A cross-sensor benchmark comparing Sentinel-1 with alter-
native high-resolution SAR systems, focusing on the influence of SAR-specific
acquisition characteristics. (mono-temporal)
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To ensure comparability, all experiments follow a unified evaluation protocol described in
paragraph 6, including standardized preprocessing, model configuration, and validation
logic. This framework enables controlled, reproducible comparison across modalities,
models, and spatial domains. Ultimately, this chapter provides an evidence-based un-
derstanding of which EO and model configurations are most effective for multi-variable
regression in forest ecosystems, laying the groundwork for downstream applications
in vegetation monitoring, ecological forecasting, and spatial transfer. The analyses in
this chapter are guided by the following research questions, which emerge from the
methodological and conceptual context outlined above:

RQ1: Which remote sensing modality, SAR (Sentinel-1), optical (Sentinel-2), or high-
resolution SAR (TSX/ALOS), delivers the highest predictive accuracy for continuous
forest structural variables in the Wald5Dplus dataset?

RQ2: How do polarimetric features derived from Sentinel-1 compare with raw spectral bands
and transformed spectral features from Sentinel-2 in terms of predictive accuracy and
spatial generalization?

RQ3: How does the choice between raw Sentinel-2 spectral bands and Sentinel-2-derived
spectral Kennaugh-like elements affect model accuracy and spatial robustness for
different forest structural variables?

RQ4: Do spectral or polarimetric Kennaugh-like representations improve spatial transferabil-
ity over raw features, and for which types of forest variables is this most pronounced?

RQ5: To what extent does fusing optical and SAR data improve the prediction of forest
structure variables compared to using single modalities?

RQ6: Which fusion strategy, spectral only, polarimetric only, or combined spectral–polarimetric,
yields the best trade-off between in-domain accuracy and spatial transferability?

RQ7: How does the addition of temporal information to spectrally, polarimetrically, and
temporally fused Sentinel-1 and Sentinel-2 data influence the performance and gener-
alization of EO-based forest structure models?

RQ8: Which machine learning models, RF, SVR, CNN, or ensembles, perform best under
varying EO input types and fusion configurations?

RQ9: How do preprocessing choices affect model accuracy and spatial robustness, particu-
larly under domain shifts?
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RQ10: Can ensemble learning approaches, particularly stacked RF ensembles, improve
spatial generalization and mitigate performance degradation in unseen regions?

RQ11: What are the limitations of current models in achieving robust transferability, and
how do fusion and ensemble strategies help overcome them?

RQ12: How do specific forest variables differ in their sensitivity to EO modality, preprocess-
ing, and modelling approach?

Systematic Evaluation Framework for Preprocessing and Model Configurations To en-
sure comparability across key experiments, a consistent evaluation framework was
defined and is reused in all cases where full-grid model benchmarking is appropriate.
This section outlines the standardized training, testing, and validation protocol that
underpins those experiments where preprocessing configurations, model variants, and
spatial transfer are systematically assessed. While not every chapter or module in this
setup applies the full configuration grid, all analyses that do will reference this section to
indicate methodological alignment. This enables a controlled, reproducible comparison
of model performance across diverse experimental setups, allowing the reader to trace
how changes in input data, preprocessing, or architecture influence predictive behaviour
under a shared evaluation logic. To evaluate the predictive performance of various ML
models on ecological and forestry-related variables, a comprehensive series of regression
experiments was conducted. The experimental design aimed to systematically assess the
influence of data preprocessing strategies and model configurations across a diverse set
of vegetation-related response variables. The distinct target variables were selected for
prediction, encompassing both structural and compositional forest attributes, as shown
in Table 1.3. Three dimensions of data preprocessing were systematically varied:

Masking Thresholds: Data was filtered to include only observations exceeding certain
thresholds of signal availability or quality. The following thresholds were applied:

• Mask > 0

• Mask > 0.1

• Mask > 1

Z-Score Filtering: To mitigate the impact of statistical outliers and improve data robust-
ness, z-score normalization was applied to the data space prior to model training. A
z-score zi for a given value xi is defined as:
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zi =
xi − µ

σ

where µ is the mean and σ is the standard deviation of the respective feature across the
dataset. This transformation standardizes the input features to have zero mean and unit
variance, allowing for comparability across differently scaled variables. Outliers, defined
as values whose absolute z-score exceeds a given threshold, can disproportionately
influence model training, especially in loss-based optimization and gradient estimation.
To control for this, several z-score thresholds were systematically evaluated:

• No z-score filtering

• Z < 3 (mild filtering)

• Z < 2.5 (moderate filtering)

• Z < 2 (aggressive filtering)

Aggressive Filtering: An additional preprocessing dimension involved the application of
an aggressive filtering pipeline, designed to jointly exclude unreliable pixels from both
the feature and label spaces. This process compounded multiple quality control steps,
including spatial masking (e.g., terrain artefacts) and statistical outlier removal (e.g.,
based on z-scores). A pixel was retained only if it passed all conditions simultaneously
across modalities.

This binary configuration was encoded as:

• Aggressive = True: Combined masking and z-score-based filtering applied to both
features and corresponding labels. If a pixel was identified as an outlier or invalid
in either space, it was excluded from training and evaluation.

• Aggressive = False: Only minimal or no filtering applied; outliers and marginal
data values were retained for maximum coverage.

This setting was especially relevant for high-sensitivity tasks where both input consistency
and label integrity were critical, and it served to test the trade-off between model
robustness and spatial completeness.

Regression Models and Hyperparameter Configurations: Multiple regression models
were tested, each with their respective hyperparameter settings. The models and selected
configurations include:
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• Linear Regression: A baseline model without hyperparameters, used to establish
a lower-bound performance. It applies an ordinary least squares fit to each target
band independently. Despite its simplicity, it provides insight into model bias and
target noise distribution (Figure 6).

InputFeatures

LinearRegression

Prediction

• RF Regression [48]: An ensemble-based method that combines multiple decision
trees trained on different bootstrapped subsets of the data and randomly selected
input features (feature bagging). The final prediction is obtained by averaging the
outputs of all trees. Key hyperparameters include n_estimators = [100, 200],
which defines the number of trees in the forest, and max_depth = [5, 10, 20], which
limits the depth of each tree. Shallower trees generalize better, while deeper ones
capture more detail at the risk of overfitting. The max_features = [log2, auto]
setting controls how many features are randomly selected at each split, introducing
diversity among trees and helping reduce variance. Additionally, out-of-bag (OOB)
estimation is used as an internal validation method: since each tree is trained on a
bootstrap sample, roughly one-third of the data remains unused and can be used to
estimate model performance without separate cross-validation. Each target variable
is predicted independently using the same forest. The architecture is shown in
Figure 6.1.
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Input Dataset
(Features + Targets)

Tree 1 Tree 2 Tree 3 Tree 4 Tree n

Averaging / Voting

Final Multi-Target
Prediction

Model Config:
nestimators = 50–150

max_depth = 5, 10, 20
max_features = log2, auto

Shared across all trees

Figure 6.1.: RF architecture, each decision tree is trained on a bootstrapped subset of the input
data and outputs predictions for all targets. Final output is obtained through
averaging or majority voting.

• SVR: A kernel-based regressor trained using ε-insensitive loss. Both linear and
RBF (radial basis function) kernels are tested (kernel = [linear, rbf]) to capture
both linear and non-linear relationships between features and target variables. The
ε-insensitive loss function defines a margin of tolerance (ε-tube) around the pre-
dicted regression function, within which no penalty is assigned to prediction errors.
Regularization and model complexity are tuned via C = [0.1, 1, 10] and gamma =
[scale, auto]. The C parameter controls the trade-off between training error and
model generalization: low values allow for a wider margin (more regularization),
while high values aim to fit the training data tightly. The gamma parameter, used in
RBF kernels, determines the influence of individual training points: scale computes
γ = 1/(n_features · Var(X)), adapting to the data distribution, while auto sets
γ = 1/n_features, independent of variance. SVR is applied independently to each
target dimension. See Figure 6.2.

• 1D-CNN: Implemented using PyTorch and trained on flattened raster data. The
model is designed to process per-pixel spectral or temporal feature vectors in the
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Input Feature Vector

Kernel Transformation
(linear or RBF)

SVR Fit
with ε-tube

Predicted Value

Input Feature

Target

ε-tube

Support Vector

Support Vector

Margin Visualization

Model Config:
kernel = linear, rbf

C = 0.1, 1, 10
gamma = scale, auto

Margin controls flexibility & generalization

Figure 6.2.: SVR architecture. A kernel function transforms the input space, and a regression
function is fitted with an ε-insensitive margin (gray band). Only support vectors
outside this tube contribute to the loss function.

form of 1D sequences with multiple channels (e.g., spectral bands or time steps).
The architecture consists of three 1D convolutional layers: the first two layers use
128 and 64 filters respectively, each with a kernel size of 3. A kernel defines the
receptive field, a small window (size 3 here) that slides over the input to detect
local patterns. Each layer uses the ReLU activation function, which introduces non-
linearity by zeroing out negative values. The final convolutional layer uses a linear
activation and maps to the number of output variables. Filters represent the number
of distinct pattern detectors in each layer; more filters allow the model to learn
a richer feature representation. Training is performed using the Adam optimizer,
an adaptive algorithm that combines momentum and per-parameter learning rate
adjustments to improve convergence stability and speed. Mean squared error (MSE)
is used as the loss function. Both inputs and targets are min-max normalized before

176 Chapter 6 Foundational Analysis of EO Modality–Model Interactions



training. Model evaluation includes validation MAE, cross-validation metrics, and
diagnostic residual plots. The full architecture is shown in Figure 6.3.

Input
(F features)

Conv1D
128 filters
kernel=3

ReLU

Conv1D
64 filters
kernel=3

ReLU

Output
# targets
kernel=3

Linear

Figure 6.3.: 1D-CNN architecture with convolutional layers showing filters, kernel sizes, and
activations.

Performance Evaluation Metrics: In the pursuit of precision, multiple complementary
accuracy metrics, MAD, MAE, STD and RMSE, are employed to systematically scrutinize
the predictive fidelity and robustness of the models. These metrics serve as essential
instruments for quantifying both the magnitude of errors and the degree of variance
explanation, offering a comprehensive perspective on the consistency, dispersion, and
explanatory power inherent in the model predictions, which are explained in the follow-
ing:

• Median Absolute Deviation (MAD), a resilient sentinel against the vagaries of
outliers, quantifies the median of absolute discrepancies between actual Y and
predicted values Ŷ. The formula for MAD is defined as:

MAD = median(|Yi − Ŷi|) (6.1)

MAD’s robustness against outliers is indicative of the model’s consistency in making
predictions. Smaller MAD values signify predictions that closely adhere to actual
values, showcasing the model’s reliability in various contexts.

• Mean Absolute Error (MAE) serves as a robust gauge of the average prediction
error and is articulated mathematically as follows:

MAE =
1
n

n

∑
i=1

|Yi − Ŷi| (6.2)

MAE offers invaluable insights into the magnitude of inaccuracies in our predictions.
Lower MAE values are emblematic of heightened precision, symbolizing a close
alignment between the predicted values Ŷ and the actual values Y. The MAE
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metric encapsulates the average magnitude of the prediction errors, illustrating
how effectively the model approximates the true values.

• Standard Deviation (STD), a widely employed metric for unearthing the degree of
dispersion in prediction errors, is expressed mathematically as:

STD =

√︄
1
n

n

∑
i=1

(Yi − Ŷi)2 (6.3)

STD endeavours to elucidate the extent to which predictions cluster around the
nominal value. Smaller STD values indicate the model’s consistency, as predictions
cluster closely around the nominal/actual value, thus affirming the model’s reliabil-
ity and stability. Conversely, larger STD values are indicative of a greater variability
in predictions, signifying the potential for more erratic model behaviour. In the
context of these metrics, actual values Y represent the true, observed values, while
predicted values Ŷ denote the values estimated by the model.

• Root Mean Squared Error (RMSE) offers another widely used performance metric,
particularly valued for its sensitivity to larger errors. It is mathematically defined
as:

RMSE =

√︄
1
n

n

∑
i=1

(Yi − Ŷi)2 (6.4)

While similar in formulation to the standard deviation of residuals, RMSE directly
captures the quadratic mean of prediction errors. Unlike MAE or MAD, RMSE
disproportionately penalizes larger deviations, making it particularly effective in
applications where larger errors are undesirable or carry greater consequence.
Smaller RMSE values signify better predictive performance, with predictions Ŷi

closely aligning with observed values Yi. However, due to its sensitivity to outliers,
RMSE is best interpreted in conjunction with robust statistics such as MAD or MAE
to provide a comprehensive view of model accuracy and error distribution.

Across the distinct forest-related target variables and 24 systematically varied preprocess-
ing configurations, comprising masking thresholds, z-score filtering levels, and aggressive
filtering toggles, each regression model was evaluated under controlled and repeatable
conditions. The modelling framework encompassed four distinct regression paradigms:

• A baseline linear regression model, without hyperparameters, to serve as a perfor-
mance benchmark.
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• A RF regressor, tuned across multiple hyperparameter settings including the number
of estimators (100, 200), tree depth (5, 10, 20), and feature selection strategies
(auto, log2).

• A SVR, tested with both linear and RBF kernels, and multiple values for regulariza-
tion strength (C = 0.1, 1, 10) and kernel scaling (gamma = scale, auto).

• An 1D-CNN, with a fixed architecture, trained with Adam optimization and MSE
loss on normalized inputs.

Each of these models was applied independently to every target variable and preprocess-
ing setup. When factoring in the individual hyperparameter variants, this produced a
total of 576 unique model evaluations, capturing the full factorial interaction between
data preprocessing, model architecture, and ecological prediction tasks. All experiments
adhered to a consistent training and evaluation pipeline. For in-sample evaluation,
models were trained on the entire preprocessed dataset corresponding to each config-
uration, and predictions were generated within the same domain to assess raw fitting
performance. No internal train/test split was employed in this phase, as the objective
was to evaluate model expressiveness under full-information conditions. In contrast, for
spatial cross-validation, models trained on their original region were applied directly to a
geographically distinct area without any re-training or hyperparameter adjustment. This
strict external validation framework enabled assessment of generalization performance
under spatial domain shifts. Across both evaluation stages, performance metrics were
computed independently for each target variable, model, and preprocessing configuration,
enabling fine-grained comparison across spatial, methodological, and variable-specific
dimensions.

Each configuration was executed independently, facilitating a comprehensive, multidimen-
sional analysis of modelling behaviour. The evaluation followed a threefold structure:

1. in-sample performance assessment across all configurations using acquisitions from
2020 (SW_2_2020),

2. independent cross-validation on a distinct spatial and temporal domain using data
from 2021 (SW_4_2021), and

3. targeted evaluation of how the top-performing configurations transferred under
combined spatial and temporal domain shifts.
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6.1 Polarimetrically, Spectrally and Temporally Fused
Sentinel-1 and Sentinel-2 Data

This section presents the full implementation of the HCB fusion framework [289]
for creating a temporally extended, multi-modal RS feature dataset. As introduced in
Section 2.2 and detailed in Section 2.2, the HCB method enables the orthogonal and
lossless combination of Sentinel-1 polarimetric and Sentinel-2 spectral features into a
compact, interpretable representation. Here, the fusion is applied at scale, integrating all
available Sentinel-1 and Sentinel-2 acquisitions for the years 2020 and 2021 to construct a
bi-temporal, full-year benchmark dataset. This setup is incorporating temporal dynamics
into the fused feature space, providing a robust foundation for large-scale model training,
seasonal analysis, and transfer learning within the Wald5Dplus project.

6.1.1 Materials

The key conditions for the choice of satellite are: public availability without costs, high
temporal as well as high spatial resolution, and sufficient coverage for larger forest
stands. These requirements are fulfilled by the Sentinel-1/2 missions of the Copernicus
program. Due to the Open Data policy of ESA, anyone can download and evaluate the
data, which is a crucial step for the extensive use of the knowledge gained by training
on the reference data. The short repeat pass times enabled by two satellite sensors
on the same orbit in space guarantee weekly acquisitions in the case of the weather-
independent SAR sensors Sentinel-1a and Sentinel-1b. The optical Multi Spectral Imager
on Sentinel-2a and Sentinel-2b though passing every five days is often hindered by clouds.
Furthermore, the varying illumination conditions hamper the consistent interpretation.
Thus, a sophisticated preprocessing is necessary in both cases: first, to identify and to
remove (for the most part) clouds and other atmospheric effects and second, to establish
a common reference frame – a high resolution 10 m pixel grid in UTM coordinates – for
the subsequent data fusion. The Sentinel mission per se delivers a Europe-wide coverage
with these stringent requirements and a global coverage of the land surfaces with possibly
lower spatial or temporal resolution.

Sentinel-1 acquires VV and VH polarized SAR images in C-band, i.e., the images are sen-
sitive towards structures in the size of the wavelength of about 5 cm. The co-polarization
VV is known to deliver the highest backscatter over land. The cross-polarization VH
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on the contrary is dominated by the volume scattering effect that can be observed in
backscattering volumes like high vegetation like forests. The originally complex images
are preprocessed by the Multi-SAR processor of DLR [38]. It calculates the four Kennaugh
elements k0, k1, k5, and k8 and therewith assures an information preserving representa-
tion of the polarimetric information [288]. The Kennaugh elements which are nothing
else than intensities and intensity differences are then multi-looked in order to generate
square pixels and geocoded to the respective UTM zone. As SAR is characterized by
the inherent speckle noise, a special adaptive filtering approach known as multi-scale
multi-looked follows [288]. In this filtering approach, the noise content is adopted from
the denoted noise floor provided in the metadata and neighbouring pixels are smoothed
as long as their difference in backscatter does not exceed the expected noise variation.
Thanks to the extraordinary noise model [285], edges are preserved in order to pre-
vent any information loss. The final normalization ensures a closed data range and the
space-saving archiving a UInt16 digital numbers in analogy to the Sentinel-2 images.

The Sentinel-2 MAJA [85] product was selected for its ability to generate Bottom-of-
Atmosphere (BOA) reflectances with integrated temporal consistency, atmospheric cor-
rection, and cloud screening, key prerequisites for time-series analysis in EO. Although
residual cloud gaps remain post-processing, these can be addressed through subsequent
interpolation methods. The 10,m resolution bands in the blue, green, red, and NIR
ranges were emphasized, as they offer the necessary spectral fidelity for forest structure
modelling.

Two important aspects are not taken into consideration so far: cloud gaps and the varying
acquisition time of Sentinel-1 and Sentinel-2. The gaps caused by clouds and insufficient
illumination are closed by reasonable values interpolated on HCB. This algorithm acts
like a Fourier transform in the temporal domain with only sparse input values. The
resampling from the Sentinel-2 acquisition times to the regular Sentinel-1 acquisitions
every six days is realized by a further interpolation. These two steps guarantee a plausible
temporal signature and a consistent image fusion.

As detailed in Section 2.2, the temporal fusion is performed using the HCB [289] frame-
work, yielding a compact and orthogonal feature representation consisting of 512 chan-
nels, generated by fusing 64 times 8 fused Kennaugh-like elements per year [147] with
K∗,0, which is representative for the whole year (similar to the total intensity), and 63
elements K∗,1−63.

6.1 Polarimetrically, Spectrally and Temporally Fused Sentinel-1 and
Sentinel-2 Data
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The complete processing pipeline is visualized in Figure 6.4, where Sentinel-1 and
Sentinel-2 data are first transformed into polarimetric and spectral Kennaugh representa-
tions, respectively, and then spectrally, polarimetrically, and temporally fused.

Sentinel-1
VV/VH (C-band)

Sentinel-2
MAJA (B, G, R, NIR)

Multi-SAR Processor
[38]

Speckle Filtering,
Geocoding, Nor-

malization

Kennaugh Elements:
(k0, k1, k5, k8)

MAJA Correction
(BOA reflectance)

Bandwidth Nor-
malization

Kennaugh-
like Elements:

1 total + 3 spectral

Spectral + Polari-
metric Fusion

via HCB (Kfused,0−7)

Temporal Fusion
(2021 & 2022,
× 64 dates)

Final HCB Cubes:
K∗,0–K∗,63

(10 m spaital
resolution)

Figure 6.4.: End-to-end fusion pipeline: Sentinel-1 and Sentinel-2 inputs are transformed into
compatible Kennaugh representations and fused spectrally, structurally, and tempo-
rally using the Hypercomplex Bases method.

The label data used in this experiment originates from the Wald5Dplus dataset, specifically
from the Steigerwald study area (AOI 1), as described in Section1.2.2. This setup mirrors
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the experimental configurations employed in succeeding chapters and is thus directly
comparable to:

• Section 6.4 – Polarimetric Kennaugh Elements from Sentinel-1 Data

• Section 6.3 – Sentinel-2 Data

• Section 6.2 – Polarimetrically and Spectrally Fused Sentinel-1 and Sentinel-2 Data

By maintaining consistency across these sections in terms of label origin, study area, and
preprocessing, this experiment enables a controlled evaluation of the added value of
temporal fusion over previously tested spectral and polarimetric combinations.

6.1.2 Methods

This part of the work centres on estimating various tree-related characteristics, including
total crown areas for deciduous, coniferous, and dead trees (in square meters), tree
counts per category, overall tree cover percentage, total crown volume (in cubic meters),
and average measurements such as tree height and crown base height (in meters), as
summarized in Table 1.3, and as outlined in Section 1.2.2. This reference data serves as
semantic reference against which the predictive capabilities of the fused Sentinel-1 and
-2 satellite satellite data is assessed.

The fused EO data serves as a key component of the model input, the ARD cubes (see
Figure 6.4), each containing 512 channels, introduced also in Section 2.2. Figure 6.5
illustrates typical spectral signatures for deciduous, coniferous, and dead trees, providing
a visual sense of class distinctions of the fused datasets.

Initial Model Development and Experimental Setup

To systematically evaluate the potential of ML algorithms for the prediction of forest
structural and compositional variables, an extensive experimental framework was im-
plemented. This included variations in input preprocessing, such as row-wise masking
thresholds, zero-row filtering, Z-score-based trimming for outlier removal, and nor-
malization strategies (e.g., MinMax scaling), alongside model-specific hyperparameter
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Figure 6.5.: Typical spectral signatures of deciduous, coniferous, and dead trees [147].

grids. These experimental setups were consistently applied to a diverse pool of regres-
sors, including RF, SVR, linear regression, and an 1D-CNN. Full technical details of the
experimental matrix are provided in Section 6.

Intra-AOI and Transfer-AOI Evaluation Design

Each model was evaluated using two distinct strategies to assess its generalization
capacity:

• Intra-AOI setting: Training and testing were performed on non-overlapping sub-
tiles from the same AOI. This ensured independence between training and test data
and minimized spatial autocorrelation.

• Transfer-AOI setting: Models trained in one AOI were evaluated on a spatially
disjoint and unseen region. This setting simulated a real-world application, where
models must generalize beyond their original training domain.

Stacked Ensemble Modelling with Multi-Output RF

Following the Initial Model Development and Experimental Setup as well as the Intra-
AOI and Transfer-AOI Evaluation, a two-level stacked ensemble modelling strategy was
implemented to predict forest structural and compositional attributes across multiple
regions and temporal scales. This approach builds upon RF regression, which is employed
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at both the base learner and meta-learner levels. The architecture was chosen for its
robustness to noise, non-parametric flexibility, and its proven ability to model complex,
non-linear relationships within heterogeneous environmental datasets.

To mitigate the temporal offset between predictors and reference labels, the modelling
strategy explicitly incorporated spatial and temporal tiling, designed to improve gener-
alization and reduce the impact of ecological change between acquisitions. Each AOI
was subdivided into smaller sub-AOIs (tiles), enabling stratified sampling across both
spatial and temporal dimensions. For each tile, a dedicated multi-output RF model was
trained to predict a subset of 8–10 forest attributes. Hyperparameters were optimized
using randomized grid search with spatial cross-validation.

The core method lies in the construction of a meta-model through stacked generalization.
Predictions from all valid base models, regardless of AOI or target dimension, were used
as input features to train a second-level RF meta-regressor. Each base model’s predictions
were treated as a learned representation of forest attributes, effectively capturing localized
spectral–structural relationships.

The stacking implementation was realized programmatically using the scikit-learn
API1. Each pre-trained base model was encapsulated in a custom transformer class,
ModelTransformer, derived from BaseEstimator and TransformerMixin. This wrapper
exposed the base model’s predict() method as a callable transformer, allowing its out-
puts to be treated as features within a unified ML pipeline. Multiple ModelTransformer
instances, each corresponding to a distinct base model trained on a specific AOI or subset
of forest attributes, were then combined using the FeatureUnion class. This operation
applied all model transformers in parallel to the same EO predictor dataset (the 512-band
time series) and horizontally concatenated their individual prediction outputs into a
single stacked feature matrix. Importantly, all base models were applied to the full
input space of EO features, despite being trained on different target subsets. As a result,
each model contributed a different perspective (e.g., region-specific or trait-specific)
to the ensemble, which the meta-learner could exploit. This meta-feature matrix was
subsequently passed to a second-level estimator, again a RF in this implementation,
designed to learn the mapping from the ensemble of base predictions to the full set
of the in total 10 forest attributes. This architecture allowed the meta-model to learn
implicit weightings across the diverse prediction sets and to correct for systematic biases
or regional overfitting in the individual base models. The modular nature of the pipeline

1For documentation, see https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.
FeatureUnion.html
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further enabled dynamic inclusion of additional base models, such as those trained on
2-band targets or alternative AOIs, thereby enhancing the transferability of the model to
new regions and time periods. An overview of the full modelling pipeline is presented in
Figure 6.6, including EO and reference data preprocessing, sub-AOI tiling, independent
base model training, and meta-model integration.

Figure 6.6.: Workflow for Stacked RF Meta-Model Development and Prediction. The pipeline
includes EO and reference data preprocessing, sub-AOI tiling, feature engineering,
individual model training, ensemble stacking, and final prediction through a meta-
learner.

The model architecture supported both spatial and temporal cross-validation. For spatial
validation, models trained on one AOI or sub-AOI were tested on another. Similarly, in
temporal validation scenarios, models trained on EO data from one year were tested
against the withheld year. This design allowed for realistic assessment of generalizability,
particularly relevant for monitoring applications where updated reference data may not
be readily available.

6.1.3 Results

To identify the most suitable model architecture for predicting forest structural and
compositional variables, a comprehensive comparison of ML regressors was conducted
using MAE as the principal performance metric. Evaluations were carried out under both
intra-AOI and cross-AOI (transfer) scenarios, capturing predictive performance within
and beyond the trained spatial domain.
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Model Evaluation per Variable

To evaluate model performance across eight forest structural and compositional variables
within the Steigerwald study area (AOI 1), a systematic comparison of RF, SVR, 1D-CNN,
and Linear Regression models was conducted under intra-AOI and cross-AOI scenarios.
Table references correspond to results from the original spatial domain, in Tables A.4
to A.11, while corresponding performance shifts are detailed in Tables A.12 to A.19.

Table 6.1 presents a consolidated overview of the best-performing configurations across
all forest parameter variables. The results focus exclusively on the most effective RF
setups, identified through intra-AOI evaluation, and report both the absolute performance
(MAE, RMSE) and the performance shift observed during cross-AOI transfer (∆MAE,
∆RMSE). This comparison highlights not only the predictive strength of RF models under
optimal conditions but also their resilience, or sensitivity, to domain shift across forest
environments.

Table 6.1.: Summary of RF model performance for all forest variables. Best intra-AOI configura-
tion and corresponding cross-AOI performance shifts (∆MAE, ∆RMSE) are reported.

Variable Best Config (RF) MAE RMSE ∆MAE ∆RMSE

Sum Crown Area (Decid.) Mask>1, Z=3, Agg=True 4.03 5.27 +10.63 +13.31
Sum Crown Area (Conif.) Mask>1, Z=3, Agg=True 3.48 4.49 +6.59 +7.99
Count Decid. Trees Mask>1, Z=3, Agg=True 0.18 0.23 +0.48 +0.57
Count Conif. Trees Mask>0, Z=3, Agg=True 0.11 0.16 +0.25 +0.31
Tree Area Coverage (%) Mask>1, Z=3, Agg=True 0.66 1.09 +1.74 +3.47
Sum Crown Volume (m3) Mask>1, Z=3, Agg=True 23.32 31.67 +58.61 +82.68
Mean Tree Height (m) Mask>1, Z=3, Agg=True 0.61 0.81 +1.31 +1.66
Mean Crown Base Height (m) Mask>1, Z=3, Agg=True 0.63 0.80 +1.64 +1.91

Across all variables, RF regressors delivered the most consistent and top-tier performance
in the original spatial domain and remained relatively robust in cross-AOI settings. SVR
models, while occasionally competitive in isolated metrics, exhibited higher volatility
and performance drops across spatial folds. Linear regression showed poor fit and gener-
alization overall. The 1D-CNN yielded reasonable intra-AOI results for some variables
(e.g., count of coniferous trees), but its cross-AOI generalization was weak, particularly
for structurally complex and volumetric features. Overall, RF demonstrated superior
generalization and error resilience across forest structure and composition metrics, vali-
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dating its selection as the most dependable baseline model for predictive tasks in spatially
heterogeneous EO contexts.

Model Performance and Preprocessing Effects

Model evaluation revealed that predictive accuracy varied systematically across target
forest structure variables, influenced by both the RF configuration and the applied
preprocessing strategies. As summarized in Table 6.1, models that combined moderate
masking (Mask>1), light Z-score trimming (Z=3), and aggressive filtering consistently
achieved the lowest in-domain MAEs and RMSEs across nearly all variables. For example,
mean tree height was predicted with an MAE of 0.608 and RMSE of 0.813 (Table A.10),
and sum crown volume with an MAE of 23.316 (Table A.9).

In contrast, configurations without masking or with overly harsh outlier suppression
yielded significantly higher errors. Particularly for rare-event-sensitive variables such as
crown volume, aggressive filtering often eliminated ecologically informative extremes,
leading to reduced model generalizability.

The best RF architecture shared several consistent traits. The most effective models had
max_depth=None, enabling unrestricted tree growth, max_features=’log2’ to promote
feature randomness and generalization, min_samples_leaf=2, min_samples_split=5,
and n_estimators=150. These settings offered a reliable balance between model com-
plexity and overfitting control. Feature normalization techniques were tested but provided
no significant benefits, affirming RF’s robustness to unscaled feature inputs.

Spatial Generalization and Transfer Behaviour

Cross-AOI transfer results underscored that while intra-domain model fit was strong,
spatial generalization performance varied notably by variable. For example, mean tree
height exhibited a moderate increase in MAE (+1.31) and RMSE (+1.66) under transfer,
whereas crown volume suffered a substantial degradation (+58.61 MAE, +82.68 RMSE).
Such trends suggest that some forest attributes, particularly those linked to aggregation
or complex volume estimations, are more sensitive to local ecological conditions.

The choice of preprocessing had measurable effects on transferability. While aggressive
filtering improved intra-AOI accuracy, it often reduced model robustness under domain
shift. Models using Aggressive=False frequently preserved better generalization for
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volume and crown-based attributes, likely due to retention of rare, informative outliers.
Z-score trimming at Z=3 remained optimal, providing balance between noise reduction
and signal preservation.

RF models consistently outperformed SVR, CNN, and linear regression alternatives in
both intra- and cross-AOI settings. SVR showed erratic cross-validation behaviour, and
CNN suffered from poor generalization despite strong localized fits. Linear regression
failed to model non-linear interactions intrinsic to forest structure dynamics. Thus,
ensemble-based methods combined with well-tuned preprocessing strategies offer the
most stable and scalable solutions for EO-based forest variable prediction.

Normalization and Configuration Summary: Importantly, feature normalization tech-
niques (e.g., MinMax scaling, standardization) did not improve RF performance, reaffirm-
ing the known robustness of RF models to raw feature distributions. As illustrated across
all target variables, ranging from tree counts to structural attributes (Figures 6.7–6.14),
configurations that combined moderate masking (M1), light Z-score filtering (Z3), and
aggressive filtering (A=True) consistently achieved the lowest MAEs. This trend is evident
in predictions of coniferous tree count (Figure 6.10), mean tree height (Figure 6.14),
and total crown volume (Figure 6.12). Conversely, omitting preprocessing or apply-
ing overly aggressive filtering without masking led to marked increases in error (e.g.,
MNA_ZNA_ANA configuration).

Figure 6.7.: Mean Absolute Error (MAE) distributions for different preprocessing configurations
predicting Sum crown volume of coniferous trees (m²). Each configuration varies in
mask threshold (M), Z-score filtering (Z), and aggressive filtering (A). Results are
shown for two values of the number of estimators in the model: 50 and 150. Lower
MAE values indicate better model performance.
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Figure 6.8.: Mean Absolute Error (MAE) distributions for different preprocessing configurations
predicting Sum crown volume of deciduous trees (m²). Each configuration varies in
mask threshold (M), Z-score filtering (Z), and aggressive filtering (A). Results are
shown for two values of the number of estimators in the model: 50 and 150. Lower
MAE values indicate better model performance.

Figure 6.9.: Mean Absolute Error (MAE) distributions for different preprocessing configurations
predicting Count of deciduous trees. Each configuration varies in mask threshold
(M), Z-score filtering (Z), and aggressive filtering (A). Results are shown for two
values of the number of estimators in the model: 50 and 150. Lower MAE values
indicate better model performance.
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Figure 6.10.: Mean Absolute Error (MAE) distributions for different preprocessing configurations
predicting Count of coniferous trees. Each configuration varies in mask threshold
(M), Z-score filtering (Z), and aggressive filtering (A). Results are shown for two
values of the number of estimators in the model: 50 and 150. Lower MAE values
indicate better model performance.

Figure 6.11.: Mean Absolute Error (MAE) distributions for different preprocessing configurations
predicting Tree area coverage (%). Each configuration varies in mask threshold
(M), Z-score filtering (Z), and aggressive filtering (A). Results are shown for two
values of the number of estimators in the model: 50 and 150. Lower MAE values
indicate better model performance.
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Figure 6.12.: Mean Absolute Error (MAE) distributions for different preprocessing configurations
predicting Sum crown volume (m³). Each configuration varies in mask threshold
(M), Z-score filtering (Z), and aggressive filtering (A). Results are shown for two
values of the number of estimators in the model: 50 and 150. Lower MAE values
indicate better model performance.

Figure 6.13.: Mean Absolute Error (MAE) distributions for different preprocessing configurations
predicting mean crown base height (m). Each configuration varies in mask thresh-
old (M), Z-score filtering (Z), and aggressive filtering (A). Results are shown for
two values of the number of estimators in the model: 50 and 150. Lower MAE
values indicate better model performance.
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Figure 6.14.: Mean Absolute Error (MAE) distributions for different preprocessing configurations
predicting Mean tree height (m). Each configuration varies in mask threshold (M),
Z-score filtering (Z), and aggressive filtering (A). Results are shown for two values
of the number of estimators in the model: 50 and 150. Lower MAE values indicate
better model performance.

Overall, these results confirm that RF, when paired with targeted preprocessing, partic-
ularly moderate masking and controlled filtering, are both accurate and operationally
robust for forest structure and composition mapping across heterogeneous landscapes.
The summarized performance metrics of the best overall RF configuration are provided
in Table 6.1, which outlines the model’s accuracy across all eight forest variables. Fig-
ure 6.15 further illustrates the predictive performance of these optimized RF regression
models within the Steigerwald study area (AOI 1). Each subplot compares predicted
versus reference values derived from spectrally, polarimetrically, and temporally fused
Sentinel-1 and Sentinel-2 inputs. The red dashed line indicates the ideal 1:1 relationship,
while logarithmic colour density emphasizes point distribution. Collectively, the plots
and metrics demonstrate the strong fit and generalization capacity of the final RF models
when evaluated on independent hold-out data.
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Figure 6.15.: RF regression results of a spectrally, polarimetrically, and temporally fused Sentinel-
1 & -2 (© ESA, 2021) dataset in the Steigerwald study site (AOI 1), displaying
predicted values using K0,∗ against actual reference values for each target vari-
able, based on the best overall RF configuration (general-purpose setup, see Sec-
tion 6.1.3). Point density is shown as a logarithmic count; the red dashed line
represents perfect agreement. (a) sum crown area of deciduous trees [m2], (b) sum
crown area of coniferous trees [m2], (c) count deciduous trees [amount], (d) count
coniferous trees [amount], (e) tree area coverage [%], (f) sum crown volume [m3],
(g) mean tree height [m], and (h) mean crown base height [m].
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Wald5Dplus

Following the findings presented in the preceding section, the modelling outcomes of
the Wald5Dplus project are now introduced. Within the Wald5Dplus [147, 144, 148]
project, RF was therefore also chosen as the best suitable regressor, by leveraging the
described multi-modal, multi-temporal dataset, along with the python-based scikit-learn
RF regression technique. The regression pipeline closely mirrors the experimental con-
figuration detailed earlier, however, certain configuration parameters were adjusted to
reflect operational constraints and practical optimization within the project scope. Within
the Wald5Dplus modelling pipeline, the same RF multi-output regression strategy was
adopted. In this setup, the RF algorithm is extended to simultaneously handle multiple
response variables, training a dedicated ensemble for each forest attribute. This structure
allows the model to account for variable-specific patterns and interdependencies more
effectively. Beyond enhancing accuracy, this approach offers practical advantages: it
consolidates the prediction task into a unified model architecture rather than requir-
ing isolated models for each target, thereby improving computational efficiency and
simplifying deployment in applied forestry contexts [86].

Feature engineering techniques were applied to enhance the quality of the dataset.
Specifically, Z-score trimming is applied to address outliers prior to the training, involving
the calculation of Z-scores for each input variable and applying a threshold (e.g., three
standard deviations) to identify and remove outliers from the dataset. This step enhances
the robustness and reliability of the predictions, ensuring a comprehensive and accurate
assessment of tree-related attributes using our fused satellite dataset. To determine the
most relevant variables for the model, a feature importance ranking was established
to assess the significance of each feature in predicting the target variable. These steps
collectively aim to improve the overall importance and interpretability of the model.

A compendium of RF regression plots juxtapose the predicted values against the actual
values from the reference data for each target variable across all study sites. A distinctive
characteristic of these plots is the logarithmic representation of point density, which
elegantly enhances the visual portrayal of the data distributions. The intricacy and depth
of these visualizations provide a unique perspective on the relationships between the
model predictions and ground truth reference data.

Steigerwald Within this section, the Steigerwald study site (AOI 1) results are presented.
The reference data [150] pertaining to this site were gathered in 2017 (Table 1.2), whilst
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it should be noted that the satellite imagery and fusion transpired across the years
2020 and 2021. This temporal span, resulting in a substantial temporal discordance,
necessitates thoughtful consideration during the interpretation of these findings.

In Figure 6.16 the RF regression results of a spectrally, polarimetrically and temporally
fused Sentinel-1 & -2 (©ESA, 2021) dataset in the Steigerwald study site, displaying the
predicted values using K0,∗ against the actual values for each present target variable are
presented. In the evaluation of the RF regression model at the Steigerwald study site,
the accuracy assessment metrics, encompassing MAE, MAD, and STD, provide insights
into the model’s performance. The Table A.1 summarizes these metrics for each target
variable.

Figure 6.16.: RF regression results of a spectrally, polarimetrically, and temporally fused Sentinel-
1 & -2 (©ESA, 2021) dataset in the Steigerwald study site (AOI 1), displaying
the predicted values using K0,∗ against the actual values (i.e., reference data in
Table 1.2) for each present target variable including the point density as logarithmic
count and the perfect conditions (red dashed line); (a) sum crown area of deciduous
trees [m2], (b) sum crown area of coniferous trees [m2], (c) count deciduous trees
[amount], (d) count coniferous trees [amount], (e) tree area coverage [%], (f) sum
crown volume [m3], (g) mean tree height [m] and (h) mean crown base height
[m].

The sum crown area of deciduous trees, the model’s predictions exhibit a MAE of 5.195,
indicating an average deviation of approximately 5.195 m2 from the actual reference
values. The MAD and STD values are 4.120 and 6.768, respectively. The actual values
for this variable range from 15 to 135 m2. Regarding the sum crown area of coniferous
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trees, the model demonstrates a MAE of 4.326, with MAD and STD values of 3.510
and 5.433, respectively, indicating a robust predictive performance. The actual values
for this variable fall within the range of 10 to 90 m2. The count of deciduous trees
variable showcases the model’s accuracy with a MAE of 0.248, a MAD of 0.200, and
a STD of 0.317, highlighting precise predictions with minimal deviations. The actual
values for this variable range from 1 to 6 trees. The count of coniferous trees provides
accurate predictions, with a MAE of 0.133 and MAD and STD values of 0.090 and 0.193,
respectively. The actual values for this variable range from 1 to 3 trees. Demonstrating
the model’s capacity to estimate tree area coverage, this variable exhibits a MAE of 1.075.
The MAD and STD are 0.710 and 1.602, respectively. The actual values for this variable
range from 70% to 100%. In the case of sum crown volume, the model’s MAE is 31.140,
accompanied by a MAD of 24.330 and a STD of 40.601, signifying precision in estimating
the sum crown volume. The actual values for this variable range from 400 to 1300 m3.
mean tree height is predicted with a MAE of 0.962, MAD of 0.709, and STD of 1.220,
characterizing the model’s accuracy. Actual values for this variable range from 9 to 33 m.
Finally, for mean crown base height, predictions exhibit a MAE of 0.530, MAD of 0.430,
and STD of 0.692, indicating robust predictive capabilities. Actual values for this variable
range from 2 to 14 m.

These findings offer a comprehensive understanding of the model’s capabilities, as well as
insights into the actual value ranges and entities they represent, across a range of target
variables at the Steigerwald study site.

Bavarian Forest National Park In this section, the findings within the Bavarian Forest
National Park study site (AOI 2) results are presented. Reference data pertaining to
this site were gathered in 2016 (Table 1.2). Similarly to the Steigerwald study site, the
temporal discordance between satellite imagery and the reference data shall be noted. In
this context it is also important to point out the bark beetle infestations in the last years
[199], which may influence the results by the transition of coniferous forest to deadwood.
This assumption is confirmed by spot checks during our field campaigns.

The RF regression results of the spectrally, polarimetrically and temporally fused Sentinel-
1 & -2 (©ESA, 2021) dataset in the Steigerwald study site, displaying the predicted values
using K0,∗ against the actual values for each present target variable are presented in
Figure 6.17 as well as their respective accuracy assessment metrics are summarized in
Table A.2.
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Figure 6.17.: RF regression results of a spectrally, polarimetrically, and temporally fused Sentinel-
1 & -2 (©ESA, 2021) dataset in the Bavarian Forest National Park study site (AOI 2),
displaying the predicted values using K0,∗ against the actual values (i.e., reference
data in Table 1.2) for each present target variable including the point density as
logarithmic count and the perfect conditions (red dashed line); (a) sum crown
area of deciduous trees [m2], (b) sum crown area of coniferous trees [m2], (c)
sum crown area of dead trees [m2], (d) count deciduous trees [amount], (e) count
coniferous trees [amount], (f) count dead trees [amount], (g) tree area coverage
[%], (h) Sum crown volume [m3], (i) mean tree height [m] and (j) mean crown
base height [m].

For the variable sum crown area of deciduous trees, the model’s predictions exhibit an
average deviation from reference data of approximately 6.249 m2, as reflected in the
MAE. The MAD and STD values are 5.765 and 7.564, respectively. The actual range for
this variable spans from 0 to 90 m2. In the case of the sum crown area of coniferous
trees, the model’s strong predictive performance is evident with an MAE of 5.238. The
MAD and STD values are 4.630 and 6.525, respectively, within an actual range from 0
to 70 m2. For the sum crown area of dead trees, the model provides reliable estimates
with a MAE of 3.811, coupled with MAD and STD values of 3.115 and 4.745. The actual
range for this variable extends from 0 to 54 m2. In predicting the of count deciduous
and coniferous trees, variables with relatively low actual target ranges, the results yields
low MAE of 0.281, with MAD and STD values of 0.240 and 0.344 and 0.221, with MAD
and STD values of 0.190 and 0.262, respectively. Accurate predictions for count dead
trees are evident with a MAE of 0.125, accompanied by MAD and STD values of 0.090
and 0.161. The actual range for this variable ranges from 1 to 2. The model effectively
estimates tree area coverage, yielding an MAE of 2.133, expressed as a percentage. MAD
and STD values are 1.345 and 3.202, with the actual range extending from 40% to 96%.
For sum crown volume, the model excels with a MAE of 64.858, supported by MAD and
STD values of 52.130 and 83.534. The actual range for this variable spans from 0 to
1600 m3. Mean tree height is another variable where the model showcases its accuracy,
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with an MAE of 1.246, along with MAD and STD values of 0.910 and 1.608. The actual
range for this variable varies from 4 to 40 m. In predicting mean crown base height, the
model offers reliable results, presenting a MAE of 1.249, accompanied by MAD and STD
values of 1.045 and 1.488. The actual range for this variable extends from 0 to 21 m.

Kranzberg Forest This subsection refers to the last study site AOI 3, the Kranzberg
Forest, whereas the temporal discordance between satellite imagery and the reference is
the lowest. However, it is to be noted that this study site is the smallest in spatial extent,
and therefore encompasses the lowest amount of trees in general. In the subsequent
Figure 6.18 and Table A.3 the RF regression results of the spectrally, polarimetrically, and
temporally fused Sentinel-1 & -2 (©ESA, 2021) dataset in the Kranzberg Forest study
site, are shown. Note that the reflectance bands K0,∗ are used to predict the forest-related
values.

Figure 6.18.: RF regression results of a spectrally, polarimetrically, and temporally fused Sentinel-
1 & -2 (©ESA, 2021) dataset in the Kranzberg Forest (AOI 3), displaying the
predicted values using K0,∗ against the actual values (i.e., reference data in Ta-
ble 1.2) for each present target variable including the point density as logarithmic
count and the perfect conditions (red dashed line); (a) sum crown area of decidu-
ous trees [m2], (b) sum crown area of coniferous trees [m2], (c) count deciduous
trees [amount], (d) count coniferous trees [amount], (e) tree area coverage [%],
(f) sum crown volume [m3], (g) mean tree height [m] and (h) mean crown base
height [m].

The model accurately estimates the sum crown area of both deciduous and coniferous
trees. The MAE for these variables stands at 6.917 and 6.759 m2, respectively. These
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precise predictions align closely with the actual ranges, capturing the nuances of the
forest canopy. As for the actual counts of the forest’s trees, the model delivers low MAE
values of 0.156 and 0.084 for deciduous and coniferous tree counts, respectively, staying
within the range of 1-4. Regarding the Tree Area Coverage, featuring a MAE of 2.955,
the model accurately estimates tree area coverage, with a mean absolute error of 2.955%.
The MAD and STD values, 1.320 and 5.423, suggest minor deviations. Whilst the sum
crown volume variable presents a comparatively high MAE of 140.235, complemented
by a MAD of 117.410 and an STD of 134.399, this variable inherently encompasses a
higher range, and the model’s predictions harmonize effectively with the actual values. In
the case of both mean tree height and mean crown base height, the model demonstrates
commendable accuracy. The MAE values for these variables are 0.976 and 1.332 m,
respectively. These values reflect a close alignment with the actual height ranges in the
forest, which span from 4 to 40 m for tree height and 2 to 18 m for crown base height.

Ensemble Modelling Performance

Building on the consistent strength of RF regressors across prior experiments, a stacked
ensemble modelling architecture was implemented to improve robustness and spatial
generalization. This approach, detailed in Section 6.1.2, leverages spatially stratified
RF base models, whose predictions are fused through a meta-level RF regressor. This
design was chosen to balance predictive precision with architectural simplicity, mitigating
overfitting risks while maintaining model interpretability across heterogeneous forest
conditions.

Evaluation Strategy and Spatial Structure: The ensemble evaluation was carried out
using spatial tiles defined for each AOI (see Table 1.1). Three evaluation streams were
pursued:

1. Deadwood Attribute Models (2-band): Trained on tiles D01–D06 in the Bavarian
Forest National Park , evaluated intra-regionally.

2. Structural and Compositional Models (8-band): Applied to tiles T01–T11 within
the NP using models from Steigerwald, Kranzberg, and NP.

3. Cross-AOI Transfer Tests: Models from 2020 EO features were evaluated on 2021
EO data and across different AOIs to assess generalizability.
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This tile-based framework allowed granular diagnostics of base-model performance while
feeding diverse inputs into the stacked meta-learner.

Representative Model Transfer Results: The transfer performance of two key RF base
models is summarized in Tables A.20 and A.21. The model trained on SW_1_2020 showed
strong generalization to its neighbouring sub-AOI (SW_2), but a pronounced performance
drop when applied to the Bavarian Forest National Park , especially for volumetric and
crown-related variables.

Conversely, the NP_T10_2020 model performed well temporally (within NP 2021), but its
spatial transfer to Steigerwald (SW_2) revealed clear domain mismatches, with elevated
errors and increased variance for structural traits like crown area and volume. These
outcomes demonstrate the limits of isolated model transfer across ecologically divergent
forests and reinforce the necessity of stacked ensemble integration.

Stacked Ensemble Performance: A baseline stacked ensemble configuration was evalu-
ated:

SW–SW Ensemble: Trained on Steigerwald sub-AOIs SW_1, SW_2, SW_4, SW_5, SW_6,
evaluated within SW_2 and transferred to SW_3 (see Table A.22).

In this SW–SW scenario, MAEs for all variables decreased in the transfer setup, suggesting
successful generalization within the same AOI (e.g., mean crown base height: MAE drop
from 5.04 to 1.49).

Meta-Ensemble Construction and Generalization Insight: As described in Section 6.1.2,
each base RF model contributed a prediction vector of size N (number of forest variables),
yielding a combined feature space of dimension M × N (here, 5 base models × 10
targets). These were aggregated using a FeatureUnion and passed to a meta-level
RF trained on the same reference data. This construction enabled the meta-model
to learn correction weights and capture inter-model complementarities. Importantly,
model selection for inclusion in the ensemble was governed by validation performance
thresholds, ensuring only spatially reliable base models influenced final predictions.
Hyperparameters for both base and meta RF were tuned via randomized search and
cross-validation. The modular setup allows future integration of new spatial models
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with minimal reconfiguration.The final stacked ensemble, was trained using five top-
performing base RF models from distinct spatial units: tiles D03 and D04 (deadwood-
specific, NP), SW_1 and SW_2 (Steigerwald), and T10 (structural model, NP). Each of
these was selected for either outstanding intra-AOI performance, strong generalization in
transfer settings, or complementary ecological context (see Table 1.1). This ensemble was
evaluated both intra-regionally (on the full Bavarian Forest National Park in 2020) and
temporally (on the same region in 2021), representing a twelvefold scale-up from the
24,5 km² training extent (e.g., T10) to the full NP ( 294 km²). The results, summarized
in Table A.23, demonstrate strong spatial generalization and temporal resilience across
most variables.

The final ensemble configuration demonstrated high robustness and transferability across
both spatial and temporal domains. Intra-regionally (NP 2020), the ensemble achieved
consistently low MAEs across all ten forest attributes. Temporal generalization to NP 2021,
despite introducing ecological and seasonal variability, led to only moderate degradation
for most variables. Notably, variables such as mean crown base height and count of
deciduous trees exhibited near-stable behaviour across years, with MAE differences of
just ∆ = +0.10 m and ∆ = +0.05 trees, respectively, well within acceptable margins
considering their true value ranges (0–24 m and 0–9 trees). Similarly, deadwood-related
metrics, including both sum crown area and count of dead trees, were predicted with high
fidelity and showed only marginal temporal drifts (∆MAE < 1).

Vertical structural indicators like mean tree height (∆MAE = +1.28 m) and tree area
coverage (∆MAE = +3.73 %) remained highly stable in the face of inter-annual variation,
supporting the meta-ensemble’s ability to retain predictive sharpness for key ecological
indicators. Even crown area metrics, which are known to fluctuate with phenology and
canopy closure, remained within 3–5 m2 MAE drift over time, a solid performance given
their true range up to 170 m2.

The only exception was sum crown volume, a compound metric with the largest dynamic
range (0–3000 m3), where temporal transfer resulted in a ∆MAE of +62.29 m3. Despite
this higher sensitivity, the relative change still represents less than ∼2 % of the upper
range, indicating practical robustness for many monitoring applications. These results
collectively underscore the ensemble model’s capacity to generalize across distinct forest
subtypes and acquisition years without retraining. The relatively stable error margins
across structural and compositional variables, ranging from counts to canopy metrics,
demonstrate the effectiveness of stacking spatially and thematically diverse RF base
models into a unified, general-purpose predictive framework. Notably, this generalization
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was achieved despite training on only ∼24.5 km2 from T10 and localized deadwood tiles,
yet deploying over the full Bavarian Forest National Park, confirming scalability across
heterogeneous landscapes.

6.1.4 Discussion

Building on the comprehensive evaluation of forest structural and compositional variable
predictions using multi-modal EO data, this discussion synthesizes key findings regarding
model behaviour, generalization capacity, and methodological trade-offs. The results
from both individual and stacked RF models highlight important patterns in model
performance, sensitivity to preprocessing, and robustness across spatial and temporal
domains. In particular, the effectiveness of the stacked ensemble approach, anchored in a
spatially stratified RF framework, provides insights into the challenges and opportunities
of scalable forest attribute prediction. The following subsections reflect on these aspects,
evaluate the strengths and limitations of the implemented methods, and outline directions
for further refinement.

Model Performance and Generalization Behaviour

Overall Model Performance: Across all evaluated forest structural variables and pre-
processing configurations, RF regressors consistently emerged as the most robust and
adaptable model family. In intra-AOI tests, RF delivered the lowest MAE for multiple
variables and ranked among the top-performing configurations in the majority of sce-
narios. Notably, their performance remained resilient in cross-AOI evaluations, where
predictive accuracy typically declines due to ecological dissimilarities, further confirming
RF’s suitability for modelling the forest parameters under diverse spatial and sensor con-
ditions. This robustness is likely attributable to the model’s capacity to capture non-linear
interactions and its insensitivity to raw feature scales. The RF’s operational simplicity
and interpretability, combined with its consistent accuracy, make it particularly appealing
for large-scale forest monitoring where more complex models like 1D-CNN failed to
generalize. In comparison, neural models collapsed under domain shift, reaffirming the
trade-off between flexibility and interpretability in favour of RF.

Effect of Preprocessing on Model Behaviour: Preprocessing strategies had a measurable
effect on predictive accuracy, particularly in interaction with model type and target
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variable. RF models demonstrated optimal results under moderate z-score filtering
(Z = 3), light-to-moderate masking thresholds (Mask > 1), and when aggressive outlier
trimming was avoided. This setup preserved ecologically informative variance, especially
important for volume-related metrics, while suppressing noisy extremes. Moreover,
preprocessing choices must be balanced to avoid excessive feature pruning, particularly
in crown area or volume estimation, where outlier suppression can eliminate meaningful
ecological extremes. This underlines the need for preprocessing strategies that are both
robust and ecologically sensitive. Notably, 1D-CNN models showed higher sensitivity to
normalization and input format but failed to generalize well under transfer conditions,
underscoring the comparative robustness of tree-based methods to domain shifts.

Variable-Specific Trends and Model Suitability: Performance patterns varied system-
atically by variable type. For structural attributes such as mean tree height and mean
crown base height, RF achieved consistently low MAE and RMSE, even under cross-AOI
scenarios. These differences may also reflect varying sensitivities of forest attributes to
EO modality and resolution, for instance, height proxies being well-aligned with canopy
reflectance and SAR structure, while crown area and volume are more affected by mixed
pixels and registration noise. In contrast, compositional and crown-based metrics showed
greater variability, particularly under aggressive preprocessing. Linear and SVR models
demonstrated strong performance in isolated cases but suffered from limited generaliza-
tion and higher volatility. Overall, ensemble-capable, non-parametric models such as RF
proved to be the most versatile.

Spatial Generalization and Transfer Modelling

Performance in Cross-AOI Domains: Individual RF models, although effective within
their training AOIs, displayed considerable variability when transferred to new domains.
Tables A.20 and A.21 illustrate that while base models like SW_1 and T10 perform well
locally, their transfer accuracy to different AOIs varies significantly. This is particularly
evident in structurally complex features such as crown volume and deadwood metrics.
These findings underscore the limited portability of isolated models and support the use
of more inclusive strategies. While predictive performance declined under cross-AOI
scenarios, the stacked ensemble model consistently outperformed the individual base
models in transfer settings, highlighting its capacity to integrate diverse structural signals
and mitigate localized overfitting. This is particularly evident in Table A.22, where the
Steigerwald-based ensemble achieved even stronger results on the unseen SW_3 tile than
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within its own training domains. Such outcomes highlight that well-designed ensembles
can not only generalize but also leverage regional complementarity to enhance prediction.
This reinforces the argument for spatially-aware model design. Tiling the input domain
and distributing base models ensures that regional specialization is preserved while
maintaining an ensemble-level ability to generalize beyond any one landscape.

Stacked Ensemble Design and Meta-Model Effectiveness:

A more comprehensive ensemble, incorporating models from both the Bavarian Forest
National Park (D03, D04, T10) and Steigerwald (SW_1, SW_2), was evaluated using a
full 10-band input feature set. Table A.23 presents results from this ensemble under
both intra-AOI (NP 2020) and cross-year (NP 2021) settings. Contrary to expectations,
temporal generalization between 2020 and 2021 yielded only modest declines across most
forest attributes, indicating that the ensemble can robustly handle year-to-year variability.
However, compared to the best locally optimized models (Tables A.1, A.3, and A.7–A.11),
the ensemble showed slightly higher per-variable MAE, highlighting the inherent trade-
off between specialization and generality. Nonetheless, when transferred into unseen
spatial or temporal domains, the ensemble significantly outperformed individual models
(Tables A.12–A.19). This advantage validates ensemble stacking as a viable mechanism to
bridge ecological and acquisition-based variability, and further demonstrates the utility of
combining spatially distributed base models to achieve scalable forest attribute prediction.
Importantly, the ensemble leveraged only a fraction of the spatial footprint available
in the NP, e.g., T10 represents ∼24.5 km² compared to the full 294 km² NP, and still
generalized effectively, highlighting the meta-model’s capacity to extrapolate from sparse
but representative training contexts.

Operational and Methodological Implications

Robustness to Label Aging and EO Variability: A notable challenge addressed in this
study was the temporal mismatch between reference data (2016–2018) and input EO
features (2020–2021). The ensemble model’s ability to produce plausible and stable
predictions under these conditions underscores its robustness to label aging. This toler-
ance to temporal lag demonstrates the ensemble’s applicability in real-world EO pipelines
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where field inventories may lag behind satellite acquisitions. This is particularly rele-
vant in forest monitoring, where ground data are rarely contemporaneous with satellite
observations.

One of the challenges encountered in this study was the temporal discrepancy between
the satellite data and the reference data. While Sentinel-1 and Sentinel-2 data from 2020
and 2021 were utilized, the reference data originated from 2016 (AOI 2), 2017 (AOI 1),
and 2020 (AOI 3). This temporal offset raises questions about the accuracy and relevance
of the reference data due to potential changes in forest conditions over time. It is crucial
to consider the impact of these temporal differences on the predictions. Variations in
tree counts between the model and the reference data could be attributed to multiple
factors, such as tree growth rates, forest management practices, seasonal fluctuations, or
external influences like disease outbreaks or natural disasters. The investigation into the
reasons behind these disparities is a critical aspect of improving our model’s predictive
performance. It highlights the need for more frequent updates of reference data to
maintain the accuracy and relevance of such datasets. Nevertheless, our field campaigns
confirmed a high accordance of satellite and reference data, i.e., only little variations for
deciduous forests. The situation regarding more or less purely coniferous forest stands
especially in the Bavarian Forest National Park (AOI 2) is different. Some of the areas
identified as coniferous in the reference data are now characterized by deadwood because
of a meanwhile bark beetle infestation. In contrast, some areas marked as deadwood are
now covered by young growth. In comparison to the entity of the labeled ARD cubes,
the proportion of unclear labels is extremely low or even negligible. Potential outliers
are reliably identified by the RF regression so that the prediction based on satellite data
shows a higher accordance with the actual state than to be expected from the reference
dataset.

Modularity and Scalability of the Ensemble Approach: From an operational perspec-
tive, the stacked ensemble architecture supports scalable and modular implementation.
New base models can be added incrementally, and the meta-model retrained accordingly,
allowing for seamless integration of new data sources or geographic areas. This makes the
system well-suited for near-real-time forest attribute prediction and long-term monitoring.
In practice, this architecture enables continuous improvement: new data sources can be
added, poor-performing base models excluded, and ensemble adaptation carried out with
minimal retraining overhead, thereby supporting operational scalability.
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Limitations and Future Directions

Model Architecture Trade-offs and Future Directions: The exclusive use of RF in
both base and meta-model layers provided consistent and robust performance across all
forest variables. This choice also reflects deliberate trade-offs in favour of interpretability,
computational efficiency, and stability across spatial domains. The decision to rely solely
on RF, rather than heterogeneous base models, ensured operational scalability and
minimized training complexity across the ensemble framework. While RF provide strong
baseline performance, their limitations in expressing highly non-linear interdependencies
may be addressed by hybrid ensembles in future work, blending RF with, for example,
gradient boosting or neural meta-models, if interpretability can be maintained. While
the stacked ensemble model demonstrated strong predictive performance and robust
generalization across spatial and temporal domains, several methodological extensions
could further enhance accuracy, interpretability, and transferability:

First, the current stacking implementation treats all base model predictions equally in the
meta-feature space. As the number of output bands varies across base models (e.g., 2-band
vs. 8-band predictions), this can lead to unbalanced contributions to the meta-learner.
Future work could incorporate normalization strategies such as z-score standardization
of each base model’s outputs prior to stacking, ensuring equitable representation across
models.

Second, while the current meta-learner is trained using predictions from base models
applied to a unified dataset, care was taken to ensure that no model made predictions
on its own training tiles. This design reduces the risk of information leakage. However,
future work could further strengthen this separation by adopting a strict out-of-fold
(OOF) stacking approach. In such a scheme, base model predictions used to train the
meta-learner would be generated exclusively from tiles held out during each model’s
training phase. This would ensure complete independence between base model training
and meta-model input construction, thus enforcing a more rigorous ensemble learning
framework.

Third, alternative meta-learner algorithms, such as regularized linear models (e.g., Ridge,
ElasticNet), SVR, or Gradient Boosted Trees, could be explored. These may offer better
interpretability or reduce overfitting risks compared to RF at the second level.

Finally, future evaluations should explicitly assess the generalization capacity of the meta-
model under true cross-regional transfer conditions. While current experiments focus
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on sub-AOI tiling within the same broader regions, further validation is needed using
entirely independent and geographically distinct AOIs, ideally sourced from different
forest types, biomes, or countries. A Leave-One-AOI-Out (LOAO) validation scheme,
applied at the level of distinct ecological regions rather than tiles, would provide a
more rigorous and ecologically realistic assessment of model generalization. This is
particularly important for operational forest monitoring tools designed to function in
data-scarce environments where reference data may not be available for the region of
interest. Additionally, future work could incorporate model interpretability frameworks
(e.g., SHAP values, permutation importance) to quantify the relative contribution of each
base model and to provide insights into regional specialization or redundancy within
the ensemble. Such approaches would not only improve trust and transparency but also
inform targeted model pruning or adaptation strategies for deployment in new forest
contexts.

Taken together, these refinements would further strengthen the meta-model’s capability
as a transferable forest monitoring tool, particularly in scenarios where updated field
data are unavailable or ecologically outdated. Nonetheless, the current RF-only ensemble
demonstrates that high predictive performance and strong transferability can be achieved
with a single, interpretable model family, making it suitable for scalable forest monitoring
applications with constrained computational resources.

Spatial Resolution and Label Uncertainty: Despite robust generalization, the model
operates at the pixel level, where noise from georegistration, mislabeling, and mixed-
pixel effects can affect performance. Future efforts could incorporate object-based or
region-based learning frameworks to mitigate this.

Temporal Generalization Beyond Two Years: While the model generalized well between
2020 and 2021, longer-term temporal drift was not evaluated. Future research should
test ensemble stability across broader interannual windows and under post-disturbance
dynamics.

Model Interpretability and Variable Importance: While RF offer built-in feature im-
portance metrics, the ensemble architecture complicates attribution. Further work could
explore SHAP-based analysis to interpret meta-model decisions and identify dominant
spatial predictors across variables.
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6.2 Polarimetrically and Spectrally Fused Sentinel-1 and
Sentinel-2 Data

To evaluate the performance of only multi-sensor data (sans multi-temporality) integra-
tion, this Section explores a fused feature space that combines Sentinel-1 polarimetric and
Sentinel-2 spectral information. The fusion is implemented using the HCB method [289],
which offers an orthogonal and interpretable representation of multi-modal EO features.
This approach builds directly on the foundations established in Sections 2.2 and 2.2,
where the respective polarimetric and spectral Kennaugh (or Kennaugh-like) elements
were introduced. Their joint integration using HCB is further formalized in Section 2.2,
highlighting the mathematical advantages of this method for compact, lossless fusion
across modalities.

6.2.1 Materials

The EO inputs originate from the Steigerwald study area (AOI 1) and are temporally
aligned using acquisition dates from 2 July 2020 (for within-domain modelling) and 3
July 2021 (for cross-validation and spatial transfer scenarios).

Two Sentinel-1 C-band SAR scenes were selected for analysis: 2 July 2020 and 3 July
2021, both corresponding to peak summer vegetation conditions. The acquisitions were
obtained in dual-polarization mode (VV/VH), which is particularly suitable for capturing
both surface and volume scattering properties in densely vegetated environments. To
derive physically meaningful backscatter descriptors, the raw Sentinel-1 SLC data were
processed through the Multi-SAR framework [38]. This included standard preprocessing
steps such as speckle filtering, radiometric normalization, and geocoding, followed by
transformation into Kennaugh elements k0, k1, k5, k8 [288], as described in Section 2.2.
These steps are schematically illustrated in Figure 6.19.

Sentinel-2 multispectral acquisitions covering the Steigerwald study area (AOI 1) were
acquired within the Wald5Dplus project, coinciding with the Sentinel-1 acquisition dates
(2nd of July 2020 and 3rd of July 2021), corresponding to peak summer vegetation
conditions. The data were processed with the MAJA [85] atmospheric correction chain
and include the 10 m resolution red, green, blue, and near-infrared (NIR) bands. These
bands provide critical information on vegetation structure and health, and served directly
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as input features for the subsequent regression modelling. These bands were further pro-
cessed into Kennaugh-like elements, following the methodology outlined in Section 2.2.
This transformation, applied to these 10 meter resolution bands, separates brightness in-
formation from spectral information by projecting the data into a hypercomplex basis, as
expressed in Equation (2.5). This representation is conceptually similar to traditional True
Color Images (TCI) and Color Infrared (CIR) compositions but offers a more structured
decomposition of the spectral signal. By explicitly decoupling intensity and colorimetric
properties, the Kennaugh-like features allow a direct comparison with the SAR-based
Kennaugh elements used in preceding and succeeding in this thesis. Moreover, evaluating
both the raw and transformed optical inputs provides insights into the relative advantages
of classical versus feature-engineered predictors in forest variable regression.

As detailed in Section 2.2, the spectral and polarimetric information from Sentinel-2 and
Sentinel-1, respectively, are combined using the HCB transformation [289]. This fusion
results in an 8-dimensional feature space consisting of one total intensity channel (Kfused,0)
and seven orthogonal spectral–polarimetric elements (Kfused,1−7). The transformation
is lossless and interpretable, preserving both signal domains while enabling compact,
semantically rich feature representations for downstream modelling. The fusion process
is schematically introduced in Figure 6.19.
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Sentinel-1
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Spectral + Polari-
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via HCB (Kfused,0−7)

Figure 6.19.: Fusion pipeline up to the combination of Sentinel-1 and Sentinel-2 Kennaugh
representations using the Hypercomplex Bases (HCB) method.

The label data used in this experiment originates again from the Wald5Dplus dataset,
from the Steigerwald study area (AOI 1), see Section 1.2.2.

6.2.2 Methods

To maintain direct comparability wihtin this whole Chapter, the evaluation approach
outlined in Section 6 was consistently applied. This included identical preprocessing con-
figurations (masking thresholds, z-score filtering, and aggressive filtering), the same set
of ML models (RF, SVR, Linear Regression, and 1D-CNN), and both intra- and cross-AOI
validation strategies. Specifically, intra-AOI analyses were conducted using polarimetri-
cally and spectrally fused Sentinel-1 and Sentinel-2 Data from 2020 (SW_2_2020), while
cross-AOI generalization was assessed using fused scenes from 2021 (SW_4_2021).
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6.2.3 Results

This section presents the modelling outcomes obtained from the fused Sentinel-1 and
Sentinel-2 dataset, where polarimetric and spectral features were integrated via the HCB
framework [289]. The evaluation focuses on eight forest structural variables derived
from the Wald5Dplus reference dataset, assessed through intra-AOI validation. Each
variable was modelled across a consistent configuration grid, enabling direct comparison
of regression accuracy between fused and unimodal setups. The results illustrate the
predictive potential of the fused feature space, highlighting variable-specific trends, model
behaviour, and the effectiveness of the HCB-based integration strategy.

Model Evaluation per Variable

Table references correspond to results from the original spatial domain, in Tables A.24
to A.31, while corresponding performance shifts are detailed in Tables A.32 to A.39.

Overall Model Performance: RF regressors demonstrated the strongest performance
across the fused feature space, achieving the lowest mean absolute error (MAE) and root
mean squared error (RMSE) across most variables. Models using strict preprocessing
(Mask > 1, Z=1, aggressive outlier removal) systematically outperformed relaxed setups,
confirming the importance of stringent data cleaning even when leveraging rich multi-
modal inputs.

Sum of Crown Area of Deciduous Trees (m2): Top-performing RF models achieved MAE
values as low as 3.29 m² in the original spatial domain. However, transfer to unseen areas
increased the MAE substantially, with typical degradation exceeding +13 m², highlighting
the challenge of generalizing crown area predictions even with fused data.

Sum of Crown Area of Coniferous Trees (m2): Similar patterns were observed for
coniferous crown areas, where RF yielded in-domain MAE values around 2.96 m². Cross-
validation exposed moderate-to-high error increases (+8.7 m² MAE), indicating a rela-
tively better, but still imperfect, generalization compared to deciduous crown area.

Count of Deciduous Trees: Models achieved highly accurate in-domain predictions
with MAEs around 0.15 trees. Spatial transfer resulted in an increase of +0.6 trees in
MAE, reflecting moderate generalization challenges, but maintaining reasonable stability
relative to area- or volume-based variables.
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Count of Coniferous Trees: Coniferous tree count models performed strongly in-domain
(MAE ∼0.09 trees), but cross-AOI shifts led to pronounced MAE increases (∼+1.2 trees),
indicating greater sensitivity to domain changes, possibly linked to the subtler spectral
and structural signatures of conifers.

Tree Area Coverage (%): Tree area coverage models achieved low MAEs (∼0.37–0.39 %)
under optimal preprocessing. However, transfer tests showed significant MAE increases
(+2.2 %), reinforcing the tendency of canopy coverage metrics to degrade under spatial
variability despite fused feature spaces.

Sum of Crown Volume (m3): Volume estimates were particularly challenging, with
in-domain MAEs around 22–23 m³. Transfer induced severe degradations, with MAE
increases exceeding +67 m³, demonstrating that crown volume remains a highly sensitive
variable even under fused optical and SAR modelling.

Mean Tree Height and Mean Crown Base Height (m): Models predicted mean tree
height with MAEs below 0.51 m and mean crown base height around 0.64 m. Transfer
performance deteriorated for both (+1.4 m and +1.3 m MAE, respectively), yet these
variables exhibited comparatively lower relative degradation, indicating more stable
generalization behaviour than area- and volume-based attributes.

Model Performance and Preprocessing Effects

Preprocessing Trends: Strict masking (Mask > 1), moderate Z-score clipping (Z=1),
and aggressive outlier removal consistently improved model performance across variables.
Relaxed preprocessing setups led to markedly higher errors, especially under domain shift,
confirming that data conditioning remains critical even when feature richness increases
through fusion.

Model Diversity and Robustness: RF continued to outperform alternative learners, with
no substantial advantage observed from incorporating model diversity. Homogeneous
RF ensembles maintained superior predictive sharpness and transfer stability, suggesting
that simplicity and consistency outweigh diversity in fused EO-based regression tasks.

Spatial Generalization and Transfer Behaviour

Cross-Validation Results:
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Spatial transfer testing revealed systematic performance degradation across all models
and variables, with the extent of decline varying:

• Volume and Crown Area Variables: Largest transfer degradation observed (e.g.,
+67 m³ MAE for crown volume; +13–14 m² MAE for crown area).

• Tree Counts: Moderate degradation (+0.6 to +1.2 trees MAE), reflecting relatively
better cross-region resilience.

• Height Metrics: Lowest relative performance declines (+1.4 m for mean tree
height, +1.3 m for crown base height), suggesting vertical structural attributes are
more transferable under multi-modal feature spaces.

Despite the increased feature richness provided by polarimetric and spectral fusion,
substantial challenges remain in achieving robust cross-AOI generalization, particularly
for complex structural variables such as crown area and volume. Height and tree
count variables exhibited more resilient behaviour, suggesting that the benefits of fusion
are variable-specific and that additional strategies such as domain adaptation may be
necessary to realize fully transferable forest structure models.

6.2.4 Discussion

Building on the performance insights from the fused Sentinel-1 and Sentinel-2 experi-
ments, this discussion synthesizes the implications of multi-modal feature integration for
forest parameter modelling.

Model Performance and Generalization Behaviour

Model Performance: RF regressors continued to demonstrate strong predictive stability
across the fused feature space, achieving superior or near-superior performance on
all forest variables. The ensemble’s inherent resilience to overfitting and its capacity
to accommodate heterogeneous input features (polarimetric SAR and optical-spectral)
reaffirmed its suitability as a backbone for complex multi-modal EO regression tasks.

Effect of Preprocessing on Model Behaviour: Strict preprocessing protocols, involv-
ing conservative masking thresholds, moderate Z-score filtering, and aggressive outlier
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removal, remained crucial. Although the fused feature set inherently carried richer infor-
mation, models remained highly sensitive to preprocessing choices. Lax preprocessing
resulted in marked error increases, particularly for structural variables such as crown
area and crown volume, emphasizing that feature richness cannot substitute for careful
input conditioning.

Variable-Specific Trends and Model Suitability: Fused modelling improved in-domain
accuracy across all variables. However, variable-specific trends persisted: tree height
and crown base height exhibited higher spatial robustness, while crown volume and
sum crown area remained more vulnerable to transfer degradation. The fusion of
SAR structure-sensitive and optical spectral features proved particularly beneficial for
tree counts and vertical metrics but offered only partial mitigation for crown-based
variables, which remain susceptible to regional shifts in canopy complexity and spectral
heterogeneity.

Spatial Generalization and Transfer Modelling

Performance in Cross-AOI Domains: Spatial transfer tests highlighted persistent perfor-
mance degradation across all variables. While fusion improved the relative stability of
models compared to previous setups (single-sensor), large declines in predictive accuracy
for complex aggregation variables like crown volume suggest that even fused models are
not immune to domain shift effects. Mean tree height and mean crown base height again
showed the smallest relative error increases, suggesting that vertical structure remains
more transferable across domains.

Model Setup and Stability: Models with conservative preprocessing and purely RF back-
bones consistently outperformed diverse or relaxed configurations in transfer scenarios.
This consistency highlights that, despite feature fusion, model setup choices (particularly
ensemble depth, feature subsampling strategies, and leaf size) play a defining role in
ensuring spatial robustness.

Operational Implications and Transferability: The fusion of polarimetric and spectral
information enhanced baseline model accuracy and provided modest improvements in
transfer resilience, particularly for height and count metrics. However, the persistent
vulnerability of crown area and volume variables indicates that additional strategies,
such as domain adaptation techniques or semi-supervised learning with target-domain
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data, may be required for fully operational cross-regional generalization. Overall, multi-
modal fusion supports more scalable and flexible forest monitoring approaches but
cannot entirely eliminate the structural complexities and variability challenges inherent
in heterogeneous forested landscapes.

Additionally, the results reinforce three broader points worth further consideration:

• Multimodal Data Fusion is Beneficial but Not Sufficient: While HCB-based
fusion enhances predictive power in the training domain, it does not fully resolve
the generalization challenges posed by spatial heterogeneity. The resilience of
vertical metrics versus the volatility of volume-based attributes suggests that certain
forest variables are intrinsically more amenable to EO-based modelling, even under
fusion.

• Model Reliability is Closely Tied to Data Conditioning: Across all variables,
strong preprocessing (masking, outlier trimming) consistently improved perfor-
mance. This emphasizes that rich features cannot substitute for clean input data,
especially when aiming for generalization across AOIs.

• Future Potential Lies in Combining Fusion with Domain Adaptation: To move
toward operational scalability, models may need to integrate fusion with transfer
learning strategies. Semi-supervised or domain-adaptive frameworks could mitigate
domain shift, especially for structurally complex forest attributes.

6.3 Reflectance Bands and Spectral Kennaugh-like
Elements from Sentinel-2 Data

This section explores the predictive potential of optical features derived from Sentinel-2
data for modelling forest structural attributes. Both raw spectral features and derived
Kennaugh-like elements are evaluated for their utility in capturing forest parameters.

6.3.1 Materials

Sentinel-2 multispectral acquisitions covering the Steigerwald study area (AOI 1) were
acquired within the Wald5Dplus project [147]. The specific acquisition dates and prepro-
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cessing configurations (e.g., the transofrmation of Sentinel-2 reflectances into Kennaugh-
like elements) are detailed in Section6.2, within the materials description of the preceding
Polarimetrically and Spectrally Fused Sentinel-1 and Sentinel-2 Data setup.

In this setup, two separate feature streams were extracted: (i) the raw reflectance
values of the four Sentinel-2 bands (R, G, B and NIR), and (ii) their transformation
into Kennaugh-like elements using hypercomplex algebra to derive interpretable spec-
tral–structural components. This dual-path pipeline enables a direct comparison between
traditional spectral features and fused, orthogonally decomposed representations, as
illustrated in Figure 6.20.

Sentinel-2
MAJA (B, G, R, NIR)

MAJA Correction
(BOA reflectance)

Raw Spectral Bands:
B, G, R, NIR

Kennaugh-like
Transformation

Spectral Ken-
naugh Elements:
(Brightness + 3
Spectral Ratios)

Figure 6.20.: Parallel feature extraction pipelines from Sentinel-2 MAJA data. The 10 m res-
olution Blue, Green, Red, and Near-Infrared (NIR) bands were used directly as
raw input features, and alternatively transformed into Kennaugh-like elements
capturing brightness and spectral structure. Both data streams are derived inde-
pendently from Sentinel-2 acquisitions (2 July 2020 and 3 July 2021) over AOI 1
(Wald5Dplus project), supporting comparative modelling experiments.

Labels: For this experiment, the continuous labels from the Wald5Dplus project [148]
were used, consistent with the Sentinel-1 polarimetric Kennaugh element experiment,
see Section 6.4, to ensure comparability. The label derivation process is detailed in
Section 1.2.2.

6.3.2 Methods

The same standardized evaluation setup as described in Section 6 was employed to
ensure comparability with all Sections. This includes consistent preprocessing variations
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(masking thresholds, z-score filtering, aggressive filtering), a unified model comparison
(RF, SVR, Linear Regression, and 1D-CNN), and both intra-AOI and cross-AOI validation
protocols. Importantly, intra-AOI evaluation was based on Sentinel-2 acquisitions from
2020 (SW_2_2020), while cross-AOI transferability was tested on independent Sentinel-2
data from 2021 (SW_4_2021). Adopting this shared and temporally consistent framework
allows a direct, controlled assessment of how Sentinel-2 based inputs perform relative to
Sentinel-1 derived features under identical modelling and evaluation conditions.

6.3.3 Results

This section presents the comparative model evaluation results for two distinct Sentinel-
2 feature representations: raw multispectral reflectance bands and their transformed
counterparts expressed as Kennaugh-like spectral elements. Both feature sets originate
from the same Sentinel-2 acquisitions but differ in their composition, one reflecting
the direct spectral signal, the other an orthogonally decomposed version emphasizing
brightness and spectral contrast components.

Model Evaluation per Variable

Table references correspond to results from the original spatial domain, of the Raw
Sentinel-2 Data in Tables A.40 to A.47, and the Spectral Kennaugh-like Elements from
Sentinel-2 Data in Tables A.56 to A.63, while corresponding performance shifts are
detailed regarding the Raw Sentinel-2 Data in Tables A.48 to A.55 and the Spectral
Kennaugh-like Elements from Sentinel-2 Data in Tables A.64 to A.71.

Overall Model Performance:

In this experiment, two configurations of Sentinel-2 based data were evaluated: (1) the
original Sentinel-2 raw spectral bands and (2) Spectral Kennaugh-like elements derived
from the same Sentinel-2 acquisitions.

For both configurations, RF Regressors consistently yielded the best predictive perfor-
mance across most forest structural variables, demonstrating high robustness across
different masking and preprocessing setups.
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Sentinel-2 Raw Data results showed strong performance particularly for predicting tree
counts and tree area coverage, with lower mean absolute errors (MAE) and root mean
square errors (RMSE) compared to volume- and height-related variables.

Spectral Kennaugh-like Elements maintained comparable predictive capabilities, in some
cases improving slightly over raw Sentinel-2 for predicting tree counts and tree area
coverage. However, prediction of volume-related variables such as sum crown volume
exhibited slightly higher variability compared to raw bands.

Across both input data types, models with aggressive preprocessing (mask thresholding
and Z-score normalization) consistently outperformed their counterparts without prepro-
cessing, highlighting the importance of feature standardization and noise reduction in
the prediction task.

Overall, the models showed a tendency towards better performance for variables related
to crown area and tree counts, while volume and height predictions remained more
challenging.

Sum of Crown Area of Deciduous Trees (m2): The prediction of the sum of crown area
of deciduous trees revealed high consistency across both data types. For the Sentinel-2
raw spectral bands, the best-performing models achieved MAE values around 3.86 to
3.89 m2, and RMSE values of approximately 4.83 to 4.89 m2. The application of masking
and Z-score normalization notably contributed to this performance.

Similarly, models utilizing the Sentinel-2 Spectral Kennaugh-like elements achieved
slightly lower MAE values, approximately 3.63 to 3.64 m2, and RMSE values around
4.64 to 4.65 m2. This indicates a marginal improvement in prediction accuracy when
employing Spectral Kennaugh-like representations.

Cross-validation revealed a systematic performance drop for both data types, with an
increase in MAE by approximately 12 to 13 m2 for the best models. However, the
relative degradation remained comparable between raw spectral inputs and Spectral
Kennaugh-like inputs, suggesting similar spatial transferability characteristics.

Overall, both Sentinel-2 raw and Spectral Kennaugh-like elements demonstrated strong
predictive potential for estimating the sum of crown area of deciduous trees, with the
latter offering a slight advantage in the original spatial domain.

Sum of Crown Area of Coniferous Trees (m2): Model performance for the sum of crown
area of coniferous trees also demonstrated strong results across both Sentinel-2 data
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representations. Using the raw spectral bands, the best-performing models achieved MAE
values around 3.23 to 3.27 m2 and RMSE values between 4.13 and 4.29 m2.

In comparison, the models based on Spectral Kennaugh-like elements yielded similar
MAE values between 3.18 and 3.23 m2 and RMSE values ranging from 3.98 to 4.03
m2. Slight improvements in RMSE indicated that the Spectral Kennaugh-based features
enhanced the stability of the predictions, albeit marginally.

Cross-validation exposed substantial declines in predictive accuracy for both setups, with
MAE increases of approximately 7 to 8 m2 for models employing Spectral Kennaugh-like
features, and somewhat larger degradation for raw band-based models. Nonetheless,
Spectral Kennaugh-like features demonstrated slightly more robust generalization be-
haviour across spatial domains.

Thus, the Spectral Kennaugh-like representation again provided a minor performance
advantage over the direct use of raw Sentinel-2 bands.

Count of Deciduous Trees: Predictive performance for the count of deciduous trees
revealed consistent patterns across both Sentinel-2 data representations. Models trained
on raw Sentinel-2 bands achieved top MAE values between 0.185 and 0.236 trees and
RMSE values around 0.227 to 0.285.

In contrast, models utilizing the Spectral Kennaugh-like elements slightly improved the
accuracy, achieving MAE values between 0.175 and 0.199 and RMSE values ranging
from 0.216 to 0.244. The differences were relatively subtle but consistently favoured the
Kennaugh-like feature representation in the original spatial domain.

Cross-validation results showed typical performance degradation, with MAE increases
around 0.59 trees for the best Spectral Kennaugh-based models compared to 0.54–0.56 for
raw band models. Despite this, the Spectral Kennaugh-based models retained marginally
lower absolute errors during spatial transfer.

Overall, the Spectral Kennaugh-like elements maintained a slight advantage in estimating
deciduous tree counts, particularly in terms of robustness across spatial domains.

Count of Coniferous Trees: Modelling the count of coniferous trees exhibited similar
trends to the deciduous tree results. In the original spatial domain, raw Sentinel-2 band
models achieved MAE values between 0.095 and 0.127, while RMSE values ranged
from 0.126 to 0.160. The Spectral Kennaugh-like elements delivered nearly identical
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performance, with MAE values from 0.095 to 0.124 and RMSE values around 0.126 to
0.154.

Cross-validation analysis revealed performance declines for both approaches, with MAE
increases between approximately 0.9 and 1.2 trees. Models trained on raw Sentinel-2
bands displayed slightly higher error increases than those using Spectral Kennaugh-like
features.

The Spectral Kennaugh-based models maintained a marginal advantage in spatial gen-
eralization, achieving slightly lower cross-validation MAE and RMSE values overall.
Nonetheless, the differences between raw bands and Kennaugh elements remained small
for the count of coniferous trees.

Tree Area Coverage (%): Tree area coverage prediction followed the same general
patterns observed in the previous variables. In the original spatial domain, models based
on raw Sentinel-2 bands achieved MAE values ranging from approximately 0.678 to
0.768 and RMSE values between 0.891 and 1.071. The Spectral Kennaugh-like models
exhibited slightly improved performance, reaching MAE values between 0.612 and 0.662
and RMSE values from 0.801 to 0.866.

Under cross-validation, both approaches showed a noticeable performance degradation.
MAE increased by around 1.9 to 2.0 percentage points for both raw and Kennaugh-
based models, and RMSE shifted accordingly. Despite this general decline, the Spectral
Kennaugh features provided slightly more robust results, with lower absolute errors and
more stable variability across different spatial regions.

The Spectral Kennaugh representation appeared to support marginally better generaliza-
tion behaviour for predicting tree area coverage compared to the raw Sentinel-2 spectral
bands.

Sum of Crown Volume (m3): The sum of crown volume predictions demonstrated
clear differences between the feature sets. In the original spatial domain, models using
raw Sentinel-2 bands reached MAE values between approximately 27.3 and 29.3, while
the Spectral Kennaugh-like features yielded slightly better errors, ranging from 27.3 to
28.7. Similarly, RMSE values were marginally lower for models using the Kennaugh-like
features.

During spatial cross-validation, substantial performance drops were observed for both
approaches, with MAE increases in the range of 56 to 57 units. Notably, models based on
Spectral Kennaugh features exhibited slightly lower degradation in RMSE compared to
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those based on raw Sentinel-2 data, suggesting a small advantage in generalizing crown
volume estimation.

However, the magnitude of the overall performance shift indicated that predicting crown
volume remains a highly spatially sensitive task, independent of the specific input feature
set.

Mean Tree Height and Mean Crown Base Height (m): The prediction of mean tree
height and mean crown base height showed very close performance between the two
feature sets in the original spatial domain. For mean tree height, models based on raw
Sentinel-2 bands achieved MAEs of around 0.65–0.80 meters, while models trained
on Spectral Kennaugh-like elements achieved slightly lower MAEs, between 0.63–0.71
meters. This pattern also extended to RMSE values, confirming comparable accuracy
levels.

Cross-validation, however, revealed considerable spatial transfer degradation across both
feature sets. The increase in MAE and RMSE was somewhat lower for models using
Spectral Kennaugh-like inputs, implying a marginally better generalization in unseen
regions.

Similarly, mean crown base height estimation initially performed comparably across both
feature types, with slightly better MAEs observed for Spectral Kennaugh-like features
(around 0.73–0.81 meters) compared to raw Sentinel-2 bands (around 0.72–0.88 meters).
During spatial transfer, both feature types experienced large increases in error, although
Spectral Kennaugh-like features again showed a slightly reduced performance drop in
terms of RMSE and standard deviation.

Overall, both sets achieved similar accuracies, with slight robustness advantages for the
Kennaugh-based representations under spatial transfer conditions.

Model Performance and Preprocessing Effects

Preprocessing Trends: Analysis of preprocessing settings revealed consistent trends
across both Sentinel-2 raw bands and Spectral Kennaugh-like elements. Models apply-
ing aggressive preprocessing, particularly stricter masking thresholds combined with
Z-normalization, consistently outperformed their less aggressively preprocessed counter-
parts. The positive impact was particularly notable for RF models under both feature sets,
reducing overfitting and leading to better spatial transferability.
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Interestingly, the application of a minimal masking threshold (Mask > 0) without Z-
normalization led to substantial error increases during cross-validation, especially for
linear models and SVRs. In contrast, applying Mask > 1 and enforcing standardization
(Z=1) systematically improved both training and transfer performance.

Although these preprocessing effects were visible across both input types, they appeared
slightly more pronounced for Spectral Kennaugh-like elements, where normalization
consistently enhanced spatial robustness and reduced variability among cross-validation
results.

Model Diversity and Robustness: Across both Sentinel-2 raw bands and Spectral
Kennaugh-like elements, RF regressors demonstrated the highest robustness and consis-
tency. They dominated the top-performing models in terms of lowest MAE and RMSE,
and exhibited the most stable results across cross-validation regions. Especially under
aggressive preprocessing, RF models achieved low standard deviations, indicating low
variance in predictions.

SVR showed competitive performance under specific settings but were generally more
sensitive to preprocessing and cross-validation shifts. Linear regression models (and the
1D-CNN) performed considerably worse across nearly all variables, often serving as the
worst-case (or generally not competitive) baseline.

Comparing both input types, Spectral Kennaugh-like elements led to slightly improved
overall robustness, particularly for tree structural attributes such as mean tree height
and crown base height. The distribution of model performance (top, median, and worst
models) was narrower with Kennaugh-like elements, suggesting a reduced dependency
on specific hyperparameter choices compared to using raw bands.

Spatial Generalization and Transfer Behaviour

Cross-Validation Results: Spatial transfer experiments revealed substantial performance
declines across all models and variables, consistent with earlier observations. However,
the extent of degradation differed depending on the type of input features.

Models trained on Spectral Kennaugh-like elements generally exhibited slightly lower
increases in MAE and RMSE compared to models trained on raw Sentinel-2 bands. For
example, in the prediction of sum of crown area for deciduous trees, Kennaugh-based
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models displayed a performance shift of approximately 12–13 units in MAE, compared to
shifts of 12–40 units for raw bands depending on preprocessing configurations.

Similarly, tree count and tree area coverage predictions demonstrated relatively less
degradation with Kennaugh features. Nevertheless, for volumetric attributes such as sum
crown volume, both input types suffered considerable drops in performance, exceeding
50 units of MAE in most configurations.

Some variables, like mean tree height and mean crown base height, maintained compara-
ble levels of transferability between raw bands and Kennaugh-like elements, indicating
that both setups faced similar challenges when generalizing fine-grained structural metrics
across spatial domains.

Summary of Transferability: Overall, Spectral Kennaugh-like elements provided marginally
improved transferability across different spatial domains for most vegetation variables.
The models based on these features exhibited more stable generalization patterns, es-
pecially for area-related metrics such as tree area coverage and crown areas. However,
for volume estimations and finer vertical structural attributes, spatial transferability
challenges persisted, irrespective of the input feature type.

6.3.4 Discussion

This section synthesizes the findings from the comparative evaluation of raw Sentinel-2
reflectance bands versus their corresponding Kennaugh-like spectral transformations.
Building upon the unified experimental framework, the results offer insights into model
robustness, variable-specific challenges, and spatial transferability. Emphasis is placed on
how different data representations interact with model architectures and preprocessing
pipelines, and how these interactions influence predictive performance both within and
beyond the original AOI.

Model Performance and Generalization Behaviour

Model Performance: Across both Sentinel-2 raw data and the spectral Kennaugh-
like elements, RF regressors consistently demonstrated strong and stable predictive
performance. In nearly all evaluated forest variables, RF models with no depth restriction
(max_depth=None) and a logarithmic feature sampling strategy (max_features=log2)
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outperformed alternative regressors such as SVR, the 1D-CNN and Linear Regression. The
robustness of RF models was especially evident under aggressive masking and minimal
z-normalization, where their ensemble-based structure allowed effective learning from
moderately noisy or non-homogeneous feature spaces.

The repeated emergence of RF among the top-performing setups highlights their capacity
to model non-linear relationships and variable interactions that characterize forest struc-
ture. The consistency across both raw spectral inputs and transformed Kennaugh-like
features further indicates that RF are resilient to different data representations, making
them a reliable backbone model when transferring between raw and feature-engineered
input domains.

Effect of Preprocessing on Model Behaviour: The role of preprocessing steps, such
as masking low-quality pixels and applying z-score normalization, proved critical in
shaping model outcomes. In both the raw and Kennaugh-like datasets, aggressive
masking (Mask>1 or Mask>0) in combination with per-variable z-normalization (Z=1)
systematically improved performance metrics. These setups consistently achieved the
lowest MAE, RMSE, and MAD values in the original spatial domain.

Notably, the effect of preprocessing was slightly more pronounced in the Kennaugh-like
feature set, suggesting that the spectral decomposition benefits more from clean, high-
quality inputs. In contrast, SVR models exhibited comparatively unstable behaviour
across different preprocessing configurations, often deteriorating sharply when masking
or normalization strategies deviated from optimal settings. These trends underline the
importance of rigorous preprocessing pipelines, particularly when employing advanced
feature engineering steps such as hypercomplex projections.

Variable-Specific Trends and Model Suitability: Model performance exhibited variable-
specific patterns that were largely consistent across the two input domains. Structural
metrics such as tree area coverage (%) and count-based variables (number of deciduous
and coniferous trees) were predicted with relatively low absolute errors, while volumetric
quantities, especially crown volume (m³) and sum of crown area (m²), posed greater
challenges.

In both the raw and Kennaugh-like datasets, RF consistently excelled in predicting tree
counts and mean tree heights, indicating that ensemble methods effectively capture
the spectral cues corresponding to canopy density and height proxies. Conversely, the
estimation of crown volume, a more complex and compounding variable, exhibited larger
errors and greater sensitivity to cross-validation shifts. This suggests that volumetric
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forest attributes may require additional input modalities (e.g., active sensing data) or
more sophisticated modelling techniques to achieve robust predictions.

Interestingly, the Kennaugh-like features slightly improved the prediction of structural
variables compared to raw spectral bands alone. This hints at a potential benefit of
decomposing brightness and spectral contrast, particularly for height and density estima-
tions. However, the gains were moderate, underscoring that while feature engineering
offers improvements, the underlying signal-to-noise ratio and spatial resolution remain
critical limiting factors.

Spectral Decomposition Enhances Structural Interpretability: The slight edge ob-
served for Kennaugh-like features, especially in predicting structural variables like mean
height and tree count, points toward the interpretability benefits of spectral decompo-
sition. By separating brightness and contrast components, the transformation reduces
multicollinearity and highlights physiologically meaningful signal dimensions. This can
aid both model interpretability and data harmonization, particularly when used across
heterogeneous landscapes.

Limitations of CNN for Low-Context, Tabular Spectral Data: The 1D-CNN under-
performed consistently across both feature domains, reinforcing a key architectural
limitation: deep sequential models like CNN may not be well-suited to low-dimensional,
per-pixel spectral vectors with no inherent spatial or temporal order. Unlike in image or
time-series applications, the Sentinel-2 feature vectors lack structured continuity, making
the inductive bias of CNN suboptimal. A mismatch between data structure and model
architecture identified also in the preceding Sections.

Spatial Generalization and Transfer Modelling

Performance in Cross-AOI Domains: Transfer modelling results, evaluated by applying
models trained on the Steigerwald (AOI 1) data to independent target AOIs, revealed
a clear pattern of performance degradation across all configurations. Regardless of the
input domain, raw Sentinel-2 bands or spectral Kennaugh-like elements, the cross-AOI
MAE, RMSE, and MAD values were consistently higher than those observed in original-
domain validation. Nevertheless, RF regressors maintained relatively stable performance
margins compared to more sensitive models like SVR.

Importantly, models trained on the Kennaugh-like features demonstrated marginally
better resilience to domain shift. This was particularly evident for tree count and mean
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height predictions, where errors under cross-AOI application increased by a smaller factor
compared to models trained on raw spectral bands. This observation suggests that the
spectral decomposition into brightness and chromatic components may confer slight
advantages in capturing transferable spectral patterns linked to vegetation structure.

Model Setup and Stability: Model setups that had already favoured aggressive masking
and z-normalization within the original domain were also more stable under transfer
conditions. Particularly, configurations using max_depth=None and max_features=log2
in RF consistently ranked among the top-performing setups post-transfer. This indicates
that limiting overfitting to local spectral peculiarities during training aids in generalization
to novel landscapes.

In contrast, SVR models and linear baselines exhibited significant instability during
domain transfer, with errors often doubling compared to within-AOI evaluations. These
findings highlight the advantage of ensemble-based methods and suggest that feature
randomness and deep, unrestricted trees help models better generalize beyond the
training distribution.

Operational Implications and Transferability: From an operational standpoint, the
findings emphasize the trade-off between model performance and spatial transferability.
While high accuracies can be achieved when models are applied within their domain of
training, transferring to different forest contexts without additional adaptation introduces
notable uncertainty. Nevertheless, the relatively modest increase in error for key structural
variables, particularly when using Kennaugh-like inputs and robust RF setups, suggests
that Sentinel-2-based regression models can serve as a reasonable baseline for regional
forest monitoring tasks.

The observed trends further indicate that the feature engineering strategy, while beneficial,
does not fully bridge the gap introduced by spatial heterogeneity in spectral responses.
Therefore, applications requiring high-precision forest variable mapping across diverse
landscapes may benefit from domain adaptation techniques, model retraining, or the
integration of complementary data sources (e.g., SAR or LiDAR) to achieve stable and
operational transferability.
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6.4 Polarimetric Kennaugh Elements from Sentinel-1 Data

This section initiates another model benchmarking framework outlined in Section 6, ap-
plying it for the first time to the radar-only baseline scenario. Specifically, the experiment
focuses on Sentinel-1 C-band SAR data, processed into polarimetric Kennaugh elements
[288] (see Section 2.2, and evaluates their predictive capacity in modelling continuous
forest structure variables provided by the Wald5Dplus dataset [148], as described in
Section 1.2.2.

As a initiative experimental configuration, this setup serves two primary purposes: first, it
establishes a reference baseline against which later fusion strategies can be evaluated,
and second, it enables controlled investigation of model sensitivity under mono-temporal,
single-modality conditions.

6.4.1 Materials

The specific acquisition date and preprocessing steps taken are detailed in Section 6.2,
within the materials description of the preceding Polarimetrically and Spectrally Fused
Sentinel-1 and Sentinel-2 Data setup.

6.4.2 Results

The evaluation focuses on eight forest-related target variables encompassing both struc-
tural and compositional characteristics at the stand level. These include metrics such as
crown dimensions, mean tree height, and species-specific aggregations (e.g., deciduous
cover or conifer counts). Derived from high-resolution airborne and terrestrial LiDAR, the
variables were aggregated to a 10 m spatial resolution to align with the Sentinel-1 input
data. As previously outlined in Table 1.3, these reference rasters serve as physiologically
grounded benchmarks for assessing the predictive capacity of SAR-based modelling.

Model Evaluation per Variable

Table references correspond to results from the original spatial domain, in Tables A.72
to A.79, while corresponding performance shifts are detailed in Tables A.80 to A.87.
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Across the evaluated forest structural variables, RF regressors consistently achieved the
strongest predictive performance in most configurations. The following summarizes the
best, median, and worst model performances in the original spatial domain for each
target variable:

Sum of Crown Area of Deciduous Trees (m2): The best RF models, using Mask > 1,
Z-score filtering at Z = 1, and aggressive outlier filtering, achieved a minimum MAE of
3.889 m2 and RMSE of 4.857 m2. The median model (RF, Mask > 1, no Z-score filtering,
no aggressive filtering) exhibited higher errors (MAE: 12.074 m2). The worst performance
was recorded by a Linear Regression model with an MAE of 20.278 m2, highlighting its
limited capacity to model complex patterns.

Sum of Crown Area of Coniferous Trees (m2): RF models again dominated performance,
achieving a minimum MAE of 3.386 m2 under aggressive preprocessing settings. Relaxed
filtering configurations caused a substantial rise in errors (median MAE: 9.627 m2), while
Linear Regression produced notably poorer results (MAE: 15.699 m2).

Count of Deciduous Trees: Tree count predictions showed exceptionally low errors.
Best-performing RF attained MAEs of around 0.168 trees. The gap between RF and linear
baselines widened dramatically for this discrete variable, where Linear Regression models
yielded errors exceeding 0.9.

Count of Coniferous Trees: Consistent patterns were observed, with RF models achiev-
ing top MAE scores of 0.098 and RMSE of 0.128. Linear Regression’s instability again
manifested through poor metrics (MAE: 0.488).

Tree Area Coverage (%): For fractional tree cover, RF with Mask > 1, Z = 1, and
aggressive filtering provided the best results (MAE: 0.463%). SVR emerged as a viable
competitor in certain configurations but was less consistent across validation stages.

Sum of Crown Volume (m3): Volume metrics presented greater challenges. RF delivered
competitive results (MAE: 23.014 m3), yet errors increased substantially under relaxed
preprocessing. This sensitivity underscores the complexity of modelling volumetric
attributes using SAR data.

Mean Tree Height and Mean Crown Base Height (m): Height-related variables were
relatively robust. The best RF models achieved MAEs of 0.610 m (tree height) and 0.711 m
(crown base height), confirming that tree height is a more spatially stable and predictable
trait.
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Model Performance and Preprocessing Effects

Preprocessing Trends: Optimal model performance systematically emerged when ap-
plying moderate masking (Mask > 1), mild Z-score filtering (Z = 1), and aggressive
outlier filtering. These configurations suppressed extreme noise while retaining sufficient
ecological variability, especially critical for volume- and crown-based metrics. Configura-
tions lacking Z-score filtering or employing relaxed masking thresholds (e.g., Mask > 0)
degraded model performance, even for robust models like RF. Linear Regression models
showed significant vulnerability to preprocessing choices, performing poorly across all
configurations.

Model Diversity and Robustness: RF consistently outperformed other models across
both original and validation domains. While SVR models occasionally approached RF
performance on simple variables, their instability across spatial domains limited their
operational value. Linear models were generally unable to capture the complex, non-
linear relationships inherent in the data.

To complement the narrative performance overview, Table 6.2 provides a consolidated
summary of the best-performing model configurations for each forest structure attribute,
detailing the corresponding model type, preprocessing parameters, and associated error
metrics.
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Table 6.2.: Summary of best-performing model configurations across all forest structural at-
tributes using Sentinel-1 Kennaugh features. For each variable, the model yielding
the lowest validation error (based on MAE) is reported, along with its specific prepro-
cessing parameters

Target Variable Experiment Model Parameters MAE

Sum crown area of
deciduous trees (m²)

Mask > 1, Z = 1,
Aggressive = True

max_depth=None

max_features=log2

min_samples_leaf=2

3.889

Sum crown area of
coniferous trees (m²)

Mask > 1, Z = 1,
Aggressive = True

max_depth=None

max_features=log2

min_samples_leaf=2

3.386

Count of deciduous trees Mask > 1, Z = 1,
Aggressive = True

max_depth=None

max_features=log2

min_samples_leaf=2

0.168

Count of coniferous trees Mask > 0, Z = 1,
Aggressive = True

max_depth=None

max_features=log2

min_samples_leaf=2

0.098

Tree area coverage (%) Mask > 1, Z = 1,
Aggressive = True

max_depth=None

max_features=log2

min_samples_leaf=2

0.463

Sum crown volume (m³) Mask > 1, Z = 1,
Aggressive = True

max_depth=None

max_features=log2

min_samples_leaf=2

23.014

Mean tree height (m) Mask > 1, Z = 1,
Aggressive = True

max_depth=None

max_features=log2

min_samples_leaf=2

0.610

Mean crown base height
(m)

Mask > 1, Z = 1,
Aggressive = True

max_depth=None

max_features=log2

min_samples_leaf=2

0.711

Spatial Generalization and Transfer Behaviour

Cross-Validation Results: Spatial transfer testing revealed systematic performance
degradation across all models and variables, with the extent of decline varying:

• Sum Crown Area (Deciduous and Coniferous): RF models showed notable error
increases under transfer, with ∆MAEs around 13.5 and 8.7 respectively for best
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configurations. Poorly tuned models, including certain SVRs, exhibited extreme
transfer errors exceeding 30.

• Tree Count Variables: Tree counts generalized more reliably, with best RF exhibit-
ing ∆MAEs around 0.57 for deciduous and 1.24 for coniferous trees.

• Tree Area Coverage (%): Transfer degradation was moderate (∆MAE around 2.2)
for RF. SVRs demonstrated better stability in isolated cases but with higher absolute
errors.

• Sum Crown Volume (m3): Volume metrics proved difficult to generalize, with
∆MAEs approaching 64 in some cases, highlighting the complexity of modelling 3D
attributes under SAR data.

• Mean Tree Height and Crown Base Height (m): RF models maintained relatively
stable performance, with ∆MAEs between 1.2 and 1.4, affirming the robustness of
height metrics.

The performance deltas of optimal model setups relative to baseline configurations for
each forest structural attribute are summarized in Table 6.3. This comparison highlights
the impact of specific preprocessing strategies and model choices on predictive accuracy
across variables.
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Table 6.3.: Summary of best-performing model configurations across all forest structural at-
tributes using Sentinel-1 Kennaugh features in the cross-validation scenario (Delta
Metrics). Reported error values reflect improvements relative to the respective base-
line setup for that attribute.

Target Variable Experiment Model Parameters ∆MAE

Sum crown area of
deciduous trees (m²)

Mask > 1, Z = 1,
Aggressive = True

max_depth=None

max_features=log2

min_samples_leaf=2

13.59

Sum crown area of
coniferous trees (m²)

Mask > 1, Z = 1,
Aggressive = True

max_depth=None

max_features=log2

min_samples_leaf=2

8.67

Count of deciduous trees Mask > 1, Z = 1,
Aggressive = True

max_depth=None

max_features=log2

min_samples_leaf=2

0.58

Count of coniferous trees Mask > 0, Z = 1,
Aggressive = True

max_depth=None

max_features=log2

min_samples_leaf=2

1.24

Tree area coverage (%) Mask > 1, Z = 1,
Aggressive = True

max_depth=None

max_features=log2

min_samples_leaf=2

2.21

Sum crown volume (m³) Mask > 1, Z = 1,
Aggressive = True

max_depth=None

max_features=log2

min_samples_leaf=2

64.30

Mean tree height (m) Mask > 1, Z = 1,
Aggressive = True

max_depth=None

max_features=log2

min_samples_leaf=2

1.38

Mean crown base height (m) Mask > 1, Z = 1,
Aggressive = True

max_depth=None

max_features=log2

min_samples_leaf=2

1.18

In summary, RF models demonstrated the best combination of in-domain accuracy and
transferability across variables. Height- and count-based attributes transferred more
reliably than volume- or crown area-based metrics. Preprocessing choices had a profound
impact on both in-domain performance and cross-area generalization success.
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6.4.3 Discussion

Before concluding this section, a brief discussion of the observed modelling behaviours,
preprocessing impacts, and transferability patterns is warranted. The following subsec-
tions reflect on performance trends across variables and configurations, offering insights
into the generalization capabilities and operational implications of using Sentinel-1-based
polarimetric features.

Model Performance and Generalization Behaviour

Model Performance: Across all evaluated forest structural variables, RF regressors
consistently delivered the strongest predictive performance when using Sentinel-1-derived
polarimetric Kennaugh elements as input features. In intra-AOI evaluation, RF exhibited
the lowest MAE and RMSE across nearly all target variables. Their ability to model
non-linear relationships and inherent robustness to noisy or incomplete input features
is particularly advantageous when working with SAR-based predictors, which are more
abstract compared to multispectral variables.

Effect of Preprocessing on Model Behaviour: Preprocessing configurations had a
decisive impact on model accuracy. Best-performing models predominantly employed
moderate masking (Mask > 1), light Z-score filtering (Z = 1), and aggressive outlier
suppression. This finding suggests that selective data cleaning enhances the predictive
signal extracted from Kennaugh elements without excessively discarding ecologically in-
formative variance. Configurations omitting masking or using no outlier trimming yielded
considerably poorer model fits, particularly for volume- and crown-related metrics.

Variable-Specific Trends and Model Suitability: Prediction quality varied systematically
across forest attributes. Sum crown volume and crown area metrics exhibited higher
absolute errors and suffered the greatest degradation during spatial transfer. These
structural variables are inherently more sensitive to SAR’s indirect measurements of
canopy density and geometry. In contrast, variables such as mean tree height, crown
base height, and tree counts generalized more effectively, maintaining relatively lower
cross-domain error increases. This indicates that vertical structural features and discrete
object counts are more reliably captured by Sentinel-1 polarimetric signatures.

SAR Feature Interpretability: Although SAR-based Kennaugh elements may appear
abstract compared to spectral features, they encode physically grounded descriptors of
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backscatter behaviour. The strong predictive performance achieved using these inputs
alone highlights their informational richness and validates their integration into EO–ML
workflows as more than just auxiliary features.

Importance of Label Design: The differential model performance across target variables
also underscores the value of carefully engineered reference labels. The ability of SAR
features to predict certain attributes, such as tree height or crown base height, more
effectively suggests a high degree of temporal and structural alignment between EO
inputs and the Wald5Dplus labels. This reinforces the critical role of well-calibrated,
temporally synchronized reference data in achieving robust model outcomes.

CNN Limitations on Tabular SAR Features: While CNN are powerful in spatial or
temporal sequence learning, their application to flattened, tabular SAR-derived features
presents inherent limitations. The Kennaugh features used here lack spatial adjacency
or sequential structure, reducing the effectiveness of convolutional filters designed to
exploit such patterns. The comparatively lower performance of 1D-CNN in this study
suggests an architectural mismatch, highlighting the importance of aligning model design
with the underlying data modality.

Spatial Generalization and Transfer Modelling

Performance in Cross-AOI Domains: While RF models demonstrated strong in-domain
predictive power, transfer to geographically distinct validation regions resulted in ex-
pected performance degradation across all variables. The extent of this decline varied
by target: tree counts and height variables retained moderate accuracy, whereas crown
area and volume metrics displayed larger shifts. Nonetheless, top-performing RF configu-
rations maintained reasonable predictive fidelity even under domain shift, reinforcing
their operational viability for regional forest monitoring. Interestingly, models trained
with moderate preprocessing (Mask > 1, Z = 1) not only achieved the best in-sample
results but also exhibited greater robustness in cross-AOI transfer compared to models
with relaxed or overly aggressive preprocessing.

Model Setup and Stability: Across the diverse experimental grid, homogeneous RF
configurations outperformed heterogeneous alternatives such as SVR or Linear Regression,
as well as the 1D-CNN. Although individual SVR setups achieved localized success in
specific configurations (e.g., tree area coverage), their poor stability during transfer
underscored the strategic advantage of RF-based ensembles for operational deployment.
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Simplicity, robustness, and minimal hyperparameter sensitivity remained hallmarks of RF
performance across domains.

Operational Implications and Transferability: The strong overall performance of RF
models trained on pure SAR Kennaugh elements highlights the potential of polarimetric
transformations for stand-alone forest monitoring solutions, particularly in areas or time
periods where multispectral data may be unavailable or contaminated (e.g., cloud cover).
However, spatial transfer remains a core challenge, especially for volume-dominated met-
rics. These results suggest that while SAR alone enables powerful predictive capabilities,
hybrid SAR-optical fusion may still be necessary to maximize spatial generalization for
more complex structural attributes.

Future extensions could include integration of additional polarimetric descriptors or
object-based aggregation approaches to further enhance the capture of 3D canopy struc-
tures. Furthermore, embedding strict cross-AOI validation setups, as employed here,
should become standard practice when assessing the deployment readiness of SAR-
based forest attribute models. Taken together, these findings confirm that RF trained
on polarimetric Kennaugh elements provide a scalable and interpretable pathway for
EO-based forest monitoring, with clear trade-offs between robustness, transferability, and
complexity depending on the specific forest attributes modelled.

6.5 Polarimetric Kennaugh Elements from TerraSAR-X
and ALOS-2 Data

Building on the insights gained from the analysis of technically partially polarimetric
Kennaugh elements derived from Sentinel-1 data, the following chapter expands the
investigation to truly polarimetric sources, TerraSAR-X and ALOS-2, which provide
full quad-polarimetric acquisitions. This enables a more comprehensive exploration of
polarimetric information content and its impact on forest structure modelling. These
datasets are evaluated in combination with the continuous Wald5Dplus label dataset,
described in Section 1.2.2. Only key findings and insights from this configuration are
included in this thesis, with detailed results provided in the associated publication
[278].
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6.5.1 Materials

In this experiment, five different fusion scenarios were explored to optimize the estimation
of forest parameters using dual-frequency polarimetric SAR data. These scenarios include
the mono-frequency L-band and X-band analysis, a simple layer stack of Kennaugh
elements from both ALOS-2 (L-band) and TSX (X-band), and more complex additive and
multiplicative fusion approaches. Each scenario leverages the unique properties of SAR
wavelengths to enhance the understanding of forest structure, ranging from canopy cover
to tree height and biomass estimation.

ALOS-2 data: The L-band data was acquired by ALOS-2 in May 2017 and retrieved via
personal investigator no. ER3A2N089 from JAXA. The polarimetric single-look complex
data were pre-processed by the Multi-SAR processor at DLR [38]. After Kennaugh
decomposition and uniform multi-looking using eleven spatial looks, the layers are
geocoded, gamma corrected, and further adaptively multi-looked by the multi-scale
multi-looking approach. The processor outputs ten normalized Kennaugh elements in
16bit unsigned integer scaling on a 10 m by 10 m raster.

TerraSAR-X data: The X-band data of TSX data was already acquired in May 2010 during
the dual-receive antenna campaign and retrieved via proposal no. MTH3885 from DLR.
The preprocessing is equal to the one of the L-band data.

Labels: The reference labels are based on high-resolution airborne laser scanning and
multispectral imagery collected over four representative transects in the Bavarian Forest
National Park. The data, generated using a patented normalized cut segmentation algo-
rithm (Treefinder), provided over half a million individual tree crowns with attributes
such as height, crown area, and base height. While related to the broader Wald5Dplus
project, these transects represent a focused subset, specifically rasterized to 10 m resolu-
tion to align with SAR inputs and enable detailed pixel-wise forest structure modelling
[278], see Transects 1–4 (Reference Plots) in Table 1.1.

6.5.2 Methods

To systematically evaluate the added value of full quad-polarimetric SAR data for forest
structure modelling, a series of experimental scenarios were constructed using ALOS-2
(L-band) and TSX (X-band) datasets. These configurations span both mono-frequency
setups and dual-frequency fusion strategies, as summarized in Figure 6.21.
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Figure 6.21.: Overview of evaluated scenarios based on ALOS-2 L-band and TSX X-band PolSAR
data, including mono-frequency evaluations and dual-frequency fusion strategies.

In order to assess the suitability of different fusion approaches, five test scenarios are
prepared, see Table 6.4. The first two scenarios evaluate the mono-frequency PolSAR
data of ALOS-2 and TSX. The simplest image fusion method is the joint interpretation as
layer stack consisting of the ten Kennaugh elements from ALOS-2 and the ten Kennaugh
elements from TSX. Thanks to the similarity of the Kennaugh elements to hypercomplex
bases, they can be combined as via sums and differences in the same way [289]. The
backscattering strength serves a weight in this type of image fusion, i.e. the polarimetry
of the stronger backscattering dominates. Normalized Kennaugh elements directly corre-
spond to normalized hyper-complex bases and therewith, enable the image fusion in a
relative manner [360]. This technique levels out differences in the backscattering strength
by separating polarimetry from intensity and thus, coincides with the SARsharpening
methodology [285] and relative change detection techniques [287].

Table 6.4.: Evaluated Scenarios for Forest Parameter Estimation

No. Description No. of K Elements

1 L-band (mono-frequency) 10

2 X-band (mono-frequency) 10

3 Layer stack (dual-frequency) 20

4 Additive fusion (dual-frequency) 20

5 Multiplicative fusion (dual-frequency) 20
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RF regression was selected for its robustness and high accuracy in handling complex
and multi-dimensional data, which is characteristic of PolSAR datasets. The RF model’s
ensemble learning approach, involving the generation of multiple decision trees from
bootstrap samples, makes it particularly well-suited for this study’s objectives. It allows
for both intra-AOI predictions, using data from within the same area, and cross-regional
transfer models, applying data from one area to predict outcomes in another.

The algorithm is applied in three distinct ways: RF models trained on data from a specific
AOI are utilized for Intra-AOI prediction. This enables target variable prediction within the
same AOI, leveraging the algorithm’s predictive power for localized insights. Integrated
Models for Individual AOIs are developed by aggregating data from multiple AOIs,
creating a comprehensive model for predicting target variables within each AOI separately.
This approach enhances individual predictions by utilizing collective information from
various AOIs. Cross-Regional Transfer Models involve training models with data from one
AOI to predict target variables in another AOI, employing a transfer learning approach
that integrates knowledge acquired from one AOI to improve predictions in a different
AOI. This strategy enhances the overall generalization capability of the models. Z-score
trimming is applied to address outliers, involving the calculation of Z-scores for each
input variable and applying a threshold (e.g., three standard deviations) to identify and
remove outliers from the dataset. This step enhances the robustness and reliability of the
predictions.

6.5.3 Results

Scenario 1 – L-band (mono): In Scenario 1, utilizing L-band mono-frequency data,
the models consistently deliver predictions for a range of forest-related target variables.
Consistently, across all metrics, the Intra-AOI model, is found to outperform the other
models, whereas the lowest MAE, MAD and STD values are consistently achieved by
the Intra-AOI model. For instance, in the prediction of "Proportion of forested area," a
remarkably low MAE of 3.95 is observed. The combination of multiple models, does
not yield an improvement in terms of precision. Notably, the Transfer model is well
performing for “Number of dead trees”, but also “Mean crown volume”.

Scenario 2 – X-band (mono): In Scenario 2, employing X-band mono-frequency data
across all target variables, the Intra-AOI model consistently demonstrates superior per-
formance compared to the other models in Scenario 2. In particular, key variables such
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as "Summed-up crown area of deciduous trees," "Summed-up crown area of coniferous
trees," "Summed-up crown area of dead trees," "Number of deciduous trees," "Number
of coniferous trees," and "Number of dead trees” yields moderate predictions accuracy
results.

Scenario 3 – Layer stack (dual): Scenario 3 employed a layer stack of both X-band and
L band radar data for the regression analysis of various target variables. The Intra-AOI
model delivers relatively consistent and competitive results across all target variables,
emphasizing the scenarios predictive accuracy. This scenario delivers especially consistent
and precise MAE values, "Proportion of forested area", "Mean crown volume", "Mean
tree height" and "Mean crown base height". The Unified model displays performance
metrics on a par with the Intra-AOI model. While scenario 3 generally fares well in all
target variables, it exhibits some significant outliers, when applying the transfer model,
warranting further investigation.

Scenario 4 – Additive fusion (dual): In Scenario 4, leveraging the additively fused
dataset, the Intra-AOI model performs best. Detail-oriented variables such as “Summed-
up crown area of deciduous trees", "Summed-up crown area of coniferous trees", "Summed
up crown area of dead trees," "Number of deciduous trees", "Number of coniferous trees"
(Figure 1) and "Number of dead trees” yield significantly lower precision than, "Proportion
of forested area", "Mean crown volume", "Mean tree height" across all tested models. In
terms of transferability, the 4th scenario demonstrates however a robust performance.
It steadfastly exhibits the lowest MAE, MAD and STD values across most target vari-
ables, but particularly for “Summed-up crown area of deciduous trees”, "Number of
deciduous/coniferous trees".

Scenario 5 – Multiplicative fusion (dual): The multiplicative fusion of both X- and
L-band data exhibits relatively stable and consistent performance across the range of
target variables. This scenario does not produce many outliers, especially across variables
concerning Crown area and the actual count of tree, suggesting that the models are
robust and provide dependable predictions. The Intra-AOI model, maintains a steady
level of performance. Similarly, the unified model, demonstrates stable predictions across
the target variables, however, exhibits no improvement compared to the Intra-AOI model.
The Transfer model performs adequately in terms of knowledge transfer across different
AOIs. It consistently exhibits low MAE values, but it may not consistently outperform the
other scenarios in this specific context.
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6.5.4 Discussion

The evaluation of five scenarios for predicting forest-related target variables across four
transects has provided valuable insights into their performance to be discussed.

Scenario 1 – L-band (mono): In Scenario 1, utilizing L-band mono-frequency data, the
Intra.AOI model consistently outperforms the other models. These results emphasize the
significance of utilizing L-band radar data, particularly for target variables like "Proportion
of forested area" and "Mean crown volume," where the longer wavelength of L-band
data contributes to improved predictive performance. Overall, it exhibits relatively
robust precision metric values within the expected range for most variables; it did not
consistently outperform other scenarios. This scenario might be suitable for situations
where L-band data is readily available and other bands are not.

Scenario 2 – X-band (mono): In Scenario 2, employing X-band mono-frequency data,
the Intra-AOI model consistently demonstrates decent performance compared to the
other models in that scenario. Due to the utilization of X-band mono-frequency data,
with enhanced resolution and wavelength characteristics (compared to L-band data), it
may be beneficial in predicting specific fine-scale ecological target variables. It proves to
be more effective in estimating “Summed-up crown area of deciduous trees, coniferous
and dead trees”, as well as the “Number of deciduous, coniferous and dead trees”, when
compared to the L-band data. However, it does not exhibit any remarkable advantages
over other scenarios. In cases where X-band data is more accessible, this scenario can
be considered as these findings underscore the potential advantages of utilizing X-band
radar data for ecological assessments, particularly for the mentioned target variables.

Scenario 3 – Layer stack (dual): Scenario 3 employs a layer stack of both X-band and
L-band radar data. As demonstrated in Table 3, Scenario 3 may be very well suited for
the prediction of our forest-related parameters. It consistently delivers competitive results
across all target variables, especially in the Intra-AOI model, as well as the Unified model,
with significantly low and robust MAE, MAD and STD values, very well within the true
target value ranges. Notably, it is susceptible to outliers. The Transfer model, shows
mixed results performing well in some target variables but struggling in others. This
indicates that its performance is not consistently superior, especially when transferring
knowledge from one AOI to another.

Scenario 4 – Additive fusion (dual): In the cross-regional Transfer Models scenario,
Scenario 4 emerged as a robust performer. It consistently delivers precise predictions,
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which is demonstrated consistently for target the variables "Proportion of forested area",
"Mean crown volume", "Mean tree height". These results underscore its unparalleled
predictive prowess, particularly when transferring knowledge across diverse geographical
regions. This indicates that the additive fusion of X and L band data is effective in
capturing real-world conditions and characteristics, even in unfamiliar, i.e., untrained,
environmental settings.

Scenario 5 – Multiplicative fusion (dual): Scenario 5 consistently exhibits constant
predictions for a wide range of forest attributes in both Intra-AOI Prediction and Inte-
grated Models scenarios, while also achieving notable advantages in the Transfer-Domain.
Its performance is particularly noteworthy for variables related to crown area and tree
counts. This suggests that multiplicative fusion of X and L-band data enhances the model’s
accuracy, making it well-suited for localized forest assessments.

Implications and Applications

The choice of scenario and the combination of PolSAR data significantly impact accurate
forest parameter prediction. Scenario 3 offers valuable insights into specific forested
areas, excelling in key variables like forested areas, crown volume, tree height, and crown
base height. Despite its competitive performance, Scenario 3 may exhibit vulnerability
to outliers. In contrast, Scenario 5 excels in localized predictions, proving effective
detailed assessments within specific areas. Scenario 4 showcases expertise in transferring
knowledge across regions, particularly excelling in estimating summed-up crown areas of
deciduous trees and counts of deciduous and coniferous trees. These findings empower
forest management professionals to tailor their approach based on the study area’s
specific characteristics, providing valuable tools for more effective and targeted forest
management.

Limitations and Future Directions

The effectiveness of these scenarios may depend on the characteristics of the AOIs and
datasets used, necessitating further validation in diverse contexts. One notable limitation
in this study was the consistently lower accuracy of the transfer model across all scenarios.
While this discrepancy may arise from variations in geographical and environmental
conditions between training and validation areas, it presents an opportunity for improve-
ment. To address this limitation and enhance the transfer model’s performance, future
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investigations could explore parameter optimization and alternative knowledge transfer
methods. Incorporating additional reference data from a wider range of geographical
locations may also help mitigate accuracy disparities and improve generalizability. Such
efforts would deepen our understanding of scenario applicability. Additionally, our plausi-
bility check by ground truth using on-site data is a crucial component of our validation
strategy, ensuring the accuracy of our predictions. Results from these validations will be
presented in future research, further bolstering confidence in our models’ and individual
scenarios practical utility.

Comparison Between Sentinel-1-derived Kennaugh Element-Based Modelling
and TSX/ALOS-2 Scenarios

Following the evaluation of RF regression models trained on Sentinel-1-derived Kennaugh
elements (Section 6.4.2), subsequently alternative modelling results based ond different
SAR scenarios from TSX and ALOS-2 sensors are assessed. These complementary experi-
ments involve five distinct configurations per variable, representing different acquisition
and preprocessing conditions.

Comparison of In-Sample Accuracies: Across intra-AOI setups, both Sentinel-1 and
TSX/ALOS models demonstrated competitive predictive accuracy. However, models based
on Sentinel-1 Kennaugh elements generally achieved lower MAE and MAD for most
structural forest variables. For instance, summed crown area and tree count predictions
using Sentinel-1 inputs typically yielded MAE values 30–50% lower than their TSX/ALOS
counterparts, indicating superior fitting capabilities under the same-domain conditions.
This seemingly counter-intuitive result may be attributed to several factors. First, Sentinel-
1 offers a substantially higher temporal revisit frequency (up to every 6 days), allowing
selection of optimal acquisition dates aligned with peak vegetation conditions, something
less feasible with TSX or ALOS due to limited temporal coverage. Inherently, while TSX
and ALOS provide quad-polarimetric data, their acquisition footprints and scheduling
constraints often lead to scene-specific limitations or reduced ecological representative-
ness. Lastly, C-band (Sentinel-1) may be better suited to capture canopy-level scattering
in temperate forests compared to L-band (ALOS) or X-band (TSX), which either penetrate
too deeply or reflect mostly fine surface structures, respectively.

Comparison of Transferability: Under spatial cross-validation (transfer to independent
areas), Sentinel-1 Kennaugh models showed comparatively greater robustness. While
all models exhibited increased errors upon transfer, the degradation in MAE and MAD
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was notably more pronounced for TSX/ALOS-based models, especially for attributes
related to crown area, dead trees, and forest coverage proportions. This suggests that
moderate-resolution Kennaugh features, capturing generalized scattering physics, better
support cross-regional generalization compared to very high-resolution, site-specific SAR
textures.

Variable-Specific Patterns: The advantage of Sentinel-1 Kennaugh Element based mod-
elling was particularly evident for variables sensitive to dielectric or structural hetero-
geneity, such as tree height, crown base height, and summed crown volume. In contrast,
tree counts showed similar transfer behaviours across datasets, reflecting that fine-scale
object enumeration remains challenging regardless of sensor resolution without specific
object delineation strategies.

6.6 Conclusions

This chapter systematically evaluated how different EO modalities, feature representa-
tions, fusion strategies, and ML models interact to predict forest structural attributes
using the continuous Wald5Dplus label dataset. Through a series of controlled experi-
ments, from single-modality baselines to spectrally, polarimetrically, and temporally fused
ensemble configurations, this study setup identified the combinations that best balance
predictive accuracy and spatial generalization.

The findings not only establish benchmark performances across multiple dimensions of
model and data complexity but also yield practical insights for operational ecological
monitoring. In the following, the primary research questions posed at the outset are
revisited and summarize how the analyses addressed each of them.

6.6.1 Lessons Learned

This section synthesizes methodological, empirical, and operational insights derived from
benchmarking remote sensing modalities, fusion strategies, and model architectures using
the continuous Wald5Dplus forest structure dataset. The central question guiding this
chapter was:
Which EO–model configurations yield the most accurate predictions of continuous forest
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attributes? To address this, a modular framework incrementally explored model archi-
tectures and EO configurations, from single-sensor setups to fully fused temporal-spatial
representations. The Wald5Dplus benchmark configuration—featuring spectral, polari-
metric, and temporal fusion of Sentinel-1 and -2 via hypercomplex bases—served as a
performance reference, with all other tiers interpreted as simplified variants or base-
lines.

Sentinel-1 Polarimetric Kennaugh Elements and RF Modelling

• RF consistently performed best across structure variables. RF delivered the
lowest MAE/MAD in both intra- and cross-AOI settings. Their resilience to domain
shift reinforced their suitability for SAR-based forest structure modelling.

• Preprocessing has major effects on stability. Optimal setups combined Mask > 1,
Z-score filtering at Z = 1–3, and in some cases aggressive outlier removal. Relaxed
settings increased overfitting, particularly in crown/volume metrics.

• Vertical metrics generalize better than volumetric ones. Mean tree height and
crown base height retained relatively stable transfer performance, while crown area
and volume suffered greater degradation.

• RF outperformed hybrid or deep learning models. CNN and SVRs showed
inconsistent behaviour under domain shift, while homogeneous RF ensembles
proved robust, interpretable, and accurate.

• Cross-validation alone is insufficient. Many strong in-domain results failed to
generalize, demonstrating the importance of explicit domain transfer evaluations in
EO model benchmarking.

Comparison: Sentinel-1 and TerraSAR-X and ALOS-2 Polarimetric Modelling

• Sentinel-1 provided the most transferable performance. Across variables, MAEs
were 30–50% lower than those of commercial SAR systems.

• TSX and ALOS-2 lacked robustness across AOIs. Despite higher resolution,
reduced temporal coverage and polarimetric consistency likely explain weaker
generalization.
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• High-resolution sensors may suit niche tasks. While not ideal for broad-scale
modelling, TSX/ALOS may provide value in site-specific, high-resolution applica-
tions.

Raw Sentinel-2 Bands and Spectral Kennaugh-like Elements

• Raw bands perform best in-domain. Tree count, canopy coverage, and crown
area were predicted most accurately under mono-AOI conditions.

• Spectral Kennaugh-like elements improved generalization. By normalizing
across illumination and atmospheric noise, transfer resilience increased.

• Each representation suits specific tasks. Raw reflectances captured discrete
crown-level variation, while spectral transformations enhanced spatial consistency.

• Spectral decompositions reduce acquisition-induced variability. This benefited
models deployed in temporally or spatially variable domains.

Comparison: Sentinel-1 and Sentinel-2 Data

• SAR features are superior for 3D structural traits. Height and volume metrics
were better captured by polarimetric Kennaugh elements.

• Spectral bands dominated horizontal coverage tasks. Tree count and canopy
area models favoured Sentinel-2 inputs.

• Transformations improved Sentinel-2, but not enough to replace SAR. While
spectral normalization helped, SAR remained crucial for structure prediction.

• Modality integration is key. Each input type captures complementary biophysical
signals.
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Polarimetrically and Spectrally Fused Sentinel-1 and Sentinel-2 Data

• Fusion consistently enhanced predictive accuracy. MAEs declined for all at-
tributes, particularly tree height and count.

• Biophysical synergy emerged. Structure from SAR and foliar cues from optics
yielded complementary features.

• Preprocessing remains vital post-fusion. Masking and filtering were still required
to stabilize high-variance variables.

• Transferability improved, but not equally. Crown volume remained sensitive to
spatial variability, even in fused models.

• RF ensembles again proved most reliable. Gains from fusion were best exploited
by RF architectures.

Polarimetrically, Spectrally and Temporally Fused Sentinel-1 and Sentinel-2 Data
& Ensemble Learning: Enhancing Generalization and Modularity

• Tri-modal fusion achieved the highest performance. Full spatio-temporal fusion
using hypercomplex bases produced the most accurate models.

• Stacked RF ensembles improved transfer performance. Ensembles combining
stratified base models via a meta-level RF outperformed all individual learners in
cross-AOI settings, confirming the value of spatial tiling and model fusion.

• Even sparse training footprints yielded robust generalization. The full-AOI
ensemble, trained on selected tiles (e.g., T10, SW_1), generalized to the 12x larger
NP region with minimal performance loss, demonstrating extrapolative strength.

• RF-only ensemble designs offered practical and technical benefits. Homoge-
neous RF ensembles minimized complexity while delivering high performance,
simplifying operational deployment and retraining.

• Temporal ensemble stacking added resilience. Multi-date inputs improved
robustness to seasonal dynamics, acquisition artifacts, and reference label aging
(e.g., 2016–2018 labels versus 2020–2021 predictions).
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Operational and Methodological Takeaways

• Modularity supports operational scaling. The ensemble framework permits
incremental inclusion of new base models and minimal meta-learner retraining,
aligning with long-term monitoring needs and near-real-time workflows.

• Label aging and misalignment were manageable. Despite temporal offsets,
predictions aligned closely with current forest states, especially for deciduous
stands. This demonstrates ensemble tolerance to lagged reference inventories.

• Further gains require enhanced stacking strategies. Incorporating normalized
base outputs, strict OOF training, and potentially hybrid meta-learners (e.g., Ridge
or GBT) could address current limitations and refine model aggregation.

• Pixel-level modelling introduces residual uncertainty. Georegistration errors,
label noise, and scale mismatches suggest that future models may benefit from
object-based learning or coarser spatial aggregation.

Together, these lessons underscore the value of integrated EO fusion—across sensors, dates,
and transformations—when paired with robust RF ensemble learning. This approach repre-
sents a scalable, interpretable, and high-fidelity strategy for operational forest monitoring.

6.6.2 Research Questions Revisited

The research questions formulated at the outset guided the evaluation of EO–model
interactions for continuous forest structure prediction. Each is revisited here in light of
the results obtained:

RQ1: Which remote sensing modality, SAR (Sentinel-1), optical (Sentinel-2), or high-
resolution SAR (TSX/ALOS), delivers the highest predictive accuracy for continuous
forest structural variables in the Wald5Dplus dataset?

Sentinel-1 SAR, specifically when represented via polarimetric Kennaugh elements,
consistently delivered the highest spatial generalization and strong in-domain
accuracy for structure-sensitive variables such as tree height and crown base height.
While Sentinel-2 performed better for horizontal features like tree cover and counts
in the training domain, it suffered more under spatial transfer. TSX and ALOS,
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despite their higher spatial resolution, were less effective overall due to limited
temporal coverage and reduced transferability.

RQ2: How do polarimetric features derived from Sentinel-1 compare with raw spectral bands
and transformed spectral features from Sentinel-2 in terms of predictive accuracy and
spatial generalization?

Polarimetric features from Sentinel-1 demonstrated superior robustness across
spatial domains, particularly for volumetric and vertical attributes. In contrast,
raw Sentinel-2 bands yielded sharper predictions in-domain but degraded more
severely under spatial shift. Spectral Kennaugh-like transformations of Sentinel-2
data improved generalization but still did not match the transfer performance of
SAR-based models.

RQ3: How does the choice between raw Sentinel-2 spectral bands and Sentinel-2-derived
spectral Kennaugh-like elements affect model accuracy and spatial robustness for
different forest structural variables?

Models trained on raw Sentinel-2 spectral bands consistently achieved higher
predictive accuracy within the training domain, particularly for visually dominant
forest attributes such as tree count, canopy cover, and crown area. These bands
capture fine-grained spectral variation, offering high resolution for within-AOI
modelling. However, their performance deteriorated more sharply under spatial
transfer, likely due to sensitivity to regional variation in illumination, phenology,
and atmospheric conditions.

In contrast, spectral Kennaugh-like elements, transformations that decompose
reflectance into brightness and colorimetric components, provided more stable
performance across AOIs. Their separation of spectral magnitude from chromatic
properties introduced a form of built-in normalization, reducing the impact of scene-
specific spectral variability. This robustness was especially evident for structural
metrics such as standing volume and crown volume, where transformed features
helped maintain predictive reliability in unseen regions.

Overall, raw bands maximize precision under controlled conditions, whereas spec-
tral Kennaugh-like elements enhance transferability, highlighting a key trade-off
between local sharpness and generalization in optical EO modelling.

RQ4: Do spectral or polarimetric Kennaugh-like representations improve spatial transferabil-
ity over raw features, and for which types of forest variables is this most pronounced?
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Yes, Kennaugh-like representations substantially improved spatial transferability.
Polarimetric representations (from Sentinel-1) were especially beneficial for tree
height, crown base height, and crown volume, while spectral transformations
helped stabilize Sentinel-2-based predictions for variables like standing volume and
basal area. These improvements were most pronounced in regions with ecological
divergence from the training domain.

RQ5: To what extent does fusing optical and SAR data improve the prediction of forest
structure variables compared to using single modalities?

Fusion consistently improved predictive performance, particularly for composite
variables sensitive to both structure and spectral properties. The integration of
Sentinel-1 and Sentinel-2 data outperformed single-source models across all metrics,
reducing mean errors and enhancing feature discrimination. This was especially
evident for tree count, crown base height, and crown volume.

RQ6: Which fusion strategy, spectral only, polarimetric only, or combined spectral–polarimetric,
yields the best trade-off between in-domain accuracy and spatial transferability?

The combined spectral–polarimetric fusion strategy yielded the best balance be-
tween in-domain performance and cross-AOI generalization. Spectral-only models
were stronger in local precision, while polarimetric-only setups offered better spatial
robustness. The integrated model preserved the strengths of both, delivering the
most stable and accurate outcomes across conditions.

RQ7: How does the addition of temporal information to spectrally, polarimetrically, and
temporally fused Sentinel-1 and Sentinel-2 data influence the performance and gener-
alization of EO-based forest structure models?

The inclusion of temporal information, i.e., multi-date acquisitions from both
Sentinel-1 and Sentinel-2, substantially improved the robustness and predictive
sharpness of fused models. By capturing seasonal and phenological variability,
temporal fusion enriched both the spectral and structural feature space. This led to
better model generalization, particularly in cross-AOI applications where ecological
conditions differ.

Spectrally and polarimetrically fused features benefitted from the temporal dimen-
sion by reducing overfitting to single-date acquisition artifacts (e.g., shadows, soil
moisture anomalies, leaf-off phases). Temporal fusion enabled the model to inter-
nalize dynamic patterns such as canopy growth, moisture cycles, and phenological
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stages, enhancing predictions for both height-related variables and more transient
attributes like canopy density.

The most significant gains were observed in ensemble models combining multi-
date Sentinel-1 Kennaugh elements and Sentinel-2 spectral and spectral-Kennaugh
features. These temporally fused setups delivered lower error rates and smaller
performance drops under spatial transfer, confirming temporal diversity as a critical
component of resilient EO modelling.

RQ8: Which machine learning models, RF, SVR, CNN, or ensembles, perform best under
varying EO input types and fusion configurations?

RF consistently emerged as the top-performing model class across all input types.
Their ensemble nature, resistance to overfitting, and insensitivity to input scaling
made them highly suitable for EO data. SVRs performed well on some variables but
lacked consistency. CNN showed localized success but required more tuning. En-
semble strategies, especially stacked RF ensembles, provided additional robustness
in spatial transfer scenarios.

RQ9: How do preprocessing choices affect model accuracy and spatial robustness, particu-
larly under domain shifts?

Preprocessing was found to be a decisive factor in model stability. Conservative
masking (e.g., Mask > 1), moderate Z-score filtering (Z = 1), and aggressive outlier
removal resulted in optimal balance between noise reduction and data retention.
Over-filtering, however, sometimes eliminated ecologically informative variability,
reducing generalization power.

RQ10: Can ensemble learning approaches, particularly stacked RF ensembles, improve
spatial generalization and mitigate performance degradation in unseen regions?

Yes, stacked RF ensembles significantly improved performance in spatial transfer
tasks. By integrating predictions from spatially stratified base models, the meta-
learner compensated for regional biases and delivered smoother generalization.
In several cases, ensemble predictions in unseen areas even outperformed in-
domain results of single models, highlighting the strategy’s value for operational
applications.

RQ11: What are the limitations of current models in achieving robust transferability, and
how do fusion and ensemble strategies help overcome them?
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Limitations included sensitivity to ecological heterogeneity, noise in training data,
and overfitting to local features. Single-sensor or non-temporal models performed
poorly when transferred to distinct AOIs. Fusion, especially spectral–polarimetric–temporal
integration, mitigated many of these issues, while ensemble strategies further re-
duced variability and compensated for localized weaknesses.

RQ12: How do specific forest variables differ in their sensitivity to EO modality, preprocess-
ing, and modelling approach?

Variables tied to vertical structure (e.g., mean tree height, crown base height) were
best predicted with SAR, particularly under domain shift. Horizontal attributes (e.g.,
tree count, tree area coverage) were more sensitive to optical data and required
careful preprocessing. Volume-related metrics were highly dependent on fusion
strategies and exhibited the greatest sensitivity to modelling and transfer conditions,
benefiting most from ensembles and temporal depth.

6.6.3 Closing Remarks

This chapter has demonstrated that no single EO modality, feature type, or model
architecture alone can universally address the complex challenges of forest structure
prediction across space and time. Instead, robust and generalizable solutions emerge
from strategic combinations, fusing spectral richness, structural sensitivity, and temporal
dynamics within a unified learning framework.

The consistent performance of RF ensembles, the stabilizing influence of spectral and
polarimetric transformations, and the generalization gains from temporal fusion all point
toward a design paradigm that prioritizes complementarity over singular optimization.
These results underscore the importance of ecologically grounded feature engineering
and ensemble-based learning in operational EO pipelines.

Looking ahead, this foundational benchmarking not only informs methodological best
practices but also sets the stage for next-generation forest monitoring systems that
are scalable, transferable, and resilient to the inherent heterogeneity of real-world
landscapes. The comparative strengths and trade-offs between model-modality strategies,
as visualized in the multi-criteria radar plot (Figure 6.22), provide a compact summary
of these insights.
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Interpretability

In-Domain
Accuracy

Computational
Simplicity

Cross-AOI
Transferability

Spectral-Polarimetric-Temporal Fusion - RF Ensemble

Spectral-Polarimetric-Temporal Fusion - RF

Spectral-Polarimetric Fusion - RF

Sentinel-1 Polarimetric-Kennaugh Elements - RF

Sentinel-2 Reflectance Bands

Sentinel-2 Spectral Kennaugh-like Elements - RF

ALOS-2 & TSX Polarimetric Kennaugh Elements - RF

Figure 6.22.: Radar plot showing multi-criteria performance comparison of different Earth Ob-
servation modality-model strategies across four evaluation dimensions: In-Domain
Accuracy, Cross-AOI Transferability, Computational Simplicity, and Interpretability.
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Context-Aware Label
Enrichment and Multi-Scale
Learning with the HELIX
Framework

7

„A data model is not reality. It is a representation of
selected aspects of reality.

— William Kent
Computer Scientist, Data Modelling Theorist

Accurate forest and environmental modelling from EO data increasingly demands not
only sophisticated predictors but also enriched and structurally meaningful target data.
Traditional remote sensing workflows often rely on raw (irregular) or pixel-wise reference
labels that fail to encode local context, spatial ambiguity, or multi-scale structure, factors
that are central to ecological processes and patterns. This chapter introduces and
systematically evaluates the HELIX framework, as a modular label-side augmentation
strategy designed to address these limitations. HELIX, as described in detail in Section 4,
enables models to learn from richer supervision by embedding spatial, temporal, and
statistical context into reference label vectors. This is achieved through a combination of
multi-scale contextual neighbourhood statistics and residual-aware feature augmentation
derived from prior prediction uncertainty. In doing so, the HELIX transforms traditionally
static or under-structured reference datasets, such as the Wald5Dplus label dataset [148],
into dynamic, contextually aware learning targets.

The chapter therefore explores HELIX-based label enrichment across three core applica-
tions, each escalating in complexity and ecological ambition:

• HELIX for Continuous Forest Structure Modelling: The HELIX framework was
applied to the task of continuous multi-target forest structure prediction by en-
riching both the feature and label spaces with spatial and residual context. In this

255



configuration, referred to as HELIX+, residual-aware feature augmentation was
employed to encode spatial uncertainty, leveraging residuals from a baseline RF
model trained on spectrally, polarimetrically, and temporally fused Sentinel-1 and
Sentinel-2 EO data. Simultaneously, the target space was extended via contextual
HELIX-based label enrichment, incorporating neighbourhood statistics across mul-
tiple spatial scales (3×3, 5×5, 7×7). This approach was shown to outperform
all previously tested fusion and modelling configurations in terms of predictive
performance, when compared to the previous Chapter 6.

• Bark Beetle Calamity Modelling with Multi-Scale HELIX Labels: HELIX-based
label enrichment was also deployed in a real-world disturbance context, focusing
on bark beetle outbreak modelling. Here, the fused Sentinel-1 and Sentinel-2
EO time series were matched with a dynamically enriched label set that captured
both density and spread of infestations. The HELIX descriptors embedded spatial
structure from both lagged and future outbreak patterns. A structured, four-stage
modelling pipeline, ranging from logistic regression to ensemble-based temporal
forecasting, was used to assess HELIX’s ability to inform and reconstruct outbreak
dynamics across space and time.

• Seasonal and Short-Term Glacier Zone Modelling: In the context of cryospheric
analysis, the HELIX concept was employed to model seasonal glacier zonation using
multi-temporal Sentinel-1 data. The enriched labels were combined with historical
priors, derived from mean seasonal zonation between 2017 and 2020, and EO
residuals, which were integrated into an ensemble XGBoost framework. The overall
goal was to assess spatio-temporal transfer modelling possibilities. In a second
setup targeting short-term prediction, mono-temporal Sentinel-1/2 inputs were
used to forecast dynamic glacier zone changes, based exclusively on HELIX-derived
categorical labels. These experiments illustrated HELIX’s capacity to encode fine-
scale spatio-temporal variation and generalize across both glaciological structures
and time-frames.

Together, these experiments showcase the HELIX not as a simple label smoothing tech-
nique, but as a flexible label enrichment framework capable of enhancing learning
targets across ecological domains. HELIX improves both model expressiveness and inter-
pretability by enabling supervision to reflect spatial semantics, structural uncertainty, and
neighbourhood dynamics.
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7.1 Context-Aware Forest Structure Modelling Using
Polarimetrically, Spectrally, and Temporally Fused
Sentinel-1 and Sentinel-2 Data with Helix-Enriched
Multi-Scale Labels

Previous chapters of this thesis have focused on evaluating multi-source fusion strategies
for EO data and their predictive alignment with the Wald5Dplus forest paramter label
dataset [148]. A variety of modelling configurations, including stand-alone RF and
more, as well as ensemble modelling, were explored to assess the performance of various
EO features under different spatial and temporal setups. A central contribution of this
thesis has also been the development of the Helix framework, originally designed to
enrich temporally static label datasets by injecting grid-aligned spatio-temporal context.
Helix computes spatial context, seasonal signatures, and neighbourhood-level statistics
that restructure discrete label points into dense, ML-compatible rasters with embedded
structural cues. The experiment presented in this section builds directly on this foundation.
It introduces a context-enriched modelling pipeline that complements Helix-style
label-side enrichment with model-side feedback and supervision. Specifically, the HELIX-
inspired architecture incorporates residual-driven feedback and multi-scale contextual
label targets to guide learning. It closes a key gap: moving from context-aware label
construction toward context-aware model design. The aim is not only to improve accuracy
but also to allow the model to understand when and where label information is spatially
reliable, structurally complex, or temporally ambiguous.

This experiment is thus guided by the following research questions:

RQ1: Does label-side HELIX enrichment improve continuous forest parameter prediction
relative to raw or single-scale targets?

RQ2: How do residual-based feature augmentations contribute to capturing spatial predic-
tion uncertainty?

RQ3: What role does scale (e.g., 3×3 vs. 7×7 kernels) play in optimizing contextual label
information for forest modelling?

RQ4: Can the integration of HELIX label enrichment with residual-aware modelling lead to
improvements in interpretability or model stability?
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To assess these research questions, a two-stage modelling pipeline is implemented. First,
a baseline RF is trained on fused EO inputs to establish a reference performance. Second,
a HELIX-inspired model integrates residual-driven feedback and multi-scale contextual
label enrichment to capture spatial structure and uncertainty. Comparative evaluation
across these stages, using both original and enriched label targets, allows for systematic
investigation of the role of context, residuals, and scale in predictive forest modelling.

7.1.1 Materials

The EO data used in this setup are identical to those introduced in Section 6.1.1, ensuring
consistency with the experiments and benchmarks described therein. Specifically, the
predictor dataset comprises a spectrally, polarimetrically, and temporally fused Sentinel-1
and Sentinel-2 EO stack, covering the years 2020 and 2021. This fused 512-band stack
represents a rich multi-sensor EO input and is directly comparable to the dataset described
in Section 6.1, where the fusion strategy and benchmark characteristics are detailed.

The target dataset consists of the same continuous Wald5Dplus label raster used in
previous experiments. As described in detail in Sections 1.2.2 through 1.2.2, this label
layer captures forest parameters in temperate Central European regions and provides a
spatially dense, high-resolution reference signal for supervised modelling.

Together, this combination of multi-temporal, multi-modal EO predictors and semantically
rich continuous forest labels forms a robust foundation for the experiments presented here,
while maintaining direct comparability with prior results in the Wald5Dplus benchmark
framework.

7.1.2 Methods

This HELIX-inspired architecture introduces a context-aware modelling strategy built in
two phases:
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Baseline Model Training: A baseline RF model is trained using the 512-band fused EO
stack to predict the original 10-band Wald5Dplus target raster. This model operates
without explicit spatial or temporal context and serves as a reference for residual-based
feedback. Predictions are made over the full dataset, and the residuals per band (i.e.,
y − ŷ) are computed and stored as a 10-band raster.

Multi-scale Contextual Label Enrichment: The original 10-band label raster provides
dense, per-pixel quantitative forest structure information (e.g., height, crown volume).
However, these values are not context-free: their meaning is inherently local, e.g., a
crown height of 22 m means something different in a patch of tall trees versus a sparse
edge.

To make this contextuality explicit, a multi-scale representation of each label band is
computed using mean filters over 3×3, 5×5, and 7×7 neighbourhoods. This does not
simply smooth noise, it embeds the label in its spatial semantic context, allowing the
model to learn structure-aware interpretations.

While this study focuses on continuous labels, the same logic applies to categorical label
maps: majority pooling or soft one-hot encoding over neighbourhood windows could be
used to encode contextual class distributions (e.g., dominant forest type or disturbance
category), extending this method to hybrid label domains.

Context-Enriched Model: The Helix-based model builds on the limitations identified
in the baseline pass by injecting residual-informed and context-augmented features
into a second-stage learner. Specifically, the residuals produced by the baseline model,
representing localized prediction errors per class, are concatenated with the original
512-band EO predictor stack, resulting in a 522-dimensional input space. These residuals
encode implicit uncertainty and spatial ambiguity, effectively guiding the model to areas
of known difficulty or structural complexity.

In parallel, the original label space is expanded from 10 to 40 dimensions through multi-
scale contextual label enrichment. This includes the original per-pixel reference values
and their corresponding spatial context windows (e.g., 3×3, 5×5, 7×7 local means),
which allow the model to learn label structure as a function of its surrounding neighbour-
hood, and therefore adding information about the Spatio-contextual situation.
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The enriched feature space and the enriched target space are used jointly to train a second
RF model. This contextually-enriched model is no longer blind to the temporal, spatial,
and structural characteristics of the input domain, it encodes context, uncertainty, and
scale-awareness directly into its prediction process. Context matters because the same
label value (e.g., crown area or tree height) can carry different ecological implications
depending on its local neighbourhood, seasonal timing, or structural distinctiveness. By
modelling the label not in isolation but in relation to its surrounding spatial and predic-
tive environment, the appraoch allows for more stable, explainable, and generalizable
predictions, particularly in heterogeneous or ambiguous forest regions.

Evaluation: Model performance is primarily evaluated on the original 10 forest structure
classes to ensure consistency with the baseline configuration. However, the Helix+ model
additionally outputs 30 auxiliary targets corresponding to the multi-scale smoothed
labels. These are also evaluated to assess the model’s ability to capture spatial trends and
contextual label coherence across scales.

All predictions are evaluated using standard regression metrics: MAE, RMSE, MAD, and
STD. This allows for both per-class performance analysis and cross-model comparison
across original and context-enriched targets.

The full workflow is shown in Figure 7.1. It combines fused EO data, spatial context, and
model self-awareness into a unified prediction strategy.
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Fused EO Predictor Stack
(Sentinel-1/2, 512 bands)

Wald5Dplus
Forest Structure Labels

(10 bands)

Baseline Model
(RF, EO + Labels
→ 10 predictions)

Residuals: y − ŷ
(10 bands)

Multiscale Spatio-
contextual Situation
(3×3, 5×5, 7×7)

Spatio-contextual Target Stack
(30 bands) + (10

original bands)Context-Enriched
Feature Stack:

512 EO + 10 Residuals
= 522 bands

Helix-based Model
(RF, Context → 40 Targets)

Refined Predictions

Figure 7.1.: Overview of the Helix-based modelling pipeline. A baseline model is trained on
fused EO predictors and static Wald5Dplus labels to generate initial predictions and
residuals. These residuals are reintroduced as uncertainty-aware features, while the
original labels are enriched via multi-scale contextual averaging (Spatio-contextual
Situation). The resulting context-enriched feature and target stacks are used to train
a second-stage model, which outputs refined forest structure predictions.
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7.1.3 Results

The Helix-inspired modelling framework was evaluated against the standard RF baseline
trained on 512-band fused Sentinel-1/2 EO predictors. Performance was assessed across
10 static forest structure variables using four regression metrics: MAE, RMSE, MAD, and
STD. Table 7.1 presents a full comparison of these metrics for both the baseline and
Helix-based models.

Overall, the presented model demonstrated consistent improvements across all variables
and all metrics. Notably strong gains were observed in highly structured biophysical
variables, such as:

• Sum crown area of deciduous trees: MAE reduced by 3.43 m² (29% improvement)

• Sum crown volume: MAE reduced by 41.62 m³ (42% improvement)

• Tree area coverage: MAE reduced by 2.73 percentage points (49% improvement)

• Count of dead trees: MAE halved, from 0.05 to 0.03 (49% improvement)

The benefits of contextual enrichment were also reflected in the reductions in RMSE, MAD,
and STD across the board, indicating that Helix not only improves average predictive
performance but also stabilizes residual spread and reduces model variance in complex
or ambiguous regions.

To isolate the direct gain from the context-aware modelling, Table 7.2 summarizes the
absolute and relative MAE improvements for each variable. All 10 variables showed
positive ∆ values, with gains ranging from 20% to 50%.

These results support the central hypothesis of this study setup: that residual-driven
feedback and multi-scale contextual label enrichment provide meaningful spatial and
structural information that can be exploited during supervised learning, even when the
labels themselves are temporally static.
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Table 7.1.: Performance comparison between the baseline RF model and the context-enriched
Helix+ model on all 10 forest structure variables. Each entry reports MAE, RMSE,
MAD, and STD for both models, with the improvement (∆) shown beneath each
metric.

Variable MAE (Base / + RMSE (Base / +) MAD (Base / +) STD (Base / +)

Sum crown area of deciduous trees
(m²)
∆: 3.43 / 4.30 / 3.11 / 4.33

11.93 / 8.49 15.98 / 11.68 9.11 / 6.01 15.98 / 11.65

Sum crown area of coniferous trees
(m²)
∆: 3.26 / 4.01 / 2.87 / 4.05

11.61 / 8.35 15.27 / 11.26 8.95 / 6.08 15.26 / 11.22

Sum crown area of dead trees (m²)
∆: 0.63 / 1.51 / 0.11 / 1.53

1.27 / 0.63 3.11 / 1.60 0.19 / 0.08 3.11 / 1.58

Count of deciduous trees
∆: 0.07 / 0.09 / 0.07 / 0.09

0.28 / 0.21 0.37 / 0.28 0.22 / 0.15 0.37 / 0.27

Count of coniferous trees
∆: 0.08 / 0.09 / 0.06 / 0.10

0.35 / 0.27 0.47 / 0.37 0.25 / 0.19 0.47 / 0.37

Count of dead trees
∆: 0.03 / 0.05 / 0.00 / 0.05

0.05 / 0.03 0.11 / 0.06 0.009 / 0.004 0.11 / 0.06

Tree area coverage (%)
∆: 2.73 / 3.83 / 1.45 / 3.84

5.62 / 2.89 8.83 / 5.00 2.58 / 1.13 8.83 / 4.99

Sum crown volume (m³)
∆: 41.62 / 50.47 / 36.86 /
50.97

98.62 / 56.99 133.61 / 83.14 73.87 / 37.00 133.60 / 82.63

Mean tree height (m)
∆: 0.47 / 0.67 / 0.39 / 0.67

2.31 / 1.84 3.22 / 2.54 1.67 / 1.28 3.22 / 2.54

Mean crown base height (m)
∆: 0.64 / 0.74 / 0.64 / 0.78

2.31 / 1.67 3.01 / 2.27 1.82 / 1.18 3.01 / 2.23
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Table 7.2.: Reduction in MAE for each forest structure variable between the baseline model and
the Helix model. Absolute (∆) and relative (%) improvements are reported.

Variable MAE Baseline MAE Helix+ ∆ (Abs.) Improvement (%)

Sum crown area of deciduous trees (m²) 11.93 8.49 −3.43 71.21

Sum crown area of coniferous trees (m²) 11.61 8.35 −3.26 71.91

Sum crown area of dead trees (m²) 1.27 0.63 −0.63 50.00

Count of deciduous trees 0.28 0.21 −0.07 73.46

Count of coniferous trees 0.35 0.27 −0.08 77.54

Count of dead trees 0.05 0.03 −0.03 50.61

Tree area coverage (%) 5.62 2.89 −2.73 51.45

Sum crown volume (m³) 98.62 57.00 −41.62 57.80

Mean tree height (m) 2.31 1.84 −0.47 79.50

Mean crown base height (m) 2.31 1.67 −0.64 72.22

Figure 7.2.: Hexbin density plots comparing predicted versus true values for the variable Sum
crown area of deciduous trees (m²) under the baseline model (left) and the Helix+
model (right). Each subplot visualizes the prediction distribution using log-scaled
point density. The Helix model achieves lower error across all reported metrics (MAE,
RMSE, MAD, STD), with visibly tighter clustering along the 1:1 diagonal, indicating
improved predictive accuracy and reduced residual variance.
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Figure 7.3.: Hexbin density plots comparing predicted versus true values for the variable Sum
crown area of coinferous trees (m²) under the baseline model (left) and the Helix+
model (right). Each subplot visualizes the prediction distribution using log-scaled
point density. The Helix model achieves lower error across all reported metrics (MAE,
RMSE, MAD, STD), with visibly tighter clustering along the 1:1 diagonal, indicating
improved predictive accuracy and reduced residual variance.

Figure 7.4.: Hexbin density plots comparing predicted versus true values for the variable Sum
crown area of dead trees (m²) under the baseline model (left) and the Helix+ model
(right). Each subplot visualizes the prediction distribution using log-scaled point
density. The Helix model achieves lower error across all reported metrics (MAE,
RMSE, MAD, STD), with visibly tighter clustering along the 1:1 diagonal, indicating
improved predictive accuracy and reduced residual variance.
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Figure 7.5.: Hexbin density plots comparing predicted versus true values for the variable Count
of deciduous trees under the baseline model (left) and the Helix+ model (right).
Each subplot visualizes the prediction distribution using log-scaled point density.
The Helix model achieves lower error across all reported metrics (MAE, RMSE, MAD,
STD), with visibly tighter clustering along the 1:1 diagonal, indicating improved
predictive accuracy and reduced residual variance.

Figure 7.6.: Hexbin density plots comparing predicted versus true values for the variable Count
of coniferous trees under the baseline model (left) and the Helix+ model (right).
Each subplot visualizes the prediction distribution using log-scaled point density.
The Helix model achieves lower error across all reported metrics (MAE, RMSE, MAD,
STD), with visibly tighter clustering along the 1:1 diagonal, indicating improved
predictive accuracy and reduced residual variance.
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Figure 7.7.: Hexbin density plots comparing predicted versus true values for the variable Count
of dead trees under the baseline model (left) and the Helix+ model (right). Each
subplot visualizes the prediction distribution using log-scaled point density. The
Helix model achieves lower error across all reported metrics (MAE, RMSE, MAD,
STD), with visibly tighter clustering along the 1:1 diagonal, indicating improved
predictive accuracy and reduced residual variance.

Figure 7.8.: Hexbin density plots comparing predicted versus true values for the variable Tree
area coverage (%) under the baseline model (left) and the Helix+ model (right).
Each subplot visualizes the prediction distribution using log-scaled point density.
The Helix model achieves lower error across all reported metrics (MAE, RMSE, MAD,
STD), with visibly tighter clustering along the 1:1 diagonal, indicating improved
predictive accuracy and reduced residual variance.
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Figure 7.9.: Hexbin density plots comparing predicted versus true values for the variable Sum
crown volume (m³) under the baseline model (left) and the Helix+ model (right).
Each subplot visualizes the prediction distribution using log-scaled point density.
The Helix model achieves lower error across all reported metrics (MAE, RMSE, MAD,
STD), with visibly tighter clustering along the 1:1 diagonal, indicating improved
predictive accuracy and reduced residual variance.

Figure 7.10.: Hexbin density plots comparing predicted versus true values for the variable Mean
tree height (m) under the baseline model (left) and the Helix+ model (right). Each
subplot visualizes the prediction distribution using log-scaled point density. The
Helix model achieves lower error across all reported metrics (MAE, RMSE, MAD,
STD), with visibly tighter clustering along the 1:1 diagonal, indicating improved
predictive accuracy and reduced residual variance.
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Figure 7.11.: Hexbin density plots comparing predicted versus true values for the variable Mean
crown base height (m) under the baseline model (left) and the Helix+ model
(right). Each subplot visualizes the prediction distribution using log-scaled point
density. The Helix model achieves lower error across all reported metrics (MAE,
RMSE, MAD, STD), with visibly tighter clustering along the 1:1 diagonal, indicating
improved predictive accuracy and reduced residual variance.

The Helix+ model shows consistent and substantial improvements in predicting forest
structure variables compared to the EO-only RF baseline. Figure 7.2 through Figure 7.12
present a series of side-by-side hexbin plots, visualizing the predicted versus true values
for all 10 target classes. Each pair of subplots compares the baseline (left) and Helix
model (right), with log-scaled point densities and overlaid regression metrics.

Across all targets, Helix+ achieves visibly tighter clustering around the 1:1 prediction
line. This is particularly evident in structurally heterogeneous classes such as:

• Sum crown area of deciduous trees (Figure 7.2): MAE reduced from 11.93 to
8.49 m².

• Sum crown volume (Figure 7.9): MAE drops from 98.62 to 45.32 m³, with a
marked reduction in residual spread.

• Tree area coverage (Figure 7.8): MAE cut nearly in half, demonstrating improved
generalization in dense canopy zones.

In count-based metrics (Figures 7.5, 7.6, and 7.7), Helix+ consistently shows lower
absolute and relative error. Improvements are also observed in metrics of dispersion
(MAD, STD), especially in complex or edge cases like dead tree crown area (Figure 7.4).

7.1 Context-Aware Forest Structure Modelling Using Polarimetrically,
Spectrally, and Temporally Fused Sentinel-1 and Sentinel-2 Data with

Helix-Enriched Multi-Scale Labels

269



Table 7.3.: Top 10 most influential features across the first 10 Helix+ target regressors. Mean
and standard deviation of feature importances are computed across models. Residual-
based features rank prominently, highlighting the relevance of feedback signals.

Feature Mean Importance Std. Dev.
Importance

EO_289 0.096 0.108

Residual_3 0.071 0.204

Residual_1 0.067 0.127

Residual_6 0.064 0.187

EO_129 0.054 0.077

Residual_9 0.050 0.136

Residual_10 0.046 0.132

Residual_8 0.045 0.130

EO_241 0.038 0.071

Residual_2 0.037 0.106

Figure 7.12.: Top 20 most influential features across the first 10 Helix+ target regressors.

Feature importance analysis further supports these findings. Table 7.3 lists the 10 most
influential features used by Helix+ across its first 10 regressors. Notably, 7 of the top
10 features are residual-based (e.g., Residual_3, Residual_1, Residual_6), indicating
that the model actively leverages prior model error as a contextual cue. This confirms
that the model does not only learn from raw EO input but also from its own uncertainty
patterns.
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Figure 7.12 illustrates this further by showing the top 20 features graphically. The
distribution emphasizes that both residuals and specific EO bands (such as EO_289
and EO_129) are repeatedly relied upon, suggesting that certain EO signal bands are
particularly sensitive to forest structure characteristics when augmented by contextual
feedback.

These results underline the dual strength of Helix+: improved accuracy and improved
awareness. The model does not only fit better, it fits more intelligently, guided by
spatio-contextual situation and feedback-informed design.

7.1.4 Discussion

The effectiveness of the Helix+ model is supported by a threefold body of evidence.
First, quantitative metrics such as MAE, RMSE, MAD, and STD (see Table 7.1) confirm
consistent performance gains across all 10 target classes. Absolute error reductions of
20–50% were observed, particularly for structurally complex or sparse classes such as
crown volume, dead tree count, and tree area coverage.

Second, predictive accuracy is visually validated through the series of hexbin plots in
Figures 7.2–7.12. These plots provide a spatially explicit representation of prediction
density, clearly showing how Helix+ reduces residual variance and shifts model output
closer to the 1:1 ideal. The visual improvement is not only statistical, it is spatially
interpretable and structurally meaningful.

Third, feature importance rankings (Table 7.3 and Figure 7.12) demonstrate how the
model actively prioritizes contextual feedback. Residual-based features appear in 7 of the
top 10 slots, confirming that Helix leverages its own prior uncertainty to refine future
predictions. This highlights the model’s ability to internalize error signals and use them
as actionable context, a core novelty of the framework.

Together, these three perspectives, performance metrics, model visualizations, and feature
introspection, converge on the same conclusion: Helix is not just more accurate; it is
more self-aware, more stable, and more structurally attuned to the nature of the task.

The Helix-based framework assumes that residuals primarily reflect uncertainty or limita-
tions in the EO predictor stack, rather than in the reference label set. This is a practical
and often justified assumption in EO-driven ecological modelling, where label data (e.g.,
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derived from airborne LiDAR or forest inventory) are typically of higher semantic fidelity
than the often noisy, temporally variable, and sensor-specific EO inputs.

However, this assumption deserves further scrutiny. Residuals encode model misfit,
without directly specifying whether that misfit arises from predictor-side ambiguity,
label-side inconsistency, or mismatches due to georegistration errors, canopy occlusion,
or temporal misalignment (e.g., phenological lag). In the current implementation, the
model interprets residuals as indicators of feature-side uncertainty. This orientation makes
sense for high-quality label products like Wald5Dplus [148], but future extensions may
benefit from reversing this logic: using residuals to identify problematic or noisy regions
in the label domain, particularly in datasets that integrate coarser or model-derived
supervision.

This bi-directional use of residuals, either to refine EO-based inference or to question the
validity of the reference labels, opens new avenues for self-diagnostic modelling. It may
also enable hybrid quality-control workflows, where label and predictor confidence are
estimated jointly.

Other key discussion points and future research directions include:

• DOY-Aware Feature Augmentation: Unlike many EO-based modelling setups that
rely on sparse, single-date observations or add DOY metadata as a proxy for sea-
sonal phase, this study incorporates a densely sampled, cloud-gapfilled time series
covering 64 Sentinel-1 and Sentinel-2 acquisitions across a full annual cycle [147].
Temporal variability is thus embedded directly within the fused temporal, spectral,
polarimetric feature space, allowing the model to infer seasonal progression and
phenological dynamics from EO-observed reflectance and backscatter patterns. As
a result, explicit DOY encoding was not necessary for this implementation. Future
work could, however, investigate whether additional meta-temporal descriptors,
such as phenological phase indicators, Fourier-based seasonality embeddings, or
inter-annual climatological features, could further enhance model generalization,
particularly when transferring to other years or regions.

• Cross-Site Transferability: The context-aware enrichment strategies presented
here could improve model generalization across biogeographically diverse sites.
This should be evaluated by transferring Helix+ to independent test areas with
differing forest structure and EO acquisition conditions.
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• Uncertainty Quantification: Although residuals act as a proxy for uncertainty,
explicit uncertainty estimation (e.g., via quantile regression forests, ensembling, or
dropout-based approximations) could enhance the interpretability and robustness
of predictions in sensitive management contexts.

• Extension to Categorical Labels: The multi-scale enrichment approach is agnostic
to label type. Majority pooling or soft one-hot encoding could be applied to
categorical label maps (e.g., forest type or disturbance class), enabling Helix to
support hybrid classification-regression tasks.

• Model Compression and Operational Use: Despite its interpretability, Helix is
still ensemble-based and may require optimization for operational-scale inference.
Model distillation or feature pruning could help streamline deployments while
retaining contextual sensitivity.

In summary, Helix represents a first step toward interpretable, structure-aware forest
modelling. It leverages the richness of EO predictors while remaining grounded in
the spatial logic and semantic coherence of high-quality ecological labels. Its modular
design allows for targeted extensions across data types, modelling paradigms, and forest
monitoring scenarios.

Unlike many high-performing but opaque ML models, Helix+ remains interpretable
by design. Its contextual feedback signals are explicitly defined, its target enrichment
strategy is structured and reproducible, and its RF backbone offers direct access to feature
influence, class-specific behaviour, and spatially traceable outputs.

7.1.5 Conclusions

This study introduces a context-enriched modelling architecture that advances EO-based
forest structure prediction using Helix-inspired spatial label augmentation and residual-
driven feedback. By integrating spatial context directly into both the target and feature
domains, the approach enables structured learning of forest structure variables from
fused Sentinel-1/2 inputs. The proposed two-stage pipeline demonstrates that modelling
label structure, not just label values, yields measurable gains in accuracy, robustness, and
interpretability.
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Lessons Learned

• Label-side spatial enrichment enables structure-aware learning. Multi-scale
contextual averaging of the Wald5Dplus labels allows the model to interpret values
not in isolation, but as part of their spatial semantic neighbourhood, enhancing
both accuracy and ecological realism.

• Residual feedback improves spatial uncertainty awareness. Integrating residuals
from a baseline pass into the feature stack helps the model recognize structurally
complex or ambiguous regions. This residual-driven feedback provides indirect
supervision on model uncertainty and promotes more stable learning.

• Context-enriched inputs and targets outperform EO-only baselines. The Helix+
model consistently reduces errors across all 10 forest structure variables, with MAE
reductions between 20–50%. Structured spatial context proves more informative
than adding raw features alone.

• Feature importance reflects interpretable model behaviour. Residual features
rank among the top contributors in most regressors, validating the hypothesis
that model self-awareness (via error signals) supports more effective learning in
heterogeneous forest environments.

• The Helix framework bridges EO prediction and ecological structure. By
extending Helix from a label-processing tool to a modelling philosophy, this work
establishes a reproducible foundation for structure-aware forest prediction that is
compatible with both continuous and categorical domains.

Research Questions Revisited

RQ1: Does label-side HELIX enrichment improve continuous forest parameter prediction
relative to raw or single-scale targets? Yes. Spatially contextualized label targets
resulted in substantially lower MAE, RMSE, MAD, and STD across all forest structure
classes. This confirms that multi-scale context offers valuable structural information
beyond raw per-pixel values.
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RQ2: How do residual-based feature augmentations contribute to capturing spatial pre-
diction uncertainty? Residuals proved highly informative as input features. Their
consistent presence among the top-ranked predictors across all regressors indi-
cates that model-guided feedback helps localize and mitigate spatial uncertainty,
especially in complex or edge regions.

RQ3: What role does scale (e.g., 3×3 vs. 7×7 kernels) play in optimizing contextual label
information for forest modelling? Enriching labels at multiple scales enhances model
flexibility. Small kernels embed fine-grained texture, while larger ones capture
regional trends. The joint use of 3×3, 5×5, and 7×7 windows allows the model to
learn from both local variation and broader structural patterns.

RQ4: Can the integration of HELIX label enrichment with residual-aware modelling lead to
improvements in interpretability or model stability? Yes. Beyond accuracy gains, the
Helix+ model demonstrates more interpretable behaviour, as shown by reduced
variance, smoother residuals, and clearer spatial trends. Feature importance analysis
also reveals a shift toward context- and feedback-based learning.

Closing Remarks

This chapter extends the HELIX framework from a spatial label enrichment tool to a full
modelling strategy that combines structural supervision with predictive feedback. By
injecting context into both labels and features, the approach transforms EO-driven forest
prediction into a context-aware task where spatial relationships and model uncertainty
are explicitly modelled.

The findings suggest that structured, interpretable forest modelling is not only feasible but
beneficial, even in the absence of temporal supervision. The Helix-inspired pipeline offers
a modular, reproducible foundation for extending EO-based inference to complex forest
variables, and provides a roadmap for integrating residual awareness, scale sensitivity,
and spatial semantics into future ecological modelling efforts.

7.1 Context-Aware Forest Structure Modelling Using Polarimetrically,
Spectrally, and Temporally Fused Sentinel-1 and Sentinel-2 Data with

Helix-Enriched Multi-Scale Labels
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7.2 Forest Disturbance Forecasting from Fused Sentinel-1
and Sentinel-2 Data with Helix-Based Spatio-Temporal
Label Enrichment

This experimental setup systematically assesses the capacity of fused EO time-series
data to detect and anticipate bark beetle disturbances in temperate forest ecosystems,
focussing on the Bavarian Forest National Park, an ecologically unique and disturbance-
prone site characterized by unmanaged natural dynamics and extensive deadwood
accumulation [147]. EO observations are sourced from the same Wald5Dplus dataset
[148] used in earlier chapters, incorporating spectrally, polarimetrically, and temporally
fused Sentinel-1 and Sentinel-2 inputs. For labels, this experiment uses the ground-truth
forest disturbance reference dataset (see Section 1.2.2) [203], which captures multi-year
bark beetle outbreak patterns. To make this inherently dynamic process more learnable
for ML models, the static disturbance labels are enriched into a temporally continuous,
spatio-contextual reference dataset using the Helix framework (see Section 4). This
enrichment encodes both the spatial structure of disturbance spread and the temporal
sequence of outbreak progression, providing the model with context-aware supervision
signals that capture both outbreak history and neighbourhood effects. As described in
Section 1.2.2, the Bavarian Forest National Park presents a challenging and ecologically
relevant test-bed for disturbance forecasting. Its unmanaged forest dynamics, large legacy
of standing deadwood, and documented vulnerability to European spruce bark beetle
outbreaks [331, 199] create a highly heterogeneous and temporally volatile disturbance
regime. This includes multi-year outbreak cascades often triggered or amplified by
stochastic factors such as storm events or localized drought stress. Modelling disturbance
risk in such a context requires not only EO sensitivity to subtle structural changes but
also the ability to infer disturbance likelihood from both spatial and temporal patterns of
precursor conditions. The resulting Helix-enriched disturbance dataset therefore provides
a harmonized, high-resolution spatio-temporal benchmark that links multi-modal EO
signals with multi-scale, context-aware disturbance descriptors. This enables a structured
sequence of synthetic forecasting experiments designed to address the following core
research questions:

RQ1: Do spatially enriched Helix descriptors provide additive predictive signal beyond raw
outbreak labels?

276 Chapter 7 Context-Aware Label Enrichment and Multi-Scale Learning with the
HELIX Framework



RQ2: Which Helix descriptors, defined by year, scale, and statistic, carry the most discrimi-
native power under current EO conditions?

RQ3: Can Helix descriptors be reconstructed from EO input alone, and how well does this
mapping generalize across spatial and temporal contexts?

RQ4: Are Helix-derived spatial patterns learned from current and lagged data transferable
to unseen future conditions, enabling EO-only prediction of future outbreak density?

To address these, four interlinked modelling stages are presented:

1. A controlled classification setup using logistic regression to assess the marginal
contribution of spatial kernel descriptors.

2. A per-band classification screening to identify the most informative Helix descriptors
across space and time.

3. A regression pipeline mapping EO to Helix, quantifying the predictability of enriched
descriptors.

4. A three-stage ensemble forecasting approach that leverages reconstructed Helix
features to predict future outbreak density.

Together, these experiments probe the utility of Helix-based enrichment for both retro-
spective pattern discovery and prospective risk forecasting.

7.2.1 Materials

The EO data used in this experimental setup is described in detail in Section 6.1.1. In
short, it consists of fused Sentinel-1 (VV/VH polarimetric C-band SAR) and Sentinel-2
(10,m BOA reflectance) time series data, processed via the HCB framework. This yields
an interpretable, eight-dimensional feature space harmonizing radar and spectral signals.
Temporal fusion produces consistent time series with one total intensity (K0) and seven
differential components (K1–7), aggregated into 64 fused time steps. The fused EO data
hence serves as a key component of the model input, the ARD cubes (see Figure 6.4),
each containing 512 channels, introduced also in Section 2.2 and Section 2.2.

The ground-truth data used for training and evaluation is described in Section 1.2.2. The
deadwood dataset [203] encompasses all forest areas identified as standing deadwood
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from 1989 to 2023. It is updated annually based on aerial image interpretation and
provides temporal resolution at the scale of one year.

7.2.2 Methods

The following pipeline unfolds in four conceptual stages: (i) a foundational classification
setup that quantifies the added value of spatial kernel descriptors; (ii) a diagnostic
ranking of individual Helix bands across space and time; (iii) an inverse regression
analysis exploring to what extent Helix descriptors can be reconstructed from EO alone;
and (iv) a synthesis stage where reconstructed Helix features are leveraged to predict
future outbreak densities. This progression balances interpretability and expressiveness,
and offers principled insight into the role of spatio-temporal label engineering in EO-based
forest health monitoring.

Multi-Context Label Enrichment via Spatio-Temporal Helix Kernels

To improve the suitability of raw outbreak labels for spatial learning tasks, a multi-context
enrichment method inspired by the Helix framework was developed. This procedure
refines sparse, binary disturbance labels by applying both spatial and temporal kernel
operations, producing a stack of continuous-valued descriptors that encode outbreak
context across multiple scales and years.

The input consists of polygon-based annotations of bark beetle disturbances, each tagged
with a Change_Year field denoting the onset of visible damage. For each year y within
a specified window (e.g., 2017–2022), the polygons corresponding to that year are
rasterized onto the shared spatial grid, with the EO data yielding a binary raster Ly.
Rasterization is clipped to the extent of a fixed EO reference raster, ensuring consistent
spatial alignment and resolution.

Each raster Ly represents a snapshot of outbreak locations at year y. To enrich these
labels, a two-step kernel-based strategy is applied. Uniform (boxcar) kernels were chosen
over Gaussian or adaptive filters to preserve interpretability and consistency across spatial
scales. While more complex kernels could encode distance decay or directional influence,
the uniform design ensures that each pixel within the spatial window contributes equally,
simplifying analysis and model transparency:
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1. Spatial kernel enrichment: For each spatial radius s ∈ {1, 2, 3}, corresponding
to kernel sizes of 3 × 3, 5 × 5, and 7 × 7 pixels, the raster Ly is convolved using a
uniform square kernel centred at each pixel. Two descriptors are computed:

• The mean band Hµ
y,s, reflecting local outbreak density:

Hµ
y,s(x, y) =

1
Ks

∑
(i,j)∈Ns(x,y)

Ly(i, j)

• The variance band Hσ2

y,s, capturing heterogeneity or uncertainty in local out-
break patterns:

Hσ2

y,s(x, y) =
1

Ks
∑

(i,j)∈Ns(x,y)

(︁
Ly(i, j)− Hµ

y,s(x, y)
)︁2

Here, Ns(x, y) defines the spatial neighborhood around pixel (x, y), and Ks =

(2s + 1)2 is the number of pixels in the kernel.

2. Temporal kernel stacking: The spatially enriched descriptors Hµ
y,s and Hσ2

y,s are
computed independently for each year y in the temporal window. These temporally
aligned outputs are then concatenated to form a multi-temporal stack. This process
implicitly defines a spatio-temporal kernel, as each pixel’s final descriptor encodes
both its spatial neighbourhood and its temporal context over multiple years.

The choice of mean and variance statistics is motivated by their complementary inter-
pretability. The mean value Hµ

y,s(x, y) provides a continuous approximation of outbreak
presence, reflecting the proportion of outbreak pixels within the spatial neighbourhood.
Values range from 0 to 1, and can be loosely interpreted as a localized density or proba-
bility of disturbance. The variance Hσ2

y,s(x, y), in contrast, quantifies spatial inconsistency:
it reaches its maximum when the neighbourhood contains an equal mix of outbreak and
non-outbreak pixels, and drops to zero when labels are homogeneous. While alternative
metrics such as local entropy or higher-order texture descriptors were considered, mean
and variance were favoured due to their interpretability and stable behaviour under
binary inputs. Their bounded range and intuitive meaning support downstream model
reliability and diagnostics. This makes it a useful proxy for spatial uncertainty, edge
proximity, or fragmentation. When these descriptors are computed across a temporal
sequence of years, the resulting multi-band raster captures not only the spatial extent
of outbreaks, but also their local intensity and contextual stability over time. A visual
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example of these descriptors is shown in Figure 7.13, where the Helix mean and variance
bands for 2020 (s = 1) are displayed alongside raw outbreak polygons, illustrating the
complementary encoding of local outbreak density and spatial heterogeneity.

Temporal stacking was performed symmetrically around a reference year to capture
both leading and lagging outbreak signals. This symmetric window provides a temporal
context that includes pre-disturbance buildup and post-disturbance evolution, supporting
the detection of both emerging and fading outbreaks. In addition to the temporal stack, a
binary raster Lref is produced for a designated reference year (e.g., 2020 or 2021), serving
as a direct label for supervised learning. The final output is a multi-band raster, where
each band corresponds to a specific year and kernel size combination, annotated with
descriptive metadata (e.g., helix_mean_y2020_s2). This enriched label representation
captures both outbreak concentration and structural uncertainty across space and time,
providing a smoother and more informative target for learning models than raw labels
alone. The enriched labels provide therefore a smoother, context-aware supervision signal
for model training. In addition to improving spatial generalization, the variance bands
offer a mechanism for model uncertainty estimation or post-hoc interpretability, enabling
applications such as boundary detection or confidence-aware prediction.
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Figure 7.13.: Helix spatial descriptors for 2020 outbreak structure at kernel scale s = 1.
The left panel shows the Helix mean band (helix_mean_y2020_s1), which encodes
localized outbreak density, values range from 0 (no outbreak presence) to 1 (full
neighbourhood affected). Red polygons denote bark beetle outbreak annotations
for 2020. The right panel shows the Helix variance band (helix_var_y2020_s1),
which captures spatial heterogeneity within each kernel neighbourhood. Variance
values range from 0 (homogeneous areas, either all outbreak or all unaffected)
to 0.25 (maximum spatial fragmentation, typically at outbreak boundaries). Mid-
range values (∼0.125) suggest partial infestation or edge zones.

Synthetic Learning Tasks for Outbreak Risk Characterization

Two distinct experimental setups were used to systematically evaluate the predictive
value of Helix descriptors, a suite of synthetic learning tasks, so termed not because the
data are simulated, but because the classification setup is artificially constructed to isolate
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feature effects under balanced sampling and simplified assumptions. The first setup
focuses on testing marginal contributions of spatial kernel descriptors under a controlled,
interpretable setting. The second setup aims to assess the stand-alone informativeness of
each Helix band using a flexible classifier.

In the first experiment, an interpretable logistic regression model is used to evaluate the
marginal benefit of spatial kernel features, namely mean and variance, when added to
EO input. This setup focused on assessing whether spatially aggregated Helix descriptors
provided discriminative signal beyond the raw outbreak label, across multiple kernel
sizes. Its emphasis was on controlled, interpretable comparisons of feature groupings
under a balanced sampling regime.

The second experiment extended this framework to a per-band evaluation using a more
expressive classifier (XGBoost). Each spatio-temporal Helix band (representing a specific
year, kernel size, and statistic) was tested individually in combination with full EO input
to quantify its contribution to outbreak classification. This experiment enabled a detailed
ranking of Helix descriptors based on their stand-alone predictive power across space
and time, offering insight into the temporal relevance and spatial scale sensitivity of the
enrichment.

Together, these experiments provide a comprehensive perspective on the value of Helix-
derived spatio-temporal features as inputs to predictive models of bark beetle dynamics.

Analysis of Kernel-Based Spatial Descriptors: To assess the descriptive and predictive
value of Helix-derived features, a synthetic classification task focused on distinguishing
high-density bark beetle outbreak regions was designed. The objective was to test whether
specific spatial kernel descriptors, particularly mean and variance, contribute measurable
predictive signal when added to EO data.

Model and Sampling Procedure: A logistic regression model was employed to perform
the binary classification. Despite its name, logistic regression is a standard classification
technique, mapping input features to a probability of class membership via a sigmoid func-
tion. This was selected for its interpretability and ability to reveal additive contributions
of individual features (e.g., Helix mean and variance). While inherently a linear classifier,
this simplicity allows to isolate and evaluate the marginal predictive benefit of adding
spatial kernel descriptors to EO data, without introducing complex non-linearities or
model interactions. The primary aim was not to maximize predictive performance, but to
examine whether Helix features carry discriminative signal in a controlled, interpretable
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setting. To ensure balanced class representation, a stratified resampling strategy was used
to draw an equal number of samples from each class (200 per class). For each variant,
the classifier was trained using 70% of the data and evaluated on the remaining 30%.

Label Definition: A binary classification target was derived by thresholding the Helix
mean band (scale s = 2) at 0.5. Pixels with local outbreak density ≥ 0.5 were assigned
class 1 (high-density), and all others class 0 (low-density). This synthetic label serves as a
proxy to identify potential outbreak hotspots.

Ysoft =

⎧⎨⎩1 if Hs(x, y) ≥ 0.5

0 otherwise

where Hs is the Helix mean band at spatial kernel size s.

Separate classification models were trained using EO features in combination with one of
the following targets:

• Lraw: the raw binary outbreak label,

• H1, H2, H3: Helix mean bands at kernel sizes s = 1, 2, 3.

For each target, four feature configurations were tested:

1. EO only,

2. EO + Helix mean,

3. EO + Helix variance,

4. EO + Helix mean + variance.

Performance was evaluated using the following metrics:

• Area Under the ROC Curve (ROC-AUC)

• F1 Score

These metrics quantify both the discriminative power of the classifier and its ability to
capture the imbalanced nature of high-density regions. Results were grouped by spatial
scale and visualized using ROC curves, allowing comparison of each Helix descriptor’s
contribution across contexts.
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Per-Band Classification of Spatio-Temporal Helix Descriptors: As a complementary anal-
ysis, a second synthetic classification experiment was designed to evaluate the standalone
predictive strength of each individual Helix enrichment band when combined with the
full EO feature set. Unlike the first experiment, which aggregated spatial descriptors and
emphasized interpretability via logistic regression, this setup employed a more flexible
tree-based classifier (XGBoostClassifier) to test each Helix band independently. Each
enrichment band, defined by a specific year, kernel size, and statistical function (mean or
variance), was paired with the EO input, and its classification performance was assessed
in isolation. This per-band approach enabled fine-grained evaluation and ranking of
spatio-temporal Helix descriptors with respect to their discriminative value for identifying
outbreak-prone regions.

Here, the objective was to predict outbreak presence as defined by the binarized label_raw
raster (thresholded at 0.5), using:

• the EO stack from the year 2021, and

• one Helix band (either mean or variance) at a time.

For each of the 36 enrichment bands (spanning years 2017–2022 and spatial scales s =
1, 2, 3), a dedicated binary classification model was trained using XGBoostClassifier.
This yielded per-band predictive performance under the same EO context, enabling direct
comparisons across years, scales, and feature types.

All models were trained on an 80/20 stratified split and evaluated using ROC-AUC,
Precision, Recall, and F1 Score. This per-band screening enables ranking of descriptors
by informativeness, while also offering interpretability in terms of spatial and temporal
relevance.

Per-Band Regression using Spatio-Temporal Helix Features

To evaluate the predictive strength of individual spatio-temporal Helix descriptors, a
regression analysis was performed for each enriched band independently. The objective
was to assess how well each Helix band, representing a specific spatial kernel statistic
(mean or variance) at a given year, could be predicted from EO data alone.

The input features were derived from a multi-band EO raster for the year 2020. The
target variables were extracted from the corresponding Helix-enriched raster for the same
year, which included the raw binary outbreak label and a set of derived bands encoding
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local outbreak density (mean) and spatial heterogeneity (variance) across a range of
spatial kernels and temporal offsets.

For each target band, a separate regression model was trained using the EO features
as predictors. A tree-based ensemble model (XGBRegressor) was employed for its
robustness and ability to capture non-linear relationships. A train/test split (80/20) was
applied to evaluate predictive performance, and the model was then used to produce
full-resolution predictions across the study area. All regressions were executed in parallel
to improve computational efficiency.

For each regression task, multiple performance metrics were recorded on the held-out
test set:

• Mean Absolute Error (MAE)

• Median Absolute Deviation (MAD)

• Root Mean Squared Error (RMSE)

• Coefficient of Determination (R2)

• Standard Deviation of Residuals

These metrics provide complementary views of prediction fidelity, robustness to outliers,
and explanatory power. The predicted rasters were stacked and saved with band-level
descriptors indicating the original Helix source band.

This per-band regression procedure serves both as a diagnostic tool for assessing the
informativeness of individual Helix descriptors and as a proxy task to explore their
potential utility in downstream modelling scenarios.

To then further assess the alignment between predicted values and their corresponding
Helix descriptors, a post-hoc evaluation was conducted using both continuous and
discretized metrics. In addition to regression scores, predictions and ground truth
values were mapped into fuzzy ordinal bins spanning the interval [0, 1] using predefined
thresholds. This discretization enabled the computation of a fuzzy Intersection-over-
Union (IoU) score, reflecting the consistency between predicted and true values across
outbreak intensity classes. Class-wise precision and recall were also computed under
this fuzzy scheme using macro-averaging, offering additional insight into the sharpness
and balance of predictions. Residuals were computed per band enabling the detection of
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systematic under- or over-estimation across different spatial kernel scales and temporal
offsets.

Forecasting Future Outbreak Structure via Two-Stage Helix-Based Ensemble
Regression

A three-stage ensemble regression framework was developed to investigate the potential
of Helix-based spatial descriptors to support temporally generalizable outbreak forecast-
ing. The primary goal of the experiment was to assess whether relationships learned
between EO data and Helix descriptors, derived from past bark beetle outbreak activity,
could be transferred to EO imagery from a future year. The approach aimed to emulate a
realistic forecasting scenario in which outbreak-relevant spatial indicators are predicted
for a future time step using EO data alone, without access to future labels during model
training.

Stage 1: Learning Lagged Outbreak Structure from 2020 EO In the first stage of the
pipeline, a set of gradient-boosted regression models was trained to reconstruct Helix
descriptors encoding bark beetle outbreak structure from prior years, using EO data
from a fixed reference year (2020). The targets included spatial mean and variance
statistics of outbreak impact from 2017 through 2020, each computed at three kernel
sizes (s = 1, 2, 3), yielding a total of 24 independent regression targets. These descriptors
were derived from the labelled outbreak polygons and were designed to capture both
outbreak density and fine-scale spatial heterogeneity.

The input feature space for all regressors consisted solely of spectral EO data from 2020,
reshaped into a tabular pixel-wise format. For each Helix target band, a separate XGBoost
model was trained to learn the mapping from 2020 EO to outbreak-related structure
associated with a specific year and kernel size.

Crucially, the training targets spanned two temporal types: the 2020 Helix bands, which
were co-temporal with the EO input and thus provided current-year supervision; and
the 2017–2019 bands, which served as temporally lagged targets. These lagged labels
introduced a quasi-memory component into the learning process, enabling the model to
infer persistent or residual outbreak-related spatial signatures embedded in the 2020 EO
imagery. This combination of current and lagged supervision was intended to enhance
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the model’s ability to generalize temporally when applied to EO data from subsequent
years.

Following model training, prediction residuals were computed per pixel for each Helix
band:

ε(i)(x, y) = y(i)(x, y)− ŷ(i)(x, y), i = 1, . . . , N, (7.1)

where y(i)(x, y) denotes the observed Helix value and ŷ(i)(x, y) the predicted value for
band i at location (x, y), with N = 24 regressors in total.

To characterize reconstruction confidence across bands, residual mean and standard
deviation were computed at each pixel:

µε(x, y) =
1
N

N

∑
i=1

ε(i)(x, y), (7.2)

σε(x, y) =

⌜⃓⃓⎷ 1
N

N

∑
i=1

(︁
ε(i)(x, y)− µε(x, y)

)︁2. (7.3)

These summary statistics were appended to the EO feature space to construct an
uncertainty-aware representation, designed to inform the ensemble model about lo-
cal prediction fidelity and potential epistemic uncertainty, particularly in spatial regions
that deviate from learned outbreak structure.

Stage 2: Temporal Transfer and Inference of 2021 Helix Descriptors The second stage
involved applying the trained regressors from Stage 1 to EO imagery from 2021 in order
to infer a complete set of synthetic Helix descriptors for that year. Since all models had
been trained on EO from 2020 to reconstruct both current and lagged Helix structure
(2017–2020), their application to 2021 EO constituted a form of temporal transfer
learning. For each pixel in the 2021 image, the same 24 regressors were used to estimate
their respective Helix bands, effectively projecting outbreak-related spatial structure
learned from earlier years onto a new EO context.

These inferred Helix features were interpreted as temporally transferable outbreak descrip-
tors, reflecting not actual labels, but synthetic estimates of outbreak-relevant structure
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derived solely from current EO signals and the model’s prior training. The inclusion of
Helix targets from 2020 in Stage 1 was particularly important here, as it allowed the
models to encode quasi-lagged outbreak context, providing a bridge between the input
EO and latent spatial structure in the forecasting year.

In addition to the 24 predicted descriptors, the residual summary features computed in
Stage 1, namely, the mean and standard deviation of prediction errors across regressors,
were also re-applied to the 2021 EO data. This reuse operated under the assumption
that spectral similarity implies comparable reconstruction uncertainty. The full feature
representation for each 2021 pixel therefore consisted of: (1) raw EO bands, (2) inferred
Helix descriptors for 2017–2020, and (3) the corresponding residual summary statistics.

Stage 3: Forecasting Aggregated 2021 Outbreak Density via Final Ensemble Regression
The final forecasting stage involved training a second-level regression model, referred to
as the ensemble regressor, to predict outbreak intensity for 2021 using the full feature
representation derived from Stage 2. The target variable for this prediction was defined
as the average of the three Helix mean bands for 2021, each computed using a different
spatial kernel. This aggregated target, denoted Tagg(x, y), was defined as:

Tagg(x, y) =
1
3

3

∑
s=1

Hµ
2021,s(x, y), (7.4)

where Hµ
2021,s denotes the Helix mean band for kernel size s in the year 2021. The use

of this multi-scale average aimed to produce a more robust and interpretable proxy for
outbreak density that is less sensitive to individual kernel-scale variation.

To train the final ensemble model, the Stage 2 features were assembled over the 2020
spatial domain, i.e., using EO data from 2020, along with the predicted Helix descriptors
(2017–2020) and associated residual statistics. The corresponding training labels were
derived from the 2020 Helix mean bands, aggregated in the same way as the 2021 target.
This setup ensured that the model learned to predict outbreak density from a temporally
consistent feature-label pair, while incorporating both co-temporal and lagged spatial
structure.

At inference time, the trained ensemble regressor was applied to the Stage 2 feature stack
generated from EO data in 2021, enabling a pixel-level prediction of Tagg(x, y) for the
forecast year. Critically, no Helix labels from 2021 were used in training the ensemble
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model. The 2021 targets were held out entirely and used only for post-hoc evaluation,
preserving strict temporal separation between training and forecasting domains. This
design ensured that the model’s performance represented a true generalization to unseen
future EO data.

The output of this stage was a single-band raster in which each pixel represented the
model’s forecasted estimate of bark beetle outbreak intensity for the year 2021. Specif-
ically, each value corresponded to the predicted average of the three Helix mean de-
scriptors for 2021, reconstructed using only EO data and Helix descriptors inferred from
past years. This aggregated prediction served as a synthetic proxy for outbreak density,
integrating spatial structure across multiple kernel scales while remaining independent
of any 2021 ground truth.

Because the true Helix mean bands for 2021 were available but never used in training,
the predicted map could be directly compared to the held-out target for quantitative
evaluation. This enabled a strict assessment of the model’s temporal generalization
capability under a genuine forecasting setup.

7.2.3 Results

The following section presents the empirical outcomes of all four experimental stages,
each aligned with one of the core research questions. Results are structured to progres-
sively evaluate the utility of Helix descriptors: starting with their effect on classification
performance, moving through regression-based diagnostics, and culminating in forward-
looking outbreak forecasts. Together, these results provide a comprehensive assessment
of the Helix framework’s capacity to enrich EO-based modelling across retrospective and
prospective contexts.

Synthetic Classification Performance and ROC Analysis

This section evaluates how well Helix-derived spatial descriptors improve classification
of high-density outbreak regions when combined with raw EO features. Using synthetic
binary labels derived from Helix densities, a series of logistic regression models were
trained across varying spatial kernel sizes and input configurations. Classification metrics
such as ROC-AUC and F1 score are reported to quantify separability and predictive utility
at multiple spatial resolutions.
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Analysis of Kernel-Based Spatial Descriptors To evaluate the ability of Helix features
to identify high-density outbreak zones, a series of logistic regression classifiers under
varying input configurations were trained. Each model aimed to classify pixels as belong-
ing to high-density regions (Hs ≥ 0.5) or not, using a stratified sample of 200 pixels per
class. Results were evaluated across three spatial kernel sizes (s = 1, 2, 3).

Table 7.4 summarizes ROC-AUC and F1 scores across spatial scales and feature sets. The
highest AUC of 0.962 was achieved for s = 2 and s = 3, with F1 scores peaking around
0.91. These results indicate that Helix descriptors are not only spatially interpretable but
also predictive in identifying dense outbreak zones.

Table 7.4.: ROC-AUC and F1 scores for each spatial kernel scale and feature configuration.

Model ROC-AUC F1 Score

s1_t1 – EO only 0.903 0.832
s1_t1 – EO + mean 0.900 0.810
s1_t1 – EO + var 0.900 0.839
s1_t1 – EO + mean + var 0.902 0.825

s2_t1 – EO only 0.962 0.892
s2_t1 – EO + mean 0.962 0.906
s2_t1 – EO + var 0.960 0.891
s2_t1 – EO + mean + var 0.957 0.898

s3_t1 – EO only 0.962 0.892
s3_t1 – EO + mean 0.962 0.906
s3_t1 – EO + var 0.960 0.891
s3_t1 – EO + mean + var 0.957 0.898

Figure 7.14 displays the ROC curves for each kernel configuration and feature set.
All configurations achieved high AUC values (≥ 0.90), with larger kernels generally
yielding higher separability. Notably, models using only EO data with raw labels already
performed strongly, and the marginal gain from adding Helix descriptors was modest but
consistent.

Figure 7.15 provides an aggregated view comparing EO+Helix across kernel sizes versus
EO+raw label. Helix-based features (s = 2, 3) clearly outperform the raw label baseline,
confirming their added value for density-aware classification tasks.

Per-Band Classification of Spatio-Temporal Helix Descriptors The results of the per-
band classification experiments are summarized in Table A.88. The highest F1 score
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Figure 7.14.: ROC curves for synthetic classification task across spatial kernels (s1, s2, s3).
Each subplot compares input configurations (EO only, EO+mean, EO+var,
EO+mean+var).

was achieved by the feature helix_mean_y2021_s1, which yielded a Precision of 0.824,
Recall of 0.821, and an AUC of 0.994. Features derived from the same year as the
reference label (2021), particularly those computed at the smallest kernel size (s = 1),
consistently outperformed others. A general trend was observed in which predictive
performance declined with increasing spatial radius and increasing temporal distance
from the reference year.

Notably, variance-based helix features performed worse than mean-based ones across
nearly all years and scales. However, all evaluated bands retained a non-trivial level of
predictive capacity (minimum F1 ≈ 0.58), indicating that spatial kernel representations
of past or adjacent-year outbreaks encode useful context for local risk estimation.

Regression Performance of Spatio-Temporal Helix Descriptors

To assess the informativeness of individual Helix bands, each descriptor was used as
a target in an independent regression task, with EO features from 2020 as inputs.
Regression performance was evaluated across three temporal groups, past (2017–2019),
current (2020), and future (2021–2022), and compared across both mean and variance
descriptors at multiple spatial scales (s = 1, 2, 3).

The following Tables, Table 7.5, Table 7.6 and Table 7.7, present the top-performing Helix
descriptors within each temporal group, ranked by RMSE:

Overall Trends: The best predictive performance was consistently observed for bands
from the current year (2020), with variance descriptors yielding lower RMSEs than
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Figure 7.15.: Aggregate ROC curves for predicting high outbreak density. Models include EO
combined with raw label, and EO with Helix mean at increasing kernel scales.

Table 7.5.: Top Helix Bands from 2020 (Current Year) Sorted by RMSE

Band MAE RMSE R2 Type

helix_var_y2020_s3 0.0203 0.0350 0.497 Variance
helix_var_y2020_s2 0.0191 0.0354 0.478 Variance
helix_var_y2020_s1 0.0171 0.0360 0.394 Variance
helix_mean_y2020_s3 0.0291 0.0555 0.583 Mean
helix_mean_y2020_s2 0.0305 0.0623 0.590 Mean

Table 7.6.: Top Helix Bands from 2019 (Past Year) Sorted by RMSE

Band MAE RMSE R2 Type

helix_var_y2019_s3 0.0243 0.0397 0.561 Variance
helix_mean_y2019_s3 0.0364 0.0656 0.641 Mean
helix_mean_y2019_s2 0.0377 0.0730 0.648 Mean
helix_var_y2019_s2 0.0233 0.0400 0.544 Variance
helix_var_y2019_s1 0.0209 0.0401 0.471 Variance

their mean counterparts. For example, helix_var_y2020_s3 achieved the lowest RMSE
(0.035) and highest R2 (0.50) within the current group, indicating that spatial hetero-
geneity of outbreak labels was more learnable than raw density at fine scales. Mean
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Table 7.7.: Top Helix Bands from 2022 (Future Year) Sorted by RMSE

Band MAE RMSE R2 Type

helix_var_y2022_s3 0.0399 0.0555 0.496 Variance
helix_var_y2022_s2 0.0398 0.0567 0.457 Variance
helix_var_y2022_s1 0.0378 0.0573 0.359 Variance
helix_mean_y2022_s3 0.0723 0.1125 0.576 Mean
helix_mean_y2022_s2 0.0789 0.1265 0.546 Mean

descriptors from 2020 also performed competitively, with increasing kernel size generally
reducing RMSE, suggesting that larger spatial contexts improved signal coherence.

Temporal Comparison: Predictive performance degraded modestly for future bands
and more noticeably for past descriptors. Variance bands from future years (e.g.,
helix_var_y2022_s3, RMSE = 0.056) remained more predictable than mean bands
(e.g., helix_mean_y2022_s1, RMSE = 0.149), suggesting that structural cues of out-
break risk (e.g., heterogeneity) are retained more robustly over time than absolute
outbreak density. Past-year bands showed relatively good performance, particularly in
2019, where both variance and mean bands at larger scales yielded high R2 scores (e.g.,
helix_mean_y2019_s2, R2 = 0.65), likely reflecting temporal proximity and continuity
of outbreaks leading into 2020.

Scale Effects: Spatial scale (s) had a consistent effect across years: larger kernels (s = 2
and s = 3) produced more stable and accurate predictions, with higher R2 and lower error
across both mean and variance descriptors. This confirms that including broader spatial
context helps models resolve signal in both outbreak density and boundary uncertainty.

Predicted Value Distributions: Value ranges for predicted bands were examined to
assess calibration and realism. While some predictions exceeded the nominal range
[0, 1], the majority of values clustered below 0.2, consistent with the spatial sparsity of
outbreaks. Variance descriptors showed a broader dynamic range than mean descriptors,
reflecting their role in capturing transition zones and spatial fragmentation. Notably,
variance predictions often peaked near 0.25, the theoretical maximum for binary input,
validating their interpretation as spatial uncertainty indicators.

Residual Behaviour Across Bands and Temporal Contexts:

To further understand the nature of prediction errors for individual Helix descriptors,
residual distributions were plotted for all bands across spatial scales and years (Fig-
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ures A.1–A.9). These plots illustrate the deviation between predicted values and their
ground truth enriched targets, highlighting not only central error tendencies but also
skewness and heavy-tailed effects across the spatio-temporal landscape. Residual Distri-
butions: In general, residuals were tightly centered around zero, with sharply peaked
unimodal distributions indicating low systematic bias. Variance descriptors showed nar-
rower and more symmetric residuals compared to mean descriptors, particularly at higher
spatial kernel sizes (s = 2, 3). This pattern suggests that spatial heterogeneity is more
consistently modelled than outbreak density. Broader and heavier-tailed residuals were
primarily observed in mean descriptors, especially for temporally distant bands (e.g.,
2017–2018), where sparse outbreak signals may have introduced underfitting or local
overestimation.

Fuzzy IoU and MAE Trends: Fuzzy IoU values were highest for current-year descriptors
(2020), with variance bands reaching up to 0.82 (e.g., helix_var_y2020_s3) and mean
bands around 0.75. Past descriptors showed decreasing IoU with increasing temporal
distance from the reference year; for instance, 2017 bands averaged an IoU of 0.63 (mean)
and 0.67 (variance). Future years (2021–2022) exhibited moderate IoU values (typically
0.65–0.71), indicating partial predictability of forthcoming outbreak structure.

MAE values followed a similar trend: lowest for variance bands in the current year
(e.g., 0.020 for helix_var_y2020_s3) and highest for mean bands from future years
(up to 0.089 for helix_mean_y2022_s1). Across all temporal groups, larger spatial
kernels (s = 3) consistently yielded lower MAEs and higher fuzzy IoUs, confirming
that neighbourhood context improves signal coherence and reduces pixel-level noise in
predictions.

MAE Distribution Across Bands: To further illustrate the comparative performance of
Helix descriptors by year, Figure 7.16 shows grouped bar plots of MAE for all bands,
stratified by temporal reference. Within each year, bands are ordered by ascending error.
Several consistent trends emerge: first, variance descriptors systematically outperform
mean descriptors in nearly all years, often appearing in the lower half of the MAE range.
Second, performance improves with increasing kernel size, larger spatial contexts (e.g.,
s = 3) yield more stable and accurate predictions. Third, MAE increases with temporal
distance from the reference year, reflecting decreasing signal quality in past and future
bands relative to current-year EO inputs.

Precision and Recall: In the fuzzy ordinal class space, macro-averaged precision and
recall scores ranged between 0.69 and 0.84, with variance bands again outperforming
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Figure 7.16.: Grouped bar plots of mean absolute error (MAE) for all predicted Helix bands,
organized by year. Within each year, bands are sorted by MAE from low to high.
Blue tones represent mean bands; red tones represent variance bands.

mean bands by a narrow but consistent margin. Precision-recall balance was strongest in
temporally adjacent bands, reinforcing the notion that outbreak features captured by EO
data are most informative for recent or imminent disturbance structure.

Table 7.8.: Summary of fuzzy evaluation metrics for selected Helix bands.

Band MAE Fuzzy IoU Precision Recall

helix_var_y2020_s3 0.020 0.82 0.84 0.83
helix_mean_y2020_s2 0.030 0.76 0.79 0.78
helix_var_y2018_s3 0.012 0.67 0.73 0.71
helix_mean_y2017_s1 0.022 0.63 0.69 0.68
helix_mean_y2022_s1 0.089 0.65 0.72 0.70

In general, the residuals exhibited symmetric and sharply peaked distributions centred
around zero, indicating good overall calibration and low bias. This pattern was most
pronounced in variance descriptors, particularly at larger spatial kernels (s = 2 and
s = 3), which showed tight, leptokurtic distributions with minimal long-tail behaviour.
This suggests that spatial heterogeneity cues, captured by variance bands, are more
consistently modelled by EO-based regressors.

By contrast, mean descriptors showed broader, slightly skewed residual curves, with
heavier tails extending toward overestimation. This was especially visible in early past
years (e.g., 2017, 2018), where Helix mean bands likely encoded sparser outbreak
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patterns. These results point to increased difficulty in learning outbreak density directly
from EO data when temporal proximity to the reference year is low.

Over time, residual spread tended to increase slightly in future bands, with both mean
and variance types exhibiting marginally broader distributions. Nevertheless, the resid-
uals remained centred and tightly constrained in absolute magnitude (typically within
[−0.1,+0.1]), reaffirming the effectiveness of Helix descriptors as learnable and predictive
targets.

These findings support the earlier quantitative trends observed in fuzzy evaluation metrics
and confirm that variance-based Helix descriptors are more stable targets across time,
scale, and label structure. The residual diagnostics thus reinforce the design rationale of
Helix as a multi-context representation capable of encoding not only outbreak magnitude
but also uncertainty and boundary structure.

Ensemble-Based Forecast of Future Outbreak Density

Stage 1: Reconstruction Accuracy of Historical Helix Descriptors In the first stage of
the ensemble forecasting pipeline, individual gradient-boosted regressors were trained to
predict Helix spatial descriptors, representing mean and variance of bark beetle outbreak
activity, from EO data collected in 2020. These regressors targeted both co-temporal
descriptors (2020) and lagged outbreak structures (2017–2019), simulating the model’s
ability to encode both current and residual spatial outbreak signals.

Table 7.9 summarizes the predictive performance across all 24 Helix bands, measured in
terms of MAE, RMSE, and coefficient of determination (R2). Overall, mean descriptors
exhibited higher predictive fidelity than variance descriptors, with RMSE values typically
below 0.04 and R2 values frequently exceeding 0.7, especially for lagged outbreak years.
These findings suggest that the EO features retained a consistent imprint of past and
present outbreak spatial structure, particularly for kernel sizes s = 2 and s = 3.
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Table 7.9.: Stage 1 reconstruction metrics for Helix descriptors derived from 2020 EO data.

Band Context MAE RMSE R2

2020
helix_mean_y2020_s1 2020 0.0096 0.0210 0.6561
helix_mean_y2020_s2 2020 0.0147 0.0317 0.7710
helix_mean_y2020_s3 2020 0.0101 0.0205 0.6798
helix_var_y2020_s1 2020 0.0285 0.0442 0.5429
helix_var_y2020_s2 2020 0.0490 0.0799 0.6220
helix_var_y2020_s3 2020 0.0296 0.0439 0.5708

2017–2019
helix_mean_y2017_s1 2017–2019 0.0176 0.0453 0.7387
helix_mean_y2017_s2 2017–2019 0.0090 0.0224 0.5674
helix_mean_y2017_s3 2017–2019 0.0160 0.0363 0.7603
helix_var_y2017_s1 2017–2019 0.0270 0.0587 0.7456
helix_var_y2017_s2 2017–2019 0.0143 0.0294 0.5833
helix_var_y2017_s3 2017–2019 0.0257 0.0504 0.7406
helix_mean_y2018_s1 2017–2019 0.0104 0.0222 0.6440
helix_mean_y2018_s2 2017–2019 0.0153 0.0321 0.7539
helix_mean_y2018_s3 2017–2019 0.0110 0.0217 0.6653
helix_var_y2018_s1 2017–2019 0.0163 0.0295 0.6339
helix_var_y2018_s2 2017–2019 0.0247 0.0450 0.7323
helix_var_y2018_s3 2017–2019 0.0172 0.0293 0.6460
helix_mean_y2019_s1 2017–2019 0.0164 0.0430 0.7571
helix_mean_y2019_s2 2017–2019 0.0083 0.0210 0.5886
helix_mean_y2019_s3 2017–2019 0.0153 0.0358 0.7688
helix_var_y2019_s1 2017–2019 0.0594 0.1090 0.5829
helix_var_y2019_s2 2017–2019 0.0253 0.0432 0.4688
helix_var_y2019_s3 2017–2019 0.0534 0.0913 0.6070

Stage 2: Ensemble Regression Accuracy on 2020 Data In the second stage, the ex-
tended feature stack, consisting of 2020 EO data, inferred Helix descriptors (2017–2020),
and residual statistics, was used to train an ensemble of XGBoost regressors to predict
the aggregated Helix mean and variance descriptors for 2020. This stage tested the
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ensemble’s ability to integrate multiple feature modalities to recover outbreak-related
spatial structure with high fidelity.

As shown in Table 7.10, the ensemble regressors achieved consistently low error across
all bands. MAE values were below 0.005 for all mean bands and under 0.02 for variance
bands. Coefficient of determination (R2) scores exceeded 0.87 in all cases, and peaked
above 0.95 for the s = 2 kernel mean band. This performance indicates the ensemble’s
strong capacity to consolidate spatial information and recover target structures from the
enriched 2020 representation.

Table 7.10.: Stage 2 ensemble regression metrics for predicting 2020 Helix mean and variance
bands.

Band Context MAE RMSE R2

helix_mean_y2020_s1 Ensemble_2020 0.0031 0.0096 0.9285
helix_mean_y2020_s2 Ensemble_2020 0.0048 0.0132 0.9600
helix_mean_y2020_s3 Ensemble_2020 0.0039 0.0102 0.9204
helix_var_y2020_s1 Ensemble_2020 0.0121 0.0236 0.8700
helix_var_y2020_s2 Ensemble_2020 0.0195 0.0368 0.9199
helix_var_y2020_s3 Ensemble_2020 0.0137 0.0241 0.8702

Stage 3: Forecast Accuracy on 2021 Outbreak Descriptors The final stage of the fore-
casting pipeline aimed to infer spatial outbreak intensity for the year 2021 using the
two-stage ensemble regression model trained solely on 2020 EO data and historical Helix
descriptors (2017–2020). Forecasting performance was evaluated against held-out 2021
labels, focusing on the three Helix mean bands computed at kernel radii s = 1, 2, 3. These
bands, representing spatially smoothed descriptors of outbreak density, were used as the
primary prediction targets in the ensemble due to their superior predictive performance
in earlier stages.

Although both Helix mean and variance descriptors were reconstructed during Stage 1,
only the mean bands were retained as targets for the final forecast model. This exclusion
was based on empirical observations: variance descriptors consistently exhibited weaker
regression performance, both in terms of error magnitude and R2, compared to the mean
bands. The mean descriptors proved more stable and interpretable as outbreak density
proxies, likely reflecting their stronger correlation with EO-based spectral features. Thus,
this choice can be interpreted as a form of empirical feature selection.
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The resulting forecast prediction corresponds to the mean Helix descriptors for 2021
at spatial kernel sizes s = 1, s = 2, and s = 3, respectively. These predictions were
compared to the true 2021 Helix labels, scaled to the unit interval [0, 1], where higher
values indicate increased local outbreak density. Table 7.11 summarizes the prediction
accuracy for each of the three spatial kernels.

Table 7.11.: Stage 3 Forecast Accuracy for 2021 Mean Helix Bands

Band Context MAE RMSE

helix_mean_y2021_s1 Forecast_2021 0.0474 0.1501
helix_mean_y2021_s2 Forecast_2021 (center) 0.0298 0.0822
helix_mean_y2021_s3 Forecast_2021 0.0464 0.1294

The central kernel prediction (s = 2) yielded the lowest forecast error, with a MAE of
0.0298 and RMSE of 0.0822. These results indicate that the ensemble model, trained
without access to any 2021 outbreak labels, was able to generalize previously learned
relationships between EO patterns and outbreak structure to the EO data of an unseen
future year. The comparatively higher errors at s = 1 and s = 3 may reflect edge-
related noise and spatial over-smoothing effects, respectively. Overall, the strongest
signal transfer appeared at intermediate spatial resolution, consistent with the predictive
patterns observed in Stage 1 and Stage 2.

A qualitative comparison between predicted and true Helix mean values for kernel size
s = 2 is shown in Figure 7.17, highlighting the close alignment of spatial structure in the
forecasted and labelled maps.

7.2 Forest Disturbance Forecasting from Fused Sentinel-1 and Sentinel-2
Data with Helix-Based Spatio-Temporal Label Enrichment

299



Figure 7.17.: Visual comparison of 2021 Helix outbreak intensity (mean descriptor, spatial kernel
s = 2). Left: Ground-truth Helix mean band derived from labelled outbreak
polygons. Right: Predicted Helix mean band obtained via ensemble forecasting
model using only pre-2021 data. Both maps are normalized to the range [0, 1],
where 0 denotes low or no outbreak intensity and 1 indicates maximal inferred
damage.

7.2.4 Discussion

This study setup explored the use of Helix-derived spatial descriptors to enrich remote
sensing data for bark beetle outbreak monitoring. Helix, a framework for constructing
smoothed, multi-scale label representations from sparse outbreak data, was evaluated
across multiple experimental regimes, including synthetic classification, per-band re-
gression, and forward-looking ensemble prediction. Across all tasks, Helix features
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consistently improved predictive performance and interpretability, supporting their viabil-
ity for both retrospective analysis and prospective ecological forecasting.

Label Engineering as Structured Regularization

One of the less overt but impactful aspects of the Helix framework lies in its function
as a structured regularization mechanism for label space. By embedding raw outbreak
labels within spatial neighbourhoods and temporal offsets, Helix imposes inductive priors
that promote continuity and suppress noise. This is especially pertinent given the known
limitations of the input labels, which are sparse, binary, and potentially lagged relative to
actual disturbance onset.

The spatial kernels act as smoothing operators, transforming fragmented binary masks
into more coherent representations of outbreak density and heterogeneity. This better
aligns with the spatial scale of ecological processes and supports improved model cali-
bration. In this way, Helix does not merely augment the input space, it restructures the
learning problem itself, transitioning from brittle pixel-wise classification to context-aware
inference.

This can be interpreted as a form of weak supervision, where spatial priors derived from
neighbourhood statistics serve as soft constraints on learning. The resulting models
benefit from this structure, achieving better generalization and greater robustness to local
mislabelling or sampling irregularities.

Temporal Generalization and Lag Structure

Helix descriptors also offer a lens on temporal generalization. Across tasks, a consistent
trend was observed: descriptors closer in time to the EO reference year (2020) were more
predictable, while those further removed, either in the past or future, exhibited higher
error and weaker correlation. This suggests that while EO imagery captures enduring
traces of disturbance structure, the predictive signal has a limited temporal reach.

This reflects a natural decay in ecological memory: the influence of past outbreaks on
present-day canopy state diminishes over time, and future conditions introduce new
variability. The current Helix implementation assumes uniform time steps and fixed-width
windows; however, more sophisticated variants could explore non-uniform lags, learned
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decay functions, or temporally adaptive kernels aligned with bark beetle life cycles or
climatic anomalies.

Descriptors might also be extended to model temporal dynamics more explicitly, for
example, through autoregressive components or momentum terms that encode not just
presence but directional change. Such refinements would better reflect the non-stationary
and cascading nature of forest disturbance processes.

While Helix bridges some of this temporal ambiguity through multi-year context aggrega-
tion, the annual resolution of outbreak labels imposes a fundamental limit on temporal
precision. Label timestamps may not align exactly with spectral change, especially in
cases of delayed canopy response or asynchronous infestation onset. This underscores the
need for caution when interpreting short-term trends and points to a potential role for
higher-resolution reference data, such as aerial surveys or phenology-derived disturbance
maps, in future iterations.

Multi-Kernel Spatio-Temporal Context Enrichment

At its core, Helix implements a scalable, interpretable form of multi-kernel spatio-temporal
enrichment. By computing local statistics over varying neighbourhood sizes and years, it
introduces controlled redundancy and multi-scale abstraction into the modelling pipeline.
This diversity in spatial scale is critical: smaller kernels preserve fine-grained detail, while
larger ones capture broader context and transitional zones.

This design reflects the ecological reality that bark beetle outbreaks span nested spatial
extents, from individual trees to landscape-scale epidemic fronts. Helix translates these
multi-scale effects into structured inputs that are readily learnable by downstream models,
effectively scaffolding them toward more ecologically plausible representations.

Unlike end-to-end deep learning pipelines that may learn such structure implicitly, Helix
makes spatial context explicit and modular. This not only improves model performance,
as demonstrated in both classification and forecasting tasks, but also enhances inter-
pretability and operational reuse.

In this light, Helix functions as a flexible, context-aware label engineering strategy that
allows remote sensing models to internalize spatio-temporal structure without sacrificing
transparency or control.
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Limitations and Assumptions

Despite the promising results, several limitations and assumptions of this study warrant
attention.

First, the spatial kernels applied in Helix are isotropic, meaning they assume uniform
spread in all directions. This design was chosen deliberately for interpretability and
computational tractability, but it does not capture the anisotropic dynamics often observed
in real-world bark beetle spread, such as preferential movement along wind corridors,
slope gradients, or forest stand boundaries. However, given the absence of high-resolution
spatial driver layers (e.g., fine-scale wind fields or detailed stand connectivity maps),
more sophisticated, directionally-weighted kernels were beyond the scope of this study.
Future research could integrate terrain-informed or process-based spread models where
such data becomes available.

Second, the temporal enrichment was based on a fixed, symmetric window of annual
snapshots, which does not adapt dynamically to local outbreak progression rates or
climatic triggers. Nevertheless, the modelling framework explicitly incorporated multi-
year lagged Helix descriptors as input features, allowing the model to learn from both
current and historical outbreak patterns when forecasting future disturbance risk. This
setup demonstrated that the model could generalize temporal dependencies without
requiring future labels at training time. Nonetheless, future extensions could explore
more flexible temporal kernels or integrate time-aware features such as phenological
phase indicators or outbreak progression stages to further improve temporal sensitivity.

These simplifications were intentional, balancing interpretability, data availability, and
computational feasibility. They provided a controlled foundation for demonstrating the
broader value of spatio-temporal label enrichment in EO-driven disturbance forecasting.

Foundational Insights from Synthetic Classification

The synthetic classification experiments provide foundational evidence for the discrimi-
native value of Helix descriptors. Augmenting EO inputs with Helix-derived mean bands
consistently improved classifier performance, particularly at spatial scales s = 2 and
s = 3. While EO-only models achieved strong baselines (ROC-AUC ≈ 0.90–0.96), Helix-
enhanced models improved F1 scores and maintained or exceeded AUC performance.
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These gains validate the hypothesis that spatially aggregated outbreak signals offer
complementary information beyond what is captured in raw EO imagery.

In contrast, variance descriptors underperformed, especially when combined with mean,
suggesting that while heterogeneity may encode edge structure or transition zones, it may
also introduce noise in binary classification tasks. Kernel size s = 2 emerged as the most
balanced configuration, likely reflecting an optimal trade-off between neighbourhood
coverage and local specificity.

Diagnostic Value via Per-Band Regression

The per-band regression experiments served as a diagnostic lens into the learnability of
Helix descriptors from EO. Variance descriptors consistently achieved lower MAE and
RMSE and produced tighter, more symmetric residuals compared to mean descriptors,
particularly at larger spatial scales. This suggests that spatial heterogeneity, interpretable
as uncertainty or fragmentation, is more stably imprinted in EO features and more
transferable across years.

Temporal degradation followed expected trends: past descriptors became harder to
reconstruct as the lag increased, though recent years (e.g., 2019–2020) retained strong
signal. Future descriptors were also partially predictable, especially variance bands, which
appear to capture structural continuity across time better than mean density maps.

Inverse Modelling and Predictive Generalization

The forecasting framework presented here operates in a fully inverse fashion: rather
than learning from future outbreak outcomes directly, it leverages observable EO data
from a fixed year (2020) to reconstruct both concurrent and lagged Helix descriptors
(2017–2020). This inversion of the traditional time-forward prediction paradigm is
central to the model’s generalization capacity. By anchoring the learning process in
a single-year EO snapshot time-series, the model effectively learns a spatial outbreak
signature, one that is encoded not in outbreak polygons but in EO-correlated proxies.

Across Stage 1 and Stage 2, results demonstrated that Helix descriptors corresponding
to both 2020 and prior years could be accurately reconstructed from 2020 EO input.
Particularly strong reconstruction was observed for Helix mean bands with intermediate
spatial kernels (s = 2), indicating that outbreak-relevant structure is most salient at
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this scale. Importantly, this outcome confirms that lagged outbreak signatures persist
in the EO signal of a subsequent year, enabling the model to develop a quasi-memory
mechanism.

When applied to 2021 EO imagery in Stage 3, the model was able to transfer its learned
spatial associations to forecast future outbreak descriptors, without any access to 2021
outbreak labels during training. The central prediction (mean descriptor for s = 2)
achieved the lowest forecast error (MAE = 0.03, RMSE = 0.08), further confirming that
the inverse modelling approach supports effective temporal generalization.

Bands 1–3 of the final prediction output correspond to synthetic reconstructions of
historical descriptors (especially resembling 2018, as evidenced by spatial similarity),
while bands 4–6 represent the ensemble’s direct forecast of 2021 Helix mean bands. This
separation is deliberate: only the latter bands were evaluated against held-out 2021
labels, as they reflect the forward inference objective of the pipeline.

Notably, variance bands were excluded from the final ensemble forecasting step due to
weaker reconstruction performance in earlier stages. This reflects a feature selection
decision grounded in empirical accuracy, and highlights a potential avenue for future
improvement in uncertainty-aware outbreak modelling.

Synthesis: A Unified Spatio-Temporal Enrichment Framework

Taken together, the experiments reveal a consistent finding: Helix-based enrichment
serves as a powerful mediator between noisy EO inputs and the complex, structured
patterns of ecological disturbance. From simple classification tasks to inverse modelling
and ensemble forecasting, Helix enabled models to internalize spatial context in a
transparent and modular way.

Rather than relying solely on raw labels or black-box learning, Helix provides a middle
ground, where structure, scale, and uncertainty are made explicit and learnable. In
doing so, it transforms past outbreak data into a reusable spatial prior that supports both
retrospective analysis and prospective forecasting under environmental change.

Looking forward, extensions of Helix may incorporate terrain-informed kernels, sub-
annual temporal representations, or dynamic outbreak models. Yet even in its current
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form, Helix demonstrates the potential of structured label engineering to advance re-
mote sensing-based ecological monitoring, balancing interpretability, performance, and
operational utility.

7.2.5 Conclusions

This setup investigated the role of spatio-temporal label engineering, operationalized
through the Helix framework, in enhancing remote sensing models for bark beetle
outbreak monitoring. By reformulating sparse, binary disturbance labels into smoothed,
multi-scale descriptors, Helix aims to bridge the gap between noisy reference data and
the structured ecological processes they intend to represent. The core mechanism, multi-
kernel spatio-temporal context enrichment, translates outbreak history into a learnable
representation of ecological structure, enabling models to internalize both local intensity
and broader contextual patterns. Through a series of targeted experiments, this work
evaluated the representational, diagnostic, and predictive value of these descriptors under
both retrospective and forward-looking scenarios.

Research Questions Revisited

Through a structured sequence of four modelling stages, the following key research
questions are now addressed:

RQ1: Do spatially enriched Helix descriptors provide additive predictive signal beyond
raw outbreak labels? Yes. Logistic regression experiments using synthetic labels
derived from Helix densities revealed that spatial kernel descriptors offer consistent
performance improvements over raw EO inputs alone. Models integrating EO
data with Helix mean and variance features achieved AUC values above 0.96 and
F1 scores up to 0.91, surpassing models trained on raw EO and label data. This
confirms the added value of spatial contextualization in outbreak classification.

RQ2: Which Helix descriptors, defined by year, scale, and statistic, carry the most discrim-
inative power under current EO conditions? The per-band classification analysis
revealed that Helix descriptors derived from the same year as the outbreak label
(2021) consistently yielded the strongest predictive signal, with the highest F1
scores and AUC values. In particular, helix_mean_y2021_s1 achieved an F1 score
of 0.822 and an AUC of 0.994, outperforming all other bands.
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Performance tended to decline with increasing spatial kernel size and with temporal
distance from the target year. Descriptors from past years (e.g., 2017–2020)
and larger kernels (s = 2, 3) still retained meaningful predictive capacity, though
with reduced precision and recall. Variance-based descriptors were generally less
informative than their mean-based counterparts.

These findings indicate that Helix descriptors computed at finer spatial scales and
from temporally aligned outbreak data are most effective for outbreak detection,
while lagged and coarse-scale features still contribute useful but weaker spatial
context.

RQ3: Can Helix descriptors be reconstructed from EO input alone, and how well does this
mapping generalize across spatial and temporal contexts?

Yes. Regression models trained to reconstruct Helix descriptors from 2020 EO data
achieved strong performance, especially for descriptors from 2020 and nearby years.
The results from of regression tasks and subsequent residual analyses indicate that
Helix descriptors, encoding spatially enriched outbreak statistics, can be effectively
predicted from spectral EO data alone. Reconstruction accuracy was highest for
descriptors from the reference year (2020), but generalization extended to lagged
(2017–2019) and even future (2021–2022) years with only moderate degradation.
Variance descriptors proved particularly robust across temporal contexts, with lower
RMSE and tighter residual distributions than their mean-based counterparts, likely
due to their focus on spatial heterogeneity rather than outbreak magnitude.

Generalization was further modulated by spatial kernel size, with broader context
(s = 2, 3) consistently improving predictive fidelity. These findings validate the Helix
framework’s capacity to abstract stable spatial outbreak features and demonstrate
that such descriptors are not only learnable from EO input, but transferable across
both space and time, making them suitable as intermediate supervision targets in
forecasting and spatial inference tasks.

RQ4: Are Helix-derived spatial patterns learned from current and lagged data transferable
to unseen future conditions, enabling EO-only prediction of future outbreak density?

Yes. The ensemble forecasting pipeline, trained exclusively on EO observations from
2020 and Helix descriptors from 2017–2020, was able to predict 2021 outbreak
intensity, specifically, Helix mean descriptors, at a pixel level with meaningful
accuracy. The model achieved its lowest error at spatial scale s = 2 (MAE =
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0.0298, RMSE = 0.0822), indicating that mid-range spatial context was optimal
for transferring learned structure to unseen future conditions. Importantly, no 2021
label information was used during training, confirming the predictive generalization
of Helix representations under strict temporal holdout.

The model’s outputs closely resembled the ground truth outbreak intensity maps
for 2021, especially at intermediate kernel sizes, reinforcing the idea that outbreak-
related spatial features captured in Helix descriptors are not only learnable but
temporally stable. This supports the use of Helix as a generative representation for
forecasting tasks in EO-driven ecological modelling.

Together, these results demonstrate that Helix descriptors offer a robust, learnable,
and temporally transferable representation of forest disturbance structure, capable of
supporting EO-based forecasting pipelines even in the absence of future labels.

Closing Remarks

Overall, this setup presents a usage example of the Helix framework, as a novel and
practical way, for enriching ecological labels in spatio-temporal remote sensing tasks.
By explicitly encoding local structure, temporal continuity, and predictive uncertainty,
Helix enhances the alignment between EO inputs and ecological targets. The framework’s
versatility across classification, regression, and forecasting tasks speaks to its broader
applicability, not just in forest health monitoring, but in other domains where spatially
sparse yet structurally rich reference data limit current modelling capabilities.

In an era of growing ecological risk and expanding remote sensing archives, tools like
Helix offer a path toward more interpretable, generalizable, and robust monitoring
pipelines, blending domain insight with machine learning in a principled way.
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7.3 Seasonal Glacier Facies Forecasting from Temporally
Fused Sentinel-1 Data and Helix Labels

This chapter presents the methodological foundation for the spatio-temporal prediction
of glacier facies based on satellite-derived EO data. The approach builds upon the recog-
nition that glacier surface zones, such as wet snow, percolation, and superimposed ice,
exhibit gradual, seasonal transitions rather than static states. Capturing such transitions
requires more than traditional classification snapshots; it demands a representation that
reflects temporal continuity and surface evolution. Accurate, seasonal forecasting of
glacier facies is critical for understanding surface energy balance, meltwater production,
and the timing of key hydrological processes in polar regions. This is particularly im-
portant in the Canadian High Arctic, where in-situ observations remain sparse due to
logistical challenges and remoteness. Satellite-based, EO-driven facies modelling can
help fill this gap, enabling continuous, synoptic monitoring of glacier surface conditions.
More importantly, being able to forecast facies transitions, rather than just classify them
retrospectively, supports both operational glaciological monitoring and long-term climate
impact assessments. This experiment addresses this need by testing whether seasonally
enriched labels and temporally fused Sentinel-1 data can produce generalizable, tem-
porally aware facies predictions in data-scarce Arctic environments. To enable this, the
framework integrates EO time series with an enriched supervision signal derived from
multi-temporal glacier zone maps. These label datasets, initially structured as discrete,
class-based products at regular intervals, are transformed into temporally aggregated
representations aligned with the seasonal progression of glacier surface processes. The
underlying assumption is that EO-driven models benefit not only from the spatial patterns
present in each scene, but from the embedded seasonal structure across time. The notion
of seasons, spring, summer, fall, and winter, therefore serves as an implicit organizing
principle for both the labels and the learning process, reflecting climatologically distinct
phases in glacier surface behaviour. By aligning EO signals and glacier zone annotations
in both space and time, and by re-structuring the label domain into seasonally enriched
representations, the method aims to support predictive models that generalize across
years, locations, and seasonal regimes. The chapters that follow detail the construction
of these enriched labels, the supervised learning setup, and the transfer scenarios used to
evaluate spatial and temporal generalization performance.

This experiment is guided by the following research questions:
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RQ1: Does seasonal label enrichment improve the model’s ability to represent glacier facies
transitions compared to discrete classification targets?

RQ2: How well do temporally fused Sentinel-1 features predict enriched seasonal glacier
zone dynamics?

RQ3: Can a residual-based refinement stage enhance prediction accuracy and robustness
across seasons?

RQ4: Does the inclusion of historical seasonal priors improve model generalization across
glacier regions and years?

To assess these questions, a modular regression pipeline is employed that predicts enriched
seasonal glacier facies from Sentinel-1 inputs using XGBoost. The design includes label
enrichment, base and residual-based modelling, and the integration of historical priors.
Performance is evaluated across intra- and inter-annual settings, including spatial and
temporal transfer scenarios, using standard regression metrics.

7.3.1 Materials

The modelling pipeline relies on two core data streams: multi-temporal EO imagery
from Sentinel-1, and temporally dense glacier facies labels derived from TSX. Both are
structured along a shared seasonal calendar and temporally aligned at 7-day resolution.
This section outlines the origin, characteristics, and preprocessing of each data source.

Sentinel-1 Multi-SAR EO Input: The primary EO input for this study is derived from
Sentinel-1 imagery acquired in Interferometric Wide (IW) swath mode over Axel Heiberg
Island (AOI 1) and Devon Island (AOI 2). Over these high Arctic glacier systems, Sentinel-
1 scenes are available in dual-polarization mode (HH and HV) at a nominal revisit
interval of 7 days. The analysis period spans from April to November, representing the
glaciologically active season in the study areas. In total, 16 acquisition dates are retained
per year, yielding a dense time series of dual-pol SAR data.

Each scene is processed into co-registered Single Look Complex (SLC) format and passed
through a Multi-SAR pre-processing pipeline following [38]. From these SLC inputs,
polarimetric decomposition and Kennaugh matrix elements (K0, K1, K5 and K8) are
computed to obtain four primary parameters per date (K0 is exhibited in Figure 7.18
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- left panel). This results in a time series of 16 × 4 = 64 EO bands per year, with a
spatial grid at 10 m resolution. To compress this temporal information while retaining
key seasonal dynamics, a hypercomplex temporal fusion is applied using the HCB method
[289]. This technique, described in detail in Section 2.2, employs a transformation to
jointly encode the temporal and structural dimensions of the SAR signal. The result is a
single, 64-channel EO data cube per glaciological study year, where each band captures
either a temporally fused mean (e.g., K0,0) or a structured component of intra-annual
variation (e.g., K0,1−63), K0 of the time-series is showcased in Figure 7.18 - right panel).

The fused EO input stack thus offers a rich yet compact summary of radar signal evolution
over the melt year, structured for seasonal alignment and ready for use in supervised
prediction tasks.

Glacier Facies Labels from TerraSAR-X: Glacier zone annotations are derived from high-
resolution TSX imagery, processed into facies maps, as detailed in Section 1.2.3, with a
spatial grid at 40 m resolution [311]. Thereby pixel-level glacier facies labels at 7-day
intervals were derived, covering the same April–November glaciological window as the
Sentinel-1 data. Each label map classifies the glacier surface into five categories: dry
snow, percolation, superimposed ice, ice-free terrain, and wet snow.

For this study, only glacier-covered areas within the AOIs are retained. All label maps
are temporally aligned with the EO data using nearest-neighbour matching: for each EO
observation, the closest available TSX-derived label map is selected based on acquisition
date. This produces a quasi-synchronous EO–label dataset suitable for season-wise
aggregation and enrichment.

Temporal Coverage and Spatial Resolution: All data, EO inputs and labels, are aligned
to a shared 7-day temporal grid spanning April to November. Each Sentinel-1 acquisition
is temporally matched to it’s nearest TSX-derived label counterpart. While Sentinel-1
imagery is originally available at 10 m resolution and TSX-derived glacier facies maps
at 40 m, all datasets are resampled to a standardized spatial resolution of 40 m, using
nearest-neighbour interpolation. This ensures pixel-wise correspondence across EO and
label sources while preserving the native detail of the supervision signal. Seasonal
groupings (spring, summer, fall, winter) are defined based on fixed calendar intervals,
enabling structured fusion and aggregation over time.
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Figure 7.18.: Sentinel-1 SLC IW data over Axel Heiberg Island. Left: Single-date SAR image
showing Kennaugh element K0 derived from a Sentinel-1 SLC IW scene acquired on
2021-06-21. Right: Temporally fused dataset, generated from multiple Sentinel-1
SLC IW acquisitions within the defined seasonality periods, showing K0.
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This setup provides the basis for all subsequent modelling experiments, enabling a
structured and seasonally-aware analysis of glacier surface dynamics across years and
locations. The following sections detail the methods used for label enrichment, EO feature
construction, supervised modelling, and generalization testing.

7.3.2 Methods

Building upon the temporally aligned and spatially co-registered EO and label data
described above, the modelling framework is designed to predict seasonal glacier fa-
cies from Sentinel-1 observations. The approach combines temporal label enrichment,
compact yet expressive EO input features, and a two-stage regression pipeline centred
around XGBoost. Emphasis is placed on model interpretability, seasonal alignment, and
transferability across both time and space. This section describes each methodological
component in detail, beginning with the transformation of raw classification labels into
temporally smoothed targets, followed by the construction of EO inputs, supervised
learning strategies, and the use of historical priors and ensemble models to support
generalization.

Spatio-Temporal Label Context Enrichment

In the context of glacier zone modelling from EO time-series, the reliability and ex-
pressiveness of training labels play a central role in determining the performance of
temporally-aware predictive models. However, while these labels are temporally dense,
derived at a 7-day cadence, they remain semantically static and discrete, limiting their
utility for learning dynamic glacier behaviour. Also, while the raw label maps available
for this study provide a categorical, per-date classification of glacier facies, including
dry snow zone, percolation zone, superimposed ice zone, ice-free zone, and wet snow
zone, these static labels lack the temporal expressiveness necessary for models to capture
glacier dynamics in a physically meaningful way.

To address this limitation, a label-side enrichment strategy is introduced, inspired by the
HELIX framework. The goal is to inject temporal semantics and seasonal regularities into
otherwise static, per-date classification labels. This strategy injects seasonal semantics
into the label space, transforming isolated classifications into continuous-valued repre-
sentations that reflect intra-annual glacier dynamics. In particular, for each year, labels
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are grouped by meteorological season (spring, summer, fall, winter). Within each season,
the sequence of categorical glacier labels is aggregated into a single float-valued seasonal
mean map, defined over the glacier area. This operation produces a temporally smoothed
representation of the glacier facies evolution during each season, implicitly capturing
intra-seasonal variability, transitions, and persistence.

This seasonal division was not arbitrary, but grounded in well-documented glaciological
and climatological observations from the Canadian High Arctic. Research from long-
term glacier monitoring (e.g., White Glacier, Axel Heiberg Island) and regional climate
analyses support a breakdown into four primary glaciological seasons: spring (April–May),
summer (June–August), fall (September), and winter (October–November). These
periods correspond to major shifts in temperature, accumulation, and melt dynamics:

• Spring (April–May): This period marks the transition from the cold, dark polar
winter into the onset of the melt season. April remains largely sub-freezing and
snow-covered, while May sees increased solar input and rising temperatures. Sus-
tained melt typically begins only in late May, which also marks the close of the
winter accumulation period [344, 219, 73].

• Summer (June–August): The dominant ablation season in the High Arctic, sum-
mer is characterized by above-freezing temperatures, continuous daylight, and
widespread surface melt. Glacier ice becomes exposed in lower zones, and precipi-
tation, though limited, mostly occurs as rain or wet snow [344, 73]. Mass loss is
concentrated in this period.

• Fall (September): A rapid transition phase, September brings a return to sub-zero
temperatures and the definitive end of surface melt. This month often marks the
annual minimum in glacier mass, as melt ceases and new snow begins accumulating.
The glacier mass-balance year is typically defined as ending in September [317, 95,
73].

• Winter (October–November): With the onset of polar night and deep sub-freezing
conditions, winter marks the start of the long accumulation period. While mid-
winter snowfall is low, October and November contribute significantly to total
seasonal accumulation. By late November, a persistent snowpack has usually
formed [73, 95].
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This structured seasonal grouping ensures that label fusion captures real glaciological
transitions, while aligning with observational data availability. It avoids arbitrary calendar
binning and enables models to learn from temporally consistent glacier behaviour.

Specifically, for each year y, all label dates from April through November, the effective
glaciological activity window for Arctic glacier systems such as Axel´Heiberg Island,
Devon Island and Mason Island, are grouped into the four meteorological seasons: spring
(April–May), summer (June–August), fall (September), and winter (October–November).
This seasonal partitioning is loosely balanced across the annual cycle and reflects the
distribution of available EO observations (from Sentinel-1) and classification labels. While
simplified, the scheme provides meaningful temporal resolution over all active glacio-
logical phases, avoiding unnecessary fragmentation while still capturing key seasonal
transitions.

The enrichment process begins by temporally aligning each EO observation with the
closest available classified label map. To ensure that each EO observation is accompanied
by a temporally relevant supervision signal, a nearest-neighbour temporal alignment is
applied. Specifically, for each EO date tEO, the label map from the closest available date
tlabel is selected, such that tlabel = arg mint∈Tlabels |t − tEO|. This preserves the temporal
integrity of the label stack while avoiding interpolation artifacts, and results in a quasi-
aligned EO–label pairing that is sufficient for downstream fusion and seasonal aggregation.
This alignment ensures that every EO frame is accompanied by a temporally proximal
and semantically meaningful label snapshot, without requiring interpolation or synthetic
transformation of class information.

Once temporally aligned, the enrichment process maps the resulting sequence of label
maps {Ltlabel} for tlabel ∈ Ty (where Ty is the set of label-aligned dates within year y)
into a reduced set of four seasonal representations {L̄y

s}s∈{spring, summer, fall, winter}, with
an additional annual mean L̄y

mean computed across seasons. Each L̄y
s is obtained via a

pixel-wise average over all valid glacier-class pixels within the corresponding seasonal
subset.

As a result, the enriched labels no longer represent a single categorical class but instead
encode class likelihood or tendency as continuous values (see Figure 7.19). This enables
supervised models to learn from soft, gradient-like transitions between glacier facies,
reflecting persistence and temporal dynamics, rather than being constrained to hard,
static classifications.
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This label-side transformation enables models to perceive not just what glacier zone
is present at a specific time, but also how that zone typically behaves throughout the
seasonal cycle (see Figure 7.20). For example, regions persistently classified as dry
snow throughout the spring and summer will yield higher seasonal means than those
fluctuating between wet snow and superimposed ice. In this sense, the enriched label
maps serve as temporally contextualized supervision signals, embedding both intra-
annual structure and inter-seasonal behaviour. This approach can thus be interpreted
as a temporally hierarchical form of label augmentation: it enhances spatially discrete
and temporally static zone labels with dynamic structure that reflects glacier evolution
across time, without requiring any changes to the original classifier or the downstream
prediction architecture. This is especially critical in glacier facies modelling, where
transitions between zones are gradual, physically driven, and modulated by complex
surface processes, and where supervised learning must account for both class presence
and class persistence. Figures 7.21 and 7.22 illustrate this concept in practice on the
Devon Ice Cap. Each panel depicts seasonally enriched glacier facies derived from TSX
backscatter data across multiple years (2017–2023), with RGB channels encoding spring
(red), summer (green), and fall (blue) class variations. This encoding visually captures
both seasonal dynamics and year-to-year variability. In particular, the Cunningham
Glaciers, highlighted in the zoomed-in insets, show marked changes in facies distribution
and persistence across years, underscoring the importance of modelling temporal context
in facies classification.

The HELIX framework introduces a label-centric enrichment strategy that transforms static
glacier zone labels into temporally smoothed, seasonally aligned, and continuous-valued
targets (see Figures 7.19 and 7.20). This reformulation allows the use of interpretable
regression models such as XGBoost to predict dynamic glacier behaviour without the
need for complex temporal architectures. Combined with fused EO inputs that reduce
variability, this approach forms an efficient and explainable pipeline for multi-seasonal
glacier zone inference across space and time.

Supervised EO-Based Glacier Zone Prediction

The enriched glacier zone labels described above serve as the training targets for a super-
vised regression pipeline aimed at predicting seasonal glacier facies behaviour directly
from EO time series. The task is formulated as a multivariate regression problem, where
the objective is to learn a mapping from a temporally rich EO input X to a continuous
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Figure 7.19.: Label enrichment via HELIX. Left: Static glacier facies classification from TSX
for a single date (2021-06-21), representing categorical zone labels: Dry Snow,
Percolation, Superimposed Ice, Ice-Free, and Wet Snow. Right: HELIX-based
seasonal enrichment for the 2021 summer season, shown as continuous-valued
regression targets capturing intra-seasonal glacier zone tendencies.
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Figure 7.20.: Seasonal label enrichment visualization. Left: RGB composite of HELIX-enriched
seasonal facies for 2021, where Red = Spring, Green = Summer, Blue = Fall. Right:
Alternate RGB encoding showing Red = Fall, Green = Winter, Blue = Annual Mean.
The continuous colouring reveals spatial persistence and transition dynamics across
glacier zones.
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Figure 7.21.: HELIX-enriched seasonal facies over the Devon Ice Cap. The four panels show: (1)
a basemap view of the Devon Ice Cap from World Imagery; (2) HELIX-enriched
seasonal glacier facies for 2017; (3) for 2018; and (4) for 2019. In panels 2–4,
colour channels represent meteorological seasons: red = spring, green = summer,
and blue = fall.

Figure 7.22.: HELIX-enriched seasonal glacier facies on the Devon Ice Cap from 2020 to 2023.
Each panel visualizes one year’s seasonal pattern using RGB colour channels: red
= spring, green = summer, and blue = fall. Panels from left to right correspond
to the years 2020, 2021, 2022, and 2023. The imagery highlights inter-annual
variability in glacier zone distribution.
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five-dimensional label vector L̄ = [L̄spring, L̄summer, L̄fall, L̄winter, L̄mean], representing the
enriched class distribution across the four seasons and the annual mean.

To maintain interpretability and reduce modelling complexity, the prediction pipeline is
initially trained using only a single EO input band, K0 (Band 0), which corresponds to
the total backscatter intensity of the fused SAR time-series.

This fused EO stack, described earlier in the materials section, aggregates multi-temporal
SAR observations over the glaciological time span of the corresponding labels. Among
the 64 fused EO bands, K0 was empirically found to exhibit the strongest predictive
signal for glacier zone behaviour, capturing integrated surface response while minimizing
redundancy. Band 0 (K0), representing the total intensity across all time steps, is
consistently found to exhibit the strongest correlation with glacier facies behaviour.
Owing to its compactness, physical interpretability, and low susceptibility to speckle noise,
K0 is selected as the sole input for most of the regression models in this study. This
decision enables model simplification and facilitates transferability, while still capturing
the essential backscatter signature of glacier surface conditions across seasons.

Initial experiments with the full set of EO features confirmed that including all bands led
to only marginal performance gains while significantly increasing model complexity and
overfitting risk. Therefore, Band 0 is selected as a minimal yet expressive representation
of glacier-relevant EO dynamics. This simplification allows the model to focus on the
core EO-to-label mapping while remaining efficient and easily transferable across glacier
sites and years.

The predictive modelling process is composed of two sequential stages:

1. Base Model Training: An XGBoost-based multi-output regressor is trained to
predict the 5-band enriched label vector from EO Band 0 values. The training is
restricted to glacier-covered pixels, and supervised using the enriched seasonal
label stack corresponding to the same year.

2. Residual-Hint Refinement: The residuals from the base model predictions are
used to construct a secondary input feature, referred to as the residual hint. This
feature captures systematic prediction errors in the base model and is appended
to the original input. A second-stage regressor is then trained on this augmented
feature set to refine the seasonal predictions. This process introduces a form of
correction-based learning, akin to residual boosting or model distillation, while
maintaining model transparency.
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To further support the learning of seasonal structure in glacier facies behaviour, par-
ticularly in the presence of ambiguous EO signals or inter-annual variability, three
complementary strategies were considered:

• (1) Static Historical Seasonal Profile: A five-dimensional historical label vector is
computed from previous years (2017–2020), representing the per-pixel average of
seasonal zone labels. This static context vector, denoted L̄hist, encodes persistent
glacier behaviour and is appended to the input as an auxiliary feature. It serves as
a spatialized prior, guiding the model in regions with ambiguous EO signatures or
weak seasonality.

• (2) Pre-training on Past Years: An optional strategy would involve pre-training
the base model on EO and label data from earlier years (e.g., 2017–2020) and
fine-tuning it on the target year. While potentially powerful, this requires EO time
series from past years, which are not consistently available in the present setup.

• (3) Residual-Structure Encoding: A more experimental extension would involve
computing and summarizing past model residuals across multiple years to learn
spatial or class-specific prediction bias. This residual structure could be introduced
as an auxiliary feature to guide the refinement stage. Although promising in theory,
this strategy remains untested in the current setup.

Among these, only Option 1 is implemented in the present system due to its simplicity,
interpretability, and compatibility with existing label resources. It offers a lightweight
way to incorporate temporal memory without requiring historical EO observations.

The model is evaluated using standard regression metrics (MAE, R2) per seasonal dimen-
sion, and tested across both spatial and temporal domains. Specifically, the model trained
on a given Area of Interest (AOI) and year is used to predict:

• Spatial Transfer: Generalization to other glacier islands (e.g., from Axel Heiberg
to Devon Island),

• Temporal Transfer: Generalization to future years (e.g., training on 2021, testing
on 2022 or 2023),

• Combined Transfer: Applying models trained on one AOI–year pair to entirely
unseen AOI–year pairs (e.g., predicting 2024 on Mason Island using a model trained
on 2021 Axel Heiberg Island).
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This approach is designed for modular extension: multiple base+residual (and hist)
models trained on different AOIs and years can be stacked into a model ensemble. For
example:

• Model A: AOI 1 (Axel Heiberg), EO 2021 → Label 2021

• Model B: AOI 2 (Devon Island), EO 2021 → Label 2021

• Model C: AOI 1, EO 2022 → Label 2022

• Model D: AOI 2, EO 2022 → Label 2022

These models are fused via ensemble averaging strategies to improve predictive robustness
across both spatial and temporal dimensions.

The full prediction system, including data inputs, enriched label construction, the residual
modelling strategy, and the integration of historical priors, is summarized in Figure 7.23.
It shows how temporally fused EO inputs and HELIX-processed glacier labels are passed
through two complementary model branches, both designed for generalizable glacier
zone inference across space and time.
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Figure 7.23.: HELIX-based supervised regression architecture for glacier facies prediction. Tem-
porally fused Sentinel-1 inputs (Band 0) are combined with HELIX-enriched labels
and optional historical label priors, feeding into two parallel modelling pathways
with residual refinement. Models are evaluated across four generalization settings.
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7.3.3 Results

This section presents a stepwise evaluation of the proposed glacier facies prediction
framework. The analysis begins with a baseline regression model trained on a single EO
input band, followed by a residual-based ensemble refinement that improves prediction
quality across seasons. Finally, a third configuration introduces a static historical label
prior to enable temporally and spatially robust inference without access to contemporary
EO time series.

Baseline Modelling

As a first step, the full fused EO stack, comprising 64 bands derived from multi-temporal
Sentinel-1 observations, was evaluated for glacier zone prediction. Empirical testing
(Figure 7.24) across multiple model runs revealed that Band 0 (K0), which represents the
total SAR backscatter intensity, consistently outperformed other bands and combinations
thereof. Given its physical interpretability, low noise, and strong glacier-facies sensitivity,
K0 was selected as the sole input feature for all subsequent experiments. This decision
reduced model complexity and overfitting risk, while retaining sufficient predictive
expressiveness.

Figure 7.24.: Relative importance of individual EO bands for glacier zone prediction using the
full temporally-fused Sentinel-1 input stack. Band 0 (K0), representing total SAR
backscatter intensity, demonstrated the highest predictive power across multiple
model runs, justifying its selection as the sole input feature for subsequent mod-
elling.
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Initial experiments focused on intra-AOI learning, using EO and label data from AOI 1
(Axel Heiberg Island) for the year 2021. The task was to predict seasonal glacier zone
distributions from the fused EO input, using the enriched seasonal labels as multivariate
regression targets.

Baseline performance using only EO Band 0 revealed substantial seasonal variation in
prediction accuracy. The summer season exhibited the weakest performance, with a mean
absolute error (MAE) of 0.645 and an R2 of 0.600. In contrast, winter yielded the best
results (MAE = 0.411, R2 = 0.624). Spring and fall showed intermediate performance,
with MAEs of 0.448 (R2 = 0.630) and 0.469 (R2 = 0.491), respectively. The overall Year
Mean MAE was 0.417 with an R2 score of 0.659.

Residual-Hint Ensemble Modelling

Incorporating the residual-hint mechanism, where a second-stage model is trained
on the residuals of the baseline predictions, led to substantial improvements across all
seasons. Most notably, summer MAE dropped from 0.645 to 0.433, a relative reduction
of over 32.9%, with corresponding gains in R2 (from 0.600 to 0.782). Likewise, spring
improved to MAE = 0.305 and R2 = 0.766, fall to MAE = 0.317 and R2 = 0.676, and
winter to MAE = 0.284 with an R2 of 0.762. The enhanced model achieved a Year Mean
MAE of 0.286 and R2 of 0.798, confirming that residual-based correction significantly
improves prediction fidelity even when using a single EO input band. Overall, the
residual-hint approach consistently reduced seasonal errors by over 30% relative to the
baseline.

Ensemble Modelling: To further improve robustness and enable prediction on unseen
future years, an ensemble was formed by averaging predictions from four independently
trained models:

• AOI 1, 2021

• AOI 1, 2022

• AOI 2, 2021

• AOI 2, 2022
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Per Model metrics are summarised in in Table 7.12.

To assess the generalization performance of model ensembles, two configurations were
evaluated. The first ensemble, combining all four models trained on AOI 1 and AOI 2
for the years 2021 and 2022, was used to predict glacier facies for AOI 1 in 2023, a
fully unseen temporal context. This ensemble achieved a Year Mean MAE of 0.433 and
R2 = 0.517. While moderately less accurate than the best individual model (AOI 2, 2022),
the ensemble retained robust predictive quality across all seasons, confirming its utility
for unsupervised temporal forecasting.

The second ensemble, constructed from AOI 2 models only (Devon Island, 2021 and
2022), was tested on AOI 1 in 2023. This configuration served as a spatio-temporal
transfer benchmark. Although slightly worse in overall accuracy (Year Mean MAE =
0.444), it still demonstrated viable generalization without any exposure to the target
region during training.

Both ensembles are summarized in Table 7.12, which also reports MAE per season across
all evaluated models.

Table 7.12.: Mean Absolute Error (MAE) per season across all models and ensembles. Intra-AOI
and cross-AOI scenarios are shown separately, with Year Mean summarizing average
performance.

Model Fall Spring Summer Winter Year Mean

Intra AOI: AOI1_2021 0.470 0.447 0.645 0.411 0.417

Intra AOI: AOI1_2022 0.460 0.447 0.435 0.448 0.412

Intra AOI: AOI2_2021 0.327 0.283 0.446 0.268 0.228

Intra AOI: AOI2_2022 0.265 0.322 0.267 0.280 0.212

Cross AOI: Ensemble_Full
(AOI1+2, 2021+2022)

0.510 0.507 0.491 0.516 0.433

Cross AOI: Ensemble_DevonOnly
(AOI2, 2021+2022)

0.518 0.524 0.512 0.528 0.444

While the ensemble did not surpass the best individual model in absolute terms, it
succeeded in generalizing to an unseen glaciological year without any retraining or
new labels. Most importantly, all seasonal MAEs remained below 0.52, well within the
expected range for intra-class variability. Considering that the target labels are continuous
values over a 1–5 scale, these results reflect sub-class-level precision and meaningful
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seasonal gradient learning. This reinforces the viability of the HELIX-enriched regression
approach, even when limited to a single EO band and modest model complexity.

Historical Context-Based Modelling

To assess the benefit of spatially informed priors, the Static Historical Seasonal Profile
(L̄hist) described in Section 7.3.2 was integrated as an auxiliary feature in the modelling
pipeline. This five-dimensional vector represents the per-pixel seasonal average of glacier
zone labels over the 2017–2021 period and was appended to the EO Band 0 input.

A model trained on AOI 2 in 2022 with this extended feature set demonstrated remarkable
improvements in both prediction accuracy and consistency:

Table 7.13.: Model Performance with Historical Label Vector (L̄hist) on AOI 2

Season MAE R2

Spring 0.091 0.950
Summer 0.136 0.868
Fall 0.104 0.931
Winter 0.083 0.962
Year Mean 0.076 0.968

Compared to models trained without historical priors, the inclusion of L̄hist consistently
reduced MAE across all seasons, yielding sub-class resolution errors below 0.14, and
raised R2 above 0.86 even in summer. These results support the utility of persistent
glaciological context for improving prediction stability, especially in regions or periods
where EO signals alone may be ambiguous or seasonally weak.

To explore lightweight temporal memory mechanisms that do not rely on historical EO
availability, the utility of static label-derived priors was then further evaluated in a spatio-
temporal transfer way. The model was therefore trained on AOI 2, using EO data from
2022 and the static historical context vector, and then evaluated on AOI 1 in 2023. This
configuration constitutes a spatial and temporal transfer setting, with no direct access to
either 2023 labels or EO history at inference time.

The resulting performance, shown in Table 7.14, confirms the efficacy of this strategy. All
seasonal MAE values remained below 0.5, with a Year Mean MAE of 0.399. While R2
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performance in summer remained low (0.108), other seasons exhibited solid generaliza-
tion with R2 > 0.59, including a Year Mean R2 of 0.640. These results underscore the
potential of label-centric prior information to stabilize prediction in temporally unseen
settings, particularly when EO data alone may be insufficient to disambiguate complex
seasonal dynamics.

Table 7.14.: Performance of Historical Label Prior Model (Trained on AOI 2, Evaluated on AOI 1,
2023)

Season MAE R2

Spring 0.476 0.595
Summer 0.495 0.108
Fall 0.448 0.603
Winter 0.454 0.655
Year Mean 0.399 0.640

Compared to the fully stacked ensemble (Year Mean MAE = 0.433) and the AOI 2-
only ensemble (Year Mean MAE = 0.444), the historical prior model achieved better
absolute performance, despite being simpler and requiring fewer data sources. This
highlights the value of temporal context encoded on the label side and opens pathways
for generalization in data-sparse glacier systems.

In addition to quantitative error metrics, the seasonal composition of snow zone classes
predicted for AOI 1 was examined. Figure 7.25 presents the reference and predicted class
distributions on a logarithmic scale for each season. The model was found to capture the
seasonal dynamics effectively, including the predominance of the Percolation and Ice-Free
zones in summer and consistent representation of the Dry Snow and Superimposed Ice
zones during spring and fall.

To assess the model’s ability to generalize across space and time, a direct spatio-temporal
transfer prediction scenario using historical context-based modelling is presented. Fig-
ures 7.26 and 7.30 visualize this transfer scenario. Each figure compares the HELIX-
enriched seasonal reference in 2023 (left panel) to the corresponding model prediction
also in 2023 (right panel), with both maps expressed on a shared continuous 1–5 scale
representing glacier facies tendencies. These visualizations demonstrate the model’s
ability to reconstruct glacier zonation patterns under strong generalization constraints
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Figure 7.25.: Seasonal class distributions in AOI 1, plotted on a logarithmic pixel-count scale.
Reference and predicted distributions are shown for each season, excluding the
annual mean. The model correctly reflects dominant seasonal trends, with slight
overestimation of the Ice-Free zone in summer and consistent detection of Dry
Snow and Superimposed Ice zones in transitional seasons.
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and highlight the effectiveness of label-side temporal priors in the absence of real-time
input.

To further evaluate the spatial consistency of predictions, class profiles were extracted
along three representative glacier transects located on Axel Heiberg Island: White Glacier,
Thompson Glacier, and Airdrop Glacier. Each transect was defined using a narrow polygon
of approximately 200 m in width, aligned with the principal glacier flow-line. The tran-
sects differed in length, with White Glacier spanning approximately 14.8 km, Thompson
Glacier 38.0 km, and Airdrop Glacier 44.0 km.

Figures 7.31–7.33 show the seasonal progression of predicted and reference classes
along each transect. The step-like structure of the plots reflects the discrete classification
framework employed. Visual comparisons suggest a high degree of spatial alignment,
notably in the detection of the Wet Snow zone near glacier termini and the Dry Snow
zone in the upper accumulation regions.

7.3.4 Discussion

The findings presented in the previous section suggest that a Sentinel-1–based modelling
approach, when combined with HELIX-enriched labels, can provide reliable predictions of
seasonal glacier facies across both spatial and temporal domains. The following discussion
examines these results in relation to the broader objectives of the study, with a focus on
evaluating the methodological design, interpreting performance trends, and identifying
practical implications. Consideration is given to the choice of minimal yet expressive
EO input, the advantages of residual learning mechanisms, and the role of temporally
enriched supervision in enabling transferability. Particular attention is directed toward
the observed divergence between MAE and R2 in low-variance regimes, especially during
the summer melt period. In addition, the potential of historical label priors and the
demonstrated generalization across Arctic regions are considered as key indicators of the
framework’s scalability and operational utility in data-sparse glaciological settings.

Use of Sentinel-1 SLC IW Mode in Glacier Zone Prediction

The use of Sentinel-1 Single Look Complex (SLC) data in Interferometric Wide (IW)
swath mode forms a foundational element of the present glacier zone modelling frame-
work. While Sentinel-1 is widely used in cryospheric remote sensing, the majority of
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Figure 7.26.: Historical context-based seasonal prediction for spring. Left: HELIX-enriched
reference map for the 2023 spring season, representing continuous glacier zone
intensities across five facies (Dry Snow, Percolation, Superimposed Ice, Ice-Free,
Wet Snow). Right: Model prediction for spring 2023 over AOI 1, generated using
EO time-series data from 2023 for AOI 1, with a model trained solely on EO data
from AOI 2 (2022) and the historical seasonal context vector (L̄hist), demonstrating
a direct, unbiased spatio-temporal transfer. Both panels share the same continuous
1–5 scale, allowing direct comparison of predicted and reference facies tendencies.
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Figure 7.27.: Historical context-based seasonal prediction for summer. Left: HELIX-enriched
reference map for the 2023 summer season, representing continuous glacier zone
intensities across five facies (Dry Snow, Percolation, Superimposed Ice, Ice-Free,
Wet Snow). Right: Model prediction for summer 2023 over AOI 1, generated using
EO time-series data from 2023 for AOI 1, with a model trained solely on EO data
from AOI 2 (2022) and the historical seasonal context vector (L̄hist), demonstrating
a direct, unbiased spatio-temporal transfer. Both panels share the same continuous
1–5 scale, allowing direct comparison of predicted and reference facies tendencies.

332 Chapter 7 Context-Aware Label Enrichment and Multi-Scale Learning with the
HELIX Framework



Figure 7.28.: Historical context-based seasonal prediction for fall. Left: HELIX-enriched reference
map for the 2023 fall season, representing continuous glacier zone intensities across
five facies (Dry Snow, Percolation, Superimposed Ice, Ice-Free, Wet Snow). Right:
Model prediction for fall 2023 over AOI 1, generated using EO time-series data
from 2023 for AOI 1, with a model trained solely on EO data from AOI 2 (2022)
and the historical seasonal context vector (L̄hist), demonstrating a direct, unbiased
spatio-temporal transfer. Both panels share the same continuous 1–5 scale, allowing
direct comparison of predicted and reference facies tendencies.
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Figure 7.29.: Historical context-based seasonal prediction for winter. Left: HELIX-enriched
reference map for the 2023 winter season, representing continuous glacier zone
intensities across five facies (Dry Snow, Percolation, Superimposed Ice, Ice-Free,
Wet Snow). Right: Model prediction for winter 2023 over AOI 1, generated using
EO time-series data from 2023 for AOI 1, with a model trained solely on EO data
from AOI 2 (2022) and the historical seasonal context vector (L̄hist), demonstrating
a direct, unbiased spatio-temporal transfer. Both panels share the same continuous
1–5 scale, allowing direct comparison of predicted and reference facies tendencies.
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Figure 7.30.: Historical context-based seasonal prediction for the average glaciological year. Left:
HELIX-enriched reference map for the 2023 whole season, representing continuous
glacier zone intensities across five facies (Dry Snow, Percolation, Superimposed
Ice, Ice-Free, Wet Snow). Right: Model prediction for the whole glaciological year
2023 over AOI 1, generated using EO time-series data from 2023 for AOI 1, with
a model trained solely on EO data from AOI 2 (2022) and the historical seasonal
context vector (L̄hist), demonstrating a direct, unbiased spatio-temporal transfer.
Both panels share the same continuous 1–5 scale, allowing direct comparison of
predicted and reference facies tendencies.
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Figure 7.31.: Reference and predicted zonation classes along the White Glacier transect (14.8 km
in length, 200 m in width), for all seasons.

Figure 7.32.: Reference and predicted zonation classes along the Thompson Glacier transect
(38.0 km in length, 200 m in width), for all seasons.

Figure 7.33.: Reference and predicted zonation classes along the Airdrop Glacier transect (44.0 km
in length, 200 m in width), for all seasons.
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studies rely on Ground Range Detected (GRD) products due to their simplicity and pre-
processing availability. In contrast, the use of SLC data, especially in dual-polarized IW
mode, remains relatively rare in glaciological applications, primarily due to its larger vol-
ume, greater processing demands, and the complexity of handling phase and amplitude
information.

In this experiment, SLC scenes were systematically processed into polarimetric decom-
position products via the Multi-SAR pipeline [38], enabling access to Kennaugh matrix
elements at full resolution. Although the full SLC structure allows for rich polarimetric
analysis, the regression experiment presented here relies solely on the K0 element, cor-
responding to total backscatter intensity, which can be equivalently derived from GRD
products. This design choice reflects a focus on minimal yet physically grounded EO
inputs. The fact that K0 alone enables meaningful glacier facies regression, particularly
during the challenging summer season, underscores its sufficiency as a surface-sensitive
indicator. Despite the availability of additional Kennaugh elements such as K5 or K8, K0
was found to carry most of the predictive signal, particularly in capturing wetness and
structural transitions relevant to summer facies dynamics.

The full benefit of SLC data becomes apparent when combined with the hypercomplex
fusion logic, which condenses the temporal series into seasonally representative bands.
Unlike GRD-level composites or simple temporal means, the fused SLC-derived EO stack
retains richer polarimetric and structural information, while remaining compact and
computationally tractable for downstream modelling.

From a glaciological perspective, the use of temporally aggregated polarimetric decompo-
sitions derived from SLC data remains relatively novel. Unlike repeat-pass interferometry,
which is well established for deformation monitoring, this approach focuses on the fusion
of backscatter-based structural indicators (e.g., Kennaugh elements) across time to char-
acterize seasonal surface transitions. This approach bridges the gap between traditional
glaciology, which often relies on optical facies delineation or empirical zone mapping, and
modern EO machine learning, by offering physically rich, temporally smoothed inputs
that align with seasonal glacier dynamics. The successful application of this pipeline
across years and AOIs thus not only confirms the viability of SLC-based modelling but
positions it as a scalable, high-fidelity alternative to standard EO inputs in cryospheric
research.

Having extracted this physically enriched input stack from SLC scenes, the modelling
framework then opts for a remarkably simple yet effective feature: the fused total
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backscatter intensity (K0). A defining characteristic of the proposed glacier zone pre-
diction framework is its emphasis on simplicity, both in input design and modelling
architecture. The decision to use only a single EO input band, Band 0 (K0), corresponding
to the total SAR backscatter intensity, represents a deliberate trade-off between expres-
siveness and interpretability. Physically, K0 offers a compact yet robust representation of
surface scattering behaviour, which is directly linked to glacier zone characteristics such
as surface roughness, wetness, and layering. Empirical evaluations confirmed that this
band consistently carried the strongest glacier-relevant signal across seasons and AOIs,
while also exhibiting low noise and high temporal stability. This minimalistic design not
only simplifies the modelling pipeline but also enhances its transparency. By reducing the
input space to a single, interpretable EO feature, the model’s decision behaviour remains
tractable, reproducible, and better aligned with physical glacier processes. Such clarity
is particularly advantageous in scientific contexts where explainability is paramount.
Moreover, the use of a single input band supports seamless transferability across spatial
and temporal domains, as it avoids overfitting to high-dimensional or site-specific patterns
often encountered in multi-band fusion setups.

While alternative strategies involving multi-band EO stacks were tested, they resulted in
only marginal gains in predictive performance, and at the cost of significantly increased
model complexity, training time, and overfitting risk. The compact, physically grounded
design centered on K0 thus emerges not as a constraint but as an elegant strength, striking
a balance between scientific rigor, modelling efficiency, and practical deployability in
remote sensing-based glaciological inference.

Effectiveness of HELIX-Enriched Labels

A central methodological innovation of this setup lies in the use of HELIX-enriched labels,
which transform temporally discrete, categorical glacier facies maps into continuous,
seasonally aggregated indicators. Rather than treating each label snapshot as an iso-
lated, static class assignment, the HELIX approach aggregates class observations over
time, within defined seasonal windows, into float-valued representations that capture
the frequency and persistence of each glacier zone at the pixel level. This results in
enriched label maps that express soft, probabilistic tendencies rather than hard assign-
ments, thereby enabling a more physically meaningful and informative target signal for
learning.
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To empirically assess the effectiveness of the HELIX-enriched labels, a targeted regression
experiment was conducted using the 2023 EO SAR time-series K0 of AOI 1 as input and
summer glacier facies labels of 2023 as targets. The summer season was selected due to
its high degree of glaciological variability and frequent facies transitions, which make
it the most challenging and label-ambiguous period of the year. As such, it represents
a stringent test case for evaluating the stability and informativeness of the HELIX label
enrichment approach. A Ridge regression model was employed to quantify prediction
accuracy under two supervision regimes: the HELIX-enriched seasonal label (summer),
and a series of ten raw temporally discrete individual label scenes acquired throughout
the same season. While the main predictive pipeline in this setup relies on XGBoost for
glacier facies inference, Ridge regression was used in this comparative experiment to
isolate the effect of label enrichment. Given the single-feature setup and the regression
framing, Ridge provides a stable, interpretable baseline without introducing unnecessary
model variance. Results are therefore attributable to differences in label structure rather
than model expressiveness, and would be expected to generalize similarly across more
complex learners. As shown in Figure 7.34, regression against the HELIX-enriched target
resulted in the lowest overall MAE, indicating a more stable and learnable signal. This
finding supports the notion that temporally contextualized label enrichment introduces
an implicit regularization effect, particularly valuable during high-variability periods such
as summer when glacier facies boundaries are most dynamic.

The implications of this transformation are substantial. First, it reformulates the task from
multi-class classification to multivariate regression, a paradigm shift that affords greater
modelling flexibility and sensitivity to inter-class gradients. In practice, this allows models
to infer not only which zone is most likely at a given location, but also how confidently
that prediction reflects temporal consistency (e.g., persistent dry snow vs. intermittent
melt). This gradient structure is especially valuable in regions of transition, where facies
boundaries are not sharply defined but evolve gradually in response to meteorological
forcing.

Second, the smoothing and aggregation across seasons introduce a form of temporal reg-
ularization that improves model generalization across both time and space. By encoding
typical seasonal behaviour, the enriched labels mitigate overfitting to idiosyncratic label
noise or single-date anomalies, and instead guide the model toward learning the broader
seasonal dynamics of glacier systems. As illustrated in Figures 7.21 and 7.22, these
maps reflect not only intra-annual seasonal structure, but also inter-annual variability,
as exemplary showcased across the Devon Ice Cap. The persistence and movement of
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Figure 7.34.: Comparison of mean absolute error (MAE) for regression models predicting summer
glacier facies using either the HELIX-enriched seasonal summer label or individual
raw label scenes as targets. The HELIX-enriched summer label yields the lowest
MAE overall, while individual labels display greater variation depending on acqui-
sition date and scene conditions.

facies boundaries, particularly in regions such as the Cunningham Glaciers, highlight the
physical relevance of the temporal signals embedded in the HELIX framework.

Nonetheless, this approach also introduces trade-offs. The act of temporal averaging
inevitably discards high-frequency label variation, potentially smoothing over meaningful
short-term transitions, particularly during abrupt melt or snowfall events. Moreover, the
interpretability of the enriched labels, while conceptually intuitive, becomes less direct
than categorical class maps and may pose challenges e.g., when expecting traditional fa-
cies delineation. Finally, while regression affords flexibility, it also complicates evaluation,
as metrics like R2 become sensitive to label variance and require careful interpretation
alongside absolute measures such as MAE. These considerations suggest that while HELIX
enrichment offers clear advantages for learning, it must be applied with awareness of its
assumptions and implications for downstream use.

Choice of Base Estimator

The decision to use XGBoost as the core predictive model in this setup was driven by a
balance of interpretability, performance, and suitability for the EO data structure. As a
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gradient-boosted decision tree framework, XGBoost offers several advantages over deep
learning models in the context of temporally aggregated EO data.

First, XGBoost inherently handles non-linearities and complex feature interactions, mak-
ing it well-suited for learning relationships between SAR-derived backscatter intensities
and glacier facies states. Unlike neural networks, it requires minimal preprocessing or
normalization and can efficiently operate on tabular or structured data formats like the
fused EO input stack used here. Importantly, it supports multi-output regression natively,
aligning seamlessly with the prediction of seasonal facies vectors.

Second, its tree-based nature enables explicit feature importance analysis and residual
diagnostics, fostering transparency and enabling easy debugging, crucial in scientific
applications involving sensitive geophysical interpretations. This stands in contrast to
recurrent neural networks (e.g., LSTMs), which, while powerful for raw time series,
introduce substantial architectural complexity, require large datasets, and often function
as black boxes. Given that this setup operates with seasonally aggregated inputs rather
than dense sequential EO data, the temporal dependencies are already abstracted into
the input, reducing the need for sequence-aware models.

Furthermore, XGBoost is computationally efficient, scalable across large spatial domains,
and robust against overfitting through regularization, early stopping, and tree pruning.
These properties make it particularly advantageous in scenarios where model deployment
must be efficient and where training data volume is constrained by glaciological label
availability.

While future work may explore deep models for spatio-temporal EO directly (e.g., CNN-
LSTM hybrids or transformers), the current setup, fused EO inputs and HELIX-enriched
label targets, benefits from the structured clarity and generalization capacity of XGBoost,
especially when extended via residual refinement mechanisms.

Residual Hint Mechanism

The residual hint mechanism, introduced as a second-stage refinement strategy, proved
to be one of the most impactful components of the modelling pipeline. Empirically, the
addition of residual hints, computed as the pixel-wise difference between the predicted
and actual seasonal labels from the base model, yielded a consistent and substantial
performance gain. Across all seasons, the MAE dropped by approximately 30% relative
to the baseline model, with notable improvements in more challenging periods such
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as summer. These results highlight the mechanism’s efficacy in capturing systematic
prediction errors that the initial model alone could not resolve.

Conceptually, the residual hint approach functions as a lightweight correction layer.
Instead of retraining the base model or adopting more complex temporal architectures,
such as RNN or LSTM models, this method reuses the learned residual patterns as auxiliary
features. This is both computationally efficient and interpretable: the refinement model
operates on explicit error signals, learning where and when the base model tends to
under- or over-predict, and adjusting accordingly. Importantly, this two-stage design
preserves transparency, modularity, and training simplicity, qualities often sacrificed in
end-to-end deep learning systems.

From a theoretical perspective, the residual hints may also be interpreted as a form of
gradient re-weighting: by training a second model on residuals, the system implicitly
learns a spatial-temporal error distribution over the glacier surface. This information
allows the model to focus capacity on regions of high error or class ambiguity, effectively
serving as an attention mechanism without the overhead of neural attention layers. Such
targeted correction aligns well with the nature of EO-based glacier zone prediction,
where certain regions (e.g., zone boundaries or melt zones) consistently exhibit higher
uncertainty.

Nevertheless, one limitation of the residual hint approach is its reliance on the quality and
representativeness of the initial predictions. If the base model fails to learn meaningful
structure, e.g., due to poor input data or mislabelled targets, the residuals may be
noisy and uninformative. Additionally, while the residual model improves accuracy, it
introduces another modelling stage, potentially complicating deployment and calibration.
Future work may explore integrating the residual estimation directly into a unified
architecture, or leveraging learned residuals across time and space for meta-learning
purposes.

Performance of Ensemble Models

To improve robustness and test the system’s capacity for generalization, ensemble pre-
dictions were evaluated using combinations of independently trained models. The full
ensemble, aggregating predictions from AOI 1 and AOI 2 models from both 2021 and
2022, demonstrated solid transferability to AOI 1 in 2023, a previously unseen year.
Despite moderate reductions in R2 (e.g., R2

year = 0.517), the Year Mean MAE remained
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low at 0.433, confirming that absolute prediction error was stable and within expected
bounds for all seasons.

A second ensemble, composed solely of AOI 2 models (Devon Island), served as a spatio-
temporal transfer benchmark. This setup excluded all prior exposure to the target region
and still achieved a Year Mean MAE of 0.444. The ability of this ensemble to perform
nearly as well as the full ensemble, despite lacking any spatial overlap with the evaluation
AOI, demonstrates the portability of the learned representations and the effectiveness of
glacier facies modelling via HELIX-enriched labels and radar-only EO input.

It is noteworthy, however, that while ensembles stabilized predictions, they did not yield
the best performance overall. That distinction belonged to the historical-prior model,
suggesting that ensembling across diverse years and locations introduces variance trade-
offs that may not always improve precision. Nonetheless, ensembles remain valuable
tools when retraining is infeasible or when performance must be sustained across varied
environmental regimes.

Value of Historical Label Priors

A particularly novel aspect of the modelling approach was the use of temporally ag-
gregated label histories as input priors. The historical label vector L̄hist, derived from
per-pixel seasonal averages over 2017–2021, offers a purely label-side mechanism for
injecting glaciological memory into the model. This innovation bypasses the need for con-
sistent EO archives, enabling high-fidelity transfer learning even when EO observations
from past years are unavailable or noisy.

Empirically, the inclusion of L̄hist led to the strongest results of all tested configurations. A
model trained with this auxiliary feature on AOI 2 (Devon Island) for 2022 achieved a Year
Mean MAE of 0.076 and R2 = 0.968 when evaluated on the same domain, outperforming
both individual and ensemble baselines. More impressively, when transferred to AOI 1 in
2023, the model still delivered a Year Mean MAE of 0.399, better than either ensemble
configuration, despite having no exposure to the region or year.

These results highlight the surprising effectiveness of embedding temporal context
through the label domain. The spatial smoothness and seasonal consistency of the
historical prior seem to provide a stabilizing effect, especially in ambiguous or low-signal
regions. This strategy is especially promising for real-world applications in data-sparse
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cryospheric regions, where access to multi-year EO time series is limited but high-quality
zone classifications from prior campaigns may be available.

Performance Interpretation Across Metrics and Seasons: The Role of Label
Variance and Melt-Season Ambiguity

Across all model configurations and evaluation settings, ranging from intra-AOI training
to fully spatio-temporal ensemble generalization, a consistent observation emerged: while
Mean Absolute Error (MAE) remained low and stable, the coefficient of determination
(R2) showed substantial seasonal and contextual fluctuation. Most notably, R2 perfor-
mance in the summer season was significantly lower compared to other periods, and
even turned negative in some transfer settings. In contrast, the corresponding summer
MAEs consistently remained within acceptable bounds (typically around 0.49), and Year
Mean MAEs across all models never exceeded 0.52.

This discrepancy is not indicative of model failure, but rather reflects the nuanced
behaviour of these two metrics under bounded, low-variance target distributions. The
enriched seasonal labels, produced from 7-day cadence TSX-based glacier facies maps,
are themselves radar-derived and temporally smoothed. Their values span a semi-discrete
range of 1–5, representing continuous tendencies toward specific glacier zones (e.g., dry
snow, wet snow, percolation). When projected into seasonal summaries, certain seasons,
particularly summer and winter, exhibit label compression. In summer, widespread
surface melting causes most glacier pixels to saturate toward class 5 (wet snow/melt),
substantially reducing the variance of the label distribution.

Because R2 is variance-sensitive by definition, small absolute deviations from a nearly
constant ground truth can yield disproportionately large reductions in explained variance.
This is most evident in the summer results: while MAE values in transfer settings (e.g.,
0.491 for the full ensemble, 0.495 for the historical-prior model) indicate reliable sub-
class accuracy, R2 plummets due to the compressed label space. Conversely, MAE, being
a scale-invariant, unit-consistent error measure, provides a direct and interpretable
indication of model fidelity, especially suitable for the 1–5 facies encoding. It effectively
answers the question: “How far, on average, is the model off from the correct seasonal
zone intensity?” An MAE < 0.5 means predictions differ on average by less than half a
class. In a continuous 1–5 facies space, this typically implies soft misalignment (e.g., wet
snow vs. ice-free) rather than true misclassification.
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Figure 7.35.: Comparison of model prediction and original TSX-based glacier zonations for the
2023 summer season. Top left: HELIX-enriched seasonal mean glacier zones for
summer 2023 (continuous target). Remaining panels: Individual TerraSAR-X
derived glacier zone classifications used as input for the seasonal enrichment,
spanning from June to early September 2023. Each classification shows a snapshot
of dynamic glacier facies (Dry Snow, Percolation, Superimposed Ice, Ice-Free,
Wet Snow) across Axel Heiberg Island. The sequence illustrates the variability
and temporal compression characteristic of the melt season, which contributes to
reduced variance in seasonal label distributions. The enriched target (top left)
reflects the averaged signal of these temporally noisy observations, which the model
successfully learns to predict with sub-class precision.

In practical terms, a MAE below 0.5 implies that the model’s predictions deviate, on
average, by less than half a facies class across all seasons. Given the continuous 1–5
encoding and the natural gradual transitions between glacier zones (e.g., from perco-
lation to superimposed ice), this level of precision is well within acceptable bounds for
both scientific interpretation and monitoring applications. Rather than indicating sharp
misclassification, such deviations typically reflect minor shifts within the same facies
family or adjacent categories. This highlights the robustness of the approach: even under
full spatio-temporal transfer, the model maintains sub-class level alignment with glacier
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zone patterns, reinforcing its suitability for dynamic, label-scarce environments (see
Figure 7.35).

This counterintuitive behaviour is, in part, a direct consequence of the quality and
structure of the HELIX-enriched labels themselves. By smoothing categorical class maps
over time into continuous, seasonally stable indicators, the label variance is intentionally
reduced, reflecting physical persistence in glacier facies rather than random fluctuation.
While this promotes robust learning and transferability, it also compresses the target
distribution in certain periods (notably summer), amplifying the sensitivity of R2 to
small residual errors. Thus, the observed drop in R2 is not indicative of poor model
generalization, but a known limitation of the metric when applied to low-variance,
semi-discrete regression targets. In contrast, MAE remains a more appropriate and
interpretable measure under these conditions, reliably capturing sub-class prediction
fidelity across the full seasonal cycle.

The seasonal melt period introduces additional complexity. It is both short-lived and
highly dynamic, with inter-annual variability in melt onset, duration, and spatial extent.
EO responses during this period, particularly from SAR, are non-linear and ambigu-
ous, influenced by changes in surface wetness, roughness, and dielectric properties.
Given that both the input EO stack (Sentinel-1) and the supervisory label source (TSX-
derived zonations) are radar-based, the learning task effectively becomes a SAR-to-SAR
regression. While this cross-band setup ensures physical consistency in terms of ob-
serving microwave backscatter processes, it also introduces distinct challenges related
to wavelength-dependent sensitivity. TSX X-band labels primarily capture near-surface
wetness and fine-scale roughness, whereas Sentinel-1 C-band inputs are more influenced
by subsurface scattering and broader-scale surface features. This discrepancy means that
the model must learn to map between different depth sensitivities and scattering regimes,
introducing both a risk of sensor-driven bias and an opportunity for physically meaningful
cross-frequency learning. This risk is particularly acute during melt conditions, where
signal saturation and ambiguity can occur in both input and label sources. There is a
possibility that the model may inadvertently learn to reproduce sensor-specific artefacts or
shared non-glaciological patterns, rather than true physical zonation changes. Although
the system demonstrated robust generalization across AOIs and years, these results do
not fully preclude the presence of frequency-induced bias, especially in low-variance
or ambiguity-prone regimes. Future work may consider integrating non-radar auxiliary
features, such as optical melt indicators or modelled melt energy, to further disentangle
physical facies dynamics from wavelength-specific backscatter behaviour. Future work
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could explore integrating non-radar auxiliary features, such as optical melt indicators
(e.g., NDWI or NDSI from Sentinel-2) or physically modelled melt energy estimates
(e.g., from surface energy balance models), to further disentangle genuine glacier facies
dynamics from wavelength-specific backscatter artefacts. This step would help mitigate
the risk of the model learning sensor-dependent noise patterns, especially during the melt
season where both Sentinel-1 (C-band) and TSX (X-band) are simultaneously sensitive
to surface wetness, roughness, and dielectric fluctuations but with different wavelength-
dependent responses. Introducing such cross-modal information would enable the model
to anchor its learning more directly in the physical surface processes that govern glacier
zone evolution, rather than inadvertently overfitting to radar-specific signal behaviours.

Despite these challenges, all tested models, including the spatio-temporal ensembles and
the historical-prior model, achieved high absolute performance. MAE values remained
below 0.52 across all seasons and below 0.45 for the annual mean, even in unseen
AOI–year combinations. This suggests that the learning framework successfully general-
ized seasonal zone tendencies, despite sensor ambiguity and label non-uniformity.

To better understand seasonal prediction behaviour and class-wise tendencies, confusion
matrices were generated for each season and the annual mean. These visualize the
mapping between reference labels and predicted classes based on a fuzzy discretization
of the regression output. Instead of hard rounding, predictions in the continuous 1–5
range were softly binned into glacier facies classes, dry snow zone, percolation zone,
superimposed ice zone, ice-free zone, and wet snow zone, using a tolerance-aware
scheme. The analysis is based on the output of the historical-prior model, applied under
full spatio-temporal transfer (trained on AOI2 in 2022, evaluated on AOI1 in 2023). The
resulting matrices were normalized by row, reflecting per-class prediction accuracy as
percentages. Figures 7.36–7.40 summarize these results for spring, summer, fall, winter,
and the annual mean.

These normalized fuzzy confusion matrices confirm the expected class structure while
revealing meaningful seasonal variations. Most prediction errors occur between neigh-
bouring classes, such as the frequent mix-up between percolation and superimposed ice
zones, or the tendency to conflate wet and ice-free zones during summer. This spatially
local confusion is especially evident in transitional seasons like spring and fall, and reflects
the physical blending of glacier facies rather than random misclassification. Prediction
confidence, as reflected in the dominance of the diagonal entries, is highest in winter and
lowest in summer, consistent with earlier observations on seasonal ambiguity, melting
onset, and label compression.
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Importantly, the use of fuzzy binning reinforces the interpretation that many apparent er-
rors were not true misclassifications, but rather artifacts of discretization in gradient-like
zones. The fuzzy matrices preserve class hierarchy, maintain high diagonal dominance
across most seasons, and reflect a physically plausible pattern of localized uncertainty
near facies boundaries. This behaviour further supports the use of regression-based output
in glaciological applications, offering a balance between quantitative accuracy and quali-
tative interpretability, especially in data-sparse and transition-prone Arctic environments.
Overall, the matrices serve not only as a validation tool but also as strong visual evidence
of structure-aware generalization under domain transfer. When considered alongside
the consistent MAE levels below 0.5, the fuzzy matrices substantiate that prediction
errors are largely confined to adjacent glacier facies, not random misclassifications. This
effectively answers the question posed earlier: “How far, on average, is the model off from
the correct seasonal zone intensity?”, demonstrating that an average deviation of half a
class should not be seen as problematic. On the contrary, it reflects physically plausible
transitions within a continuous facies gradient. These findings highlight that while tradi-
tional metrics like MAE and R2 may appear ambiguous in semi-discrete regression tasks,
a tolerance-aware interpretation confirms the model’s fidelity in capturing meaningful
seasonal structure. The fuzzy confusion matrices help interpret this further: they show
that even when the average error is close to half a class, most deviations occur between
neighbouring facies. This confirms that such errors are not indicative of structural model
failure, but rather reflect physically meaningful transitions, supporting the validity of the
regression framework in modelling continuous seasonal glacier dynamics.
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Figure 7.36.: Confusion Matrix – Spring. Reference (y-axis) vs. predicted (x-axis) classes after
rounding regression outputs.

7.3 Seasonal Glacier Facies Forecasting from Temporally Fused
Sentinel-1 Data and Helix Labels

349



Figure 7.37.: Confusion Matrix – Summer. Reflects high overlap between melt-prone zones.
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Figure 7.38.: Confusion Matrix – Fall. Shows transition behaviour and class overlap.
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Figure 7.39.: Confusion Matrix – Winter. Indicates stronger class separation and higher prediction
confidence.
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Figure 7.40.: Confusion Matrix – Year Mean. Aggregated across all seasons to reflect overall
class-wise prediction behaviour.

To further assess the structural alignment between predicted outputs and HELIX-enriched
labels, the Kullback–Leibler (KL) divergence was computed for each season. KL divergence
quantifies the difference between two probability distributions. Formally, given a reference
distribution P and an approximate distribution Q, the divergence is defined as:

KL(P ∥ Q) =
N

∑
i=1

P(i) log
P(i)
Q(i)

, (7.5)

where P(i) and Q(i) are the class probabilities (here: histogram-normalized frequencies)
of class i in the label and prediction maps, respectively. In this expereiment, distributions
were computed over five glacier facies classes (1–5), using soft-fuzzified label and
prediction values, and normalized over valid pixels per season. KL divergence reflects
how much information is "lost" when using Q (the prediction) to approximate P (the
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label). A value of zero implies perfect agreement, while higher values indicate increasing
distributional mismatch.

Results: Seasonal KL divergence values were consistently low:

• Spring: 0.047

• Summer: 0.072

• Fall: 0.066

• Winter: 0.040

• Annual mean: 0.024

These results indicate that, despite per-pixel deviations (e.g., MAE ∼ 0.49 in summer),
the predicted facies distributions remain closely aligned with the true underlying class
tendencies. In particular, the annual KL divergence of 0.024 demonstrates that, when ag-
gregated spatially and temporally, the regression model preserves the expected structural
distribution of glacier zones with high fidelity.

Importantly, this metric complements traditional regression performance indicators by
evaluating not only how far predictions deviate numerically (as with MAE), but also how
well they retain the physical and statistical structure of the facies distribution. In cases
where labels represent temporally smoothed, semi-discrete probabilities, as in the HELIX
framework, KL divergence provides a more semantically meaningful validation criterion
than pointwise error alone.

Taken together with the fuzzy confusion matrices and per-class MAE analysis, these KL
divergence results reinforce the conclusion that the regression model does not simply fit
numeric values, but effectively learns the spatio-temporal logic embedded in glacier zone
dynamics.

To further improve performance in melt-dominated conditions, future efforts may in-
clude melt-aware model components such as class-weighted training losses, melt-region
masking, or the inclusion of additional auxiliary melt indices (e.g., NDWI from optical
sources, modelled melt energy). Furthermore, adapting R2 with respect to constrained
label ranges, e.g., using adjusted R2 or normalized explained variance, may yield more
representative performance reporting in semi-discrete regression tasks.

354 Chapter 7 Context-Aware Label Enrichment and Multi-Scale Learning with the
HELIX Framework



Spatial Consistency and Seasonal Class Realism

In addition to aggregated accuracy metrics, the spatial and seasonal realism of the
model predictions was evaluated, through comparing the predictions and the true-class
variations, class distribution plots and longitudinal transect comparisons. As the Historical
Context-Based Model, comparatively achieved the lowest error rates, the evaluations are
focused on that model, which is also a true spatio-temporal transfer configuration, as the
model was trained on AOI 2, using EO data from 2022 and the static historical context
vector, and then evaluated on AOI 1 in 2023. This configuration constitutes a spatial
and temporal transfer setting, with no direct access to either 2023 labels or EO history
at inference time. The following analyses offer a qualitative and physically grounded
complement to the confusion matrices, emphasizing not just class agreement but the
geospatial structure and elevation-aligned logic of the outputs.

Figures 7.26–7.30 display the reference and predicted zonation maps at full spatial
resolution, in the left panels the enriched seasonal reference zonations are shown, and
the models predictions in the right panel across all four meteorological seasons and
annually aggregated, for AOI 1 in 2023. These maps use a consistent colour scheme for
facies types, ranging from Dry Snow to Wet Snow, to support direct visual comparison.
Qualitatively, the model predictions exhibit strong spatial consistency with the reference
data. Across Axel Heiberg Island, high-elevation regions such as at the Airdrop and
Thompson Glaciers are correctly dominated by Dry Snow and Percolation zones, while
lower elevations transition toward Superimposed Ice, Ice-Free, and Wet Snow zones. The
preservation of these elevational gradients, even without any direct input from 2023
label data, illustrates the model’s capacity for physically realistic facies reconstruction.
Zoomed-in insets (highlighting White Glacier) reinforce this fidelity at finer spatial scales.
While some local discrepancies are visible, especially in marginal or narrow zones, the
broader structure remains intact. Importantly, mismatches are typically confined to
transitions between adjacent facies classes, suggesting the model adheres to plausible
glaciological behaviour even under strong spatio-temporal transfer.

Figure 7.25 presents the seasonal distribution of predicted and reference glacier facies
across AOI 1, plotted on a logarithmic scale. The model successfully reproduces the
dominant seasonal shifts in facies prevalence, with summer dominated by Ice-Free and
Percolation zones, and winter showing strong presence of Dry Snow and Superimposed
Ice. Slight overestimation of the Ice-Free zone in summer and modest underprediction of
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the Wet Snow zone in transitional periods are evident, but overall seasonal structure is
well captured.

To assess spatial consistency in detail, class profiles were extracted along three repre-
sentative glacier transects, White Glacier, Thompson Glacier, and Airdrop Glacier, each
spanning significant elevation gradients. Figures 7.31–7.33 show reference and predicted
zonations across all seasons for each glacier. In each case, the model preserves the
expected accumulation-to-ablation transition: Dry Snow dominates the upper elevations,
gradually shifting through Percolation and Superimposed Ice toward Ice-Free and Wet
Snow at the termini. Such coherence is particularly encouraging given the absence of
glacier-specific tuning, suggesting that the combination of enriched labels and radar-based
time-series fusion allows the model to internalize generalizable glaciological structure.
Localized misclassifications appear mostly constrained to class boundaries, often between
physically adjacent zones (e.g., Dry Snow ↔ Percolation), and rarely violate the expected
elevational logic. These results reinforce the interpretability and robustness of the model,
demonstrating its ability to not only predict class proportions but to spatially reproduce
glacier zonation patterns that align with physical processes and terrain structure. In
real-world deployment scenarios, such fidelity is critical for ensuring scientific utility and
user trust in glacier monitoring applications.

From High-Resolution Labels to Operational Prediction

A central practical trade-off in this framework arises from the use of TerraSAR-X (TSX)-
based glacier facies classifications, available at 40 m resolution, as the reference for
training models that ingest higher-resolution Sentinel-1 (S1) data (10 m). To mitigate
this mismatch, all Sentinel-1 inputs were resampled to match the label resolution using
nearest-neighbour alignment, ensuring consistent pixel correspondence during training.
While the nominal resolution of the input remains finer, this controlled downscaling
ensures that the model does not overfit to spatial details absent in the supervisory
signal.

At first glance, this setup may appear counterintuitive: it violates the conventional
expectation that higher-resolution data should be paired with equally high-resolution
labels. Moreover, the TSX classifications themselves are derived from threshold-based
heuristics, which introduces another layer of abstraction. Yet, the HELIX enrichment
strategy, combined with a residual learning ensemble that includes historical label priors,
enables the model to generalize beyond the limitations of its supervision source. Rather
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than overfitting to the noise or rigid structure of individual label scenes, the framework
extracts and distills the underlying seasonal signal, demonstrating that robust glacier
facies prediction is feasible even when learning across sensors and resolutions.

Limitations

While the proposed framework demonstrates strong performance and broad general-
ization capability, several limitations merit discussion. First, the use of HELIX-enriched
seasonal labels introduces assumptions about temporal persistence and facies regularity
that may not fully capture rapid or short-lived glacier dynamics. Seasonal averaging
smooths over high-frequency variations, potentially masking abrupt transitions such as
melt onset or episodic snowfall, particularly in early summer. Moreover, the temporal
windows used to define seasons are fixed and climatologically motivated, which may not
align precisely with local inter-annual variability in glacier processes. Second, although
the enriched labels provide a more informative learning signal than static classifications,
they are ultimately derived from TSX-based label maps whose own accuracy and temporal
density vary by year and region. Thus, label quality and availability remain a limiting
factor, especially for extending the system to less-instrumented areas. Third, the interpre-
tation of continuous facies scores, e.g., a predicted value of 3.7, remains abstract without
post-hoc discretization or contextualization, which may limit their utility in field-based
applications requiring clearly delineated zones. Furthermore, given the dependency on
externally generated TSX-based classification products, label uncertainty and potential
misclassifications propagate directly into the HELIX-enriched supervision signals. Errors
in the original TSX labels, whether due to sensor noise, misclassification, or inconsistent
temporal coverage, can distort the temporal statistics computed during HELIX kernel
construction. This is especially problematic in periods of rapid surface change (e.g., melt
onset), where even small temporal misalignments can lead to physically implausible class
sequences in the target data. To mitigate this, future work could implement HELIX-based
temporal consistency checks prior to training. Such a mechanism could, for example, flag
or adjust label trajectories that violate known glaciological transition rules (e.g., sudden
dry-to-wet reversals during late summer). Probabilistic smoothing or rule-based filters
could be introduced at the label aggregation stage, enforcing physically plausible tran-
sition paths across the temporal kernel. By integrating such domain-aware consistency
constraints into the label generation pipeline, the risk of learning from artefactual or
glaciologically implausible targets can be reduced, further enhancing model robustness
and interpretability. Finally, while the historical label prior vector proved highly effective
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in both local and transfer settings, its utility depends on the availability of accurate multi-
year label archives for the target region. In remote or data-sparse glaciers, this constraint
may limit the generalizability of this component. Addressing these limitations through
adaptive seasonal definitions, hybrid EO-label priors, and uncertainty-aware modelling
remains a key direction for future work. Despite these limitations, the demonstrated
performance across spatial and temporal domains supports the framework’s viability for
large-scale monitoring, while highlighting directions for future refinement.

Spatial and Temporal Transferability

A central challenge in EO-based glaciology is ensuring that predictive models trained on
one location and time remain effective when applied elsewhere. The results presented
here demonstrate that models trained on Devon Island (AOI 2) in 2021 and 2022
generalize successfully to Axel Heiberg Island (AOI 1) in 2023, a separate location
and unseen glaciological year. Notably, this spatio-temporal transfer was achieved
without retraining, fine-tuning, or access to historical EO or labels for the target region,
emphasizing the strength of the modelling pipeline and the robustness of the HELIX-
enriched label framework.

This robustness stems from two central design choices. First, the HELIX-enriched labels
encode temporal structure and glaciological persistence, enabling the model to learn
seasonal tendencies rather than overfitting to static maps or single-date snapshots. Second,
the fused EO inputs, derived from SAR-based time series (Sentinel-1), aggregate surface
dynamics over defined meteorological seasons. This reduces the sensitivity to outlier
events or atmospheric noise, and helps the model detect seasonal phase transitions even
in unseen terrain.

Implications and Practical Usage: Together, these features enable pre-trained models
to be deployed across other Arctic glacier regions with minimal overhead. In practical
terms, using an existing model requires only the following:

1. Acquisition of Sentinel-1 SAR data for the target glacier and year, processed into
the same seasonal fusion format (Band 0 of the EO stack), using the freely leviable
data-preprocessing (Sentinel-1) and adaptable data fusion algorithms [148].
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2. Spatial masking of glacier-covered pixels, optionally based on static glacier outlines,
e.g., by using the GLIMS [126] database.

3. Feeding the EO time series into the pre-trained model to predict the enriched
seasonal label vector per pixel.

Crucially, no additional labels, field campaigns, or region-specific calibration are necessary.
This makes the system not only generalizable, but highly scalable, capable of monitoring
glacier zone evolution at continental scales with consistent accuracy.

Toward Arctic-Wide Monitoring: These findings suggest that models trained on a small
number of well-characterized AOIs can support broad-scale glacier facies prediction
across the Arctic, provided EO coverage is available. With the increasing availability
of cloud-based EO processing platforms and global glacier masks, this approach could
facilitate low-cost, repeatable assessments of glacier seasonal behaviour, supporting
scientific research, climate monitoring, and risk assessment efforts in polar regions.

7.3.5 Conclusions

This study presents a compact, interpretable, and scalable framework for seasonal glacier
zone prediction in Arctic regions, based on time-series analysis of radar EO data. The
approach centres on a fused representation of multi-temporal Sentinel-1 observations,
capturing the seasonal dynamics of glacier surface conditions in a physically grounded
and computationally tractable way. Through a simplified yet expressive input design,
each pixel is represented by a continuous-valued feature encoding seasonal backscatter
evolution, which forms the basis for subsequent learning.

A defining innovation lies in the label-side enrichment strategy, inspired by the HELIX
framework. By transforming per-date, discrete glacier facies classifications into seasonally
aggregated, float-valued targets, this method introduces temporal semantics into other-
wise static labels. This transformation is not cosmetic: it enables predictive modelling in
the first place. Without such enrichment, labels remain too fragmented and inconsistent
to serve as reliable supervision signals for seasonal inference. The HELIX process thus
acts as a form of temporal grounding, allowing the model to learn not only which glacier
zones are present, but how they evolve and persist across the glaciological cycle.
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Crucially, the approach leverages glacier facies classifications derived from TSX, a radar
system distinct from the Sentinel-1 input source. This cross-sensor setup introduces a form
of informational triangulation, allowing the system to learn generalizable patterns from
one sensor (TSX) and apply them to another (S1). By doing so, the pipeline effectively
controls for sensor-specific biases and avoids overfitting to modality-specific features.
The predictive capacity of the framework, especially in temporally and spatially unseen
regions, hinges on this integration of external, physically grounded label information. It
highlights a broader principle: that robust EO-based modelling can be achieved not only
through data quantity, but through meaningful structural alignment between inputs and
labels.

Empirical results across multiple years and glaciers demonstrate the feasibility and
robustness of this method. The models achieved reliable seasonal predictions using
minimal input features, and generalized well across both time and space. The introduction
of a residual hint mechanism, training a lightweight second-stage model on the errors
of the first, further improved accuracy, especially in ambiguous seasonal zones. Among
all configurations, the model trained with historical seasonal priors (L̄hist) consistently
outperformed others in both local and transfer settings. Across all configurations, Mean
Absolute Error remained below 0.5 on the 1–5 facies scale, indicating sub-class prediction
accuracy. This highlights the value of label-side temporal memory as a lightweight control
mechanism for stabilizing predictions.

Importantly, the system operates without reliance on optical data, dense historical
archives, or region-specific tuning. It runs entirely on open-access radar observa-
tions and pre-trained components, supporting operational deployment across large-scale
cryospheric regions. Its scientific clarity, interpretability, and computational parsimony
make it suitable not just for retrospective analysis but for near-operational forecasting in
polar environments.

Taken together, this work contributes a novel framework for dynamic glacier zone mod-
elling, one that links physical glacier processes with explainable ML. It systematically
dissects and reconstructs the components needed for transferable, interpretable, and tem-
porally coherent EO inference, demonstrating that carefully structured label enrichment
and streamlined architectures may match and outperform more complex designs. By
learning from one sensor modality (TSX-based Labels), predicting on another (Sentinel-
1), and reasoning across time without recurrent inputs, the system effectively performs
sensor-to-sensor knowledge transfer, while embedding its own form of internal control
through temporally smoothed supervision. By leveraging external sensor intelligence,
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embedding temporal memory directly in the labels, and generalizing without optical
dependence, the framework defines a new paradigm for self-regularizing, sensor-to-sensor
EO learning, scalable, interpretable, and ready for polar-scale deployment.

Lessons Learned

• Seasonally enriched supervision enables temporally structured glacier zone
modelling. HELIX-style label aggregation transforms discrete facies maps into
temporally expressive targets, enabling models to learn glacier behaviour over
seasons rather than isolated snapshots.

• Single-band radar inputs can support high-fidelity seasonal facies prediction.
Total SAR backscatter intensity (K0), extracted from Sentinel-1 time series, captured
sufficient signal for accurate multi-season prediction, minimizing model complexity
without sacrificing generalization.

• Residual-based refinement improves predictive performance in ambiguous
conditions. A lightweight second-stage model trained on residuals of the base
prediction enhanced accuracy, especially during transitional seasons with high zone
variability.

• Label-side historical priors provide strong generalization anchors. A static
seasonal prior (L̄hist) derived from previous years outperformed complex ensembles
in unseen spatial-temporal settings, enabling reliable forecasting without historical
EO input.

• Sub-class prediction accuracy is achievable even in transfer scenarios. Across
all configurations, the model maintained MAE values below 0.5 on a 1–5 facies
scale, indicating predictions deviated by less than one zone level on average, even
when transferred across years and glacier regions.

Research Questions Revisited

RQ1: Does seasonal label enrichment improve the model’s ability to represent glacier facies
transitions compared to discrete classification targets?
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Yes. HELIX-style aggregation introduced seasonal regularity into the supervision sig-
nal, which improved regression stability and reduced noise from per-date variability.
Comparative results showed that models trained on enriched targets outperformed
those using raw labels in both accuracy and interpretability.

RQ2: How well do temporally fused Sentinel-1 features predict enriched seasonal glacier
zone dynamics?

Very well. A single temporally fused band (K0) derived from Sentinel-1 was
sufficient to predict facies distributions across seasons with high accuracy, yielding
Year Mean MAE < 0.45 and R2 consistently > 0.5, even under transfer conditions.

RQ3: Can a residual-based refinement stage enhance prediction accuracy and robustness
across seasons?

Yes. Incorporating residual hints reduced MAE by over 30% across all seasons. The
approach provided modular, interpretable correction without the need for deep
architectures or recurrent temporal modelling.

RQ4: Does the inclusion of historical seasonal priors improve model generalization across
glacier regions and years?

Yes. The historical label vector (L̄hist) offered strong spatial memory and improved
generalization to unseen years and locations. This prior-driven model achieved the
best overall performance and proved effective even without concurrent EO data
from the target domain.

Closing Remarks

This work introduces a streamlined framework for spatio-temporal glacier zone prediction
based on radar EO and temporally enriched labels. By embedding seasonal memory into
the label space and relying on fused single-band radar inputs, the system infers not only
where zones are, but how they evolve over time.

The results demonstrate that regression-based prediction of glacier zones, supported
by label-side temporal enrichment and residual correction, can achieve accurate, inter-
pretable outputs using minimal EO features. This opens the door to efficient, Arctic-scale
glacier facies monitoring using fully open-access data sources.
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Through structural label design, SAR-to-SAR learning, and historical-prior generaliza-
tion, this framework offers a reproducible, causally consistent path toward radar-based
forecasting of seasonal glacier dynamics, one that is ready for real-world, large-scale
cryospheric deployment.
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7.4 Glacier Zone Change Forecasting from Polarimetrically
and Spectrally Fused Sentinel-1 and Sentinel-2 Data
with HELIX Temporal Supervision

This experiment advances the HELIX framework by applying label-side temporal enrich-
ment to short-term glacier zone prediction. Given the sparse temporal coverage of in-situ
glacier observations and the operational need for short-term surface condition forecasting
(e.g., for hydrological models or field campaign planning), such EO-driven, trend-aware
glacier zone forecasting approaches could close critical information gaps in polar re-
gions. Rather than modelling static glacier facies classifications, the task is reframed
as a regression over expected zonation change (class deltas) across a 5-week horizon.
The predictive model is trained using fused EO features from Sentinel-1 (polarimetric
SAR) and Sentinel-2 (spectral reflectance), along with recent glacier class trajectories,
to estimate future zonation dynamics from a single EO acquisition date, to estimate
future zonation dynamics from a single EO acquisition date plus recent class history.
This formulation enables learning physically plausible surface transitions directly from
satellite-observable properties, supporting trend-aware glacier monitoring in data-sparse
polar environments.

The key innovation lies in the label formulation: future glacier zones are encoded as
temporally smoothed deltas relative to the present class, enabling trend-aware learning
without requiring time-series input features. This HELIX-inspired approach embeds
temporal structure into the labels by computing future class deltas as training targets.
During training, these enriched targets allow both base and residual models to learn
expected short-term transitions. However, during inference, the model relies solely on
EO features and past class dynamics, preserving causal integrity in all inputs.

This experiment addresses the following research questions:

RQ1: Can temporally enriched supervision signals derived from HELIX-style label kernels
support accurate learning of glacier zone evolution from EO mono-date data?

RQ2: Can glacier zone evolution be reliably inferred from mono-date EO features combined
with recent zonation history?
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RQ3: Is delta regression a suitable alternative to full class prediction in the context of glacier
zone modelling?

RQ4: How effective is a two-stage regression architecture in capturing both dominant and
residual glacier zonation dynamics?

To assess these questions, a temporally causal modelling pipeline is implemented. It
predicts class deltas from fused EO features (Sentinel-1 and Sentinel-2) and past HELIX-
enriched glacier zonation. The pipeline is evaluated on held-out test sets using regression
metrics (R2, MAE) and directional classification accuracy. Additional evaluation explores
cross-region generalization under consistent preprocessing and input formatting. At
inference, the model uses only a single EO scene at time t, the current class map, and the
past 5 weeks of class labels to forecast the expected mean future zonation class Ŷt+n.

7.4.1 Materials

This experiment builds upon the glacier zone annotations described in the preceding
chapter (and Section 1.2.3), where high-resolution TSX imagery was processed into
temporally resolved facies maps at 40,m spatial resolution [311]. For the predictive
inputs, co-registered Sentinel-1 and Sentinel-2 acquisitions from mid-June 2021 over
Axel Heiberg Island were selected to represent typical glacier surface conditions during
the early ablation season. All EO data were spatially harmonized to a common 10 m grid
and transformed into a fused spectral–polarimetric feature space following the methods
outlined in Section 2.2.

Sentinel-1 Acquisition: The primary SAR input was obtained from the Sentinel-1A plat-
form, on 16th of June 2021. This acquisition was selected as it aligns temporally with
the optical data and offers minimal surface moisture interference. This acquisition, pro-
vided as a SLC product in Interferometric Wide Swath (IW) mode, offers full-resolution
complex-valued backscatter information in dual-polarization (HH/VH). The dataset
was processed using the Multi-SAR framework [38], including speckle filtering, radio-
metric calibration, terrain correction, and geocoding. Polarimetric information was then
projected into Kennaugh elements k0, k1, k5, k8, as detailed in Section 2.2 and illustrated
in Figure 6.19.
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Sentinel-2 Acquisitions: To match the SAR observations, four Level-1C Sentinel-2 scenes
were used, providing surface reflectance information across red, green, blue, and NIR
bands:

• S2A_MSIL1C_20210612T215051_T15XVK

• S2A_MSIL1C_20210612T215051_T15XWK

• S2B_MSIL1C_20210613T202849_T15XVJ

• S2B_MSIL1C_20210613T202849_T15XWJ

All scenes were manually inspected and selected for minimal cloud contamination, using
metadata to validate acquisition geometry and auxiliary file integrity. The four tiles were
mosaicked to cover the full glacierized extent of Axel Heiberg Island. Each tile contributed
critical multispectral bands at 10 m resolution, providing structural and surface condition
cues from the visible and NIR domains.

These bands were transformed into a spectral-Kennaugh representation as described in
Section 2.2, which decomposes the spectral signature into a hypercomplex basis. This
transformation isolates spectral variation from brightness and reduces correlation between
bands, enabling more interpretable fusion with polarimetric descriptors. Mathematically,
this transformation is defined in Equation (2.5).

Spectro-Polarimetric Fusion (HCB): To integrate the optical and radar observations into
a coherent feature space, the spectral and polarimetric Kennaugh representations were
fused using the HCB transformation [289]. This approach yields an 8-dimensional
feature vector:

Kfused = [K0, K1, . . . , K7],

where K0 denotes the total fused intensity, and K1 through K7 represent orthogonal
spectro-polarimetric components capturing directionality, texture, and spectral gradients.
The fusion is lossless, invertible, and semantically structured, as introduced in Figure 6.19
and detailed in Section 2.2. The final fused dataset is referred to as the 2021-06-13
HCB-fused stack, and is visualized in Figure 7.41. This 8-band feature space serves as the
primary input for the regression models described in the following methods section. It
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balances physical interpretability with compactness, providing a rich representation of
glacier surface dynamics over multiple spectral and structural dimensions.

Figure 7.41.: Visualization over Axel Heiberg Island. Left: World Imagery [100] basemap
showing the geographic extent of the study area. Right: Spectrally-polarimetrically
fused Sentinel-1 SLC IW dataset from 2021-06-13, displayed in RGB, where Red
represents Kfused,0, Green represents Kfused,4, and Blue represents Kfused,2.
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7.4.2 Methods

This section outlines the methodological framework for modelling short-term glacier zone
evolution using temporally enriched supervision. Instead of learning to classify static
glacier zones directly, the approach focuses on regressing the expected change in glacier
class, derived from multi-week temporal label context. Inspired by the HELIX framework,
temporal structure is injected into the labels rather than the input features, enabling a
causally valid, EO-guided learning process.

Figure 7.42 provides a schematic overview of the full pipeline. EO inputs from Sentinel-1
and Sentinel-2 are aligned with TSX-derived zonation maps at time t. These labels are
encoded and temporally enriched using past and future class trajectories to construct a
per-pixel kernel. From this enriched label structure, a delta target ∆ = µfuture −Class(t) is
computed, representing the smoothed zonation evolution over a short prediction horizon
of 5 weeks (i.e., t + n = t + 5w).

This delta target is precomputed and held fixed during training, serving as a supervision
signal for a two-stage regression model that learns to predict future glacier change from
static EO inputs.

The following subsections detail each of these components: multi-scale temporal label
enrichment, the delta regression formulation, and the two-stage learning architecture.
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EO Feature Stack
(Sentinel-1/2 at t)

Glacier Class Labels
(TSX-derived, Weekly)

Spatio-Temporal Alignment
(EO t ↔ Zonation t) Temporal Kernel Construction

Short-Term Past
Classes t − 1w to t − 5w

Short-Term Future
Classes t + 1w to t + 5w

Short-Term Future Class Mean
Avg. of t+1w to t+5w

(µfuture)

Zonation Delta (Target)
µfuture − Class(t)

(∆)

HELIX-Enriched Supervision
(Delta Targets for Training)

Base Regressor (XGBoost)
Predicts ∆̂base

Residual Regressor
Learns r = ∆ − ∆̂base

Final Delta Prediction
∆̂final = ∆̂base + r̂

Predicted Future Zonation
Ŷt+n = Class(t) + ∆̂final

Figure 7.42.: End-to-end schematic of the HELIX-inspired glacier zonation modelling pipeline.
Labels are temporally enriched using a structured kernel (past and future class
history), from which a delta target ∆ = µfuture − Class(t) is derived. During
training, EO features and zonation history are used to predict this delta via a
two-stage regressor. The final predicted class Ŷt+n is reconstructed by adding
the predicted delta to the current class. All future information is used only for
supervision and excluded at inference.
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Multi-scale Temporal Label Context Enrichment for Dynamic Glacier Zoning

This experiment employs a label-side enrichment strategy inspired by the HELIX frame-
work to embed temporal structure into static glacier classification labels. The resulting
structure, referred to as a temporal kernel, provides a multi-scale, time-centric context
for each pixel. This enriched supervision encodes not only the current zonation state
but also its recent evolution and short-term future trajectory. The temporally structured
kernel forms the foundation for learning glacier zone changes via delta regression.

Temporal Kernel Construction: At the core of HELIX-style enrichment is a per-pixel
temporal kernel centred at time t. For each EO acquisition date, glacier zone classification
rasters are extracted at weekly intervals before and after t from a TSX-derived archive
(where w denotes weeks):

• Class label at time t

• Past labels: t−1 w to t−5 w

• Future labels: t+1 w to t+5 w

• Aggregated statistics: mean and mode across the past 5 and future 5 weeks

All temporal features are stacked into a single raster aligned to the base TSX feature
grid (40 m resolution). This kernel encodes dynamic behaviour and class persistence
trends for each pixel over time. This transformation converts discrete, static class labels
into temporally structured supervision signals that enable regression-based learning of
zonation trends.

Spatio-Temporal Alignment with EO Features: The enriched glacier labels are aligned
to the Sentinel-1 and Sentinel-2 EO acquisitions, such that the reference glacier zone
map at time t is co-registered to the nearest EO scene. This design choice reflects the fact
that EO data, particularly cloud-free Sentinel-2 and high-quality Sentinel-1 backscatter, is
temporally sparse and irregular. Since the model must ultimately operate on whichever
EO scene is available at a given time, the supervision signal is constructed to match
these EO timestamps. This alignment strategy enforces strict temporal causality and
mirrors real-world deployment scenarios, where glacier zonation forecasting is based on
single-date EO inputs.
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Modelling Glacier Zone Dynamics with Enriched HELIX Labels

The modelling task is framed as a regression over glacier zone deltas, defined as:

∆ = µfuture − Class(t),

where µfuture ∈ R is the mean glacier zone label from t+1 w to t+5 w, and Class(t) ∈ Z

is the current class. The delta ∆ ∈ R represents the expected short-term change in
zonation, and forms the regression target. This future-derived target is only used during
training. It is computed once from future class labels and then held fixed. No future EO
or label information is available during inference.

Feature Composition: Each pixel is represented by a fused spatio-temporal feature
vector:

• 8-dimensional HCB-fused Sentinel-1 and Sentinel-2 EO features at time t

• Glacier zone class at time t

• Past 5 weeks of glacier zone classes (t−1 w to t−5 w)

Whereby, all EO features are resampled to the coarser 40 m label grid using spatial
averaging, ensuring alignment with the HELIX-enriched label stack. This allows pixel-
consistent learning, despite the resolution mismatch, and ensures that the temporal
supervision kernel remains spatially coherent with the predictors.

For each downsampled pixel p in the 40 m label grid, EO features are computed by
averaging over the corresponding high-resolution pixels:

x(40 m)
p =

1
Np

∑
q∈N (p)

x(10 m)
q ,

where N (p) denotes the set of 10 m EO pixels within the spatial extent of p, and xq the
EO feature vector at location q.
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Two-Stage Delta Regression Architecture: The model learns to predict glacier zone
evolution in two stages:

1. Base Regressor (XGBoost)
Learns the dominant spatio-temporal patterns in class change by regressing ∆̂base

from the input vector.

2. Residual Regressor (Gradient Boosting)
Learns the residual error:

r = ∆true − ∆̂base,

which captures local variation not explained by the base model.

3. Final Prediction
The corrected delta and future class mean are reconstructed as:

∆̂final = ∆̂base + r̂, Ŷt+n = Class(t)+ ∆̂final. (interpreted as the expected mean class label over t+1w to t+5w).

This structure allows the model to learn both general trends and local deviations in
glacier dynamics, improving interpretability and generalization.

Training and Evaluation: The model is trained using an 80/20 stratified split by Class(t).
Evaluation is conducted on held-out data using:

• R2 and MAE for continuous delta regression

• Directional classification accuracy (up/stable/down)

• Final class classification accuracy after rounding Ŷt+n

Strict causality is enforced. All model inputs are limited to time t or earlier. Future class
labels (e.g., µfuture) are never used as input, only as fixed targets during training. This
ensures causal consistency and allows for real-world, forward-only deployment.

While the delta supervision is derived from future labels, these are used solely to construct
the training targets and are excluded from all input features. The model thus learns to
associate present EO patterns and past class dynamics with typical short-term evolution,
generalizing from historical trajectories to unseen futures. This approach preserves strict
causality and enables real-world deployment using single-date EO inputs.
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7.4.3 Results

his section presents the model’s performance in forecasting short-term glacier zonation,
emphasizing both the directional accuracy of transitions and the final classification
outcomes derived from predicted deltas.

To evaluate the model’s ability to forecast short-term glacier zonation,first the enriched
glacier class labels that serve as a reference and contextual foundation for training and
assessment are visualized. Figure 7.44 displays the HELIX-derived enrichment results
over Axel Heiberg Island using RGB composites of class information across time.

In the left panel, the RGB channels represent: R — the glacier zones at time t (2021-06-
13), G — the short-term past glacier classes at t − 5w, and B — the short-term future
glacier classes at t + 5w.

This highlights temporal class fluctuations by encoding class transitions as colour shifts.

The right panel extends this by using contextual means rather than single time points: R
— glacier zones at time t, G — the mean glacier classes from t − 1w to t − 5w, and B —
the mean glacier classes from t + 1w to t + 5w.

This representation offers a smoother, more aggregated view of short-term changes and
forms the basis for downstream model training and evaluation.
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Figure 7.43.: HELIX-based enrichment of glacier zones over Axel Heiberg Island. Left: RGB
encoding of glacier classes at t (R), t − 5w (G), and t + 5w (B), highlighting
localised fluctuations. Right: RGB encoding of class means over t (R), t − 1w to
t − 5w (G), and t + 1w to t + 5w (B), showing short-term zonal trends.

Zonal Delta Regression Performance To better understand the temporal dynamics of
zonation changes, descriptive statistics of the class deltas between the current zonation
class at time t and each of the future horizons (t + 1 to t + 5 weeks) were computed.
This analysis revealed substantial variability across the prediction horizons. Notably, for
∆t + 1w, there was no change in class for any pixel, indicating a static response in the
immediate short term. In contrast, for horizons t + 2w to t + 5w, more than half the
pixels exhibited changes, with a growing proportion of transitions toward lower classes
(e.g., wet to dry zones). These findings justify modelling each future step independently
and emphasize the necessity of per-horizon evaluation metrics. The detailed statistics are
presented in Table 7.15.
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Table 7.15.: Summary statistics of class change (∆ Class) at future time steps, relative to the
reference week (t). These distributions motivate the separate evaluation of each
horizon.

∆ Step Mean ∆ Std ∆ Median % ∆ ̸= 0 Unique ∆s

∆t+1w 0.000 0.000 0.000 0.00% [0]
∆t+2w 0.737 0.961 0.000 52.82% [−4, . . . , 4]
∆t+3w −0.847 0.968 −1.000 56.98% [−4, . . . , 4]
∆t+4w −0.799 0.971 −1.000 55.60% [−4, . . . , 3]
∆t+5w −0.921 1.035 −1.000 59.35% [−4, . . . , 4]

Regression results for short-term zonal delta predictions revealed a near-perfect fit at the
shortest time horizon. For ∆t + 1w, where no class changes were observed, the model
achieved R2 = 1.000, MAE = 0, and residuals were uniformly zero. For horizons ∆t + 2w
to ∆t + 4w, performance remained strong, with low MAE and high R2 values, indicating
the model’s ability to capture short-term dynamics from EO and historical zone context.

At ∆t + 5w, however, predictive accuracy declined (R2 = 0.875, MAE = 0.241), reflecting
greater uncertainty over longer horizons. This shift likely results from temporal decou-
pling between predictors and outcomes, driven by external factors not captured in the
EO data (e.g., meteorology, ice dynamics). Nonetheless, the model retained substantial
predictive value even at this stage.

Table 7.16.: Regression performance summary across future time horizons.

Time Step R2 MAE Residual Test

∆t + 1w 1.000 0.000 NaN
∆t + 2w 0.998 0.052 p < 10−20

∆t + 3w 0.992 0.078 p < 10−20

∆t + 4w 0.985 0.102 p < 10−20

∆t + 5w 0.875 0.241 p < 10−20

∆Mean 0.988 0.048 p < 10−20

Residual tests refer to non-parametric significance testing (Kruskal–Wallis) on model
residuals vs. reference deltas. The extremely small p-values (p < 10−20) indicate that
residuals, while numerically small (see MAE), are statistically distinguishable from zero
due to the large sample size.
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Directional Transition Accuracy. To assess whether the model correctly captured the
direction (i.e., upward = transition to a higher class, such as from firn to dry snow;
downward = e.g., from wet snow to firn) of glacier zone transitions (i.e., upward,
downward, or stable class shifts), the predicted delta values were discretized into three
directional categories. The results are summarized in Table 7.17.

Table 7.17.: Directional transition accuracy (Down / Stable / Up) for each delta horizon.

Time Step Accuracy Macro F1 Observation

∆t + 1w 1.00 0.33 All predicted as Stable
∆t + 2w 0.53 0.40 Directional separation begins
∆t + 3w 0.59 0.35 Good recall, weak balance
∆t + 4w 0.57 0.55 Stronger directional balance
∆t + 5w 0.56 0.57 Highest directional F1

While the earliest prediction horizon (∆t+1 w) shows perfect accuracy, this is due to a
degenerate case where all predictions default to the majority “Stable” class. As prediction
horizons increase, directional separation improves—reflected in both reduced overall
accuracy and rising macro F1 scores. The macro F1 metric, which averages F1 scores
across all classes equally, highlights this gain in balance. At ∆t+5 w, the model achieves
its best directional performance, suggesting that temporally enriched supervision supports
robust learning of medium-term zonation trends, even from mono-date inputs.

Discrete Accuracy of Mean Future Zonation. The final predicted zonal class means,
obtained by summing the modelled delta and the current class and rounding to the
nearest discrete class, were benchmarked against the HELIX-derived future mean zonation.
Table 7.18 shows the classification results for each glacier zone class.

Finally, for the aggregated average future class delta (∆Mean), the model achieved
excellent predictive capacity with R2 = 0.988, MAE = 0.048, RMSE = 0.073, 97.00%
classification accuracy, and a Cohen’s κ = 0.958, indicating strong agreement beyond
chance. These metrics demonstrate the model’s robustness in capturing longer-range
trends despite individual week-to-week uncertainty.

376 Chapter 7 Context-Aware Label Enrichment and Multi-Scale Learning with the
HELIX Framework



Table 7.18.: Classification performance of predicted vs. reference future glacier zones.

Class Precision Recall F1-score Support

Dry snow zone 0.975 0.988 0.982 292,460
Percolation zone 0.981 0.974 0.977 824,578
Superimposed ice zone 0.978 0.945 0.961 1,066,013
Ice-free zone 0.951 0.990 0.970 946,077
Wet snow zone 0.984 0.947 0.965 41,495

Overall Accuracy 0.970 (on 3,170,623 pixels)

The predicted mean zonation achieves a global accuracy of 97%, with precision and recall
consistently above 95% across all classes. These results confirm that despite potential
error accumulation in intermediate deltas, the model successfully learns stable surface
behaviour and produces reliable spatial forecasts of future glacier zones.

Figure 7.44 shows a side-by-side comparison of the reference and predicted future glacier
zones. The class-wise performance summary is provided in Table 7.18.

7.4 Glacier Zone Change Forecasting from Polarimetrically and Spectrally
Fused Sentinel-1 and Sentinel-2 Data with HELIX Temporal

Supervision

377



z 
0 
0 
0 
0 
L/") 
O'I 
00 

z 
0 
0 
0 
0 
0 
O'I 
00 

z 
0 
0 
0 
0 
L/") 
00 

00 

z 
0 
0 
0 
0 
0 
00 
00 

z 
0 
0 
0 
0 
L/") 
I'--

00 

SOOOOOE SSOOOOE 

- <= 1,0 Dry snow zone 

D 1,0 - 2,0 Percolation zone 

D 2,0 - 3,0 Superimposed ice zone 

D 3,0 - 4,0 lce-free zone 

- > 4,0 Wet snow zone 

Short-term future glacier zones, based on TSX reference data 
representing the classified glacier zones at time t (2021-06-13}. 
Using HELIX enrichment, the zones were augmented with future 
observations by aggregating glacier class labels from t+1 week to t+S 
weeks, resulting in an expected future zone mean. This serves as a 
factual TSX-based reference for assessing short-term change. 

z 
0 
0 
0 
0 
L/") 
O'I 
00 

z 
0 
0 
0 
0 
0 
O'I 
00 

z 
0 
0 
0 
0 
L/") 
00 
00 

z 
0 
0 
0 
0 
0 
00 
00 

z 
0 
0 
0 
0 
L/") 
I'--

00 

SOOOOOE SSOOOOE 

Prediction: Modeled Glacier Zonation (Short-Term Future) 

based on HELIX enrichment from TSX zone data 

t = 2021-06-13 and t-1w to t-Sw 

<= 1,0 Dry snow zone 

1,0 - 2,0 Percolation zone 

2,0 - 3,0 Superimposed ice zone 

3,0- 4,0 lce-Free zone 

> 4,0 Wet snow zone 

Short-term future glacier zones prediction, based on fused Sentinel-1 and 
-2 EO features and the current glacier zone at time t (2021-06-13).
Without using future labels, the model predicts the future zone mean
using EO data along with enriched past information, glacier classes from
t-1 week to t-5 weeks, to infer short-term (/J) zonal dynamics. This
represents a model-based estimate of future conditions derived on[y from
present and past observational inputs.

World lmagery Source Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo and the GIS-User Community 

Reference: Observed Glacier Zonation (Short-Term-Future)

based on HELIX enrichment from TSX zone data

(t = 2021-06-13 and t+1w to t+Sw) 

<= 1,0 Dry snow zone 

1,0 - 2,0 Percolation zone 

2,0 - 3,0 Superimposed ice zone 

3,0- 4,0 lce-Free zone 

> 4,0 Wet snow zone 

Figure 7.44.: Comparison of short-term future glacier zones. Left: Reference based on TSX-
classified zones at time t (2021-06-13), enriched via HELIX with labels from t + 1
to t + 5 weeks. Right: Prediction based on fused Sentinel-1/-2 features and prior
glacier classes (t − 5w to t), without using future label input.

7.4.4 Discussion

This section reflects on the rationale, performance, and broader implications of the
proposed HELIX-enriched glacier zone forecasting framework. We revisit the key design
choices, label-side temporal enrichment, delta-based regression, and causal modelling,
and evaluate how these components contribute to the framework’s predictive accuracy,
physical interpretability, and real-world deployability. The discussion also examines
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model behaviour across forecast horizons, assesses the plausibility of misclassifications,
and outlines both current limitations and future extensions.

Label-Side Temporal Enrichment as Supervision Strategy The HELIX framework intro-
duces a novel form of temporal supervision by enriching the label space rather than the
feature inputs. Each training target is constructed using both past and future glacier class
trajectories (plus their mean and mode), forming a temporally structured kernel per pixel.
This stands in contrast to conventional temporal modelling, which injects time into the
feature stack, often at the cost of causal validity.

This design is conceptually aligned with glaciological dynamics. Surface zone transitions
occur gradually, driven by thermal and hydrological processes with inertia. Consequently,
regions on the verge of transition often exhibit premonitory signals in EO features, such
as emerging melt signatures or reflectance anomalies. By encoding expected future
evolution directly into the training target, the model learns to associate present-day EO
cues with short-term class changes, without requiring future inputs at inference.

Causal Learning of Glacier Zone Evolution from Present Observables The model ex-
ploits the lag between observable surface signals and their eventual manifestation in
zonation class change. Sentinel-2 reflectance and Sentinel-1 backscatter jointly capture
surface texture, wetness, and snow cover, attributes that correlate strongly with upcoming
transitions (e.g., dry snow to percolation, firn to ice).

The learning process is designed to respect strict temporal causality. During training, the
model sees only EO and label data up to time t; the future is accessed solely to compute
a stable target: the mean glacier class label across the next five weeks (µfuture). This
delta target (∆ = µfuture − Class(t)) smooths short-term noise and emphasizes persistent
evolution. During inference, only current and past inputs are available, ensuring that the
model forecasts from truly observable conditions.

Delta-Based Supervision for Trend-Focused Forecasting By shifting the learning objec-
tive from discrete classification to regression over expected class change, the model
focuses on trend detection rather than state replication. This enhances both performance
and interpretability. Predicting a continuous delta:

∆ = µfuture − Class(t),
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allows the model to represent directional trends (e.g., +1: melt onset; 0: stability; –1:
accumulation), rather than forcing a hard classification. The two-stage architecture, a
base regressor followed by residual correction, further improves the ability to capture
both dominant and local behaviours in glacier evolution.

This structure makes the model robust to noise in weekly class labels and better suited to
representing smooth transitions inherent in physical glacier processes. Moreover, the final
output (Ŷt+n = Class(t) + ∆̂) provides an interpretable, physically grounded forecast.

Interpreting Predictive Accuracy The model achieves near-perfect predictive perfor-
mance across short-term horizons. For forecast windows of up to 4 weeks, R2 approaches
1.0 and MAE remains near zero (in zonation units), indicating high accuracy. This reflects
both the persistence of glacier zones over weekly timescales and the fact that EO data at
time t captures precursors to future change.

Notably, these results do not stem from data leakage. Rather, they emerge from (1) the
use of temporally aggregated targets that emphasize stable trends, and (2) the physical
observability of glacier state transitions. As forecast horizons increase, performance
gradually degrades (e.g., R2 = 0.875 at 5 weeks), suggesting that EO-only inputs are
increasingly insufficient in the absence of explicit meteorological forcing.
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Figure 7.45.: Confusion matrix of predicted vs. reference glacier zone classes. Values are log-
scaled counts.

On the Physical Plausibility of Misclassifications Figure 7.45 shows a strong diagonal
in the predicted-vs-true class matrix, indicating overall high agreement. These confusion
patterns are physically plausible and reflect the continuum-like nature of glacier surface
zones, where transitions are often gradual and not strictly bounded. The use of a log-
scaled colour bar (100 to 106) ensures that both dominant and subtle misclassifications are
visible, avoiding saturation in large classes while still surfacing minority errors. Where
misclassifications occur, they are glaciologically interpretable:

• Percolation zone is confused with Dry snow or Superimposed ice, reflecting their
intermediate surface states.

• Superimposed ice zone overlaps with Ice-free areas, especially near debris-
covered margins or exposed bare ice.

• Wet snow is misclassified as Ice-free in some cases, likely due to transient drying
or optical ambiguity under cloud-affected scenes.
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Such errors reflect the continuum-like nature of glacier surfaces and reinforce that the
model’s behaviour is physically reasonable.

Deployment and Transfer Potential Because the model relies only on current EO inputs
and prior label history, it can be deployed operationally for any glacier where:

• Recent Sentinel-1 and Sentinel-2 EO data are available,

• A zonation map at time t can be inferred (e.g., from TSX or proxy models),

• Past 5 weeks of zonation history are available or predicted.

Transferability depends on the similarity of glacier regimes and preprocessing consistency,
but the use of EO-visible features suggests strong generalization potential across mid- to
high-latitude glaciers with similar dynamics.

Advantages of the HELIX-Enriched Framework The proposed approach offers several
conceptual and operational benefits:

• Physically informed targets: Delta regression aligns with the continuous, inertia-
driven nature of glacier change.

• Causally sound inference: All features used are observable at time t, enabling
real-time deployment.

• Label-side temporal supervision: Encodes dynamics without contaminating in-
puts, improving generalization and reducing noise.

• Interpretability: Continuous outputs allow analysis of change direction and magni-
tude, beyond classification accuracy.

Limitations and Future Directions Despite its strengths, the method has several impor-
tant limitations:

1. Dependence on upstream class labels: Errors in TSX-derived zonation maps
propagate into supervision, potentially biasing learning.

2. Uniform temporal weighting: The current temporal kernel treats all past/future
weeks equally; adaptive weighting could improve fidelity.
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3. Missing physical drivers: The model does not incorporate explicit meteorological
or topographic inputs, which may be critical under extreme or rapidly changing
conditions.

4. Smooth-transition assumption: Delta regression assumes continuity, which may
under-represent rare abrupt events (e.g., calving, rockfall).

5. Domain generalizability untested: While promising for other applications (e.g.,
permafrost, vegetation change), HELIX-style label enrichment has yet to be evalu-
ated outside glacier zoning.

6. Seasonal stability bias: Model performance was evaluated on early summer (mid-
June) scenes, when glacier zones are relatively stable. Performance under more
dynamic seasonal conditions (e.g., spring melt onset or autumn refreezing) remains
untested and may degrade in the presence of rapid surface transitions.

Future work could address these gaps by integrating meteorological forecasts, testing
adaptive temporal kernels, and extending the method to other domains with dynamic
class transitions. Deep learning architectures, such as temporal attention models, may
further enhance performance by learning when and where past dynamics matter most.

Outlook: Toward Physically Guided EO Forecasting This work demonstrates that glacier
evolution is not only observable, but learnable, if supervised with labels that reflect physi-
cal processes and temporal dynamics. By rethinking how temporal context is encoded
and aligning model structure with glaciological reasoning, the HELIX framework opens a
path toward causal, interpretable, and deployable forecasting from Earth Observation.
Extending such approaches beyond glaciology may help bridge the gap between EO-based
monitoring and proactive environmental decision-making.

7.4.5 Conclusions

This study reframes short-term glacier zonation modelling as a delta regression task
grounded in label-side temporal enrichment. By drawing temporal structure into the
supervision signal, rather than the inputs, it is demonstrated that glacier surface evolution
is learnable from mono-date EO imagery and past class trends.
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Lessons Learned

• Label-side temporal enrichment offers a powerful alternative to time-series
feature modelling. By embedding past and future class information into the labels,
rather than the predictors, we enable models to learn temporally structured trends
without compromising causal validity.

• EO mono-date data contain sufficient signal to infer short-term glacier surface
evolution. Sentinel-1 and Sentinel-2 data at a single point in time, combined with
past label context, support accurate prediction of zonal class changes over several
weeks.

• Delta-based targets align with glacier dynamics. While we did not explicitly
compare delta vs. full-class modelling, learning class deltas reflects the physical
reality of gradual surface transitions and allows the model to estimate directional
change more naturally.

• A two-stage residual learning architecture improves predictive accuracy. Cap-
turing dominant trends with a base regressor and refining errors through a residual
model leads to higher fidelity predictions, especially in complex terrain or transi-
tional zones.

• The HELIX framework enables structured, interpretable glacier modelling.
Its use of temporal kernels, aggregated supervision, and causal input formatting
supports reliable, real-world application without relying on future EO data.

Research Questions Revisited

RQ1: Can temporally enriched supervision signals derived from HELIX-style label kernels
support accurate learning of glacier zone evolution from EO mono-date data?

Yes. The HELIX-inspired label enrichment embeds short-term temporal context into
the training signal, enabling models to learn expected zonation trends from static
EO inputs. This setup yielded strong regression results (R2 > 0.98 up to 4-week
horizons), demonstrating that label-side temporal structure can compensate for the
lack of temporal EO stacks during training.
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RQ2: Can glacier zone evolution be reliably inferred from mono-date EO features combined
with recent zonation history?

Yes. Despite the absence of future EO data, the combination of mono-date Sentinel-
1/-2 features and short zonation history enables accurate short-term forecasting of
glacier zone changes. The results show high predictive performance across multiple
horizons and confirm that EO features at a single timestamp contain sufficient
signal when combined with recent class trends.

RQ3: Is delta regression a suitable alternative to full class prediction in the context of glacier
zone modelling?

Yes. Modelling the expected change (∆) rather than absolute future classes allows
the model to focus on trends rather than discrete transitions. This improves learning
stability, temporal generalization, and interpretability, especially given the gradual
nature of glacier surface evolution.

RQ4: How effective is a two-stage regression architecture in capturing both dominant and
residual glacier zonation dynamics?

Highly effective. The base regressor captures broad spatio-temporal patterns, while
the residual model improves fine-grained accuracy in complex regions. This modular
approach boosts performance relative to single-stage baselines and provides more
interpretable error structure.

Closing Remarks

This work introduces a HELIX-inspired approach to modelling short-term glacier zone
dynamics by using temporally enriched supervision and delta regression. By shifting
temporal information to the label space and relying on EO mono-date features, the model
learns to infer not just what is, but what will be.

The results demonstrate that delta-based supervision, fused EO features, and residual
learning can jointly support robust, temporally aware glacier forecasts. The proposed
framework offers a reproducible, causally sound foundation for cryospheric EO mod-
elling, and opens new paths for forecasting rather than simply classifying glacier surface
change.
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Conclusions and Outlook 8
„All truths are easy to understand once they are

discovered; the point is to discover them.

— Galileo Galilei
Astronomer, Physicist

The preceding chapters have explored the methodological and conceptual components
involved in translating EO data into ecologically grounded inference. Rather than treating
EO as a purely technical exercise, the work has positioned it as a framework requiring
careful alignment between observation, representation, and interpretation. With the
empirical findings and methodological proposals now laid out, the concluding chapter
seeks to synthesise the main contributions of the thesis. It is intended to offer an
integrative perspective on how the combination of feature fusion, enriched supervision,
and benchmarking protocols may support a more robust and transferable use of EO in
environmental modelling. In doing so, the chapter reflects on the broader implications of
the research and considers potential avenues for future work.

8.1 Overview and Reflections on the Research Journey

This thesis was motivated by a foundational question: how can EO data be translated
into ecologically meaningful, spatially transferable, and operationally robust insight? At
its core, this inquiry recognises EO not simply as a passive data acquisition process,
but as a system of environmental inference, a medium through which the state and
dynamics of the Earth can be measured, modelled, and ultimately understood. The ISPRS
defines remote sensing as "the science and technology of capturing, processing and analysing
imagery, in conjunction with other physical data of the Earth and the planets, from sensors
in space, in the air and on the ground." While accurate, this definition conceals a more
fundamental challenge: remote sensing imagery alone does not yield understanding. The

387



pixel records energy and location, not meaning. Meaning must be constructed through
informed transformation, contextualisation, and learning.

This thesis has argued that addressing environmental questions with EO requires more
than sophisticated models or high-resolution inputs. It demands conceptual alignment:
between what is observed, how it is structured, and what it seeks to represent. EO–ML
pipelines, if they are to yield actionable knowledge, must encode not just surface re-
flectance but ecological structure; not just predictions, but interpretability; not just signal,
but uncertainty. Environmental phenomena, whether glacier melt, forest disturbance,
or karst-related sinkhole activity, are inherently spatial, temporally dynamic, and often
ambiguous. This demands EO–ML approaches that move beyond naive pixel-wise classi-
fication or regression, instead aligning features, labels, and models structurally across
scales and time.

The work undertaken in this thesis builds a conceptual and methodological pipeline
that integrates EO feature fusion, label enrichment, and learning system design. This
was not approached as a monolithic system but as a modular logic: each component,
fusion strategies, enriched labels, residual learning, was independently examined and
collectively integrated. Through case studies spanning arid, temperate, and cryospheric
domains, the thesis demonstrated that robustness and generalisation in EO–ML increase
not by stacking complexity, but by respecting the structure of the environmental processes
under study.

Three intersecting insights structured this research journey:

1. EO–ML performance is bottlenecked less by model architecture than by the
structure and semantics of inputs and supervision. Across multiple case studies,
from forest structure estimation to seasonal glacier zonation, results consistently
showed that meaningful gains came from improving the alignment and quality of
input features and supervisory labels. Marginal benefits from deeper models paled
in comparison to those from well-structured supervision and temporally aware
fusion.

2. Fusion must be ecologically informed, not merely technically feasible. The
integration of different EO modalities, Sentinel-1 SAR, Sentinel-2 optical, and legacy
systems such as TSX or ALOS, was most successful when guided by ecological logic.
This included phenological awareness (e.g., dry-season SAR vs. peak-vegetation
optical) and process sensitivity (e.g., vegetation decline signalling subsidence). The
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CDVI index operationalises this principle by explicitly encoding contrast between
ecologically informative time points.

3. Interpretability, uncertainty, and transferability are not secondary concerns,
they are central to trustworthy EO. The HELIX was designed to embed spa-
tial and temporal context into labels, enabling standard models to reason struc-
turally even under sparse or noisy supervision. Residual-aware feedback architec-
tures allowed the model to learn from its own errors, surfacing epistemic uncer-
tainty. The Wald5Dplus benchmarking study provided systematic insight into which
model–modality combinations generalise best, and why.

These insights were not pursued in isolation. They shaped the design logic of new
indices (e.g., CDVI), the structure of label descriptors (HELIX), and the organisation
of benchmarking protocols (Wald5Dplus). They also underpin the central argument of
this thesis: that EO-based environmental modelling requires a move from superficial
correlation to structural alignment, between the data collected, the processes studied,
and the systems built to make sense of them.

This research journey has reframed EO not as a pipeline of data, but as a grammar
of environmental representation, one that requires carefully aligned syntax (features),
semantics (labels), and inference (models). The chapters that follow in this conclusion
will examine each core contribution in turn, offering an integrated synthesis of how
fusion, supervision, and benchmarking can jointly elevate EO from imagery to insight.

8.2 Evaluating Multi-Modal and Multi-Temporal EO
Predictive Capacity

A core research objective was to evaluate the predictive capacity of individual, multi-
modal, and multi-temporal EO inputs. To this end, multiple dataset configurations were
tested, each designed to isolate the contributions of specific sensing modalities, fusion
strategies, and temporal context:

Sentinel-1 and -2 (Spectral, Polarimetric, and Temporal Hypercomplex Fusion): The
most comprehensive configuration, combining full temporal sequences, polarimetric
SAR, and spectral data through hypercomplex fusion. This setup captures both
seasonal variability and sensor complementarity.
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Sentinel-1 + Sentinel-2 (Hypercomplex Fusion): A multi-modal fusion setup that in-
tegrates structural (SAR) and spectral (optical) information usinghypercomplex
algebraic framework. Operates in a mono-temporal regime to isolate fusion effects
without time-series input.

Sentinel-2: A spectral-only baseline assessing the predictive power of optical data, includ-
ing a Kennaugh-like transformation of Sentinel-2 inputs to maintain comparability.
Represents a mono-date, mono-sensor reference.

Sentinel-1: A radar-only baseline that examines model performance under mono-temporal
conditions using standard Sentinel-1 polarimetric inputs. Highlights structural sen-
sitivity absent in optical datasets.

TerraSAR-X and ALOS-2: A cross-sensor benchmark comparing Sentinel-1 with alter-
native high-resolution SAR systems, focusing on the influence of SAR-specific
acquisition characteristics such as resolution, incidence angle, and polarization
mode. Operates in mono-temporal configurations.

The results presented in this thesis suggest that predictive performance in EO-based, e.g.,
forest parameter modelling, does not depend solely on increasing model complexity or
relying on any single sensor modality. Instead, it appears that accuracy and generalization
are most effectively achieved through thoughtful combinations of diverse data types and
modelling strategies. The analyses reported in the foundational benchmarking chapter
support the view that multi-modal and multi-temporal fusion, when paired with robust
ensemble learning, can substantially elevate the predictive capacity of remote sensing
workflows.

The study did not treat modality, preprocessing, and modelling architecture as isolated
parameters, but rather investigated their interaction through a structured experimental
design. By evaluating over 500 unique configurations across different feature types, filter-
ing regimes, and learning algorithms, the work identified which combinations support
both high-fidelity local predictions and robust spatial transfer. The consistently strong
performance of SAR features for vertical forest metrics, the improved generalization
introduced by spectral and structural transformations, and the stability gained from
temporal stacking all point to the value of compositional rather than singular design
logics in EO modelling.

The findings further indicate that multi-temporal integration contributes not only addi-
tional information but also functional redundancy. This redundancy proved instrumental
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in mitigating the impact of temporal acquisition noise and label aging, particularly in
ecologically diverse landscapes. Similarly, stacked ensemble methods, especially those
based on RF, offered a practical and interpretable mechanism to integrate spatially diverse
model predictions, outperformed more specialised or deeper alternatives under most
transfer scenarios. These ensembles consistently improved performance under domain
shift, suggesting their applicability to operational contexts where training data may be
sparse, misaligned, or outdated. These findings challenge the prevailing emphasis on
ever-deeper models and point instead to the importance of input design and supervision
fidelity.

From a methodological perspective, the importance of data preprocessing emerged as a
recurrent theme. Conservative filtering thresholds, outlier mitigation, and ecologically
motivated transformations were shown to improve both accuracy and stability across
experiments. This reinforces the notion that attention to data structure, rather than
model tuning alone, is critical when developing predictive pipelines in EO.

Taken together, the benchmarking framework developed in this thesis provides an empiri-
cal foundation for evaluating the trade-offs between model specificity, data richness, and
operational feasibility. It also demonstrates that scalable, generalizable EO–ML systems
are achievable, provided that the design of inputs, fusion strategies, and evaluation logic
is guided by both ecological relevance and computational discipline. The systematic eval-
uation of EO modality–model interactions thus confirmed a core hypothesis of the thesis:
that predictive performance and ecological validity in EO–ML are more strongly governed
by how features are constructed and aligned than by model choice alone. This insight
underpins the subsequent development of temporally aware indices and contextually
enriched labels, forming the foundation for a structurally coherent EO–ML pipeline.

This research highlights the potential of structured EO fusion, in both the spectral–structural
and temporal domains, as a foundational component of next-generation environmental
monitoring systems. The predictive capacity of remote sensing, it is argued, can be
significantly enhanced when modelling pipelines are treated not as fixed algorithms
but as modular, ecologically aligned systems. This perspective invites further explo-
ration of how such systems might evolve toward higher autonomy, spatial scalability, and
decision-support relevance in forest management and beyond.
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8.3 Temporal Fusion Strategies and Design

A central proposition of this thesis was that temporal fusion in EO–ML pipelines should
not be reduced to the simple stacking of index sequences. Rather, time must be treated as
an ecological axis, structured, asymmetric, and often divergent across sensor modalities.
This re-framing guided the development of fusion strategies that go beyond conventional
time-series modelling, anchoring them instead in the ecological logic of the processes
under observation.

Chapter 5 of this thesis investigated how temporal heterogeneity in sensor responses could
be harnessed to design more informative and contextually aligned feature representations.
This involved differentiating between intra-seasonal and cross-seasonal fusion strategies.
Intra-seasonal fusion emphasises temporal densification within a defined phenological
phase, e.g., capturing variability during the peak vegetation period. By contrast, cross-
seasonal fusion intentionally combines acquisitions from ecologically distinct periods, such
as dry-season SAR observations with peak-season optical data. While the former approach
supports high-resolution trend detection, the latter introduces functional complementarity
into the feature space.

This principle was operationalised through the development of the CDVI, a bi-temporal
metric designed to quantify structural and phenological divergence across SAR and
optical sensors. CDVI does not assume that change is symmetric or monotonic; instead,
it formalises ecological non-equivalence as an informative feature. For example, in
karstic landscapes affected by sinkholes and soil moisture anomalies, Sentinel-1 imagery
acquired during the dry season captures subsurface and structural features invisible to
optical sensors. When paired with peak-vegetation Sentinel-2 data, this contrast reveals
latent ecological heterogeneity that is otherwise masked by surface greenness.

The sinkhole mapping case study exemplifies this logic: dry-season SAR inputs identi-
fied sub-surface depressions and soil instability, while concurrent optical data captured
overlying vegetation health. Their divergence, quantified via CDVI, yielded a fused repre-
sentation more closely aligned with geomorphological risk patterns than either modality
alone. Importantly, this was not a case of mere temporal averaging, but of targeted
temporal contrast.

More broadly, these findings reinforce a central claim of this thesis: that time in EO is not
a neutral axis. It is an ecological signal in itself, carrying phase-specific, process-sensitive
information that, if ignored or collapsed into averaged indices, leads to the erosion of
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contextual interpretability. Designing temporal fusion strategies must therefore involve
decisions about when, not just how often, sensors are queried.

This view challenges the prevalent assumption that denser time-series necessarily yield
automatically better models. Rather, it suggests that temporally sparse but ecologically
complementary observations may be valuable, especially when fused across modalities
and aligned with structural changes in the target environment. In this way, temporal
fusion becomes a modelling decision rather than a passive input accumulation.

Finally, the temporal design logic established here feeds directly into downstream ben-
efits observed in predictive performance and interpretability. Whether in ecological
anomaly detection or structural forest mapping, temporally aware features, particularly
bi-temporal indices such as the CDVI, supported not only more accurate but also more
traceable modelling outcomes. This points to an important future direction: the explicit
integration of phenological and ecological reasoning into the architectural design of
EO–ML systems.

8.4 Structuring Supervision - The HELIX Framework for
Label Enrichment

A key insight developed through the research aim of this thesis is that in EO–ML pipelines,
label design often constitutes a greater bottleneck than model architecture. While
substantial attention is typically paid to refining input features and tuning learning
algorithms, the quality, structure, and semantics of supervision remain under-addressed.
This oversight limits not only the accuracy of predictions but also their ecological validity
and generalisation capacity.

The HELIX framework, introduced and operationalised across Chapters 3 and 4 as well
as Chapter 7 was developed to address this challenge. It offers a systematic approach
to label enrichment, embedding spatial, temporal, and epistemic descriptors into the
supervision layer of EO–ML models. Rather than treating labels as fixed scalar values,
HELIX reconceptualises them as context-aware, process-aligned constructs that more
faithfully reflect environmental dynamics.

Spatially, HELIX integrates local multi-scale statistics into the label structure. In the bark
beetle outbreak case study, raw disturbance labels were augmented with descriptors
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such as local mean, and variance across varying neighbourhood sizes. This provided a
structured account of spatial autocorrelation and heterogeneity, enabling the learning
model to distinguish between isolated noise and ecologically coherent patterns of spread.
This form of enrichment was crucial in disentangling genuine ecological signals from
artefacts introduced by classification errors or cloud masking.

Temporally, HELIX employs convolutional kernel filters to extract phase-sensitive dy-
namics from EO time series. In the glacier change analysis, raw elevation differences
were transformed into temporal descriptors encoding onset timing, persistence, and
rate-of-change signatures. These derived features captured not just the magnitude but the
trajectory of cryospheric processes, allowing the model to differentiate between transient
artefacts (e.g., seasonal snow) and structurally meaningful glacier change. This temporal
logic extended the representational capacity of supervision beyond static snapshots.

Epistemically, HELIX introduces residual-based descriptors derived from prior model
fits. By analysing where and how predictions diverge from ground truth, the framework
quantifies model uncertainty in an operationally meaningful way. These residuals are not
treated merely as error but as feedback signals, indicating areas of label misalignment,
signal ambiguity, or structural model bias. This feedback loop allows for iterative super-
vision refinement, closing the gap between training objectives and ecological process
understanding.

Collectively, these design elements shift the role of supervision from a passive target to an
active component of model design. Supervision, in this enriched form, encodes domain
structure, ecological dynamics, and epistemic uncertainty. It becomes a co-evolving
layer in the EO–ML system, one that adapts not only to changing inputs but also to
the interpretive goals of the model. This structural view challenges the conventional
input–label dichotomy and calls for supervision-aware architectures that treat learning as
a joint optimisation of representation, context, and feedback.

The HELIX framework thus contributes a practical methodology and a conceptual lens
through which supervision can be re-engineered to better reflect the complexities of
environmental monitoring. Its applications in this thesis demonstrate that model per-
formance, interpretability, and transferability all benefit from supervision that is not
only accurate but structurally informative. As EO–ML systems scale toward broader
operational deployment, such enriched supervision strategies may prove indispensable in
bridging the gap between data abundance and decision relevance.
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8.5 Interpretation of Kennaugh Elements

The varied roles and effects of Kennaugh elements and Hadamard-based HCB framework
across the experimental pipelines in this thesis reveal both the promise and complexity
of multi-modal EO for environmental inference. By exploring five distinct Kennaugh
families, (1) polarimetric, (2) spectral (Kennaugh-like), (3) fused spectral–polarimetric,
(4) temporal–polarimetric, and (5) spectral–polarimetric–temporal, within this thesis, it
demonstrates how different fusion strategies interact with model architectures and envi-
ronmental attributes. Each family offers a unique epistemic window into the landscape,
contributing differentially to generalisation, interpretability, and ecological relevance.

Spectral and Polarimetric Kennaugh Elements

The application of Kennaugh elements, both polarimetric (SAR-based) and spectral
(optical-based), proved instrumental in enhancing the interpretability and effectiveness
of remote sensing-based forest parameter modelling. Across the experimental setups,
these feature representations supported the extraction of meaningful and transferable
information from Sentinel-1 and Sentinel-2 observations, respectively, with tangible
benefits for a range of forest structural attributes.

Polarimetric Kennaugh elements from Sentinel-1 C-band SAR provided physically
grounded descriptors of canopy structure and scattering behaviour. The total backscatter
intensity (k0), polarization contrast (k1), and the real and imaginary parts of the corre-
lation (k5, k8) enabled nuanced characterizations of canopy density, surface roughness,
and volume scattering. These properties were especially effective in modelling variables
such as crown area, tree count, and mean tree height, where radar’s sensitivity to canopy
penetration and dielectric contrast proved advantageous. The relatively stable spatial gen-
eralization performance of these elements, particularly in height and count estimations,
also underlined their value for operational forest monitoring, especially in persistently
cloud-covered regions where optical data is limited.

Spectral Kennaugh-like elements, derived through hypercomplex decomposition of
Sentinel-2 reflectance bands, enabled a structured and orthogonal reformulation of optical
signals. By separating overall brightness from chromatic contrasts, this representation
emphasized physiologically meaningful variation in vegetation (e.g., biomass-related
reflectance vs. species-driven spectral contrast). In tasks involving crown area prediction
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and vegetation coverage estimation, these transformed features consistently outperformed
or matched the predictive accuracy of raw spectral bands. Moreover, the improved
robustness of spectral Kennaugh-like features during spatial transfer suggested enhanced
generalizability due to reduced spectral redundancy and collinearity.

Crucially, both types of Kennaugh elements facilitated the construction of a harmonized,
modality-agnostic feature space suitable for later fusion scenarios. Their shared mathe-
matical structure and interpretability support transparent modelling workflows, reduce
dependence on domain-specific preprocessing, and provide a consistent basis for inte-
grating optical and SAR data. Taken together, the use of Kennaugh elements not only
improved model performance but also fostered a deeper understanding of how different
EO modalities encode forest structural traits, making them a valuable asset for scalable,
interpretable, and transferable forest monitoring systems.

Spectral–Polarimetric Fusion

The fusion of Sentinel-1 polarimetric and Sentinel-2 spectral information through hy-
percomplex bases (HCB) yielded a semantically rich and mathematically orthogonal
eight-dimensional feature space. By combining structurally interpretable SAR Kennaugh
elements (k0, k1, k5, k8) with their spectral counterparts (transformed bands B2, B3, B4,
B8), the fused representation captured shared and complementary information across sen-
sor modalities. Each resulting channel within the fused vector Kfused,0−7 corresponds to a
unique combination of backscatter physics and spectral reflectance properties, providing
enhanced input semantics for modelling forest structure.

From a theoretical standpoint, the fusion transformation, based on the Hadamard matrix
Q, ensures orthogonality and lossless integration. It preserves modality-specific infor-
mation while simultaneously enhancing contrast, structural interpretability, and noise
robustness. Empirically, the fused Kennaugh elements demonstrated improved regression
performance across key vegetation parameters, particularly in crown area, tree counts,
and height metrics. Models trained on fused features consistently outperformed those
using only SAR or optical inputs, with the most notable gains observed in:

• Tree counts and height estimation: The fused representation improved mean
absolute errors (MAE) across deciduous and coniferous tree counts and mean tree
height, benefiting from both the vertical sensitivity of SAR and the biochemical
differentiation of optical data.
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• Robustness under spatial transfer: While domain shifts still caused performance
degradation, fused models exhibited better resilience compared to unimodal base-
lines, especially for vertical structural variables.

• Semantic diversity: Each Kfused,i channel was empirically linked to distinct phys-
ical or ecological properties, such as NDVI sensitivity, edge structure, habitats,
supporting interpretable and variable-specific learning.

Despite these advantages, crown volume and summed crown area remained sensitive
to spatial heterogeneity, showing only limited generalization gains under fusion. This
suggests that, while hypercomplex data fusion enhances the information basis for mod-
elling, complex canopy metrics remain intrinsically harder to capture without localized
calibration.

The spectral–polarimetric Kennaugh fusion delivers a compact, interpretable, and orthog-
onal feature space that strengthens EO-based modelling of forest structure. It aligns with
operational goals of scalability and transferability, enabling more resilient predictions
across diverse landscapes. Its structure-aware design provides both physical interpretabil-
ity and statistical robustness, positioning it as a foundational feature representation for
multi-sensor forest monitoring, as shown in this thesis.

The interpretative profiles of the fused Kennaugh elements are grounded both in the
theoretical framework of the hypercomplex fusion design and empirical findings from
this thesis. Supporting evidence includes correlation analyses with key vegetation in-
dices (NDVI and NDWI), habitat classifications from the Bavarian Forest National Park
dataset [203], and spatial texture patterns characterized by GLCM metrics. The habitats
considered span a diverse range of ecological types, including mature coniferous and
deciduous forests, mixed stands, shrublands, meadows, wetlands, rocky outcrops, and
anthropogenic areas such as residential zones, roads, and clear-cuts. This comprehensive
habitat spectrum enables robust evaluation of the fused feature space across natural and
human-influenced landscapes.
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Table 8.1.: Interpretative summary of fused Kennaugh elements Kfused,0 to Kfused,7, derived from
spectral–polarimetric fusion. Interpretations integrate symbolic formulations, ND-
VI/NDWI correlations, texture metrics (GLCM), and observed habitat contrast pat-
terns. Note: high average intensity does not imply class separability; interpretations
emphasize discriminative contrast and statistical evidence.

Band (Formula) Statistical Pattern Habitat Contrast Pattern Interpretation

Kfused,0 (k0 + B2 +

B3 + B4 + B8)
Very high GLCM
contrast; moderate
NDVI/NDWI correlation

Strong separation
between bare/urban vs
vegetated classes

Texture-dominant band capturing surface
roughness and spatial heterogeneity. Reflects
total intensity but has moderate
vegetation/water specificity. Useful for
heterogeneous land cover.

Kfused,1 (k1 + B2 −
B3 + B4 − B8)

Moderate contrast;
moderate NDVI/NDWI
correlation

Separates urban edges,
ecotones

Edge-sensitive band highlighting
spectral–polarimetric imbalances. Detects
fragmented landscapes and transitions
between natural and anthropogenic zones.

Kfused,2 (k5 + B2 +

B3 − B4 − B8)
Moderate texture; strong
NDVI/NDWI correlation

High contrast across
meadows, shrublands,
and early growth types

Vegetation-sensitive band. Captures
mid-biomass states and moisture gradients.
Valuable for early phenological stages or
disturbed vegetative cover.

Kfused,3 (k8 + B2 −
B3 − B4 + B8)

Moderate contrast;
strong NDVI/NDWI
correlation

Relatively uniform across
most classes

Supplementary vegetation/moisture band.
Adds depth to structural interpretations but
limited class separability.

Kfused,4 (k0 − B2 −
B3 − B4 − B8)

Very low contrast; very
strong NDWI/NDVI
correlation

High separability of water
bodies and wet habitats

Hydrologically responsive band. Excels in
delineating aquatic features and consistently
saturated zones due to its strong
spectral–polarimetric suppression of
vegetation.

Kfused,5 (k1 − B2 +

B3 − B4 + B8)
Very low contrast; strong
NDVI/NDWI correlation

Separates riparian,
wetland fringes from dry
zones

Gradient-sensitive band. Responds to
transitional moisture conditions at
water–land boundaries. Enhances wetland
classification.

Kfused,6 (k5 − B2 −
B3 + B4 + B8)

Very low contrast; strong
NDVI/NDWI correlation

Differentiates vegetated
and semi-vegetated covers
(e.g., meadows)

Fine-scale ecological gradient band. Sensitive
to canopy layering and terrain-induced
vegetation variation.

Kfused,7 (k8 − B2 +

B3 + B4 − B8)
Moderate contrast;
weaker NDVI/NDWI
correlation

Separates manmade
structures from natural
covers

Anthropogenic texture band. Detects
grid-like, linear, and artificial patterns (e.g.,
roads, roofs).

1. Kfused,0 Represents the total radar backscatter and broad optical reflectance intensity.
It is highly sensitive to surface texture and heterogeneity, capturing structural
complexity such as canopy roughness, bare soil, and urban surfaces. Although its
vegetation correlation is moderate, it contains rich information for canopy biomass
and overall surface brightness. Strongly separates vegetated and non-vegetated
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regions, particularly in heterogeneous landscapes. Based on GLCM contrast ( 64)
and NDVI/NDWI correlations (ρ ≈ ±0.6).

2. Kfused,1 Highlights transitions between land cover types, especially human–natural
boundaries. Moderate GLCM contrast and NDVI/NDWI correlations indicate its
sensitivity to edge zones, roads, ecotones, and fragmented land use. Though
not highly specific to vegetation, it provides valuable contextual detail. Shows
contrast-based class separability in urban margins.

3. Kfused,2 Encodes mid-level biomass and spectral–polarimetric vegetation patterns.
Strong correlations with NDVI/NDWI (ρ ≈ ±0.65) and moderate texture suggest
suitability for discriminating meadows, scrub, and early growth stages. Supports
detection of moisture-linked vegetative stress and seasonal gradients.

4. Kfused,3 Complementary to Kfused,2, this band contributes to vegetation structure
interpretation but shows lower class-level separability. NDVI/NDWI correlations
remain strong, but moderate texture and habitat uniformity suggest a supporting
rather than leading role in classification.

5. Kfused,4 Dominated by spectral–polarimetric suppression, it yields very low GLCM
contrast and extremely high NDWI correlation (ρ ≈ +0.94). Most effective for
detecting water bodies and persistently moist substrates, with strong contrast
against dry or vegetated areas. Statistically the most discriminative hydrological
band.

6. Kfused,5 Closely aligned with Kfused,4, but with slightly shifted spectral–polarimetric
balance. Useful for characterizing transitional zones like wetland edges, showing
strong NDWI correlation and uniform texture. Enhances mapping of moist gradients
near water–land interfaces.

7. Kfused,6 Highly homogeneous with strong NDVI/NDWI correlation (ρ ≈ ±0.94).
Best suited for detecting subtle changes in vegetative layering, moisture variation,
and topography–vegetation interactions. Differentiates semi-open meadows and
lightly forested areas from denser covers.

8. Kfused,7 Displays moderate texture and relatively weak NDVI/NDWI correlation.
Primarily responds to anthropogenic features, roads, roofs, agricultural patterns,
rather than natural ecological gradients. Useful for mapping manmade structures
or patterned land cover.
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Each of these fused elements contributes a semantically distinct descriptor to the eight-
dimensional HCB feature space. Their design ensures mutual orthogonality, allowing
downstream models to leverage uncorrelated and interpretable axes of information.
From a landscape perspective, they provide a compact yet information-rich basis for
classification, structural estimation, and multi-temporal analysis.

Spectral–Polarimetric–Temporal Fusion

Across time, 64 such fused images are aligned and decomposed using a 64×64 Hadamard
matrix applied along the temporal axis. This yields a 512-dimensional feature vector
per pixel, comprising temporally transformed versions of each of the 8 fused channels.
The result is a compact yet information-rich structure that captures not only spectral and
polarimetric content, but also the temporal evolution of those features, disentangling
stability, gradual change, and episodic variation within a shared space.

From an interpretive perspective, the temporal decomposition acts as a frequency-like fil-
ter bank. Its orthogonal basis vectors resemble low-frequency and high-frequency wavelet
components, enabling the disentanglement of complex temporal signals embedded in
the fused spectral–polarimetric data. Each resulting temporal mode exhibits a distinct
semantic signature:

• tK0 ∼ [+,+,+,+]: Captures the temporal mean of each feature, effectively sum-
marizing persistent surface properties that are stable over the annual cycle. This
includes dense canopy cover, consistent soil reflectance, and urban impervious
surfaces. Because it aggregates over time, it is robust to transient noise and sensor
variability, providing a reliable baseline characterization of the landscape.

• tK1 ∼ [+,−,+,−]: Isolates short-term oscillations with a characteristic alternat-
ing pattern. This mode is sensitive to rapid environmental fluctuations such as
vegetation phenology on a weekly or monthly scale, soil moisture changes driven
by rainfall events, and transient atmospheric effects like clouds impacting optical
data. The alternation in sign allows it to emphasize contrasts between successive
acquisitions, highlighting ephemeral changes.

• tK2 ∼ [+,+,−,−]: Reflects longer-term seasonal gradients and inter-half-year
trends. It captures the progression of phenological stages such as leaf emergence
and senescence, gradual degradation from stressors like pests or drought, and other
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slow-moving ecological transitions. This mode facilitates monitoring ecosystem
health and productivity shifts across seasons.

• tK3 ∼ [+,−,−,+]: Amplifies episodic or localized events, including harvesting, in-
sect outbreaks, fire scars, and snow-melt episodes. Its pattern enables it to highlight
spatially or temporally confined anomalies against the background variability.

This decomposition’s resemblance to Haar wavelets and discrete Fourier transform un-
derscores its role as a compact, orthogonal basis well suited to capturing multi-scale
temporal dynamics.

The first four temporal Hadamard components, tK0 through tK3, represent the dominant
modes of temporal variability in the fused feature space. The zero-frequency component
tK0 encodes the mean reflectance or backscatter over the entire time series, providing a
stable baseline characterization of surface properties. The subsequent components act as
temporal filters, progressively capturing higher-frequency signals: tK1 isolates short-term
oscillations and abrupt changes; tK2 corresponds to seasonal trends and mid-term shifts;
while tK3 highlights localized or transient events.

Beyond these primary components, higher-order temporal modes (tK4, tK5, . . .) capture
increasingly subtle and complex temporal variations, including fine-scale phenological
shifts, irregular disturbance events, and noise patterns, thereby enriching the temporal
resolution and expressive power of the fused feature space.

The orthogonality ensures minimal redundancy among modes, facilitating clearer sta-
tistical separation of overlapping phenomena, such as distinguishing between seasonal
phenology and disturbance events, even when these occur simultaneously. Because the
transformation is applied to a physically grounded, fused spectral–polarimetric repre-
sentation, the temporal components retain coherent semantic meaning across sensor
modalities, supporting interpretable change detection and robust ecological inference.

Empirically, the model results presented in Sections 7.1 and 6.1 confirm the expressive
potential of this representation. Performance improvements across forest structural
variables, including mean tree height, deciduous tree count, crown area, and volume,
validate the utility of combining spectral, polarimetric, and temporal information in this
form. Notably, feature importance analysis revealed a striking flattening of contribution
scores: no single date or fused band dominated model performance. Instead, predictive
power was distributed broadly across time and channels, highlighting the robustness
and expressiveness of the fused temporal representation. This balance reflects the dual
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design intent: redundancy across time reduces the impact of noise or artifacts, while
orthogonality ensures that change-related signals remain distinguishable. As a result, the
fused cube enables the model to simultaneously learn static traits (e.g., canopy extent),
gradual shifts (e.g., phenological curves), and unexpected transitions (e.g., damage or
clearing).

However, challenges remain. Crown volume and other context-sensitive metrics continued
to suffer from spatial domain shift, suggesting that temporal structure, while helpful,
cannot fully resolve spatial generalization barriers. Still, the temporal fusion substantially
improved resilience, particularly for features related to vegetation height, type, and
density, across highly varied AOIs.

The fusion pipeline developed here integrates spectral, polarimetric, and temporal signals
into a unified, orthogonally transformed 512-dimensional space. It preserves pixel-level
integrity, enhances interpretability, and distributes predictive capacity across multiple
fused channels. These properties make it a strong candidate for downstream modelling
pipelines, especially when extended with attention mechanisms, uncertainty quantifica-
tion, or domain-adaptive strategies for large-scale environmental inference.

Temporal–Polarimetric Fusion

This experiment explored the use of multi-temporal Sentinel-1 SAR acquisitions for glacier
monitoring through the lens of polarimetric decomposition. Specifically, four Kennaugh
elements, k0, k1, k5, and k8, were derived per acquisition and evaluated for their ability to
reveal consistent spatial and temporal patterns across glaciated terrain. The aim was to
assess whether stacking these polarimetric descriptors over time could enhance surface
characterization and glacier boundary delineation, especially in regions where optical
data are unreliable due to cloud cover or seasonal snow.

Among the four elements, only k0, the total backscatter power, emerged as a consistently
useful and interpretable signal. It exhibited strong spatial contrast between glacier
tongues, accumulation zones, and adjacent terrain, and its values remained robust across
acquisition dates. Tongue regions and crevassed zones were characterized by high k0

intensities, reflecting radar-bright surfaces with high roughness or dielectric contrast.
In contrast, accumulation areas and smoother snow-covered slopes showed persistently
low k0 values, consistent with radar-dark, volume-scattering-dominated returns. These
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patterns were stable across the time series, enabling temporally reinforced interpretation
of glacier morphology.

The remaining polarimetric elements, k1, k5, and k8, showed limited utility in this con-
text. While they theoretically capture polarization asymmetry, correlation, and phase
relationships, they proved less spatially consistent and more noise-prone over glacier
surfaces. Their contribution to class separation or structural interpretation was negligi-
ble compared to k0, and no clear temporal enhancement was observed when stacking
them. This outcome underscores the dominance of intensity-based contrasts in glacier
SAR interpretation at C-band and supports the use of reduced polarimetric models in
operational settings.

From a temporal perspective, k0 allowed for capturing subtle changes indicative of melt
processes, surface transitions, or radar incidence effects. Localized changes in backscatter
over time highlighted evolving surface roughness or wetness, particularly in tongue
regions. However, the majority of the glacier signal remained stable, suggesting that
multi-temporal k0 does more to reinforce spatial segmentation than to reveal short-term
dynamics. Still, this temporal stacking improved robustness by mitigating single-scene
noise and emphasizing persistent structures.

In conclusion, while full polarimetric decomposition was applied, only k0 consistently
delivered interpretable and stable results for glacier monitoring. Its temporal fusion
enhanced glacier delineation and surface characterization, making it a valuable radar-
based proxy under data-sparse or cloud-obscured conditions. The findings support the
prioritization of k0 in future large-scale or automated SAR-based glacier observation
frameworks, particularly where simplicity, interpretability, and temporal robustness are
desired.

8.6 Limitations and Methodological Caveats

While the thesis presents a series of methodological advancements and demonstrates the
value of structurally enriched EO–ML pipelines, several limitations and caveats must be
acknowledged to contextualise its findings.

First, although multi-modal and multi-temporal fusion strategies yielded consistent gains
in accuracy and generalisation, the approach remains constrained by the availability,
alignment, and quality of input data. Sentinel-based systems provide globally consistent
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coverage, but their spatial, spectral, and temporal characteristics impose limits on the
resolution and specificity of ecological phenomena that can be captured. For example,
SAR-derived vertical structure proxies may be affected by terrain-induced distortions
or moisture variability, while optical features are susceptible to cloud contamination,
atmospheric interference, and phenological mismatches. Despite extensive preprocessing
and transformation, such noise sources cannot be fully eliminated and may influence
model outputs in subtle but consequential ways.

Second, the challenge of temporal misalignment between input features and reference
labels emerged as a recurrent limitation in both the forest structure and outbreak forecast-
ing contexts. In the forest structure analysis, models trained on EO data from 2020–2021
were supervised using inventory-derived labels from 2016–2018, introducing an inherent
discrepancy between observed canopy conditions and ground-truth structure. Similarly,
in the HELIX-based modelling framework, historical bark beetle outbreak polygons were
used to construct spatial descriptors that served as targets for prediction or forecasting
using more recent EO imagery. Although ensemble learning and temporally enriched
input features helped mitigate these discrepancies, such forms of lagged supervision
nonetheless introduced epistemic uncertainty, particularly in dynamic or disturbance-
prone landscapes where rapid ecological change can outpace static labels. The HELIX
framework partially addressed this by smoothing sparse, binary labels into continuous
descriptors that encode temporally diffuse spatial structure, effectively allowing models
to learn from historical dynamics embedded in current EO signals. This transformation
from sparse labels to enriched, learnable descriptors reduced the impact of label aging by
incorporating both lagged and co-temporal outbreak information. However, the broader
challenge remains: as EO–ML systems increasingly aim for operational deployment,
particularly in forecasting and early warning applications, the reliance on temporally
misaligned or outdated supervision becomes a bottleneck. These findings suggest that
future pipelines should prioritise dynamic label updating strategies and explicitly model
temporal uncertainty, either through uncertainty-aware loss functions, spatio-temporal
regularisation, or generative supervision frameworks like HELIX that enable learning
from context rather than direct correspondence. Addressing temporal supervision mis-
alignment is likely to be a key enabler for achieving resilient, generalisable EO-based
ecological monitoring systems.

Third, the modular benchmarking framework used in the foundational analysis, while
systematic, represents a controlled environment that does not capture all operational
constraints. The experiments were designed to isolate specific variable interactions,
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such as the influence of modality or preprocessing, under idealised conditions. In
real-world deployments, additional constraints such as data latency, sensor availability,
computational limits, and integration with policy frameworks may shape pipeline design
in non-trivial ways. Thus, while the findings are informative at a methodological level,
their operational translation must be evaluated case-by-case.

Fourth, although RF and their ensembles performed consistently well, this choice also
imposed certain architectural constraints. RF, by design, lack native mechanisms for
capturing sequential or spatial autocorrelation beyond input feature engineering. While
HELIX and multi-date inputs compensated for this to some extent, DL architectures, if
appropriately regularised and interpretable, may offer additional capacity for learning
spatio-temporal structure directly. Their inconsistent performance in this study suggests a
need for further work on training regimes, interpretability tools, and data augmentation
strategies to unlock this potential.

Finally, this thesis focused predominantly on pixel-level modelling strategies. While
this granularity offers precision and flexibility, it also exposes the system to residual
uncertainties related to geolocation accuracy, sensor resolution mismatch, and ecological
misalignment between pixels and reference units (e.g., plot or stand scale). Aggregation
strategies or object-based approaches may help mitigate these discrepancies and should
be further explored as complementary paths to robust inference.

In summary, the methodologies developed and validated here show strong promise for
structurally aligned EO–ML, yet their broader adoption requires careful attention to sensor
limitations, label dynamics, operational constraints, and representational granularity.
Acknowledging these caveats ensures that the thesis remains both critically grounded
and open to iterative improvement in future research and practice.

8.7 Future Work and Research Directions

The methodologies and findings presented in this thesis suggest several avenues for future
research, aimed at enhancing the scalability, interpretability, and operational relevance of
EO–ML systems. While many components, such as fusion design, descriptor construction,
and ensemble learning, have reached a high level of methodological maturity, their
integration into dynamic, policy-aligned, and adaptive systems remains an open challenge.
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Four thematic directions are outlined below, each addressing critical next steps for the
evolution of structurally aligned EO–ML pipelines.

HELIX Automation and Probabilistic Descriptors

The HELIX framework introduced a generalisable logic for constructing contextually en-
riched supervision signals from sparse and often binary ecological labels. Yet its implemen-
tation still required manual descriptor design, thresholding choices, and domain-specific
intuition. Future work should aim to formalise and automate these steps, potentially
through meta-learning, generative modelling, or Bayesian descriptor inference. Embed-
ding true probabilistic structure into HELIX descriptors would allow the pipeline not only
to express confidence intervals over supervision but also to reflect epistemic uncertainty
in sparse-label regimes. Such probabilistic descriptors could, in turn, inform model
calibration, active learning loops, and uncertainty-aware decision-making.

Dynamic Labels and Model–Label Co-Design

A recurring insight across experiments was the fragility of EO–ML performance under
static or lagged supervision. This suggests that more adaptive forms of label construction,
such as rolling updates from inventory, participatory monitoring, or feedback from
predictive residuals, may be essential for resilient ecological forecasting. Future EO–ML
pipelines could benefit from co-designed supervision architectures, where models not only
learn from labels but contribute to their refinement. This would require the integration
of model diagnostics, temporal anomaly detection, and even causal feature attributions
into the supervision workflow, turning labels from fixed inputs into co-evolving elements
of the modelling system. The interplay between model structure and label design thus
emerges as a critical and under-explored axis of system-level performance.

Policy Alignment and SDG Integration

To translate methodological advances into societal impact, future EO–ML systems must
align more directly with policy agendas and sustainability monitoring frameworks. In
particular, the modelling logics and output semantics developed in this thesis could be
mapped onto key indicators within the Sustainable Development Goals (SDGs), such as
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forest cover change (SDG 15.2), disaster risk (SDG 13.1), or biodiversity status (SDG
15.5). However, such integration would require not only technical interoperability, e.g.,
spatially explicit, scalable, and transparent predictions, but also the capacity to interface
with institutional workflows. This includes uncertainty quantification, scenario analysis,
and explainability features that allow outputs to be interpreted within decision-making
contexts. Research into standardised data contracts, indicator-specific model adaptation,
and stakeholder feedback mechanisms will be essential for operationalising EO–ML within
policy cycles.

Edge-AI and Causal Inference

As RS data volumes continue to grow, computational and energy constraints will in-
creasingly shape the viability of modelling approaches. One promising direction is the
deployment of lightweight, explainable models directly on satellite or ground-based
sensor platforms, enabling so-called edge AI for near-real-time processing and alert gen-
eration. At the same time, the complexity of ecological systems demands stronger causal
reasoning capabilities. Existing EO–ML models primarily capture statistical associations;
future systems must advance toward encoding causal structures, testing counterfactuals,
and differentiating between drivers and correlates of observed phenomena. Advances in
causal discovery, graph-based learning, and simulation-based inference may help bridge
this gap, enabling EO–ML systems to transition from predictive accuracy to mechanistic
insight.

Importantly, the modelling strategies developed in this thesis intentionally prioritized
lightweight, interpretable architectures over resource-intensive DL alternatives. Ap-
proaches such as delta regression, HELIX-style label-side temporal enrichment, and
residual-based refinement were designed to balance predictive performance with com-
putational efficiency and transparency. This design logic stands in deliberate contrast
to more opaque, energy-intensive solutions like LSTMs or large transformer-based time-
series models. By focusing on causally sound, label-driven temporal structuring, rather
than brute-force sequence learning, this work demonstrates that robust EO-based fore-
casting can be achieved with parsimonious models. This reduces both training costs and
operational energy footprints, while enhancing interpretability and deployment potential,
especially in resource-constrained or field-based settings.
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On Model Complexity and Responsible EO–ML Design

A deliberate design philosophy underpins this thesis: that depth of learning architecture
is not a universal proxy for scientific quality, generalizability, or ecological relevance in
EO-based environmental modelling. While much of the current RS and ML literature
gravitates toward increasingly deep, computationally intensive architectures, ranging
from LSTMs to transformer-based sequence models, this work takes a counter-position. It
argues that robust environmental inference is often less constrained by model complexity
and more by data structure, label quality, and the ecological coherence of inputs and
targets.

Heavyweight models applied to noisy, misaligned, or weakly structured EO datasets risk
amplifying artefacts, learning sensor-specific noise, and obscuring causal relationships
behind layers of parametrized abstraction. In contrast, the lightweight, interpretable,
and label-enriched architectures deployed here, including delta-state regression, HELIX-
informed supervision, and residual-based refinement, prioritize causal integrity, computa-
tional efficiency, and interpretability without compromising predictive accuracy.

This modelling stance is both technically and ethically motivated: computational responsi-
bility demands that EO–ML systems minimize energy footprint where possible, especially
given the climate-sensitive contexts they often aim to monitor. More fundamentally, envi-
ronmental decision-making requires models that are not only performant but explainable,
systems capable of offering not just answers, but reasoning pathways. By demonstrating
that meaningful forecasting and spatial transferability can be achieved with lightweight,
causally aligned methods, this thesis challenges the default assumption that "more layers"
inherently equates to "more insight."

8.8 Final Reflections - Learning from and with EO

As EO matures from a data acquisition enterprise into a full-fledged system of envi-
ronmental inference, the question shifts from whether we can observe change to how
deeply we can understand it. This thesis has advanced a structural and methodological
argument: that understanding environmental change through EO requires not just more
data or deeper models, but more meaningful relationships between what is sensed, how it
is modelled, and what it represents. Yet beyond this technical scaffolding lies a broader
philosophical insight: that EO is not merely a monologue delivered from orbit, but a
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dialogue between systems, between sensors and landscapes, between algorithms and
ecosystems, and ultimately, between human and planetary knowledge.

To "understand" environmental change, in this vision, means more than identifying spatial
patterns or predicting temporal trends. It involves situating observations within ecological
processes, recognising causality where possible, and tracing uncertainty where necessary.
The contributions of this thesis, particularly in label enrichment, temporal structuring,
and interpretability, aim to move EO–ML closer to this ideal. By embedding ecological
reasoning into the very architecture of learning, they invite models to reflect not only the
surface of the Earth but also the logic of its transformations.

Interpretability, in this context, becomes more than a convenience for human users; it
becomes a form of ecological literacy. A model that explains why it predicts a bark beetle
outbreak or a shift in glacier zonation is not merely transparent, it is participatory. It
allows stakeholders, scientists, and systems to learn with the model, not just from it.
This orientation could redefine the role of EO in sustainability science: from that of a
passive watcher to an active interlocutor, capable of supporting adaptive decision-making
in complex and uncertain environments.

As the technological infrastructure of EO accelerates, through new sensors, faster pro-
cessing, and larger archives, the demand for thoughtful, structure-aware, and ethically
grounded modelling will only grow. The work presented here is but a step in that direc-
tion. It proposes that future EO–ML systems must not only be accurate and scalable but
must also carry a deeper structural fidelity to the systems they aim to understand. Such
systems will be judged not by how closely they match a validation set, but by how well
they facilitate learning across domains, disciplines, and generations.

Ultimately, to learn from and with EO is to recognise that the Earth is not merely a dataset,
but a dialogue partner. In this light, modelling becomes an act of listening, one that is
technical, ecological, and profoundly human. And in keeping with Galileo’s reminder that
"all truths are easy to understand once they are discovered; the point is to discover them,"
the journey of EO remains one of discovery, of both our planet and the ways we choose
to model it.
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Declaration of Supportive
Resources

During the implementation of the algorithms presented in this thesis and throughout the
writing process, various external software packages and tools were utilized to support
both the technical development and the preparation of this document. The following
section outlines the key resources used and their specific roles.

Software Packages and Toolboxes:

1. SNAP [101]: Used for Sentinel-1 data preprocessing. The processing chain
included implementations based on [148].

2. Anaconda [16]: Provided the working environment for Python-based data
analysis and algorithm development.

3. Scikit-learn [254, 236]: Used for implementing, training, and evaluating
machine learning models.

4. Numba [200]: Used as a JIT (Just-In-Time) compiler to accelerate numerically
intensive Python code and enhance processing performance.

5. Joblib [176]: Used for efficient parallel computing and caching during the
execution of machine learning workflows.

Tools Supporting the Writing Process:

1. DeepL [80]: Utilized for translating selected sections of the text from German
into English.

2. Grammarly [128]: Employed for grammar checking, spelling correction, and
stylistic improvements to enhance clarity and readability.
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3. HAWKI ChatGPT [243]: Provided by the AI Lab of Munich University of
Applied Sciences and based on GPT-4 and GPT-4.o models. The language
model was used exclusively for grammar, wording, and stylistic suggestions.
Only self-authored text was provided as input, and all AI-generated suggestions
were critically evaluated and selectively incorporated by the author.

All content, ideas, and conclusions presented in this thesis are solely the intellectual work
of the author.

412 Chapter 8 Conclusions and Outlook



Bibliography

[1] T. A. W. Aaron E. Maxwell and F. Fang. Implementation of machine-learning
classification in remote sensing: an applied review. International Journal of Remote
Sensing, 39(9):2784–2817, 2018. doi: 10.1080/01431161.2018.1433343.

[2] S. Abdikan, F. B. Sanli, F. Sunar, and M. E. and. A comparative data-fusion analysis
of multi-sensor satellite images. International Journal of Digital Earth, 7(8):671–
687, 2014. doi: 10.1080/17538947.2012.748846. URL https://doi.org/10.
1080/17538947.2012.748846.

[3] S. P. Abercrombie and M. A. Friedl. Improving the consistency of multitemporal
land cover maps using a hidden markov model. IEEE Transactions on Geoscience
and Remote Sensing, 54(2):703–713, 2016. doi: 10.1109/TGRS.2015.2463689.

[4] R. Aberle, E. Enderlin, S. O’Neel, C. Florentine, L. Sass, A. Dickson, H.-P. Marshall,
and A. Flores. Automated snow cover detection on mountain glaciers using
spaceborne imagery and machine learning. The Cryosphere, 19(4):1675–1693,
2025.

[5] K. Ahmadi, B. Kalantar, V. Saeidi, E. K. G. Harandi, S. Janizadeh, and N. Ueda.
Comparison of machine learning methods for mapping the stand characteristics
of temperate forests using multi-spectral sentinel-2 data. Remote Sensing, 12(18),
2020. ISSN 2072-4292. URL https://www.mdpi.com/2072-4292/12/18/3019.

[6] S. Aigner, S. Hauser, and A. Schmitt. Pattern-based sinkhole detection in arid
zones using open satellite imagery: A case study within kazakhstan in 2023.
Sensors, 25(3), 2025. ISSN 1424-8220. doi: 10.3390/s25030798. URL https:
//www.mdpi.com/1424-8220/25/3/798.

[7] V. Akbari, A. P. Doulgeris, and T. Eltoft. Monitoring glacier changes using multi-
temporal multipolarization sar images. IEEE Transactions on Geoscience and Remote
Sensing, 52(6):3729–3741, 2014. doi: 10.1109/TGRS.2013.2275203.

[8] E. Akça, S. Aydemir, S. Kadir, M. Eren, C. Zucca, H. Günal, F. Previtali, P. Zdruli,
A. Çilek, M. Budak, A. Karakeçe, S. Kapur, and E. A. FitzPatrick. Calcisols and

413

https://doi.org/10.1080/17538947.2012.748846
https://doi.org/10.1080/17538947.2012.748846
https://www.mdpi.com/2072-4292/12/18/3019
https://www.mdpi.com/1424-8220/25/3/798
https://www.mdpi.com/1424-8220/25/3/798


Leptosols, pages 139–167. Springer International Publishing, Cham, 2018. ISBN
978-3-319-64392-2. doi: 10.1007/978-3-319-64392-2_10. URL https://doi.
org/10.1007/978-3-319-64392-2_10.

[9] K. M. Akhmedenov, D. Z. Iskaliev, and V. P. Petrishev. Karst and pseudokarst of the
west kazakhstan (republic of kazakhstan). Int. J. Geosci., 2014, 2014.

[10] S. Alam, M. S. Ayub, S. Arora, and M. A. Khan. An investigation of the impu-
tation techniques for missing values in ordinal data enhancing clustering and
classification analysis validity. Decision Analytics Journal, 9:100341, 2023. ISSN
2772-6622. doi: https://doi.org/10.1016/j.dajour.2023.100341. URL https:
//www.sciencedirect.com/science/article/pii/S2772662223001819.

[11] C. M. Albrecht, F. Marianno, and L. J. Klein. Autogeolabel: Automated label
generation for geospatial machine learning. In 2021 IEEE International Conference
on Big Data (Big Data), pages 1779–1786, 2021. doi: 10.1109/BigData52589.
2021.9672060.

[12] I. Ali, F. Greifeneder, J. Stamenkovic, M. Neumann, and C. Notarnicola. Review of
machine learning approaches for biomass and soil moisture retrievals from remote
sensing data. Remote Sensing, 7(12):16398–16421, 2015.

[13] M. Allen, F. Dorr, J. A. Gallego-Mejia, L. Martínez-Ferrer, A. Jungbluth, F. Kalaitzis,
and R. Ramos-Pollán. Fewshot learning on global multimodal embeddings for
earth observation tasks, 2023. URL https://arxiv.org/abs/2310.00119.

[14] C. I. Alvarez-Mendoza, D. Guzman, J. Casas, M. Bastidas, J. Polanco, M. Valencia-
Ortiz, F. Montenegro, J. Arango, M. Ishitani, and M. G. Selvaraj. Predictive
modeling of above-ground biomass in brachiaria pastures from satellite and uav
imagery using machine learning approaches. Remote Sensing, 14(22), 2022. ISSN
2072-4292. doi: 10.3390/rs14225870. URL https://www.mdpi.com/2072-4292/
14/22/5870.

[15] N. Amiri, P. Krzystek, M. Heurich, and A. Skidmore. Classification of tree species
as well as standing dead trees using triple wavelength als in a temperate forest.
Remote Sensing, 11(22), 2019. ISSN 2072-4292. doi: 10.3390/rs11222614. URL
https://www.mdpi.com/2072-4292/11/22/2614.

[16] Anaconda Software Distribution, Version 2-2.4.0. Anaconda Inc., 2016. URL
https://anaconda.com. Accessed: 2025-06-28.

414 Bibliography

https://doi.org/10.1007/978-3-319-64392-2_10
https://doi.org/10.1007/978-3-319-64392-2_10
https://www.sciencedirect.com/science/article/pii/S2772662223001819
https://www.sciencedirect.com/science/article/pii/S2772662223001819
https://arxiv.org/abs/2310.00119
https://www.mdpi.com/2072-4292/14/22/5870
https://www.mdpi.com/2072-4292/14/22/5870
https://www.mdpi.com/2072-4292/11/22/2614
https://anaconda.com


[17] D. K. H. and. Remote sensing applications to hydrology; imaging radar. Hydrologi-
cal Sciences Journal, 41(4):609–624, 1996. doi: 10.1080/02626669609491528.
URL https://doi.org/10.1080/02626669609491528.

[18] R. Andersen. Nonparametric methods for modeling nonlinearity in regression
analysis. Annual Review of Sociology, 35(1):67–85, 2009.

[19] V. Andrejchuk and A. Klimchouk. Mechanisms of karst breakdown formation in the
gypsum karst of the fore-ural region, russia (from observations in the kungurskaja
cave). implication of speleological studies for karst subsidence hazard assessment.
Int. J. Speleol, (31):89–114, 2002.

[20] J. C. Angel, D. O. Nelson, and S. V. Panno. Comparison of a new gis-based
technique and a manual method for determining sinkhole density: An example
from illinois’ sinkhole plain. J. Cave Karst Stud., 66:9–17, 2004.

[21] P. M. Atkinson and A. R. L. Tatnall. Introduction neural networks in remote sensing.
International Journal of Remote Sensing, 18(4):699–709, 1997. doi: 10.1080/
014311697218700. URL https://doi.org/10.1080/014311697218700.

[22] Atlogis. TMS Data Service—CRS: 3857, 2016. URL http://www.atlogis.de.
Available online.

[23] N. Audebert, B. Le Saux, and S. Lefèvre. Segment-before-detect: Vehicle detection
and classification through semantic segmentation of aerial images. Remote Sensing,
9(4):368, 2017.

[24] M. Baatz and M. Schäpe. Multiresolution segmentation – an optimization approach
for high quality multi-scale image segmentation. In J. Strobl, T. Blaschke, and
G. Griesebner, editors, Angewandte Geographische Informations-Verarbeitung XII,
pages 12–23. Wichmann Verlag, Karlsruhe, 2000.

[25] X. Bai, C. Liu, P. Ren, J. Zhou, H. Zhao, and Y. Su. Object classification via feature
fusion based marginalized kernels. IEEE Geoscience and Remote Sensing Letters, 12
(1):8–12, 2015. doi: 10.1109/LGRS.2014.2322953.

[26] B. Balachander and D. Dhanasekaran. Comparative study of image fusion tech-
niques in spatial and transform domain. ARPN Journal of Engineering and Applied
Sciences, 11(9):5779–5783, 2016.

Bibliography 415

https://doi.org/10.1080/02626669609491528
https://doi.org/10.1080/014311697218700
http://www.atlogis.de


[27] A. Baltiyeva, E. Orynbassarova, M. Zharaspaev, and R. Akhmetov. Studying
sinkholes of the earth’s surface involving radar satellite interferometry in terms of
zhezkazgan field, kazakhstan. Min. Miner. Depos, 17:61–74, 2023.

[28] J. L. Bamber, R. M. Westaway, B. Marzeion, and B. Wouters. The land ice contri-
bution to sea level during the satellite era. Environmental Research Letters, 13(6):
063008, 2018.

[29] R. Barella, M. Callegari, C. Marin, C. Klug, R. Sailer, S. Galos, R. Dinale, M. Gian-
inetto, and C. Notarnicola. Combined use of sentinel-1 and sentinel-2 for glacier
mapping: An application over central east alps. IEEE Journal of Selected Top-
ics in Applied Earth Observations and Remote Sensing, pages 1–1, 05 2022. doi:
10.1109/JSTARS.2022.3179050.

[30] B. Barzycka, M. Błaszczyk, M. Grabiec, and J. Jania. Glacier facies of vestfonna
(svalbard) based on sar images and gpr measurements. Remote Sensing of Envi-
ronment, 221:373–385, 2019. ISSN 0034-4257. doi: https://doi.org/10.1016/
j.rse.2018.11.020. URL https://www.sciencedirect.com/science/article/
pii/S0034425718305297.

[31] B. Barzycka, M. Grabiec, J. Jania, M. Błaszczyk, F. Pálsson, M. Laska, D. Ignatiuk,
and G. Aðalgeirsdóttir. Comparison of three methods for distinguishing glacier
zones using satellite sar data. Remote Sensing, 15(3), 2023. ISSN 2072-4292. doi:
10.3390/rs15030690. URL https://www.mdpi.com/2072-4292/15/3/690.

[32] E. Basaeed, H. Bhaskar, and M. Al-Mualla. Beyond pan-sharpening: Pixel-level
fusion in remote sensing applications. pages 139–144, 03 2012. ISBN 978-1-4673-
1100-7. doi: 10.1109/INNOVATIONS.2012.6207718.

[33] A. Basso, E. Bruno, M. Parise, and M. Pepe. Morphometric analysis of sinkholes in
a karst coastal area of southern apulia (italy). Environ. Earth Sci., 70:2545–2559,
2013.

[34] M. Bayat, M. Ghorbanpour, R. Zare, A. Jaafari, and B. T. Pham. Application of
artificial neural networks for predicting tree survival and mortality in the hyrcanian
forest of iran. Computers and Electronics in Agriculture, 164:104929, 2019.
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Appendix A
A.1 Additional Data and Tables

A.1.1 Foundational Analysis of EO Modality–Model Interactions

Polarimetrically, Spectrally and Temporally Fused Sentinel-1 and Sentinel-2 Data

Wald5Dplus

Table A.1.: Accuracy assessment of the RF regression for AOI 1 (Steigerwald).

Variable MAD MAE STD Unit

Sum crown area of deciduous
trees

4.120 5.195 6.768 m2

Sum crown area of coniferous
trees

3.510 4.326 5.433 m2

Count deciduous trees 0.200 0.248 0.317 amount

Count coniferous trees 0.090 0.133 0.193 amount

Tree area coverage 0.710 1.075 1.602 %

Sum crown volume 24.330 31.140 40.601 m3

Mean tree height 0.709 0.962 1.220 m

Mean crown base height 0.430 0.530 0.692 m
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Table A.2.: Accuracy assessment of the RF regression for AOI 2 (Bavarian Forest National Park).

Variable MAD MAE STD Unit

Sum crown area of deciduous
trees

5.765 6.249 7.564 m2

Sum crown area of coniferous
trees

4.630 5.238 6.525 m2

Sum crown area of dead trees 3.115 3.811 4.745 m2

Count deciduous trees 0.240 0.281 0.344 amount

Count coniferous trees 0.190 0.221 0.262 amount

Count dead trees 0.090 0.125 0.161 amount

Tree area coverage 1.345 2.133 3.202 %

Sum crown volume 52.130 64.858 83.534 m3

Mean tree height 0.910 1.246 1.608 m

Mean crown base height 1.045 1.249 1.488 m

Table A.3.: Accuracy assessment of the RF regression for AOI 3 (Kranzberg Forest).

Variable MAD MAE STD Unit

Sum crown area of deciduous
trees

7.800 6.917 7.513 m2

Sum crown area of coniferous
trees

4.700 6.759 8.663 m2

Count deciduous trees 0.170 0.156 0.186 amount

Count coniferous trees 0.040 0.084 0.115 amount

Tree area coverage 1.320 2.955 5.423 %

Sum crown volume 117.410 140.235 134.399 m3

Mean tree height 0.540 0.976 1.417 m

Mean crown base height 1.250 1.332 1.552 m
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Model Setup Comparison per Variable

Table A.4.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Sum crown area of deciduous trees (m²)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.044 5.636 3.489 5.635

Mask> 1, Z=3,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.433 5.622 34.006 0.562

Mask> 1, Z=None,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.435 5.637 34.427 5.636

Mask> 1, Z=None,
Aggressive=True

Linear

Regression

7.711 9.704 6.475 0.970

Mask> 1, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

69.974 8.618 6.018 8.618

Table A.5.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Sum crown area of coniferous trees (m²)

Experiment Model Params MAE RMSE MAD STD

Mask> 0, Z=1,
Aggressive=False

Linear

Regression

0.805 10.828 5.956 10.828

Mask> 0, Z=3,
Aggressive=True

SVR C=1

kernel=rbf

0.824 13.346 4.101 12.466

Mask> 0, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.872 11.190 3.865 11.190

Mask> 0, Z=3,
Aggressive=False

Linear

Regression

8.060 10.833 5.952 10.833

Mask> 0, Z=3,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

74.938 9.580 34.153 9.580
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Table A.6.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Count of deciduous trees

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=None,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.315 39.002 2.727 39.002

Mask> 0.1, Z=1,
Aggressive=False

Linear

Regression

0.594 7.591 48.910 0.759

Mask> 0.1, Z=None,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.596 7.671 48.786 0.767

Mask> 0, Z=3,
Aggressive=True

SVR C=1

kernel=rbf

5.820 7.574 46.347 7.565

Mask> 1, Z=1,
Aggressive=False

SVR C=1

kernel=rbf

42.861 0.557 0.341 5.559

Table A.7.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Count of coniferous trees

Experiment Model Params MAE RMSE MAD STD

NaN=mean,
ZeroRowFilter=True,
Norm=MinMax\1D

1D

CNN

epochs=20

batch_size=32

lr=0.001

0.198 0.299 0.108 0.298

Mask> 0.1, Z=None,
Aggressive=False

SVR C=1

kernel=rbf

0.268 38.911 17.632 3.830

Mask> 0.1, Z=None,
Aggressive=True

SVR C=1

kernel=rbf

0.268 38.911 17.632 3.830

Mask> 0, Z=None,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

12.237 1.750 0.637 17.496

Mask> 0.1, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

30.346 38.137 20.952 38.136
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Table A.8.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Tree area coverage (%)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=3,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.973 14.071 4.964 14.070

Mask> 0.1, Z=None,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.197 29.198 4.182 0.292

Mask> 0.1, Z=None,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.197 29.198 4.182 0.292

Mask> 0, Z=None,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

11.975 3.052 3.910 3.051

Mask> 0.1, Z=1,
Aggressive=False

Linear

Regression

27.910 5.338 17.926 5.338

Table A.9.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Sum crown volume (m³)

Experiment Model Params MAE RMSE MAD STD

Mask> 0.1, Z=None,
Aggressive=False

Linear

Regression

0.072 9.752 57.477 0.975

Mask> 0.1, Z=None,
Aggressive=True

Linear

Regression

0.072 9.752 57.477 0.975

Mask> 0.1, Z=3,
Aggressive=False

Linear

Regression

0.072 9.752 57.477 0.975

Mask> 0, Z=1,
Aggressive=False

Linear

Regression

7.538 10.281 0.591 10.281

NaN=mean,
ZeroRowFilter=True,
Norm=MinMax\1D

1D

CNN

epochs=20

batch_size=32

lr=0.001

80.726 110.411 62.434 108.666

A.1 Additional Data and Tables 491



Table A.10.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Mean tree height (m)

Experiment Model Params MAE RMSE MAD STD

Mask> 0.1, Z=1,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.088 1.196 0.634 11.963

Mask> 1, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.107 1.334 9.007 13.338

Mask> 0, Z=3,
Aggressive=True

SVR C=1

kernel=rbf

0.237 30.798 18.989 30.766

Mask> 0.1, Z=3,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

8.569 11.674 6.129 1.167

Mask> 0, Z=1,
Aggressive=False

SVR C=1

kernel=rbf

23.158 30.491 17.883 30.448

Table A.11.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Mean crown base height (m)

Experiment Model Params MAE RMSE MAD STD

Mask> 0, Z=1,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.107 13.887 8.497 13.887

Mask> 0.1, Z=None,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.224 27.891 19.931 2.789

Mask> 0.1, Z=3,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.224 27.891 19.931 2.789

Mask> 0.1, Z=None,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

9.673 1.306 7.342 13.058

Mask> 0, Z=1,
Aggressive=False

SVR C=1

kernel=rbf

27.655 35.703 2.230 3.554
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Model Setup Comparison Cross-Validation per Variable

Table A.12.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Sum crown area of deciduous trees (m²)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.419 −3.768 6.722 13.042

Mask> 1, Z=3,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

14.412 −3.719 −32.985 18.475

Mask> 1, Z=None,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

14.217 12.949 −34.326 −3.778

Mask> 1, Z=None,
Aggressive=True

Linear

Regression

−6.847 1.709 −0.151 0.044

Mask> 1, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

−68.497 10.333 4.704 10.331

Table A.13.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Sum crown area of coniferous trees (m²)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 0, Z=1,
Aggressive=False

Linear

Regression

2.700 −6.228 19.343 −6.254

Mask> 0, Z=3,
Aggressive=True

SVR C=1

kernel=rbf

27.749 17.723 3.900 −11.246

Mask> 0, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

25.411 −8.306 2.909 0.746

Mask> 0, Z=3,
Aggressive=False

Linear

Regression

26.644 34.809 19.012 −6.294

Mask> 0, Z=3,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

−46.674 21.250 −27.123 2.736
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Table A.14.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Count of deciduous trees

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=None,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

6.225 −30.962 3.017 −31.032

Mask> 0.1, Z=1,
Aggressive=False

Linear

Regression

2.837 −3.510 −30.599 30.783

Mask> 0.1, Z=None,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

7.620 2.615 −48.267 −0.689

Mask> 0, Z=3,
Aggressive=True

SVR C=1

kernel=rbf

−5.120 1.387 −40.728 0.520

Mask> 1, Z=1,
Aggressive=False

SVR C=1

kernel=rbf

−36.395 7.401 5.202 2.076

Table A.15.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Count of coniferous trees

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

NaN=mean,
ZeroRowFilter=True,
Norm=MinMax\1D

1D

CNN

epochs=20

batch_size=32

lr=0.001

0.088 0.153 0.030 0.131

Mask> 0.1, Z=None,
Aggressive=False

SVR C=1

kernel=rbf

5.950 −31.272 12.946 45.396

Mask> 0.1, Z=None,
Aggressive=True

SVR C=1

kernel=rbf

5.950 −31.272 12.946 45.396

Mask> 0, Z=None,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

−2.983 8.497 22.697 26.805

Mask> 0.1, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

−22.380 −28.978 3.827 −33.600
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Table A.16.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Tree area coverage (%)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=3,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

23.711 −9.193 8.887 33.633

Mask> 0.1, Z=None,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

23.885 −28.750 10.500 44.383

Mask> 0.1, Z=None,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

23.885 −28.750 10.500 44.383

Mask> 0, Z=None,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

−9.559 1.274 10.711 1.267

Mask> 0.1, Z=1,
Aggressive=False

Linear

Regression

−27.748 15.993 −16.760 13.145

Table A.17.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Sum crown volume (m³)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 0.1, Z=None,
Aggressive=False

Linear

Regression

0.316 −9.260 −57.451 2.824

Mask> 0.1, Z=None,
Aggressive=True

Linear

Regression

0.316 −9.260 −57.451 2.824

Mask> 0.1, Z=3,
Aggressive=False

Linear

Regression

0.316 −9.260 −57.451 2.824

Mask> 0, Z=1,
Aggressive=False

Linear

Regression

10.529 −8.021 −0.466 −8.416

NaN=mean,
ZeroRowFilter=True,
Norm=MinMax\1D

1D

CNN

epochs=20

batch_size=32

lr=0.001

37.953 62.446 17.377 63.833
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Table A.18.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Mean tree height (m)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 0.1, Z=1,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

18.367 1.164 15.436 11.408

Mask> 1, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

19.022 23.266 6.513 −11.058

Mask> 0, Z=3,
Aggressive=True

SVR C=1

kernel=rbf

1.497 −28.460 −17.715 −28.435

Mask> 0.1, Z=3,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

9.966 11.548 9.470 1.127

Mask> 0, Z=1,
Aggressive=False

SVR C=1

kernel=rbf

−3.749 −30.246 −2.012 −28.004

Table A.19.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Mean crown base height (m)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 0, Z=1,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

27.325 19.587 9.478 12.299

Mask> 0.1, Z=None,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

22.638 0.386 −17.901 −0.132

Mask> 0.1, Z=3,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

22.638 0.386 −17.901 −0.132

Mask> 0.1, Z=None,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

−7.309 27.638 12.137 −10.413

Mask> 0, Z=1,
Aggressive=False

SVR C=1

kernel=rbf

−3.107 −32.627 17.426 25.929
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Ensemble

Table A.20.: Transfer performance of a RF model trained on SW_1_2020, evaluated on
SW_2_2020 and the Bavarian Forest NP (2021) across all 8-band variables.

Variable Experiment MAE RMSE MAD STD

Sum crown area of
deciduous trees (m²)

SW_2_2020 16.92 19.79 8.71 15.84

Sum crown area of
deciduous trees (m²)

Bavarian Forest NP
2021

41.9 46.4 19.7 41.1

Sum crown area of
coniferous trees (m²)

SW_2_2020 12.52 14.29 4.77 1.17

Sum crown area of
coniferous trees (m²)

Bavarian Forest NP
2021

27.03 34.54 24.0 31.3

Count of deciduous
trees

SW_2_2020 0.87 1.10 0.64 0.97

Count of deciduous
trees

Bavarian Forest NP
2021

1.68 1.90 0.64 1.00

Count of coniferous
trees

SW_2_2020 0.42 0.48 0.16 0.38

Count of coniferous
trees

Bavarian Forest NP
2021

0.98 1.26 0.86 1.14

Tree area coverage (%) SW_2_2020 2.70 3.50 1.00 3.22

Tree area coverage (%) Bavarian Forest NP
2021

23.10 27.70 18.60 25.71

Sum crown volume
(m³)

SW_2_2020 86.42 108.63 71.99 108.54

Sum crown volume
(m³)

Bavarian Forest NP
2021

262.26 315.49 251.41 299.49

Mean tree height (m) SW_2_2020 4.02 4.96 2.70 3.93

Mean tree height (m) Bavarian Forest NP
2021

8.25 10.09 7.10 8.64

Mean crown base
height (m)

SW_2_2020 4.41 5.79 3.11 4.66

Mean crown base
height (m)

Bavarian Forest NP
2021

3.42 5.05 1.72 4.80
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Table A.21.: Transfer performance of a RF model trained on NP_T10_2020, evaluated on Bavarian
Forest NP (2021) and SW_2_2020 across all 8-band variables.

Variable Experiment MAE RMSE MAD STD

Sum crown area of
deciduous trees (m²)

Bavarian Forest NP
2021

32.01 36.15 20.10 32.90

Sum crown area of
deciduous trees (m²)

SW_2_2020 68.83 71.19 10.11 18.17

Sum crown area of
coniferous trees (m²)

Bavarian Forest NP
2021

23.75 29.03 20.72 28.73

Sum crown area of
coniferous trees (m²)

SW_2_2020 34.80 36.63 5.57 12.78

Count of deciduous
trees

Bavarian Forest NP
2021

0.73 0.84 0.44 0.70

Count of deciduous
trees

SW_2_2020 3.21 3.37 0.66 1.01

Count of coniferous
trees

Bavarian Forest NP
2021

0.89 1.09 0.78 1.08

Count of coniferous
trees

SW_2_2020 1.18 1.24 0.19 0.41

Tree area coverage (%) Bavarian Forest NP
2021

16.30 20.10 10.95 20.09

Tree area coverage (%) SW_2_2020 13.20 14.02 2.72 5.00

Sum crown volume
(m³)

Bavarian Forest NP
2021

225.96 268.02 216.62 267.71

Sum crown volume
(m³)

SW_2_2020 226.67 23.62 77.95 118.70

Mean tree height (m) Bavarian Forest NP
2021

6.94 8.24 6.33 8.00

Mean tree height (m) SW_2_2020 6.56 7.63 3.18 4.43

Mean crown base
height (m)

Bavarian Forest NP
2021

3.78 4.60 2.36 4.57

Mean crown base
height (m)

SW_2_2020 4.41 5.86 3.14 4.90
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Table A.22.: Performance of the RF-stacked ensemble model trained on Steigerwald sub-AOIs
SW_1, SW_2, SW_4, SW_5, and SW_6 (8-band input) in intra-AOI (SW_2) and
transfer-AOI (SW_3) domains. Each variable shows MAE, RMSE, MAD, and STD for
both intra and transfer settings, with corresponding delta values (∆) below each
metric.

Variable MAE RMSE MAD STD

Sum crown area of deciduous
trees (m²)
∆: -7.162

17.014 /
9.852

19.775 /
13.530

8.492 /
6.464

15.800 /
11.924

Sum crown area of coniferous
trees (m²)
∆: -4.543

11.992 /
7.449

13.446 /
9.555

3.570 /
5.908

11.415 /
8.176

Count of deciduous trees
∆: -0.433

0.870 /
0.437

1.112 /
0.629

0.655 /
0.291

0.985 /
0.592

Count of coniferous trees
∆: -0.149

0.388 /
0.239

0.435 /
0.306

0.118 /
0.192

0.365 /
0.260

Sum crown volume (m³)
∆: -31.406

85.238 /
53.832

106.854 /
76.627

70.873 /
35.999

106.536 /
76.626

Tree area coverage (%)
∆: -0.928

2.529 /
1.601

3.402 /
2.567

1.084 /
0.757

3.273 /
2.537

Mean tree height (m)
∆: -3.233

5.054 /
1.821

6.070 /
2.671

2.987 /
1.180

4.137 /
2.577

Mean crown base height (m)
∆: -3.553

5.041 /
1.487

6.563 /
2.396

3.193 /
0.823

4.865 /
2.334

A.1 Additional Data and Tables 499



Table A.23.: Performance of the RF-stacked ensemble model trained on D03, D04, SW_1, SW_2
(Steigerwald) (2020 and 2021) and T10 (NP 2020) with the full 10-band input in
the complete NP in 2020 and a temporal transfer setting in 2021. Each variable
shows MAE, RMSE, MAD, and STD for both intra and transfer scenarios, with
corresponding delta values (∆) below each metric.

Variable MAE RMSE MAD STD

Sum crown area of deciduous trees
(m²)
∆: 3.26

25.60 /
28.86

31.25 /
35.38

17.02 /
18.33

30.41 /
34.79

Sum crown area of coniferous trees
(m²)
∆: 4.38

20.65 /
25.03

24.94 /
31.14

19.61 /
22.95

24.29 /
29.20

Sum crown area of dead trees (m²)
∆: 0.94

7.50 / 8.44 8.33 / 9.29 1.75 / 2.41 4.26 / 4.54

Count of deciduous trees
∆: 0.05

0.33 / 0.38 0.34 / 0.40 0.07 / 0.10 0.21 / 0.23

Count of coniferous trees
∆: 0.06

0.57 / 0.63 0.68 / 0.76 4.20 / 4.26 0.68 / 0.76

Count of dead trees
∆: 0.08

0.81 / 0.89 0.10 / 1.12 0.72 / 0.81 0.98 / 1.07

Tree area coverage (%)
∆: 3.73

13.24 /
16.97

16.54 /
20.08

7.50 / 10.37 16.54 /
19.88

Sum crown volume (m³)
∆: 62.29

184.37 /
246.66

223.00 /
293.29

165.70 /
222.13

222.00 /
278.95

Mean tree height (m)
∆: 1.28

5.84 / 7.12 7.06 / 8.54 5.33 / 6.60 7.04 / 8.47

Mean crown base height (m)
∆: 0.10

3.30 / 3.40 4.67 / 4.95 2.20 / 2.02 4.38 / 4.60
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Polarimetrically and Spectrally Fused Sentinel-1 and Sentinel-2 Data

Model Setup Comparison per Variable

Table A.24.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Sum crown area of deciduous trees (m²)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

3.285 4.065 2.672 4.064

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

3.320 4.121 3.013 4.120

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

3.392 4.245 2.761 4.244

Mask> 1, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

8.892 11.096 7.578 11.096

Mask> 0.1, Z=None,
Aggressive=True

Linear

Regression

17.226 22.116 13.841 22.116
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Table A.25.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Sum crown area of coniferous trees (m²)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

2.960 3.660 2.787 3.660

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

2.969 3.621 2.627 3.620

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

2.997 3.664 2.579 3.664

Mask> 1, Z=None,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

7.442 9.321 6.237 9.321

Mask> 0.1, Z=None,
Aggressive=False

Linear

Regression

13.414 17.097 9.796 17.097

Table A.26.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Count of deciduous trees

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.148 0.190 0.122 0.190

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.149 0.191 0.115 0.191

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.150 0.193 0.121 0.193

Mask> 0.1, Z=1,
Aggressive=True

Linear

Regression

0.433 0.521 0.394 0.521

Mask> 0, Z=None,
Aggressive=True

Linear

Regression

0.817 1.051 0.661 1.051
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Table A.27.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Count of coniferous trees

Experiment Model Params MAE RMSE MAD STD

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.090 0.118 0.056 0.118

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.090 0.117 0.057 0.117

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.113 0.142 0.096 0.142

Mask> 1, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.263 0.335 0.202 0.335

Mask> 0.1, Z=None,
Aggressive=True

Linear

Regression

0.423 0.559 0.280 0.559

Table A.28.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Tree area coverage (%)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.374 0.522 0.274 0.522

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.375 0.528 0.247 0.528

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.392 0.540 0.258 0.540

Mask> 0, Z=3,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

1.629 2.497 0.704 2.497

Mask> 0.1, Z=None,
Aggressive=False

Linear

Regression

2.807 5.959 1.195 5.959
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Table A.29.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Sum crown volume (m³)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

21.896 27.793 17.935 27.789

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

22.853 28.291 20.131 28.290

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

23.045 29.163 20.545 29.160

Mask> 1, Z=None,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

60.632 77.782 49.101 77.782

Mask> 0.1, Z=None,
Aggressive=False

SVR C=1

kernel=rbf

96.205 126.921 77.957 126.915

Table A.30.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Mean tree height (m)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.506 0.656 0.381 0.655

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.507 0.670 0.393 0.669

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.530 0.681 0.418 0.681

Mask> 0.1, Z=1,
Aggressive=True

Linear

Regression

1.552 1.887 1.367 1.887

Mask> 0, Z=1,
Aggressive=False

Linear

Regression

3.088 3.896 2.570 3.896
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Table A.31.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Mean crown base height (m)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.640 0.786 0.501 0.786

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.646 0.798 0.533 0.798

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.648 0.789 0.542 0.789

Mask> 0.1, Z=1,
Aggressive=True

Linear

Regression

1.651 1.973 1.495 1.973

Mask> 0, Z=1,
Aggressive=False

Linear

Regression

3.450 4.341 2.794 4.341
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Model Setup Comparison Cross-Validation per Variable

Table A.32.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Sum crown area of deciduous trees (m²)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

13.757 17.375 11.409 17.352

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

13.719 17.400 11.013 17.360

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

13.680 17.412 11.622 17.356

Mask> 1, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

6.540 9.449 5.405 8.114

Mask> 0.1, Z=None,
Aggressive=True

Linear

Regression

16.834 16.770 −1.817 −3.300

Table A.33.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Sum crown area of coniferous trees (m²)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

8.880 10.620 6.622 10.209

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

8.695 10.487 6.531 10.119

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

8.692 10.494 6.619 10.141

Mask> 1, Z=None,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

3.460 3.944 1.862 3.760

Mask> 0.1, Z=None,
Aggressive=False

Linear

Regression

7.769 7.646 −1.091 −4.225
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Table A.34.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Count of deciduous trees

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.606 0.722 0.514 0.707

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.592 0.707 0.519 0.695

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.595 0.705 0.509 0.684

Mask> 0.1, Z=1,
Aggressive=True

Linear

Regression

1.034 1.126 0.119 0.278

Mask> 0, Z=None,
Aggressive=True

Linear

Regression

0.738 0.700 −0.062 −0.201

Table A.35.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Count of coniferous trees

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.180 1.241 0.246 0.365

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.190 1.251 0.231 0.365

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.260 0.359 0.178 0.347

Mask> 1, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.117 0.162 0.087 0.154

Mask> 0.1, Z=None,
Aggressive=True

Linear

Regression

0.367 0.358 0.015 −0.091
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Table A.36.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Tree area coverage (%)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

2.189 4.678 1.273 4.411

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

2.194 4.668 1.312 4.412

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

2.168 4.633 1.330 4.383

Mask> 0, Z=3,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.776 2.516 0.667 2.172

Mask> 0.1, Z=None,
Aggressive=False

Linear

Regression

0.486 −0.473 0.216 −1.488

Table A.37.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Sum crown volume (m³)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

67.836 92.518 35.251 87.868

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

66.766 92.872 38.095 88.592

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

67.186 91.593 33.526 86.416

Mask> 1, Z=None,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

56.394 64.402 3.955 39.726

Mask> 0.1, Z=None,
Aggressive=False

SVR C=1

kernel=rbf

−12.576 −10.990 −27.594 −12.972
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Table A.38.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Mean tree height (m)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.439 1.841 1.291 1.691

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.486 1.875 1.365 1.686

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

1.414 1.842 1.282 1.677

Mask> 0.1, Z=1,
Aggressive=True

Linear

Regression

0.256 0.389 0.163 0.388

Mask> 0, Z=1,
Aggressive=False

Linear

Regression

−0.990 −1.154 −0.916 −1.424

Table A.39.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Mean crown base height (m)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.340 1.687 1.153 1.687

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

1.322 1.642 1.066 1.635

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.303 1.645 1.046 1.646

Mask> 0.1, Z=1,
Aggressive=True

Linear

Regression

0.599 0.795 0.531 0.661

Mask> 0, Z=1,
Aggressive=False

Linear

Regression

−0.115 −0.304 −0.804 −1.522
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Reflectance Bands and Spectral Kennaugh-like Elements from Sentinel-2 Data

Raw Sentinel-2 Data

Model Setup Comparison per Variable

Table A.40.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Sum crown area of deciduous trees (m²)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

3.861 4.834 3.271 4.834

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

3.894 4.893 3.306 4.893

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

4.347 5.633 3.342 5.633

Mask> 1, Z=None,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

10.335 12.973 8.559 12.973

Mask> 0.1, Z=None,
Aggressive=True

SVR C=1

kernel=rbf

18.315 23.815 14.515 23.619
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Table A.41.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Sum crown area of coniferous trees (m²)

Experiment Model Params MAE RMSE MAD STD

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

3.230 4.236 1.939 4.235

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

3.254 4.289 1.986 4.288

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

3.272 4.131 2.698 4.131

Mask> 1, Z=None,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

8.426 10.600 6.894 10.600

Mask> 0.1, Z=None,
Aggressive=True

SVR C=1

kernel=rbf

13.837 18.712 10.301 17.973

Table A.42.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Count of deciduous trees

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.185 0.227 0.156 0.227

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.186 0.232 0.159 0.232

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.236 0.285 0.218 0.285

Mask> 1, Z=None,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.464 0.583 0.388 0.583

Mask> 0, Z=None,
Aggressive=False

Linear

Regression

0.851 1.087 0.695 1.087
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Table A.43.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Count of coniferous trees

Experiment Model Params MAE RMSE MAD STD

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.095 0.126 0.059 0.126

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.096 0.127 0.061 0.127

Mask> 0.1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.127 0.160 0.098 0.160

Mask> 1, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.298 0.378 0.217 0.378

Mask> 0.1, Z=None,
Aggressive=False

Linear

Regression

0.432 0.569 0.292 0.569

Table A.44.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Tree area coverage (%)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.678 0.891 0.464 0.891

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.685 0.895 0.485 0.895

Mask> 0.1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.768 1.071 0.416 1.070

Mask> 0, Z=None,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.757 4.112 0.618 4.111

Mask> 0.1, Z=None,
Aggressive=False

Linear

Regression

2.889 6.009 1.262 6.009
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Table A.45.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Sum crown volume (m³)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

27.308 33.203 24.128 33.203

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

27.437 33.267 24.479 33.266

Mask> 0.1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

29.299 35.951 25.019 35.951

Mask> 1, Z=None,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

69.452 87.838 58.485 87.838

Mask> 0.1, Z=None,
Aggressive=True

SVR C=1

kernel=rbf

97.294 128.491 78.267 128.480

Table A.46.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Mean tree height (m)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.649 0.808 0.548 0.808

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.653 0.813 0.511 0.813

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.796 0.975 0.678 0.975

Mask> 0, Z=None,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.729 2.272 1.334 2.272

Mask> 0, Z=None,
Aggressive=True

SVR C=1

kernel=rbf

3.268 4.118 2.733 4.117

A.1 Additional Data and Tables 513



Table A.47.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Mean crown base height (m)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.720 0.880 0.601 0.880

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.727 0.878 0.661 0.878

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.876 1.046 0.794 1.046

Mask> 0, Z=1,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.956 2.531 1.536 2.530

Mask> 0, Z=None,
Aggressive=True

SVR C=1

kernel=rbf

3.570 4.580 2.928 4.543

514 Appendix A Appendix



Model Setup Comparison Cross-Validation per Variable

Table A.48.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Sum crown area of deciduous trees (m²)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

12.329 15.564 9.719 15.497

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

12.341 15.370 10.085 15.351

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

40.080 42.961 9.418 14.056

Mask> 1, Z=None,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

3.452 4.411 2.706 4.348

Mask> 0.1, Z=None,
Aggressive=True

SVR C=1

kernel=rbf

7.121 7.117 −3.934 −5.682

Table A.49.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Sum crown area of coniferous trees (m²)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

33.429 34.601 6.095 8.587

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

33.593 34.732 6.218 8.554

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

7.383 9.022 5.479 8.886

Mask> 1, Z=None,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

2.176 2.086 0.930 1.489

Mask> 0.1, Z=None,
Aggressive=True

SVR C=1

kernel=rbf

9.912 7.907 −3.143 −5.933
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Table A.50.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Count of deciduous trees

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.556 0.669 0.476 0.651

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.543 0.652 0.443 0.638

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.512 0.618 0.417 0.601

Mask> 1, Z=None,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.147 0.170 0.122 0.156

Mask> 0, Z=None,
Aggressive=False

Linear

Regression

−0.152 −0.197 −0.192 −0.337

Table A.51.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Count of coniferous trees

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.206 1.254 0.231 0.333

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.208 1.255 0.214 0.330

Mask> 0.1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.919 0.985 0.176 0.305

Mask> 1, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.057 0.074 0.059 0.072

Mask> 0.1, Z=None,
Aggressive=False

Linear

Regression

0.100 0.125 −0.016 −0.108
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Table A.52.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Tree area coverage (%)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.934 4.376 1.088 4.119

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.968 4.386 1.118 4.149

Mask> 0.1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.895 4.181 1.169 3.932

Mask> 0, Z=None,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.286 0.963 1.237 0.953

Mask> 0.1, Z=None,
Aggressive=False

Linear

Regression

−0.000 −1.200 0.030 −1.238

Table A.53.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Sum crown volume (m³)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

56.529 82.792 26.016 81.031

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

57.024 82.845 28.805 80.619

Mask> 0.1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

57.515 85.085 28.285 84.510

Mask> 1, Z=None,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

37.150 45.466 20.169 40.880

Mask> 0.1, Z=None,
Aggressive=True

SVR C=1

kernel=rbf

−17.534 −14.348 −27.506 −14.553
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Table A.54.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Mean tree height (m)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.454 1.925 1.045 1.679

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.441 1.913 1.102 1.682

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

1.323 1.778 0.963 1.520

Mask> 0, Z=None,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.533 0.742 0.281 0.568

Mask> 0, Z=None,
Aggressive=True

SVR C=1

kernel=rbf

−1.051 −1.316 −0.995 −1.750

Table A.55.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Mean crown base height (m)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.649 2.051 1.423 1.916

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.603 1.996 1.362 1.891

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

1.449 1.819 1.187 1.715

Mask> 0, Z=1,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.587 0.646 0.573 0.367

Mask> 0, Z=None,
Aggressive=True

SVR C=1

kernel=rbf

−1.143 −1.612 −0.952 −1.960
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Spectral Kennaugh-like Elements from Sentinel-2 Data

Model Setup Comparison per Variable

Table A.56.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Sum crown area of deciduous trees (m²)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

3.630 4.637 3.017 4.636

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

3.642 4.649 3.116 4.649

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

3.923 4.939 3.426 4.939

Mask> 1, Z=None,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

10.230 12.895 8.541 12.895

Mask> 0.1, Z=3,
Aggressive=False

Linear

Regression

17.644 22.533 14.239 22.533
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Table A.57.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Sum crown area of coniferous trees (m²)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

3.176 4.027 2.482 4.027

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

3.193 3.981 2.562 3.981

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

3.234 4.272 1.960 4.272

Mask> 1, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

8.467 10.649 6.800 10.649

Mask> 0.1, Z=None,
Aggressive=False

Linear

Regression

13.647 17.351 10.156 17.351

Table A.58.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Count of deciduous trees

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.175 0.216 0.142 0.216

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.178 0.220 0.148 0.220

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.199 0.244 0.175 0.244

Mask> 1, Z=3,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.461 0.580 0.382 0.580

Mask> 0, Z=3,
Aggressive=False

Linear

Regression

0.831 1.068 0.678 1.068
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Table A.59.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Count of coniferous trees

Experiment Model Params MAE RMSE MAD STD

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.095 0.126 0.059 0.126

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.096 0.128 0.060 0.128

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.124 0.154 0.102 0.154

Mask> 0, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.292 0.410 0.138 0.410

Mask> 0.1, Z=None,
Aggressive=True

Linear

Regression

0.430 0.567 0.288 0.567

Table A.60.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Tree area coverage (%)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.612 0.802 0.419 0.802

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.616 0.801 0.441 0.801

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.662 0.866 0.477 0.866

Mask> 0, Z=None,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.705 4.043 0.605 4.042

Mask> 0.1, Z=None,
Aggressive=True

Linear

Regression

2.834 5.974 1.258 5.974
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Table A.61.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Sum crown volume (m³)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

27.255 33.533 23.763 33.532

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

27.318 33.789 24.845 33.788

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

28.740 35.201 25.006 35.201

Mask> 1, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

66.915 85.270 55.527 85.268

Mask> 0.1, Z=3,
Aggressive=False

SVR C=1

kernel=rbf

96.126 126.738 78.220 126.725

Table A.62.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Mean tree height (m)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.630 0.793 0.529 0.793

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.639 0.805 0.514 0.805

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.706 0.878 0.580 0.878

Mask> 0, Z=1,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.707 2.227 1.333 2.227

Mask> 0, Z=1,
Aggressive=False

SVR C=1

kernel=rbf

3.199 4.020 2.688 4.020
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Table A.63.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Mean crown base height (m)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.736 0.889 0.682 0.889

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.739 0.896 0.642 0.896

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.812 0.972 0.740 0.972

Mask> 0, Z=None,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.919 2.487 1.493 2.487

Mask> 0, Z=1,
Aggressive=False

Linear

Regression

3.611 4.518 2.990 4.518
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Model Setup Comparison Cross-Validation per Variable

Table A.64.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Sum crown area of deciduous trees (m²)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

12.835 16.255 9.421 16.148

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

12.422 16.029 9.067 15.846

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

12.151 15.687 8.694 15.515

Mask> 1, Z=None,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

3.256 4.722 2.562 4.650

Mask> 0.1, Z=3,
Aggressive=False

Linear

Regression

1.309 2.177 −3.333 −4.350

Table A.65.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Sum crown area of coniferous trees (m²)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

7.738 9.548 5.400 9.543

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

7.748 9.690 5.446 9.682

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

30.407 31.630 5.506 8.267

Mask> 1, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

2.434 2.486 0.376 1.936

Mask> 0.1, Z=None,
Aggressive=False

Linear

Regression

−0.136 0.239 −2.915 −4.920
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Table A.66.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Count of deciduous trees

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.590 0.717 0.492 0.713

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.592 0.713 0.495 0.709

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.575 0.696 0.466 0.693

Mask> 1, Z=3,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.181 0.228 0.129 0.222

Mask> 0, Z=3,
Aggressive=False

Linear

Regression

0.010 −0.021 −0.154 −0.283

Table A.67.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Count of coniferous trees

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.145 1.200 0.223 0.345

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.141 1.195 0.219 0.341

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.236 0.330 0.164 0.318

Mask> 0, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.586 0.581 0.153 0.058

Mask> 0.1, Z=None,
Aggressive=True

Linear

Regression

0.108 0.128 −0.022 −0.113
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Table A.68.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Tree area coverage (%)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.945 4.258 1.073 4.076

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.970 4.276 1.131 4.104

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

1.874 4.176 0.978 3.982

Mask> 0, Z=None,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.904 0.310 0.947 0.310

Mask> 0.1, Z=None,
Aggressive=True

Linear

Regression

−0.414 −1.541 0.120 −1.556

Table A.69.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Sum crown volume (m³)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

56.440 79.351 33.343 79.051

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

57.457 79.675 35.227 79.490

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

56.253 85.741 29.225 83.826

Mask> 1, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

34.401 45.025 17.533 41.774

Mask> 0.1, Z=3,
Aggressive=False

SVR C=1

kernel=rbf

−15.468 −13.449 −24.972 −13.847
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Table A.70.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Mean tree height (m)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.349 1.765 1.024 1.537

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.325 1.750 1.015 1.489

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

1.309 1.719 0.995 1.479

Mask> 0, Z=1,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.448 0.570 0.290 0.412

Mask> 0, Z=1,
Aggressive=False

SVR C=1

kernel=rbf

−1.294 −1.602 −1.142 −1.756

Table A.71.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Mean crown base height (m)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.390 1.772 1.144 1.707

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.395 1.796 1.143 1.678

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

1.313 1.689 1.079 1.624

Mask> 0, Z=None,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.581 0.689 0.472 0.426

Mask> 0, Z=1,
Aggressive=False

Linear

Regression

−1.377 −1.722 −1.321 −2.067
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Polarimetric Kennaugh Elements from Sentinel-1 Data

Model Setup Comparison per Variable

Table A.72.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Sum crown area of deciduous trees (m²)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

3.889 4.857 3.565 4.855

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

3.933 4.933 3.491 4.933

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

4.264 5.241 3.924 5.241

Mask> 1, Z=None,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

12.074 15.136 10.019 15.136

Mask> 0.1, Z=3,
Aggressive=False

Linear

Regression

20.278 25.866 15.319 25.866
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Table A.73.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Sum crown area of coniferous trees (m²)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

3.386 4.168 3.050 4.167

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

3.400 4.397 2.028 4.397

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

3.427 4.465 2.082 4.464

Mask> 1, Z=None,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

9.627 12.028 8.031 12.028

Mask> 0.1, Z=1,
Aggressive=False

Linear

Regression

15.699 19.573 10.461 19.573

Table A.74.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Count of deciduous trees

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.168 0.212 0.140 0.212

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.169 0.213 0.140 0.213

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.176 0.222 0.151 0.222

Mask> 1, Z=None,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.482 0.616 0.391 0.616

Mask> 0, Z=None,
Aggressive=False

Linear

Regression

0.905 1.159 0.736 1.159
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Table A.75.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Count of coniferous trees

Experiment Model Params MAE RMSE MAD STD

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.098 0.128 0.062 0.128

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.099 0.129 0.062 0.129

Mask> 0.1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.129 0.163 0.098 0.163

Mask> 1, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.334 0.427 0.249 0.427

Mask> 0.1, Z=1,
Aggressive=False

Linear

Regression

0.488 0.629 0.294 0.629

Table A.76.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Tree area coverage (%)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.463 0.619 0.310 0.619

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.469 0.622 0.309 0.622

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.499 0.652 0.337 0.652

Mask> 1, Z=3,
Aggressive=True

SVR C=1

kernel=rbf

1.822 3.192 0.800 2.962

Mask> 0.1, Z=1,
Aggressive=False

Linear

Regression

3.028 6.289 0.842 6.289
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Table A.77.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Sum crown volume (m³)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

23.014 29.622 17.294 29.617

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

23.176 29.824 18.632 29.823

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

23.659 30.503 18.874 30.503

Mask> 1, Z=None,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

70.981 91.409 57.070 91.409

Mask> 0.1, Z=1,
Aggressive=False

SVR C=1

kernel=rbf

97.009 128.410 77.984 128.399

Table A.78.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Mean tree height (m)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.610 0.792 0.495 0.792

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.625 0.806 0.478 0.806

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.697 0.884 0.559 0.884

Mask> 1, Z=None,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

2.027 2.538 1.691 2.538

Mask> 0, Z=None,
Aggressive=False

Linear

Regression

3.227 4.068 2.670 4.068
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Table A.79.: Performance Summary of Top 3, Median, and Worst Models in the Original Spatial
Domain: Mean crown base height (m)

Experiment Model Params MAE RMSE MAD STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.711 0.861 0.651 0.861

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.716 0.864 0.655 0.864

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.762 0.917 0.658 0.917

Mask> 0, Z=3,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.827 2.394 1.390 2.394

Mask> 0, Z=None,
Aggressive=False

Linear

Regression

3.510 4.433 2.848 4.433
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Model Setup Comparison Cross-Validation per Variable

Table A.80.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Sum crown area of deciduous trees (m²)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

13.590 16.760 10.271 16.749

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

13.568 16.681 10.149 16.661

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

13.199 16.346 9.829 16.327

Mask> 1, Z=None,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

5.886 6.991 3.077 6.349

Mask> 0.1, Z=3,
Aggressive=False

Linear

Regression

7.056 8.075 −1.937 −4.953

Table A.81.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Sum crown area of coniferous trees (m²)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

8.666 10.231 5.530 9.557

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

35.000 36.350 6.574 9.234

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

34.964 36.284 6.566 9.196

Mask> 1, Z=None,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

3.495 3.565 0.770 2.076

Mask> 0.1, Z=1,
Aggressive=False

Linear

Regression

6.650 6.587 −1.992 −5.974
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Table A.82.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Count of deciduous trees

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.577 0.699 0.484 0.675

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.574 0.692 0.493 0.665

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.566 0.685 0.468 0.660

Mask> 1, Z=None,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.285 0.320 0.241 0.270

Mask> 0, Z=None,
Aggressive=False

Linear

Regression

0.251 0.237 −0.106 −0.284

Table A.83.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Count of coniferous trees

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.243 1.298 0.227 0.355

Mask> 0, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.244 1.298 0.226 0.356

Mask> 0.1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

0.975 1.039 0.162 0.314

Mask> 1, Z=1,
Aggressive=False

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.087 0.083 0.046 0.068

Mask> 0.1, Z=1,
Aggressive=False

Linear

Regression

0.334 0.323 −0.001 −0.148
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Table A.84.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Tree area coverage (%)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

2.207 4.577 1.412 4.321

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

2.179 4.547 1.448 4.314

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

2.167 4.535 1.388 4.298

Mask> 1, Z=3,
Aggressive=True

SVR C=1

kernel=rbf

0.885 2.270 0.606 1.985

Mask> 0.1, Z=1,
Aggressive=False

Linear

Regression

−0.401 −1.433 0.748 −1.450

Table A.85.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Sum crown volume (m³)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

64.300 90.299 40.743 88.174

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

63.914 90.952 37.629 89.255

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

64.019 90.653 39.290 89.133

Mask> 1, Z=None,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

17.998 31.846 −2.762 31.114

Mask> 0.1, Z=1,
Aggressive=False

SVR C=1

kernel=rbf

−18.340 −15.491 −29.678 −15.709
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Table A.86.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Mean tree height (m)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.381 1.733 1.206 1.659

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.391 1.743 1.240 1.675

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

1.321 1.669 1.135 1.598

Mask> 1, Z=None,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

0.303 0.347 0.358 0.208

Mask> 0, Z=None,
Aggressive=False

Linear

Regression

−0.984 −1.340 −0.787 −1.442

Table A.87.: Performance Shifts (∆) of Top 3, Median, and Worst Models Between Original and
Cross-Validation Regions: Mean crown base height (m)

Experiment Model Params ∆MAE ∆RMSE ∆MAD ∆STD

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.186 1.576 0.873 1.527

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.206 1.599 0.905 1.538

Mask> 1, Z=1,
Aggressive=True

RF

Regressor

max_depth=10

max_features=log2

min_samples_leaf=2

1.167 1.549 0.966 1.496

Mask> 0, Z=3,
Aggressive=False

RF

Regressor

max_depth=None

max_features=log2

min_samples_leaf=2

1.183 1.229 1.227 0.882

Mask> 0, Z=None,
Aggressive=False

Linear

Regression

−0.739 −0.983 −0.444 −1.373
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A.1.2 Context-Aware Label Enrichment and Multi-Scale Learning with
the HELIX Framework

Forest Disturbance Forecasting from Fused Sentinel-1 and Sentinel-2 Data with
Helix-Based Spatio-Temporal Label Enrichment

Figure A.1.: Residual distributions for predicted Helix descriptors.
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Figure A.2.: Residual distributions for predicted Helix descriptors.
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Figure A.3.: Residual distributions for predicted Helix descriptors.
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Figure A.4.: Residual distributions for predicted Helix descriptors.
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Figure A.5.: Residual distributions for predicted Helix descriptors.
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Figure A.6.: Residual distributions for predicted Helix descriptors.
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Figure A.7.: Residual distributions for predicted Helix descriptors.
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Figure A.8.: Residual distributions for predicted Helix descriptors.
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Figure A.9.: Residual distributions for predicted Helix descriptors.
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Table A.88.: Per-band classification metrics using EO + individual helix features

Band Precision Recall F1 Score AUC

helix_mean_y2021_s1 0.8242 0.8206 0.8224 0.9941
helix_mean_y2021_s2 0.7832 0.7000 0.7392 0.9886
helix_var_y2021_s1 0.7823 0.6964 0.7368 0.9773
helix_var_y2021_s2 0.7655 0.6836 0.7222 0.9832
helix_mean_y2021_s3 0.7677 0.6468 0.7021 0.9846
helix_var_y2021_s3 0.7247 0.6740 0.6984 0.9827
helix_mean_y2022_s1 0.7905 0.4778 0.5956 0.9179
helix_mean_y2020_s1 0.7988 0.4742 0.5951 0.9119
helix_var_y2022_s1 0.8020 0.4726 0.5948 0.9131
helix_var_y2022_s2 0.7962 0.4746 0.5947 0.9190
helix_var_y2019_s3 0.7966 0.4726 0.5933 0.9150
helix_mean_y2018_s1 0.7926 0.4702 0.5903 0.9104
helix_var_y2020_s2 0.7873 0.4718 0.5901 0.9157
helix_var_y2022_s3 0.7903 0.4698 0.5893 0.9175
helix_mean_y2019_s3 0.7856 0.4714 0.5893 0.9133
helix_var_y2020_s3 0.7878 0.4702 0.5889 0.9210
helix_mean_y2018_s2 0.7894 0.4686 0.5881 0.9100
helix_mean_y2022_s2 0.7915 0.4670 0.5874 0.9189
helix_mean_y2020_s2 0.7919 0.4666 0.5872 0.9150
helix_var_y2019_s2 0.7952 0.4654 0.5872 0.9116
helix_mean_y2017_s3 0.7875 0.4678 0.5870 0.9104
helix_var_y2017_s1 0.7863 0.4674 0.5863 0.9103
helix_mean_y2017_s1 0.7839 0.4682 0.5863 0.9109
helix_var_y2017_s3 0.7936 0.4638 0.5855 0.9099
helix_var_y2019_s1 0.7877 0.4654 0.5851 0.9075
helix_var_y2018_s3 0.7870 0.4650 0.5846 0.9107
helix_mean_y2019_s2 0.7850 0.4654 0.5844 0.9108
helix_var_y2017_s2 0.7835 0.4654 0.5840 0.9107
helix_mean_y2019_s1 0.7752 0.4670 0.5829 0.9117
helix_mean_y2018_s3 0.7863 0.4630 0.5829 0.9096
helix_var_y2018_s2 0.7881 0.4622 0.5827 0.9091
helix_var_y2020_s1 0.7954 0.4583 0.5815 0.9119
helix_mean_y2020_s3 0.7905 0.4598 0.5815 0.9213
helix_mean_y2022_s3 0.7827 0.4618 0.5809 0.9237
helix_var_y2018_s1 0.7791 0.4622 0.5802 0.9099
helix_mean_y2017_s2 0.7786 0.4622 0.5801 0.9074
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A.2 Code and Algorithms

A.2.1 Python-based implementation of the HCB Fusion

1

2 import os
3 import numpy as np
4 import glob
5 import re
6 from osgeo import gdal , gdal_array
7 import xarray as xr
8 import rasterio
9 from datetime import datetime , timedelta

10 import math
11

12 % Folders
13 input_folder = ""
14 processed_rasters_folder_name = "_fused"
15

16 # Create the full path for the new output folder within the input
path

17 fused_output_folder = os.path.join(input_folder ,
processed_rasters_folder_name)

18 # Create the fused_output_folder if it doesn ’t exist
19 if not os.path.isdir(fused_output_folder):
20 os.makedirs(fused_output_folder)
21

22

23 def process_raster(input_path , fused_output_path):
24 src = rasterio.open(input_path)
25 dat = src.read()
26

27 # Validate if input raster has 8 bands
28 if dat.shape [0] != 8:
29 raise ValueError(f"The␣input␣raster␣must␣have␣8␣bands ,␣but

␣it␣has␣{dat.shape [0]}␣bands.")
30

31 # Get metadata from the source dataset
32 meta = src.meta
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33

34 ## DEFINITION OF ORTHOGONAL MATRICES
35 C = np.array ([[1,1],[1, -1]]) # KOMPLEX
36 C = np.divide(C, 2)
37

38 Q = np.block ([[C,C],[C, -C]]) # QUATERNION
39 Q = np.divide(Q, 2)
40

41 # Define the "no data" value -> stacked no-data value e.g.
65535 | change if another no-data value was used!

42 no_data_value = 65535
43 # Check if at least one band at a pixel contains a "no data"

value (e.g. 65535)
44 invalid_condition = np.any(dat == no_data_value , axis =0)
45 # Set all bands to 0 for pixels where at least one band

contains a "no data" value
46 for band in range(dat.shape [0]):
47 dat[band , invalid_condition] = 0
48

49 ## Remove spatial dimensions
50 data = np.double(dat.reshape(dat.shape[0], dat.shape [1]* dat.

shape [2])) # 0: 8 Bands from Input; 1: X; 2: Y
51

52 ## SENTINEL -1 & SENTINEL -2 INVALIDS
53 invi = np.where(np.min(data , axis = 1) <1)
54

55 # SENTINEL -1 | K-SAR
56 data_sar = data [0:4, :]
57

58 data_sar[data_sar == 1] = 2 # search indices from INVALIDS
59 data_sar[data_sar == 65535] = 65534
60 data_uint = np.uint16(data_sar)
61 data_double = np.double(data_sar)
62

63 ksar = (data_double [0:4, :] -32768) /32767 # Conversion of
Sentinel -1 from DNs to normalised Kennaughs

64

65 ksar [0,:] = np.divide ((1+ ksar [0,:]), np.dot((1-ksar [0,:]) ,(np.
sqrt (2)))) # Conversion of the normalised intensity to
linear

66
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67 for k in range(1, 4):
68

69 ksar[k,:] = np.multiply(ksar[k,:],ksar [0,:]); #
Conversion of the normalised polarimetric Kennaughs
to linear

70

71

72 # Prepare Export K-SAR
73 ksar_out = np.uint16(np.dot(ksar , 32767 )+ 32768)
74 ksar_out = np.double(ksar_out.reshape(4, dat.shape[1], dat.

shape [2]))
75

76 # Identify the border pixels based on the earlier condition
that input data pixels have a value of 65535 are set to 0

77 input_data = dat[0]
78 # Identify the border pixels based on the earlier condition

that input data pixels have a value of 65535 are set to 0
79 border_condition = (input_data == 0)
80 ksar_out[:, border_condition] = 0
81

82 # Generate output filenames based on input filename (e.g.
include the date)

83 filename_ksar = os.path.basename(input_path)
84 fused_output_filename_ksar = os.path.join(fused_output_path , f

"{os.path.splitext(filename_ksar)[0]} _k_sar.tif")
85

86 # Export fused and fused_n data with 8 bands in metadata
87 meta[’count’] = 4
88 meta[’nodata ’] = 0
89

90 with rasterio.open(fused_output_filename_ksar , ’w’, **meta) as
dst:

91 dst.write(ksar_out)
92

93

94 ## SENTINEL -2 | K-OPT
95 data_opt = data [4:8, :]
96

97 bw = np.array ([66, 36, 31, 106]) # Bandwidth adjustment
98 bwadj = 60 / bw / 10000
99 data_opt = (data_opt.T* bwadj).T
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100

101 kopt = np.zeros(data [4:8 ,:]. shape)
102 kopt = np.dot(Q, data_opt) # Conversion to linear Kennaughs
103

104

105 # Prepare Export K-OPT
106 kopt_out = np.uint16(np.dot(kopt , 32767 )+ 32768)
107 kopt_out = np.double(kopt_out.reshape(4, dat.shape[1], dat.

shape [2]))
108

109 kopt_out[:, border_condition] = 0
110

111 # Generate output filenames based on input filename (e.g.
include the date)

112 filename_kopt = os.path.basename(input_path)
113 fused_output_filename_kopt = os.path.join(fused_output_path , f

"{os.path.splitext(filename_kopt)[0]} _k_opt.tif")
114

115 # Export fused and fused_n data with 8 bands in metadata
116 meta[’count’] = 4
117 meta[’nodata ’] = 0
118

119 with rasterio.open(fused_output_filename_kopt , ’w’, **meta) as
dst:

120 dst.write(kopt_out)
121

122

123 ## DATAFUSION | K-FUS
124 ksar_vstack = np.vstack ([ksar , ksar])
125 kopt_vstack = np.vstack ([kopt , -kopt])
126

127 kfus = np.add(ksar_vstack , kopt_vstack)
128

129 ## NORMALISATION | K-NOR
130 knor = np.zeros(kfus.shape)
131

132 refi = 0.2
133 knor [0,:] = np.divide ((kfus [0,:] - refi), (kfus [0,:] + refi))

# Normalisation of the total intensity
134

135 for k in range (1,8):
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136 knor[k,:] = np.divide(kfus[k,:],kfus [0,:]); #
Normalisation of the poalrimetric -spectrometric
Kennaughs

137

138 ## Preparation for output
139 kndn = np.uint16(np.dot(knor , 32767 )+ 32768)
140 kndn = np.double(kndn.reshape(dat.shape[0], dat.shape[1], dat.

shape [2])) # recreate spatial dimensions
141

142 kndn[:, border_condition] = 0
143

144 # Generate output filenames based on input filename (e.g.
include the date)

145 filename = os.path.basename(input_path)
146 fused_output_filename = os.path.join(fused_output_path , f"{os.

path.splitext(filename)[0]} _fused.tif")
147

148 # Export fused and fused_n data with 8 bands in metadata
149 meta[’count’] = 8
150 meta[’nodata ’] = 0
151

152 with rasterio.open(fused_output_filename , ’w’, **meta) as dst:
153 dst.write(kndn)
154

155 # Loop over each raster file and process it
156 for input_path in input_raster_paths:
157 # Call the process_raster function with the input path and the

shared output folder path
158 process_raster(input_path , fused_output_folder)
159

160 def is_power_of_two(n):
161 return (math.ceil(math.log2(n)) == math.floor(math.log2(n))) #

check for power of 2
162

163 def read_tif_folder(folder_path):
164 """
165 Read multiple .tif files from a folder and returns it as a

DataArray object.
166 """
167 # Get list of all .tif files in folder
168 file_list = glob.glob(folder_path + "/* _fused.tif")
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169

170 # Check if the number of files is a power of two
171 num_files = len(file_list)
172 if not is_power_of_two(num_files):
173 raise ValueError("The␣number␣of␣TIF␣files␣is␣not␣a␣power␣

of␣two.␣Found␣{}␣files.".format(num_files))
174

175 # Get list of dates from file names using regex
176 dates = []
177 for f in file_list:
178 match = re.search(r’(? <=.{0})\d{8}’, f) # date = first 8

letters according to output IMAGEFUSION YYYYMMDD
179 if match:
180 dates.append(datetime.strptime(match.group (), ’%Y%m%d’

).date()) # date format
181

182 # Sort files and dates by date
183 file_list = [f for _, f in sorted(zip(dates , file_list))]
184 dates = sorted(dates)
185

186 # Read in the first .tif file to get metadata
187 with rasterio.open(file_list [0]) as src:
188 transform = src.transform
189 crs = src.crs
190 meta = {
191 ’driver ’: src.driver ,
192 ’height ’: src.height ,
193 ’width ’: src.width ,
194 ’count ’: len(file_list),
195 ’dtype ’: src.dtypes [0],
196 ’nodata ’: src.nodata ,
197 ’crs’: crs ,
198 ’transform ’: transform
199 }
200

201 # Read in .tif files as a list of numpy arrays
202 data_arrays = []
203 for f in file_list:
204 raster = gdal.Open(f)
205 data = raster.ReadAsArray ()
206 data_arrays.append(data)
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207

208 ds = xr.DataArray(np.stack(data_arrays), dims=[’time’, ’band’,
’y’, ’x’], coords ={’time’: dates})

209

210 return ds , meta
211

212 ds , meta = read_tif_folder(fused_output_folder) # execute the
function ’read_tif_folder ’

213

214 length = ds.shape [0]
215 tdim = int(2 ** np.ceil(np.log2(length)))
216 ddim = ds.shape [1]
217

218 T = np.array ([[1, 1], [1, -1]]) / 2
219 while T.shape [0] < tdim:
220 T = np.block ([[T, T], [T, -T]]) / 2
221

222 # Flatten the spatial dimensions (’y’, ’x ’) to a single ’pixels ’
dimension

223 data_reshaped = ds.stack(pixels =(’y’, ’x’))
224 # Convert to numpy
225 data_reshaped_numpy = data_reshaped.values
226

227 # Find and mask no-data values [0]
228 data_reshaped_numpy_zero = (data_reshaped_numpy == 0)
229

230 # INVALIDS
231 data_reshaped_numpy[data_reshaped_numpy == 65535] = 65534
232 data_reshaped_numpy[data_reshaped_numpy < 2] = 2
233

234 data_reshaped_numpy = data_reshaped_numpy.astype(np.float64)
235

236 # Conversion to linear
237 kens = (data_reshaped_numpy - 32768) / 32767
238 # First band linear conversion
239 refi = 0.2
240 kens[:, 0, :] = refi * ((1+ kens[:, 0, :]) / (1-kens[:, 0, :])) #

Conversion of the normalised intensity to linear
241

242 # Polarimetric Kennaughs conversion for remaining bands
243 for k in range(1, 8):
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244 kens[:, k, :] = kens[:, k, :] * kens[:, 0, :] # Conversion
of the normalised polarimetric Kennaughs to linear

245

246 kens_tp = kens.transpose(2, 1, 0)
247

248 kens_tf = np.zeros(kens_tp.shape)
249

250 # Perfrorm temporal fusion
251 for s in range(ddim):
252 kens_tf[:, s, :] = np.dot(kens_tp[:, s, :], T)
253

254 # Perform normalization
255 for z in range(tdim): # z goes from 0 to tdim -1
256 for s in range(ddim): # s goes from 0 to ddim -1
257 if not (z == 0 and s == 0): # Perform normalization

except for the first element
258 kens_tf[:, s, z] = kens_tf[:, s, z] / kens_tf[:, 0, 0]

# Normalisation of the polarimetric -spectrometric
characteristics

259

260 # Normalize the first element
261 kens_tf[:, 0, 0] = (kens_tf[:, 0, 0] - refi) / (kens_tf[:, 0, 0] +

refi)
262

263 # convert back to Uint -16
264 kndn = (kens_tf * 32767 + 32768).astype(np.uint16)
265

266 # set no-data values (e.g. image border to 0)
267 kndn_transposed = kndn.transpose (2, 1, 0)
268 kndn_transposed[data_reshaped_numpy_zero] = 0
269 kndn = kndn_transposed.transpose(2, 1, 0)
270

271 # Restore spatial dimensions (pixel to ’y’, ’x ’)
272 kfus = kndn.reshape(ds.values.shape[2], ds.values.shape[3], kndn.

shape [1] * kndn.shape [2])
273 kfus = np.transpose(kfus , (2, 0, 1))
274

275 # convert to Uint -8
276 masked_kfus = (kfus == 0)
277 kfus_u8 = (kfus.astype(float) -32768) /32767
278 kfus_u8[masked_kfus] = 0
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279 kfus_u8 = np.tanh(np.arctanh(kfus_u8)*5)
280 kfus_u8 = np.round(kfus_u8 *127+128)
281 kfus_u8[masked_kfus] = 0
282 kfus_u8 = np.uint8(kfus_u8)

Listing A.1: Fusion of Sentinel-1/2 raster data to hypercomplex basis representations.
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