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Abstract
For multivariate regularly random vectors of dimension
d, the dependence structure of the extremes is modeled
by the so-called angular measure. When the dimension
d is high, estimating the angular measure is challeng-
ing because of its complexity. In this paper, we use
Principal Component Analysis (PCA) as a method for
dimension reduction and estimate the number of signif-
icant principal components of the empirical covariance
matrix of the angular measure under the assumption
of a spiked covariance structure. Therefore, we develop
Akaike Information Criteria (AIC) and Bayesian Infor-
mation Criteria (BIC) to estimate the location of the
spiked eigenvalue of the covariance matrix, reflecting
the number of significant components, and explore
these information criteria on consistency. On the one
hand, we investigate the case where the dimension d is
fixed, and on the other hand, where the dimension d
converges to ∞ under different high-dimensional sce-
narios. When the dimension d is fixed, we establish that
the AIC is not consistent, whereas the BIC is weakly con-
sistent. In high-dimensional contexts, we utilize meth-
ods from random matrix theory to establish sufficient
conditions ensuring the consistency of the AIC and BIC.
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2 BUTSCH and FASEN-HARTMANN

Finally, the performance of the different information cri-
teria is compared in a simulation study and applied to
high-dimensional precipitation data.
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1 INTRODUCTION

In multivariate extreme value theory, extremes occur per se rarely so that the dimensionality of
the data in fields such as finance, insurance, meteorology, hydrology, and, more broadly, environ-
mental risk assessment often approaches or exceeds the number of extreme observations which
is a big challenge in the statistical analysis of complex and high-dimensional data. Therefore,
a standard approach from multivariate statistics is to apply a dimension reduction method to
reduce the model complexity and circumvent the curse of dimensionality. A very nice overview
of different methods for constructing sparsity in high-dimensional multivariate extremes is given
in Engelke and Ivanovs (2021), including PCA, spherical k-means, graphical models, and sparse
regular variation, to mention a few.

In multivariate statistics, PCA is a widely used method for dimension reduction, data visual-
ization, clustering and feature extraction (Anderson, 2003; Muirhead, 1982). In recent years, the
literature on implementing PCA for high-dimensional and complex data of multivariate extremes
to construct some sparsity in the data has grown rapidly (Chautru, 2015; Clémençon et al., 2024;
Cooley & Thibaud, 2019; Drees & Sabourin, 2021; Rohrbeck & Cooley, 2023; Drees, 2025;
Wan, 2024). A classical concept of multivariate extreme value theory is multivariate regular varia-
tion (Falk, 2019; Resnick, 1987, 2007). A d-dimensional random vector X is multivariate regularly
varyingof index 𝛼 > 0 if there exists a random vector 𝚯 on the unit sphere such that

P

(||X||
t

> r, X||X|| ∈ ⋅||| ||X|| > t
) 
−−→ r−𝛼P(𝚯 ∈ ⋅), t → ∞,

for all r > 0. The dependence structure of the extremes of X is modeled in the spectral vector 𝚯
whose distribution is also called angular measure and its covariance matrix is denoted as 𝚺 =
Cov(𝚯). Drees (2025) and Drees and Sabourin (2021) set the mathematical framework for PCA
for the empirical covariance estimator of 𝚺 by analyzing the squared reconstruction error, the
excess risk and their asymptotic behavior. However, until now, the research on the number of
significant principal components, the so-called dimensionality, in PCA for multivariate extremes,
is limited. In Drees and Sabourin (2021), the dimension was estimated through the examination
of empirical risk plots. An alternative approach is to analyze the scree plot, which is the plot of the
empirical eigenvalues, in search of an “elbow” as a cutoff point, indicating a minimal variation
in the empirical eigenvalues after this point. But a big challenge in extreme value theory is the
choice of the threshold t, which defines the extreme observations as the data whose norm is above
t. Changing this threshold also changes the number of extreme observations and the estimates
of the empirical eigenvalues. Thus, a change of the threshold results in a different scree plot and
possibly also in a different elbow. Given the ambiguity and uncertainty of both procedures, as
well as the need for case-by-case evaluation, a mathematically based approach is necessary. One
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BUTSCH and FASEN-HARTMANN 3

of the few works that developed a statistical method for estimating the dimensionality is given
in Drees (2025), whose method is based on asymptotic results for the reconstruction error of the
projections and is a kind of testing problem with the disadvantage that it depends on different
tuning parameters.

In this paper, we propose information criteria to estimate the number of significant principal
components in multivariate extremes modeled through the covariance matrix 𝚺 of 𝚯. Therefore,
we combine an approach of Bai et al. (2018) and Jiang et al. (2023) from high-dimensional statis-
tics with methods from extreme value theory (de Haan and Ferreira, 2006; Resnick, 1987, 2007)
and random matrix theory (Bai & Silverstein, 2010). We assume a spiked covariance model for the
covariance matrix 𝚺 which goes back to Johnstone (2001) and is widely used in high-dimensional
statistics (Bai et al., 2018; Bai & Yao 2012; Fujikoshi & Sakurai 2016; Jiang et al., 2023; John-
stone & Yang, 2018) with applications in various fields, for example, speech recognition, wireless
communication, and statistical learning as mentioned in Paul (2007).

Spiked Covariance Model: The eigenvalues 𝜆1,…, 𝜆d of 𝚺 satisfy

𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆p∗ > 𝜆p∗+1 = · · · = 𝜆d−1 =∶ 𝜆 > 0. (1.1)

The smallest eigenvalue 𝜆d is not considered to avoid numerical instability as it can be equal
to 0, if, for example, 𝚯 is concentrated on the subspace of the unit sphere with non-negative
values. The main objective of this article is to develop an estimator p̂n for the unknown dimension-
ality parameter p∗ of leading eigenvalues of 𝚺 through information criteria; leading eigenvalues
are defined to be all eigenvalues that are greater than 𝜆. When d is relatively large compared
to p̂n, a useful lower-dimensional representation can be obtained by projecting the data on the
p̂n-dimensional subspace spanned by the empirical eigenvectors of the largest p̂n empirical eigen-
values 𝜆n,1 ≥…≥ 𝜆n,p̂n

. This lower-dimensional representation allows for more extensive and
in-depth analyses of the dependence structure in the extremes.

The estimation of the dimensionality p∗ in PCA is explored in this paper using two information
criteria: the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC).
Similar information criteria were investigated in Fujikoshi and Sakurai (2016) for Gaussian ran-
dom vectors in a large-sample asymptotic framework and in Bai et al. (2018) for general data in the
high-dimensional case. Both criteria are motivated by a Gaussian likelihood function, although
our underlying model for 𝚯 is not Gaussian. Since in a Gaussian spiked covariance model with
kn observations, 2 times the negative log likelihood function can be written as a functional of the
empirical eigenvalues in the form

kn

p∗∑
i=1

log(𝜆n,i) + kn(d − p∗) log

( d∑
j=p∗

𝜆n,j

d − p∗

)
+ kn log

(
kn − 1

kn

)d

+ knd(log(2𝜋) + 1),

both the AIC and BIC are defined as functionals of the empirical eigenvalues 𝜆n,1 ≥…≥ 𝜆n,d. In
order to align with the extreme value setting that follows, where we have n observations but only
kn of these are extreme, we have denoted the number of observations as kn instead of n. In the
classical Gaussian setting, kn = n.

The main goal of this paper is to derive necessary and sufficient conditions for our AIC and BIC
to be consistent. Therefore, we require methods from random matrix theory to derive the asymp-
totic properties of the empirical eigenvalues, which are the basic components of the AIC and BIC.
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4 BUTSCH and FASEN-HARTMANN

For this purpose, we differentiate between two cases when n observations are available and of
these kn are extreme. The first is the classic large sample size and fixed-dimension case, where
n → ∞ and the dimension d are fixed. As is typical for such information criteria, we find that the
BIC is consistent, whereas the AIC is, in general, not consistent. In the second case, we assume
that d = dn also depends on n and dn∕kn → c > 0 as n → ∞. In this case, the empirical eigenvalues
are not consistent estimators for the eigenvalues anymore. For high-dimensional i.i.d. data with
finite fourth moments, it is well-known that the empirical spectral distribution function converges
to the Marčenko–Pastur law (Marčenko & Pastur, 1967), which describes the bulk distribution of
the empirical eigenvalues. The spiked covariance model, introduced by Johnstone (2001), extends
the Marčenko-Pastur framework by adding a small number of spiked eigenvalues corresponding
to relevant dimension for the PCA. In the context of this paper, we derive as well the asymp-
totic properties of the empirical eigenvalues of 𝚺 with the Marčenko–Pastur distribution in the
limit and use it for the investigation of the consistency of our information criteria. To the best
of our knowledge, this paper is the first one to develop consistent information criteria for the
dimensionality p∗ of the PCA in high-dimensional multivariate extremes. The only other infor-
mation criteria of Meyer and Wintenberger (2023) and Butsch and Fasen-Hartmann (2025) use
the concept of sparse regular variation to construct sparsity in the data, in contrast to PCA.

1.1 Structure of the paper

This paper is organized as follows: In Section 2, we properly define the empirical eigenvalues
𝜆n,1,…, 𝜆n,d of 𝚺, which are the main components in the definition of the information criteria.
In addition, we explore the asymptotic properties of the empirical eigenvalues, where in the
high-dimensional case, we restrict our study to a parametric family of distributions, the so-called
directional model. The subjects of Section 3 are the AIC and the BIC for estimating the loca-
tion p∗ of the spiked eigenvalue in the fixed-dimensional case, where Section 4 explores the
high-dimensional case when dn∕kn → c > 0 as n → ∞. We will examine the case 0 < c < 1 and
c > 1 separately in Section 4.1 and Section 4.2, respectively. In both cases, we derive sufficient
criteria for the AIC and the BIC to be weakly consistent. In a simulation study in Section 5,
we compare the different information criteria and apply them to precipitation data in Section 6.
Finally, we state a conclusion in Section 7. The proofs for the results presented in this paper are
provided in the Appendix.

1.2 Notation

Throughout the paper, we use the following notation and assume that all random variables
are defined on the same probability space (Ω, ,P). First of all, ||x|| is the Euclidean norm for
x ∈ Rd and ||A|| is the spectral norm for matrices A ∈ Rd×d. The matrix Id ∈ Rd×d is the identity
matrix, ei is the i-th unit vector with 1 at the i-th entry and 0 else, 0d ∶= (0,…, 0)⊤ ∈ Rd is the
zero vector and 1d ∶= (1,…, 1)⊤ ∈ Rd is the vector containing only 1. For a vector x ∈ Rd, we
write diag(x) ∈ Rd×d for a diagonal matrix with the components of x on the diagonal and for
A = (a(1),…,a(d)) ∈ Rd×d the operator vec(A) ∈ Rd2 stacks the columns of A in a vector such
that vec(A) = (a(1)⊤,…,a(d)⊤)⊤ and 𝜆i(A) denotes the i-th largest eigenvalue of A. If B ∈ Rd×d

and A = B2 ∈ Rd×d then A1∕2 ∶= B denotes the square root of a matrix. A sequence of matrices
A1,A2,…∈ Rd×d with fixed dimension d is denoted by (An)n∈N and if the dimensions d = dn
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BUTSCH and FASEN-HARTMANN 5

depends on n, we write (A(n))n∈N, where A(n) ∈ Rdn×dn . For a univariate distribution function F
the function F← ∶ (0, 1) → R with p → inf{x ∈ R ∶ F(x) ≥ p} is the generalized inverse of F. By
𝛿x, we denote the Dirac measure in x ∈ Rd. Finally,


−−→ is the notation for convergence in distri-

bution,
P

−−→ is the notation for convergence in probability and
P-a.s.
−−−−→ is the notation for almost

sure convergence.

2 ASYMPTOTIC BEHAVIOR OF THE EMPIRICAL
EIGENVALUES OF 𝚺

The information criteria AIC and BIC of this paper are defined by the empirical eigenvalues
𝜆n,1,…, 𝜆n,d of 𝚺. Therefore, in the first step, in Section 2.1, we define and explore the empir-
ical eigenvalues and their asymptotic properties in the fixed-dimensional case, and then, in
Section 2.2, in the high-dimensional case. With the knowledge of the asymptotic behavior of the
empirical eigenvalues, we will be able to derive the asymptotic behavior of the AIC and the BIC
in Section 3 and Section 4. The proofs of this section are moved to Appendix A.

2.1 Fixed-dimensional case

In the case where the dimension d is fixed, we consider the following spiked covariance model.

Model S.

(S1) Let X,X1,X2,…be a sequence of i.i.d. regularly varying random vectors with tail
index 𝛼 > 0 and spectral vector 𝚯.

(S2) The eigenvalues 𝜆1,…, 𝜆d of 𝚺 = Cov(𝚯) satisfy

𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆p∗ > 𝜆p∗+1 = · · · = 𝜆d−1 =∶ 𝜆 > 0.

(S3) Let (kn)n∈N be a sequence in N with kn → ∞ and kn∕n → 0 for n → ∞.
(S4) Suppose (un)n∈N is a positive sequence such that for n → ∞, nP(||X|| >

un)∕kn → 1 and

sup
x∈[ 1

1+𝜏 ,1+𝜏]

√
kn

‖‖‖‖‖‖ n
kn

E

[( vec(XX⊤)||X||2
1

)
1{x||X|| > un}

]
− x𝛼

(
vec(E[𝚯𝚯⊤])

1

)‖‖‖‖‖‖ → 0,

as n → ∞.

The last assumption (S4) is a technical assumption that we require for some proofs (cf.
Remark 1). Uniform convergence is required in order to replace the threshold un with the order
statistic ||X(kn+1,n)||. Ultimately, this condition is an assumption on the slowly varying function of
the tail distribution of ||X||, and it is an assumption on the growth rate of kn.

Under these model assumptions, the empirical estimator for 𝚯 is defined as

𝚯̂n ∶= 1
kn

n∑
i=1

Xi||Xi||1{||Xi|| > ||X(kn+1,n)||},

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.70026 by K

arlsruher Institut Für T
echnologie, W

iley O
nline L

ibrary on [22/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 BUTSCH and FASEN-HARTMANN

and hence, the empirical covariance matrix 𝚺̂n of 𝚺 is

𝚺̂n ∶= 1
kn

n∑
j=1

( Xj||Xj|| − 𝚯̂n

)( Xj||Xj|| − 𝚯̂n

)⊤

1{||Xj|| > ||X(kn+1,n)||} (2.1)

with eigenvalues 𝜆n,1 ≥…≥ 𝜆n,d where n ∈ N is the number of observations and X(kn+1,n) denotes
the observation with the (kn + 1)-th largest norm. Both the AIC and the BIC information crite-
ria for the estimation of p∗ will be defined by the empirical eigenvalues 𝜆n,1,…, 𝜆n,d. Therefore,
it is important to know the asymptotic behavior. We start to derive the asymptotic behavior of
the empirical covariance matrix 𝚺̂n in the next proposition and use this to derive the asymptotic
behavior of the empirical eigenvalues.

Proposition 1. Let Model 1 be given. Then as n → ∞,

√
kn

(
𝚺̂n − 𝚺

) 
−−→S,

where vec(S) follows a centered normal distribution with covariance matrix

Cov
(
vec((𝚯 − E[𝚯])(𝚯 − E[𝚯])⊤)

)
.

Remark 1. In the bivariate case and for h ∶ R2 → R defined as h(x, y) = xy, the asymp-
totic distribution of

1
kn

n∑
i=1

h
(

Xi||Xi||
)
1{||Xi|| > ||X(kn+1,n)||}

was derived in Larsson and Resnick (2012, Theorem 1). The techniques of the proof
can be generalized and applied to vec(𝚺̂n) with the technical assumption (S4), and
therefore, the proof of Proposition 1 is omitted. Note that if ||𝜽|| = 1 for 𝜽 ∈ Rd then||vec(𝜽𝜽⊤)|| = 1 and higher moments of𝚯 exist, since𝚯 is bounded. A complementary
result on the asymptotic behavior of the empirical covariance matrix is also given in
the recent publication Drees (2025, Theorem 2.1).

Now, we are able to present the asymptotic distribution of the empirical eigenvalues.

Theorem 1. Let Model 1 be given.

(a) Then as n → ∞,

(𝜆n,1,…, 𝜆n,d−1) = (𝜆1,…, 𝜆d−1) + OP(1∕
√

kn),

(b) and √
kn

(
(𝜆n,p∗+1,…, 𝜆n,d−1) − 𝜆1d−p∗−1

) 
−−→M,

where the entries of the random vector M ∈ Rd−p∗−1 are the (d − p∗ − 1) largest
eigenvalues of P𝜆SP𝜆 in decreasing order, S is defined as in Proposition 1 and P𝜆 ∈
Rd×d is the orthogonal projection onto the space spanned by the eigenvectors with
respect to the eigenvalue 𝜆 of 𝚺.
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BUTSCH and FASEN-HARTMANN 7

2.2 Directional model in the high-dimensional case

In the high-dimensional setting, where d = dn depends on n and dn → ∞ as n → ∞, we restrict
our studies to a parametric family of distributions, the so-called directional model. A directional
model has the advantage that the underlying random vectors have an independent radial and
directional component, but still the covariance matrix 𝚺(n) has a spiked structure. The explicit
definition of a directional model is as follows:

Directional Model: Suppose for any n ∈ N that

𝚪(n) ∶=

(
𝚪n 0p∗×dn

0dn×p∗ Idn−p∗

)
∈ R

dn×dn , (2.2)

where 𝚪n ∈ Rp∗×p∗ is a covariance matrix with eigenvalues

𝜉n,1 ≥ · · · ≥ 𝜉n,p∗ > 1,

V(n) = (V1,…,Vdn)
⊤ ∈ Rdn is a centered random vector consisting of i.i.d. symmetric components

with variance 1 and finite fourth moment, and Z is a standard Fréchet distributed random variable.
Then the sequence of random vectors (X(n))n∈N with

X(n) ∶= 𝚪(n)1∕2V(n)

||𝚪(n)1∕2V(n)|| ⋅ Z ∈ R
dn ,

follows the so-called directional model.
Due to construction, we see directly that the directional component

𝚯(n) ∶= X(n)||X(n)|| = 𝚪(n)1∕2V(n)

||𝚪(n)1∕2V(n)|| ,
of X(n) is independent of the radial component ||X(n)|| = Z, and additionally, 𝚯(n) is the spectral
vector of the multivariate regularly varying random vector X(n) of index 1. Thus, the dependence
structure of X(n) is completely determined by 𝚯(n).

Remark 2.

(a) In high-dimensional models, it is necessary to specify the model as we have done
with the directional model, because due to the increase in dimensionality, the
empirical covariance matrix and even the covariance matrix do not converge,
and hence it will be impossible to get any kind of limit result without assuming
some structure on the underlying random vector X(n). Our model assumption
results, on the one hand, in a spiked covariance model for Cov(𝚯(n))where p∗, the
location of the smallest eigenvalue bigger than 1, is independent of n and fixed
(see Lemma 1 for more details). On the other hand, it implies the independence
of the directional and the radial part of X(n), so that the order statistic of an i.i.d.
sequence ||X(n)

1 ||, …, ||X(n)
n || is reflected by the order statistic of the i.i.d. sequence

of radial parts Z1,…, Zn.
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8 BUTSCH and FASEN-HARTMANN

(b) The directional model is inspired by several models in the nonextreme world. For
instance, Bai et al. (2018) employed a model of the form 𝚪(n)1∕2V(n), while Jiang
et al. (2023) considered a model of the form V(n)∕||V(n)||1. The first model is not
suitable for statistical inference of extremes because the radial and directional
parts are not independent, whereas the second model is not suitable either, as the
covariance matrix only has eigenvalues equal to 1 if the components Vi are sym-
metric. Therefore, our model X(n) = 𝚪(n)1∕2V(n)∕||𝚪(n)1∕2V(n)|| ⋅ Z combines both
approaches: The factor𝚪(n)1∕2V(n) serves as a latent vector for the directional com-
ponent 𝚯(n), which captures the spiked covariance structure. Normalizing it by||𝚪(n)1∕2V(n)|| ensures that the norm of X(n) is solely determined by Z, facilitating
the calculation of the order statistics of an i.i.d. sequence with distribution ||X(n)

1 ||
by the order statistics of the radial parts.

(c) Although Cov(𝚯(n)) is a spiked covariance model with p∗ leading eigenvalues (see
Lemma 1) the support of the distribution of 𝚯(n) might have a higher dimension
than p∗. However, if 𝜉n,p∗ is large, then the support of 𝚯(n) is more concentrated
on the p∗-dimensional subspace generated by the leading eigenvalues.
One special case for 𝚯(n) is the angular central Gaussian distribution, which is
obtained by using a Gaussian distribution for the i.i.d. entries of V(n). The density
of the angular central Gaussian distribution 𝚯(n) is given by Tyler (1987) as

f𝚯(n) (𝜽|𝚪(n)) = 2𝜋
dn
2

Γ( dn
2
)

det (𝚪(n))−1∕2(𝜽⊤𝚪(n)−1
𝜽)−dn∕2, 𝜽 ∈ {x ∈ R

dn ∶ ||x|| = 1}

where det(⋅) is the determinant and Γ(⋅) is the Gamma function.
(d) Scaling of V(n) has no influence on the distribution of X(n), therefore, setting the

variance of Vi to 1 is no restriction.
(e) The empirical spectral distribution (Bai & Silverstein, 2010, p. 5) of 𝚪(n) is

defined as

F𝚪(n)
(x) = 1

dn

dn∑
i=1

1{𝜉n,i ≤ x}, x ∈ R,

and the limiting spectral distribution (LSD) of 𝚪(n) is the Dirac measure 𝛿1, since

lim
n→∞

F𝚪(n)
(x) = lim

n→∞

1
dn

p∗∑
j=1

1{𝜉n,j ≤ x} +
dn − p∗

dn
1{1 ≤ x} = 1{1 ≤ x}, x ∈ R.

In the following, we denote the covariance matrix of 𝚯(n) as

𝚺(n) ∶= Cov(𝚯(n))

whereas 𝚪(n) is the covariance matrix of the nonstandardized directional component 𝚪(n)1∕2V(n).
Not only 𝚪n has the eigenvalues 𝜉n,1,…, 𝜉n,p∗ but 𝚪(n) has likewise these eigenvalues. Additionally,
𝚪(n) has (dn − p∗)-times the eigenvalue 1, which we denote as well as 𝜉n,p∗+1,…, 𝜉n,dn . We are still in
the setup of the last section because not only the eigenvalues of 𝚪(n) satisfy the spiked covariance
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BUTSCH and FASEN-HARTMANN 9

structure

𝜉n,1 ≥ · · · ≥ 𝜉n,p∗ > 1 = 𝜉n,p∗+1 = · · · = 𝜉n,dn

in (1.1) but as well the eigenvalues of 𝚺(n) satisfy the structure in (1.1) although 𝚺(n) has different
eigenvalue than 𝚪(n).

Lemma 1. Suppose (X(n))n∈N follows the directional model and 𝜆n,1 ≥ · · · ≥ 𝜆n,dn are
the ordered eigenvalues of 𝚺(n) = Cov(𝚯(n)). Then

𝜆n,p∗ > 𝜆n,p∗+1 = · · · = 𝜆n,dn .

Hence, there is a spike after the p∗-th eigenvalue 𝜆n,p∗ of 𝚺(n) and the eigenvalues 𝜆n,p∗+1,

…, 𝜆n,dn−1 are all equal, as required in the definition of the spiked covariance model in (1.1). We
summarize the model as follows:

Model D.

(D1) Let X(n),X(n)
1 ,X(n)

2 ,…,X(n)
n be an i.i.d. sequence of dn-dimensional random vec-

tors satisfying the directional model with E[|V1|4] < ∞.
(D2) The ordered eigenvalues 𝜉n,1 ≥ · · · ≥ 𝜉n,dn of 𝚪(n) in (2.2) satisfy

𝜉n,1 ≥ · · · ≥ 𝜉n,p∗ > 1 = 𝜉n,p∗+1 = · · · = 𝜉n,dn ,

whereas the ordered eigenvalues of 𝚺(n) are denoted by 𝜆n,1 ≥ · · · ≥ 𝜆n,dn .
(D3) Let (kn)n∈N be a sequence in N with kn → ∞, kn∕n → 0 and

dn∕kn → c > 0, as n → ∞.

Remark 3.

(a) The assumption dn∕kn → c > 0 as n → ∞ guarantees that the dimension dn
increases with a rate similar to the number of extremes kn.

(b) Due to Lemma 1, Model 1 is also a spiked covariance model but it is a special
type of spiked covariance model, namely, a directional model, where the dimen-
sionality parameter p∗ is independent of n although the dimension dn depends
on n.

(c) Eigenvalues, which are larger than 1 +
√

c, are called distant spiked eigenvalues,
whereby the asymptotic behavior of the corresponding empirical eigenvalues
changes if they are above or below 1 +

√
c; see the following theorem: Due

to Silverstein and Choi (1995, Theorem 4.1 and Theorem 4.2), the assumption
𝜉n,p∗ > 1 +

√
c is equivalent to 𝜑′

c(𝜉n,p∗ ) > 0 where

𝜑c(x) ∶= x
(

1 + c∫
t

x − t
d𝛿1(t)

)
= x

(
1 + c

x − 1

)
. (2.3)

Analog to (2.1) we define the dn × dn empirical covariance matrix of 𝚺(n) as

𝚺̂
(n)

∶= 1
kn

n∑
j=1

⎛⎜⎜⎝
X(n)

j||X(n)
j || − 𝚯̂(n)

⎞⎟⎟⎠ ⋅
⎛⎜⎜⎝

X(n)
j||X(n)
j || − 𝚯̂(n)

⎞⎟⎟⎠
⊤

1{||X(n)
i || > ||X(n)

(kn+1,n)||}, (2.4)
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10 BUTSCH and FASEN-HARTMANN

with eigenvalues 𝜆n,1 ≥…≥ 𝜆n,dn , where

𝚯̂(n) ∶= 1
kn

n∑
i=1

X(n)
i||X(n)
i ||1{||X(n)

i || > ||X(n)
(kn+1,n)||}.

In contrast to the empirical covariance matrix 𝚺̂n in (2.1) with a fixed dimension d × d,
the dimension of the empirical covariance matrix 𝚺̂

(n)
in (2.4) is dn × dn and hence,

growing in n.
Let us first present the asymptotic distribution of the eigenvalue 𝜆n,1,…, 𝜆n,dn of

𝚺̂
(n)

under the constraint that 𝚪n and its eigenvalues 𝜉n,1,…, 𝜉n,p∗ are converging, and
afterward when 𝜉n,p∗ → ∞.

Theorem 2. Let Model 1 be given. Suppose that 𝚪n → 𝚪 and (𝜉n,1,…, 𝜉n,p∗ ) →
(𝜉1,…, 𝜉p∗ ) as n → ∞ with 𝜉p∗ > 1 +

√
c.

(a) Let i ∈ {1,…, p∗}. Then the asymptotic behavior

dn𝜆n,i
P

−−→𝜑c(𝜉i), as n → ∞

holds, where 𝜑c is defined as in (2.3).
(b) Let (in(𝛼))n∈N be a sequence in N with in(𝛼) > p∗ and in(𝛼)∕dn → 𝛼 ∈ [0, 1] for any

𝛼 ∈ (0, 1). Then

sup
𝛼∈(0,1)

|||dn𝜆n,in(𝛼) − F←
c (1 − 𝛼)||| P

−−→ 0, as n → ∞,

where F←
c is the generalized inverse of Fc with density

fc(x) =
⎧⎪⎨⎪⎩

1
2𝜋xc

√
((1 +

√
c)2 − x)(x − (1 −

√
c)2), x ∈ ((1 −

√
c)2, (1 +

√
c)2),

0, otherwise,

and point mass 1 − 1∕c at 0 if c > 1. In particular, if (qn)n∈N is a sequence in N

with qn = o(dn) and qn > p∗, then dn𝜆n,qn

P

−−→ (1 +
√

c)2.
(c) Suppose 0 < c ≤ 1 and (qn)n∈N is a sequence in N with qn = o(dn) as n → ∞. Then

as n → ∞,

1
dn − qn

dn∑
i=qn+1

dn𝜆n,i
P

−−→ 1.

(d) Suppose c > 1 and (qn)n∈N is a sequence in N with qn = o(dn) as n → ∞. Then as
n → ∞,

1
kn − qn

kn∑
i=qn+1

dn𝜆n,i
P

−−→ c.
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BUTSCH and FASEN-HARTMANN 11

Remark 4. The limiting spectral distribution Fc is called Marčenko–Pastur law after
the authors of Marčenko and Pastur (1967) and plays an important role in random
matrix theory (cf. Bai & Silverstein, 2010). Marčenko and Pastur (1967) first derived for
random matrices with i.i.d. components the asymptotic distribution of the eigenvalues
of the empirical covariance matrix when the sample size and the dimension tend to
infinity, which differs from the classical statistical setting with fixed dimension.

So far, we have assumed that the first p∗ eigenvalues 𝜉n,1,…, 𝜉n,p∗ of 𝚪(n) are bounded.
Alternatively, it is also possible to suppose that 𝜉n,p∗ → ∞ as n → ∞.

Theorem 3. Let Model 1 be given. Suppose 𝜉n,p∗ → ∞ and 𝜉n,1 = o(d1∕2
n ) as n → ∞.

(a) Let i ∈ {1,…, p∗}. Then, the asymptotic behavior

dn𝜆n,i∕𝜉n,i
P

−−→ 1, as n → ∞

holds.
(b) Let (in(𝛼))n∈N be a sequence in N with in(𝛼) > p∗ and in(𝛼)∕dn → 𝛼 ∈ [0, 1] for any

𝛼 ∈ (0, 1). Then

sup
𝛼∈(0,1)

|||dn𝜆n,in(𝛼) − F←
c (1 − 𝛼)||| P

−−→ 0, as n → ∞,

where F←
c is defined as in Theorem 2. In particular, if (qn)n∈N is a sequence in N

with qn = o(dn) and qn > p∗, then dn𝜆n,qn

P

−−→ (1 +
√

c)2.
(c) Suppose 0 < c ≤ 1 and (qn)n∈N is a sequence in N with qn = o(dn) as n → ∞. Then

as n → ∞,

1
dn − qn

dn∑
i=qn+1

dn𝜆n,i
P

−−→ 1.

(d) Suppose c > 1 and (qn)n∈N is a sequence in N with qn = o(dn) as n → ∞. Then as
n → ∞,

1
kn − qn

kn∑
i=qn+1

dn𝜆n,i
P

−−→ c.

(e) Suppose 0 < c < 1 and let i ∈ {1,…, p∗}. Then as n → ∞,

dn𝜆n,i

1
dn−i

∑dn

j=i+1
dn𝜆n,j

P

−−→∞.

Remark 5. The assumption 𝜉n,1 = o(d1∕2
n ) as n → ∞ guarantees that the largest eigen-

value grows sufficiently slowly compared to the dimension dn. When all moments of
V1 exist this assumption can be relaxed to 𝜉n,1 = o(d𝛽

n) as n → ∞ for any 𝛽 < 1 due to
Remark 11.
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12 BUTSCH and FASEN-HARTMANN

3 INFORMATION CRITERIA FOR THE NUMBER OF
PRINCIPAL COMPONENTS IN THE FIXED-DIMENSIONAL
CASE

The aim of the paper is to derive estimators for p∗, the location of the spike in the eigenvalues
of 𝚺 = Cov(𝚯), which defines the dimensionality of the PCA, by exploiting information crite-
ria. In the context of PCA for Gaussian data, an AIC and a BIC was developed in Fujikoshi
and Sakurai (2016) and the consistency in the high-dimensional case for general data was ana-
lyzed in Bai et al. (2018). The AIC (Akaike, 1974) is based on minimizing the Kullback-Leibler
divergence between the true distribution and the model, and the BIC (Schwarz, 1978) maxi-
mizes the posterior probability. In this paper, we adopt these information criteria and study
their statistical properties. We start in this section with the fixed-dimensional case and give the
proper definitions of the information criteria under Model 1. The proofs of this section are moved
to Appendix B.

Definition 1. Suppose 𝜆n,1 ≥…≥ 𝜆n,d−1 are the empirical eigenvalues of 𝚺̂n as
defined in (2.1).

(a) The AIC for the fixed-dimensional case is defined as

AICkn
(p) ∶= kn

p∑
i=1

log(𝜆n,i) + kn(d − 1 − p) log

(
1

d − 1 − p

d−1∑
j=p+1

𝜆n,j

)

+ kn log
(

kn − 1
kn

)d−1

+ kn(d − 1)(log(2𝜋) + 1) + 2(p + 1)(d − p∕2),

for p = 1,…, d − 2 and an estimator for p∗ is p̂n ∶= arg min1≤p≤d−2 AICkn(p).
(b) The BIC for the fixed-dimensional case is defined as

BICkn
(p) ∶= kn

p∑
i=1

log(𝜆n,i) + kn(d − 1 − p) log

(
1

d − 1 − p

d−1∑
j=p+1

𝜆n,j

)

+ kn log
(

kn − 1
kn

)d−1

+ kn(d − 1)(log(2𝜋) + 1) + log(kn)(p + 1)(d − p∕2),

for p = 1,…, d − 2 and an estimator for p∗ is p̂n ∶= arg min1≤p≤d−2 BICkn(p).

Remark 6.

(a) The penalty (p + 1)(d − p∕2) = (p + 1)d − p(1 + p)∕2 arises as it is the number of
parameters that define a (d − 1)-dimensional normal distribution with an arbi-
trary mean vector and covariance matrix following the p-th spiked covariance
model (cf. Fujikoshi & Sakurai, 2016, Section 2). As baseline model, we take a
(d − 1)-dimensional normal distribution instead of a d-dimensional normal dis-
tribution because 𝚯 is a random vector on the unit sphere and hence the first
(d − 1) components already determine the last component. In summary, we use
a modified version of the AIC and the BIC of Fujikoshi and Sakurai (2016) by
replacing d with d − 1 and dropping the last empirical eigenvalue 𝜆n,d.
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BUTSCH and FASEN-HARTMANN 13

(b) The AIC and BIC are invariant to scaling of the eigenvalues. Consequently,
scaling the sample covariance matrix 𝚺̂n, or equivalently the eigenvalues
𝜆n,1,…, 𝜆n,d−1, does not affect the point at which the information criteria achieve
their minimum.

Next, we check the consistency of the AIC and the BIC. First, we present the result for the
BIC, which estimates the true parameter p∗ with a probability converging to 1.

Theorem 4. Let Model 1 be given. Then

lim
n→∞

P(BICkn(p) > BICkn(p
∗)) = 1 for p ≠ p∗.

In contrast to the BIC, the AIC is not a weakly consistent information criterion.

Theorem 5. Let Model 1 be given and M be the limit vector in Theorem 1. Then

lim
n→∞

P(AICkn(p) > AICkn(p
∗)) =

{
P(gp(M) > 0) for p > p∗,

1 for p < p∗,

where

gp(m) ∶= −1
2

p∑
i=p∗+1

m2
i −

1
2(d − 1 − p)

( d−1∑
j=p+1

mj

)2

+ 1
2(d − 1 − p∗)

( d−1∑
j=p∗+1

mj

)2

− (d − p − 2)(d − p + 1) + (d − p∗ − 2)(d − p∗ + 1)

for m = (m1,…,md) ∈ Rd.

Remark 7.

(a) Under some technical assumptions on the distribution of 𝚯, it is possible to state
a density for M (cf. Davis, 1977) and derive that P(gp(M) > 0) < 1. For this paper,
it is sufficient to give an example such that the AIC is not consistent.

(b) Suppose (X(n))n∈N follows the directional model with𝚪(n) ∶= 𝚪 ∶= diag(9, 4, 4, 1),
V(n) ∶= V ∶= (V1,V2,V3,V4)⊤, where Vi ∼  ({−1, 1}) is uniformly distributed,
i = 1,…, 4, Z ∼ Fréechet(1) and the dimension d = 4 is fixed. Then, we have
P(g2(M) < 0) > 0. The detailed calculations have been moved to Appendix B.

The inconsistency of the AIC and the consistency of the BIC are typical for these informa-
tion criteria in the fixed-dimensional case (cf. Burnham & Anderson, 1998, Section 2.8.2) and
Claeskens (2016, Section 2.2.1). In the high-dimensional case, the asymptotic properties differ.

4 INFORMATION CRITERIA FOR THE NUMBER OF
PRINCIPAL COMPONENTS IN THE HIGH-DIMENSIONAL
CASE

The topic in this section is information criteria in the high-dimensional case of Model 1, where
d = dn depends on n and dn∕kn → c > 0 as n → ∞. For the definition of the information criteria
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14 BUTSCH and FASEN-HARTMANN

and the asymptotic properties, we need to differentiate between the cases c < 1 and c > 1.
The reason behind it is that if dn > kn, the last dn − kn empirical eigenvalues of 𝚺̂

(n)
are equal

to zero, that is, 𝜆n,kn+1 = · · · = 𝜆n,dn = 0. Therefore, in Section 4.1, we analyze the informa-
tion criteria for 0 < c < 1 and in Section 4.2 for c > 1. The proofs of this section are provided
in Appendix C.

4.1 Information criteria for 0 < c < 1

In the case 0 < c < 1, the definition of the information criteria are similar to the fixed-dimensional
setting but we would like to point out that in the high-dimensional setting, we do not necessarily
evaluate the information criteria at all possible values 1,…, dn − 1 but rather restrict to 1,…, qn
with qn ≤ dn. The number qn is called the number of candidate dimensions.

Definition 2. Suppose 𝜆n,1 ≥…≥ 𝜆n,dn−1 are the empirical eigenvalues of 𝚺̂
(n)

as
defined in (2.4) and let qn ≤ dn − 2.

(a) The AIC for the high-dimensional case with dn < kn is defined as

AIC◦
kn
(p) ∶=

p∑
i=1

log(𝜆n,i) + (dn − 1 − p) log

(
1

dn − 1 − p

dn−1∑
j=p+1

𝜆n,j

)

+ log
(

kn − 1
kn

)dn−1

+ (dn − 1)(log(2𝜋) + 1) +
(p + 1)(2dn − p)

kn
,

for p = 1,…, dn − 2 and an estimator for p∗ is p̂n ∶= arg min1≤p≤qn AIC◦
kn
(p).

(b) The BIC for the high-dimensional case with dn < kn is defined as

BIC◦
kn
(p) ∶=

p∑
i=1

log(𝜆n,i) + (dn − 1 − p) log

(
1

dn − 1 − p

dn−1∑
j=p+1

𝜆n,j

)

+ log
(

kn − 1
kn

)dn−1

+ (dn − 1)(log(2𝜋) + 1) + log(kn)
(p + 1)(dn − p∕2)

kn
,

for p = 1,…, dn − 2 and an estimator for p∗ is p̂n ∶= arg min1≤p≤qn BIC◦
kn
(p).

In the next theorem, we present sufficient assumptions for the AIC◦ to be weakly consistent,
that is,

lim
n→∞

P

(
arg min

1≤p<qn
AIC◦

kn
(p) = p∗

)
= 1

and afterward for the BIC◦.

Theorem 6. Let Model 1 with 0 < c < 1 be given and let the number qn of candidate
dimensions satisfy qn = o(dn) as n → ∞.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.70026 by K

arlsruher Institut Für T
echnologie, W

iley O
nline L

ibrary on [22/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BUTSCH and FASEN-HARTMANN 15

(a) Suppose 𝚪n → 𝚪 and (𝜉n,1,…, 𝜉n,p∗ ) → (𝜉1,…, 𝜉p∗ ) as n → ∞ with 𝜉p∗ > 1 +
√

c. If
the gap condition

𝜑c(𝜉p∗ ) − 1 − log(𝜑c(𝜉p∗ )) − 2c > 0 (4.1)

with 𝜑c as defined in (2.3) holds, then the AIC◦ is weakly consistent.
(b) Suppose 𝚪n → 𝚪 and (𝜉n,1,…, 𝜉n,p∗ ) → (𝜉1,…, 𝜉p∗ ) as n → ∞ with 𝜉p∗ > 1 +

√
c. If

the gap condition (4.1) does not hold, then

lim
n→∞

P

(
min

1≤p<p∗

{
AIC◦

kn
(p) − AIC◦

kn
(p∗)

}
> 0

)
< 1

and the AIC◦ is not weakly consistent.
(c) Suppose 𝜉n,p∗ → ∞ and 𝜉n,1 = o(d1∕2

n ) as n → ∞. Then the AIC◦ is weakly consis-
tent.

Remark 8.

(a) The division of AIC◦ by kn in contrast to the AIC has no influence in applications,
as it does not affect the location of the minimum of the information criteria for a
fixed sample size n. As a result, in the simulation study, the minima of AIC and
AIC◦ coincide, and we do not need to distinguish between these criteria. The
division by kn in the definition of AIC◦, as in Bai et al. (2018), ensures that the
limit of the information criteria exists.

(b) The gap condition (4.1) was introduced in Bai et al. (2018), and it also guar-
antees that the gap between 𝜉p∗ and the nonleading eigenvalues is sufficiently
large.

In the following theorem, consistency criteria for the BIC◦ are stated, which are slightly
different from the results for the AIC◦.

Theorem 7. Let Model 1 with 0 < c < 1 be given. Suppose that either

𝚪n → 𝚪 such that (𝜉n,1,…, 𝜉n,p∗ ) → (𝜉1,…, 𝜉p∗ ) as n → ∞ with 𝜉p∗ > 1 +
√

c,

or

𝜉n,p∗ → ∞ and 𝜉n,1 = o(d1∕2
n ) as n → ∞.

(a) If 𝜉n,p∗∕ log(dn) → 0 as n → ∞, then

lim
n→∞

P

(
min

1≤p<p∗

{
BIC◦

kn
(p) − BIC◦

kn
(p∗)

}
> 0

)
< 1

and the BIC◦ is not weakly consistent.

(b) If 𝜉n,p∗∕ log(dn) → ∞ as n → ∞, then the BIC◦ is weakly consistent.
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16 BUTSCH and FASEN-HARTMANN

Remark 9.

(a) When the gap condition is fulfilled, the AIC◦ is weakly consistent whereas the
consistency of the BIC◦ depends on the properties of 𝜉n,p∗ . The BIC◦ and, if the
gap condition is violated, the AIC◦, tends to underestimate the number of signifi-
cant principal components. A similar result was also obtained by Bai et al. (2020)
for multivariate linear regressions in high dimensions.

(b) The consistency of the AIC◦ and BIC◦ in the high-dimensional case is opposite
to the fixed-dimensional case. Specifically, while the AIC may not be consistent
and the BIC is consistent in the fixed-dimensional setting, the opposite behavior
is observed in the high-dimensional setting. Moreover, in Theorem 6 (b), we have

lim
n→∞

P

(
min

1≤p<p∗

{
AIC◦

kn
(p) − AIC◦

kn
(p∗)

}
> 0

)
< 1,

which is opposite to the fixed-dimensional case, where the AIC tends to overes-
timate rather than underestimate the number of principal components.

(c) The case c = 1 is excluded from the consideration due to potential complications
with the asymptotic behavior of the eigenvalues (see Bai et al., 2018, Section 4).
While Theorem 2 and Theorem 3 are valid for c = 1, issues arise with the conver-
gence of ratios of quantiles of the Marčenko-Pastur law in Bai et al. (2018, Lemma
2.3) when qn = o(dn) is not assumed. If qn = o(dn) is assumed, then the results for
0 < c < 1 also apply to c = 1. Additionally, the support of the Marčenko-Pastur
law for c = 1 is given by the interval (0, 4), which can lead to empirical eigenval-
ues close to zero, causing numerical problems when calculating the logarithm of
the empirical eigenvalues.

(d) If limn→∞𝜉n,p∗∕ log(dn) ∈ (0,∞) further assumptions are needed to assess the
consistency of the BIC◦.

4.2 Information criteria for c > 1

For the case c > 1, we have to adapt the information criteria. Therefore, we follow the definition
of the AIC and the BIC in Bai et al. (2018), which leads to the following definition.

Definition 3. Suppose 𝜆n,1 ≥…≥ 𝜆n,dn−1 are the empirical eigenvalues of 𝚺̂
(n)

as
defined in (2.4) and let qn ≤ kn − 2.

(a) The AIC for the high-dimensional case with dn > kn is defined as

AIC∗
kn
(p) ∶=

p∑
i=1

log(𝜆n,i) + (kn − 1 − p) log

(
1

kn − 1 − p

kn−1∑
j=p+1

𝜆n,j

)

+ log
(

dn − 1
dn

)kn−1

+ (kn − 1)(log(2𝜋) + 1) +
(p + 1)(2kn − p)

dn
,

for p = 1,…, kn − 2 and an estimator for p∗ is p̂n ∶= arg min1≤p≤qn AIC∗
kn
(p).
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BUTSCH and FASEN-HARTMANN 17

(b) The BIC for the high-dimensional case with dn > kn is defined as

BIC∗
kn
(p) ∶=

p∑
i=1

log(𝜆n,i) + (kn − 1 − p) log

(
1

kn − 1 − p

kn−1∑
j=p+1

𝜆n,j

)

+ log
(

dn − 1
dn

)kn−1

+ (kn − 1)(log(2𝜋) + 1)

+ log(dn)
(p + 1)(kn − p∕2)

dn
,

for p = 1,…, kn − 2 and an estimator for p∗ is p̂n ∶= arg min1≤p≤qn BIC∗
kn
(p).

For the consistency analysis of the AIC∗ and BIC∗, we use the same definition for weakly
consistent as for the AIC◦ in Section 4.1.

Theorem 8. Let Model 1 with c > 1 be given and let the number qn of candidate
dimensions satisfy qn = o(dn) as n → ∞.

(a) Suppose 𝚪n → 𝚪 and (𝜉n,1,…, 𝜉n,p∗ ) → (𝜉1,…, 𝜉p∗ ) as n → ∞ with 𝜉p∗ > 1 +
√

c. If
the modified gap condition

𝜑c(𝜉n,p∗ )
c

− 1 − log
(
𝜑c(𝜉n,p∗ )

c

)
− 2

c
> 0 (4.2)

with 𝜑c as defined in (2.3) holds, then the AIC∗ is weakly consistent.
(b) Suppose 𝚪n → 𝚪 and (𝜉n,1,…, 𝜉n,p∗ ) → (𝜉1,…, 𝜉p∗ ) as n → ∞ with 𝜉p∗ > 1 +

√
c.

If the modified gap condition (4.2) does not hold, then the AIC∗ is not weakly
consistent.

(c) Suppose that 𝜉n,p∗ → ∞ and 𝜉n,1 = o(d1∕2
n ) as n → ∞. Then the AIC∗ is weakly

consistent.

Theorem 9. Let Model 1 with c > 1 be given. Suppose that either

𝚪n → 𝚪 such that (𝜉n,1,…, 𝜉n,p∗ ) → (𝜉1,…, 𝜉p∗ ) as n → ∞with 𝜉p∗ > 1 +
√

c,

or

𝜉n,p∗ → ∞ and 𝜉n,1 = o(d1∕2
n ) as n → ∞.

(a) If 𝜉n,p∗∕ log(dn) → 0 as n → ∞, then the BIC∗ is not weakly consistent.
(b) If 𝜉n,p∗∕ log(dn) → ∞ as n → ∞, then the BIC∗ is weakly consistent.

Remark 10.

(a) The AIC∗ is weakly consistent when the gap condition is fulfilled and not consis-
tent otherwise, whereas the consistency of the BIC∗ depends on the asymptotic
behavior of 𝜉n,p∗ . The results are identical to the case 0 < c < 1.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.70026 by K

arlsruher Institut Für T
echnologie, W

iley O
nline L

ibrary on [22/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



18 BUTSCH and FASEN-HARTMANN

(b) Since the last (dn − kn) eigenvalues of 𝚺̂
(n)

are equal to 0, additional simula-
tion studies showed that if the dimension dn is sufficiently large, setting some
eigenvalues of 𝚺(n) to zero has no big influence on the performance of the AIC∗

and BIC∗. However, when c < 1, the zero eigenvalues do influence the perfor-
mance of the AIC and BIC. In such cases, we recommend first projecting the
data onto a lower-dimensional space to ensure that the zero eigenvalues have no
impact on the analysis.

5 SIMULATION STUDY

In this section, we compare the performance of the different information criteria through a simu-
lation study. In the following, we simulate n times a multivariate regularly varying random vector
X of dimension dn. For the distribution of X, we distinguish three models. First, in Section 5.1, we
use the directional model and in Section 5.2, we extend the directional model by adding an addi-
tional noise term. Finally, the model in Section 5.3 exhibits asymptotic dependence but differs
from the directional model. In all models, we estimate the parameter p∗ by p̂n based on n observa-
tions. We run the simulations with 500 repetitions. Throughout these examples, c = dn∕kn. When
c < 1, we use the AIC and the BIC, and if c > 1 we use the AIC∗ and the BIC∗. If for some c, kn
is larger than n, we set kn = n. The code for the simulations is available at https://gitlab.kit.edu
/projects/178647.

5.1 Directional model

First, we consider the directional model (1) with p∗ = 10 as introduced in Section 2.2. On the
one hand, we investigate the fixed-dimensional case with d = 20 and on the other hand, the
high-dimensional case with d = 100, 200 and 300. For comparison, we run simulations with sam-
ple sizes n = 1000, 5000, 10,000. The matrix 𝚪n from (2.2) is a fixed diagonal matrix and the
eigenvalues 𝜉n,1,…, 𝜉n,p∗ are all equal to 𝜆∗, which is chosen to be larger than 1 and to satisfy the
distant spiked eigenvalue condition 𝜆∗ > 1 +

√
c. The entries of V(n) are i.i.d. standard normally

distributed.
The results for d = 20 are presented in Figure 1. The estimator p̂n of both information crite-

ria gets closer to the true value p∗ = 10 if kn increases. For n = 1000 and kn∕n = 0.01, we have
kn = 10 < d = 20 and therefore we use the AIC∗ and BIC∗. Both information criteria underesti-
mate p∗, which is expected as the number of extreme observations kn equals p∗. In all other cases,
the AIC and BIC are used. For kn∕n ≥ 0.05 and 𝜆∗ = 3, the AIC either estimates p∗ or shows more
outliers above p∗. Overall, the AIC performs better, when 𝜆∗ or kn increases. The BIC estimates the
true value of p∗ or underestimates p∗, where the number of cases with underestimation becomes
smaller when 𝜆∗ or kn grows. This is also intuitive: for a higher value of 𝜆∗, the spike is more pro-
nounced. In comparison to the AIC, the estimates of the BIC have, in general, fewer fluctuations
and outliers.

For the high-dimensional case d ≥ 100, Figure 2 depicts the simulation results. Note that
for 𝜆∗ = 3 the gap condition is satisfied when c < 1, and for 𝜆∗ = 5 and 20 for all c. It should
also be noted that for fixed n and dn but increasing c, the number of extreme observations kn
decreases, leading to a smaller sample size. The AIC and AIC∗ both profit from an increase in
dimension and 𝜆∗. Overall, the estimates of both criteria get better for a larger dimension. In
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F I G U R E 1 Simulations for the directional model with p∗ = 10 and dimension d = 20: From left to the
right the sample size increases from n = 1000, n = 5000 to n = 10, 000. From top to bottom, the value of the
leading eigenvalues increases from 𝜆∗ = 3, 𝜆∗ = 5 to 𝜆∗ = 20. In every subplot the ratio kn∕n increases from left to
right from 0.01, 0.05, 0.1 to 0.15. The box plots show the estimator p̂n for p∗ = 10 of the AIC and BIC.

comparison to Figure 1, we see that the AIC∗ has the tendency to underestimate p∗ for 𝜆∗ ≤ 5,
c = 2 and c = 3, which is consistent with Theorem 8. The estimates p̂n of the AIC and AIC∗ are
closer to p∗ in comparison to the BIC and BIC∗ as soon as the gap condition is fulfilled. When
the gap condition is not satisfied, the information criteria underestimate p∗, where for c ≥ 0.5
the BIC and BIC∗ only give usable results for 𝜆∗ = 20. For c > 1 the BIC∗ shows underestimation
in all cases.

5.2 Directional model with noise

In this example, we consider again the directional model (1) with the same choice of distributions
as in Section 5.1, but additionally, we add noise. As noise, we use the d-dimensional random
vector

𝜺 ∼
||||d

(
0d,

100
d

Id

)||||,
where the absolute value is entry-wise. Due to the scaling of the covariance matrix by 100∕d the
variance of the norm of 𝜺 converges as d → ∞ to 100∕

√
2 (see Lemma 5). Then, we construct the

regularly varying random vector
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20 BUTSCH and FASEN-HARTMANN
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F I G U R E 2 Simulations for the directional model with p∗ = 10 and sample size n = 5000: From left to the
right the dimension increases from d = 100, d = 200 to d = 300. From top to bottom, the value of the leading
eigenvalues increases from 𝜆∗ = 3, 𝜆∗ = 5 to 𝜆∗ = 20. In every subplot, the ratio c = d∕kn increases from left to
right from c = 0.25, c = 0.5, c = 0.75, c = 1.5, c = 2 to c = 3. The box plot shows the estimator p̂n for p∗ = 10 for
the different information criteria.

X(n) = 𝚪(n)1∕2V(n)

||𝚪(n)1∕2V(n)|| ⋅ Z + 𝜺 ∈ R
dn ,

where 𝚪(n),V(n) and Z are defined as in Section 5.1 and 𝜺 is given as above.
The results are shown for d = 20 in Figure 3. Overall, the results are similar to Figure 1, but

with more deviation from the true value p∗. In most cases (e.g., n = 5000, 10, 000, kn∕n ≥ 0.05 and
𝜆∗ ≥ 5), the information criteria estimated p̂n = 11 leading eigenvalues, therefore identifying not
only the 10 leading eigenvalues but also the noise. The noise leads to more fluctuation of the AIC
estimates, especially to overestimation of p∗. For the BIC there are cases (e.g., n = 1000, 𝜆∗ ≤ 5
and kn∕n = 0.15), where the BIC estimates p̂n = 1 instead p∗ = 10 and without noise the estimate
is concentrated near p∗ = 10. The AIC does not show this behavior. The influence of the noise
decreases for larger 𝜆∗, resulting in a larger spike.

Figure 4 provides a visualization of the results in the high-dimensional cases d = 100, 200,
and 300. We see that the effect of the noise is similar to the low-dimensional case. The overall
fluctuation increases compared to the simulation without noise in Figure 2. The informa-
tion criteria estimate the noise as an additional direction, for example, when 𝜆∗ = 20 and
d = 300.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.70026 by K

arlsruher Institut Für T
echnologie, W

iley O
nline L

ibrary on [22/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BUTSCH and FASEN-HARTMANN 21

d � 20

1000

d � 20

5000

d � 20

10000

�
����

3
�
�� ��

5
�
����

20

0.01 0.05 0.1 0.15 0.01 0.05 0.1 0.15 0.01 0.05 0.1 0.15

0

5

10

15

0

5

10

15

0

5

10

15

k/n

AIC AIC* BIC BIC*

F I G U R E 3 Simulations for the noisy directional model with p∗ = 10 and d = 20: From left to the right, the
sample size increases from n = 1000, n = 5000 to n = 10, 000. From top to bottom, the value of the leading
eigenvalues increases from 𝜆∗ = 3, 𝜆∗ = 5 to 𝜆∗ = 20. In every subplot the ratio kn∕n increases from left to right
from 0.01, 0.05, 0.1 to 0.15. The box plots show the estimator p̂n for p∗ = 10 for the AIC and BIC.

5.3 Spiked angular Gaussian model

In this section, we consider the contaminated spiked angular Gaussian model, which can also
be found in Avella-Medina et al. (2025). For 1 ≤ p∗ ≤ d we define the regularly varying random
vector

X = NZ ∈ R
d,

where Z is a univariate standard Fréchet distributed random variable, N follows a d-dimensional
centered normal distribution with covariance matrix

H ∶=
p∗∑

i=1
𝜆iviv⊤i + 𝜆Id,

where vi, i = 1,…, p∗ are orthogonal vectors and 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆p∗ > 𝜆 = · · · = 𝜆 > 0. Note that
the distribution of X differs from the directional model in Section 5.1, since the normal distribu-
tion is not standardized when X is generated. The spectral vector arising from X concentrates on
a p-dimensional subspace and is given by (see Avella-Medina et al., 2025)

P(𝚯 ∈ ⋅) =
E[||N||𝛿N∕||N||(⋅)]

E[||N||] .
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22 BUTSCH and FASEN-HARTMANN
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F I G U R E 4 Simulations for the noisy directional model with p∗ = 10 and sample size n = 5000: From left
to the right, the dimension increases from d = 100, d = 200 to d = 300. From top to bottom, the value of the
leading eigenvalues increases from 𝜆∗ = 3, 𝜆∗ = 5 to 𝜆∗ = 20. In every subplot the ratio c = d∕kn increases from
left to right from c = 0.25, c = 0.5, c = 0.75, c = 1.5, c = 2 to c = 3. The box plot shows the estimator p̂n for p∗ = 10
for the different information criteria.

For the comparison, we run simulations with sample size n = 5000 and dimension d =
100, 300 to 900. The matrix H is fixed for each sample but is initially randomly generated for the
simulation, where the eigenvalues 𝜆1 = · · · = 𝜆10 = 20 are equal to 20, p∗ = 10 and the last eigen-
value 𝜆 varies; we analyze the behavior of the information criteria when 𝜆 gets closer to 0 and thus,
the spiked covariance assumption is closer to being violated. Therefore, we compare the results
for 𝜆 = 0.01, 𝜆 = 0.1, and 𝜆 = 1. The eigenvectors vi are generated with the R package pracma.

The results are illustrated in Figure 5. It is evident that, when the gap is sufficiently large,
then the BIC and BIC∗ are less affected by a small eigenvalue 𝜆 than the AIC and AIC∗. The
smaller 𝜆 is chosen, the larger the overestimation of the AIC and AIC∗ is, whereby for d = 900 and
𝜆 = 0.01, 0.1 the AIC∗ overestimates p∗ more than AIC. When 𝜆 = 1 and d ≥ 300 the performance
of all criteria is nearly identical.

6 APPLICATION TO PRECIPITATION DATA

In this section, the information criteria are applied to precipitation data in Germany taken from
DWD Climate Data Center (CDC) (1951–2022). The data set consists of daily station observa-
tions of the precipitation height for Germany between January 1, 1951 and March 31, 2022 at
d = 500 stations. The stations are marked by black dots in Figure 6. The data is preprocessed
to include only observations from January, February and March, and transformed to standard
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F I G U R E 5 Simulations for the spiked angular Gaussian model with p∗ = 10: From left to the right the
dimension increases from d = 100, d = 300 to d = 900. From top to bottom, the value of 𝜆 increases from 𝜆 = 0.01,
𝜆 = 0.1 to 𝜆 = 1. In every subplot the ratio c = d∕kn increases from left to right from c = 0.25, c = 0.5, c = 0.75,
c = 1.5, c = 2 to c = 3. The box plot is log-scaled and shows the estimator p̂n for the different information criteria.

Fréchet margins. After data cleaning, the resultant dataset contains n = 2546 observations, each
with precipitation records from at least one station. In Figure 6 we see the stations of the
empirical eigenvectors v̂i = (v(i)1 ,…, v(i)d )⊤, where v(i)j ≥ 0.6v(i)(1), i = 1,…, 5, of the 5 largest empirical
eigenvalues 𝜆n,1,…, 𝜆n,5 if kn = 76; the stations of each eigenvector are colored differently.

We consider 1% to 15% of the data as extreme, corresponding to 25 to 382 observations. In
these cases d > kn and therefore, we assume to be in the high-dimensional setting with c > 1 and
apply the AIC∗ and BIC∗ from Definition 3. The number of candidate models qn for the AIC∗ is
chosen as d∕2 = 250 to account for the assumption of Theorem 8.

Figure 7 shows the number of estimated leading eigenvalues p̂n mapped against kn. The esti-
mates using AIC∗ stabilize between kn = 76 and kn = 178, ranging from 24 to 28, before increasing
further. In contrast, the BIC∗ stabilizes for kn between 76 and 229, with values of 5 and 6. Even for
kn ≥ 255, the BIC∗ remains between 7 and 9, whereas the AIC∗ continues to increase. This differ-
ence between the estimates aligns with the heavier penalty imposed by the BIC∗, which leads to
smaller estimates compared to the AIC∗. These estimates reduce the dimensionality of d = 500 by
factors of 20 and 100, respectively. For comparison of these different estimates, the scaled empir-
ical eigenvalues 𝜆n,i∕𝜆n,1, i = 1,…, 75, are plotted in the left picture of Figure 8. At first view, they
seem not to be constant after some point, contradicting the spiked covariance assumption. But in
a spiked covariance model with

𝜆1 > 𝜆2 > · · · > 𝜆p∗ > 𝜆p∗+1 = · · · = 𝜆d−1 =∶ 𝜆 > 0.
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24 BUTSCH and FASEN-HARTMANN

F I G U R E 6 Left figure: Map of Germany with all stations highlighted by black dots. Right figure: Map of
Germany with the most extreme stations of the empirical eigenvectors of the five largest empirical eigenvalues,
colored by eigenvectors.
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F I G U R E 7 The estimated number p̂n of leading eigenvalues determined by AIC∗ and BIC∗ plotted against
kn.

we have

𝜆i − 𝜆i+1

𝜆1
> 0 for i = 1,…, p∗ and 𝜆i − 𝜆i+1

𝜆1
= 0 for i = p∗ + 1,…, d.

Therefore, the scaled increments (𝜆n,i − 𝜆n,i+1)∕𝜆n,1 i = 1,…, 75, of the empirical eigenvalues are
plotted in the right picture of Figure 8. We realize that after some point, these increments are
nearly constant zero, indicating that these are nonspiked eigenvalues. The information criteria

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.70026 by K

arlsruher Institut Für T
echnologie, W

iley O
nline L

ibrary on [22/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BUTSCH and FASEN-HARTMANN 25

0.00

0.25

0.50

0.75

1.00

0 20 40 60

0.0

0.1

0.2

0.3

0 20 40 60

AIC* BIC*

F I G U R E 8 For kn = 76, on the left hand side the scaled ordered empirical eigenvalues 𝜆n,i∕𝜆n,1, i = 1,…, 75
and on the right-hand side the differences of the ordered empirical eigenvalues divided by the value of the largest
eigenvalue (𝜆n,i − 𝜆n,i+1)∕𝜆n,1, i = 1,…, 75 are plotted. The vertical lines indicate the AIC∗ estimator p̂n = 25 and
the BIC∗ estimator p̂n = 5.

seem to estimate the point where these increments are constant zero because in the interval
[5, 24], which is spanned by our estimators, this happens. In the nonextreme value setting,
Hung et al. (2022) analyzed a dataset on the habitual diet of the human gut microbiome,
in which the empirical eigenvalues and the estimators of the information criteria, displayed
in Hung et al. (2022, Fig. 10(c)), have a similar behavior to our empirical eigenvalues in
our Figure 8.

7 CONCLUSION

The paper proposed information criteria based on the AIC and BIC for Gaussian random vec-
tors to detect the number p∗ of significant principal components in multivariate extremes, which
corresponds to the location of the spike in the eigenvalues of the covariance matrix of the
angular measure. Our analysis encompassed both the classical large-sample setting and the
high-dimensional setting, which has become increasingly relevant for extreme value theory in
today’s applications. We established the consistency of the BIC in the large-sample setting and
sufficient criteria for the AIC and the BIC to be consistent in the high-dimensional setting of a
directional model. The results of this paper are in accordance with the results in the nonextreme
world. For the proofs we derived some new results on the asymptotic properties of the empirical
eigenvalues of 𝚺 in both the large-dimensional case, but, in particular, in the high-dimensional
case using methods from random matrix theory. The performance of the information criteria was
further validated through a simulation study and a real-world example.

The case c = 0 is not covered in this paper because we suspect that the AIC and the BIC, as
defined here, are inconsistent even when a type of gap condition like (4.1) is satisfied. Such a
condition relates to the distance between the smallest eigenvalue bigger than 1, denoted by 𝜉n,p∗ ,
and the preceding eigenvalue, denoted by 𝜉n,p∗+1. From a practical point of view, we also believe
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26 BUTSCH and FASEN-HARTMANN

that in the context of multivariate extremes, the case c = 0 is not realistic because, usually, kn, the
number of extremes, is small, and therefore, dn∕kn will be large.

The paper focused on eigenvalues of 𝚺 that satisfy the spiked covariance structure in (1.1),
where 𝜉p∗ is a distant spiked eigenvalue in the sense that 𝜉p∗ > 1 +

√
c and c = limn→∞ dn∕kn > 0.

For applications, these eigenvalue assumptions are restrictive, as we see in our data example in
Figure 8, where the empirical eigenvalues decrease but do not stabilize at some point. Therefore,
it is worth exploring more general eigenvalue structures of the covariance matrix to estimate the
number of significant components of 𝚺, such as, for example, 𝜉p∗ > 1 +

√
c and 𝜉p∗+1 < 1 +

√
c

where all eigenvalues 𝜉j for j = p∗ + 1,…, dn are in a neighborhood of 1 or 0.
Additionally, as a starting point of this line of research on PCA for high-dimensional extremes,

the consistency results of the information criteria were based on the assumption that the under-
lying model is a directional model, similar to multivariate statistics, where the first results were
derived for Gaussian models with a special covariance structure. Of course, it would also be
interesting to explore generalizations or alternatives to the directional model.

Finally, we would like to point out that changing kn changes not only the AIC and the BIC
estimators p̂n, but also the empirical eigenvalues and hence, the scree plot as in Figure 8. There-
fore, the optimal choice of kn is nontrivial in this context, and some further research, as discussed
in Butsch and Fasen-Hartmann (2025) and Meyer and Wintenberger (2023), for the choice of kn
is needed.

CONFLICT OF INTEREST STATEMENT
None of the authors have a conflict of interest to disclose.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in gitlab at https://gitlab.kit
.edu/projects/178647.

ACKNOWLEDGMENT
Open Access funding enabled and organized by Projekt DEAL.

ORCID
Vicky Fasen-Hartmann https://orcid.org/0000-0002-5758-1999

REFERENCES
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control,

AC-19, 716–723.
Anderson, T. W. (2003). An introduction to multivariate statistical analysis (3rd ed.). Wiley-Interscience.
Avella-Medina, M., Davis, R. A., & Samorodnitsky, G. (2025). Insights into kernel PCA with application to

multivariate extremes. SIAM Journal on Mathematics of Data Science, 7(2), 777–801.
Bai, Z., Choi, K. P., & Fujikoshi, Y. (2018). Consistency of AIC and BIC in estimating the number of significant

components in high-dimensional principal component analysis. Annals of Statistics, 46(3), 1050–1076.
Bai, Z., Fujikoshi, Y., & Hu, J. (2020). Strong consistency of the AIC, BIC, Cp and KOO methods in high-dimensional

multivariate linear regression. arXiv: 1810.12609.
Bai, Z., & Silverstein, J. W. (2010). Spectral analysis of large dimensional random matrices. Springer.
Bai, Z., & Yao, J. (2012). On sample eigenvalues in a generalized spiked population model. Journal of Multivariate

Analysis, 106, 167–177.
Bai, Z., & Yin, Y. Q. (1993). Limit of the smallest eigenvalue of a large-dimensional sample covariance matrix. The

Annals of Probability, 21(3), 1275–1294.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.70026 by K

arlsruher Institut Für T
echnologie, W

iley O
nline L

ibrary on [22/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://gitlab.kit.edu/projects/178647
https://gitlab.kit.edu/projects/178647
https://gitlab.kit.edu/projects/178647
https://orcid.org/0000-0002-5758-1999
https://orcid.org/0000-0002-5758-1999


BUTSCH and FASEN-HARTMANN 27

Burnham, K. P., & Anderson, D. R. (1998). Model selection and inference: A practical information theoretic approach.
Springer.

Butsch, L., & Fasen-Hartmann, V. (2025). Information criteria for the number of directions of extremes in
high-dimensional data. arxiv: 2409.10174.

Chautru, E. (2015). Dimension reduction in multivariate extreme value analysis. Electronic Journal of Statistics,
9(1), 383–418.

Claeskens, G. (2016). Statistical model choice. Annual Review of Statistics and Its Application, 3, 233–256.
Clémençon, S., Huet, N., & Sabourin, A. (2024). Regular variation in Hilbert spaces and principal component

analysis for functional extremes. Stochastic Processes and their Applications, 174, 104375.
Cooley, D., & Thibaud, E. (2019). Decompositions of dependence for high-dimensional extremes. Biometrika,

106(3), 587–604.
Dauxois, J., Pousse, A., & Romain, Y. (1982). Asymptotic theory for the principal component analysis of a vector

random function: Some applications to statistical inference. Journal of Multivariate Analysis, 12(1), 136–154.
Davis, A. W. (1977). Asymptotic theory for principal component analysis: Non-normal case. The Australian Journal

of Statistics, 19(3), 206–212.
de Haan, L., & Ferreira, A. (2006). Extreme value theory: An introduction. Springer.
Drees, H. (2025). Asymptotic behavior of principal component projections for multivariate extremes. arxiv:

2503.22296.
Drees, H., & Sabourin, A. (2021). Principal component analysis for multivariate extremes. Electronic Journal of

Statistics, 15(1), 908–943.
DWD-Climate-Data-Center-(CDC). (2022). Daily station observations precipitation height in mm for Germany,

version v21.3, last accessed: May 03, 2023.
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APPENDIX A. PROOFS OF SECTION 2

Proof of Lemma 1. Note that

𝚺(n) = Cov(𝚯(n)) = 𝚪(n)1∕2Cov

(
V(n)

||𝚪(n)1∕2V(n)||
)
𝚪(n)1∕2

.

Utilizing the spectral decomposition 𝚪(n) = W(n)D(n)W(n)⊤, where W(n) =
(W(n)

1 ,…,W(n)
dn
) is a dn × dn-dimensional orthogonal matrix and

D(n) ∶= diag(Dn, Idn−p∗ ) ∶= diag(𝜉n,1,…, 𝜉n,p∗ , 1,…, 1) ∈ R
dn×dn

is a diagonal matrix consisting of the eigenvalues of 𝚪(n), we receive with ||W(n)x|| =||x|| for x ∈ Rdn that

𝚺(n) = Cov

(
𝚪(n)1∕2V(n)

||𝚪(n)1∕2V(n)||
)

= W(n)Cov

(
D(n)1∕2V(n)

||D(n)1∕2V(n)||
)

W(n)⊤.

Hence, the matrices

Cov

(
𝚪(n)1∕2V(n)

||𝚪(n)1∕2V(n)||
)

and Cov

(
D(n)1∕2V(n)

||D(n)1∕2V(n)||
)

are similar and share the same eigenvalues (Horn & Johnson, 2013, Theorem 1.3.22).
Therefore, we assume in the following w.l.o.g. that 𝚪(n) = D(n) and hence,

𝚺(n) = Cov

(
D(n)1∕2V(n)

||D(n)1∕2V(n)||
)

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.70026 by K

arlsruher Institut Für T
echnologie, W

iley O
nline L

ibrary on [22/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1111/sjos.70026
https://doi.org/10.1111/sjos.70026
https://doi.org/10.1111/sjos.70026


BUTSCH and FASEN-HARTMANN 29

is a diagonal matrix. Indeed, since D(n) is a diagonal matrix and V1,…,Vdn are symmet-
ric and i.i.d., the components of D(n)1∕2V(n)∕||D(n)1∕2V(n)|| are uncorrelated. Further,
the eigenvalues of 𝚺(n) are the diagonal entries

diag(𝚺(n))i = E

[
𝜉n,iV 2

i||𝚪(n)1∕2V(n)||2

]
= E

⎡⎢⎢⎣
𝜉n,iV 2

i∑p∗

j=1𝜉n,jV 2
j +

∑dn
j=p∗+1V 2

j

⎤⎥⎥⎦, i = 1,…, p∗

and

diag(𝚺(n))i = diag(𝚺(n))dn = E

⎡⎢⎢⎣
V 2

dn∑p∗

j=1𝜉n,jV 2
j +

∑dn
j=p∗+1V 2

j

⎤⎥⎥⎦, i = p∗ + 1,…, dn,

which has multiplicity (dn − p∗). For 1 ≤ i ≤ p∗ and l > p∗, the function

𝜉V 2
i − V 2

l

𝜉V 2
i +

∑p∗

j1=j≠i𝜉n,jV 2
j +

∑dn
j=p∗+1V 2

j

is a strictly increasing function in 𝜉 since the derivative in 𝜉 is strictly positive. A
conclusion is then for 1 ≤ i ≤ p∗ with 𝜉n,i > 1 and l > p∗ that

diag(𝚺(n))i − diag(𝚺(n))l = E

⎡⎢⎢⎣
𝜉n,iV 2

i − V 2
l∑p∗

j=1𝜉n,p∗V 2
j +

∑dn
j=p∗+1V 2

j

⎤⎥⎥⎦
> E

⎡⎢⎢⎢⎣
V 2

i − V 2
l∑p∗

j=1
j≠i

𝜉n,p∗V 2
j + V 2

i +
∑dn

j=p∗+1
V 2

j

⎤⎥⎥⎥⎦ = 0.

Therefore, we receive that the first p∗ diagonal entries of 𝚺(n) correspond to the p∗

largest eigenvalues of 𝚺(n) namely diag(𝚺(n))1, …, diag(𝚺(n))p∗ and the remaining (dn −
p∗) eigenvalues are strictly smaller and identical to diag(𝚺(n))dn . ▪

Proof of Theorem 1.

(a) We use Theorem A.46 in Bai and Silverstein (2010), which states that for Her-
mitian matrices A,B ∈ Rd×d with eigenvalues 𝜆i(A) and 𝜆i(B), i = 1,…, d, the
inequality

max
i=1,…,d

|𝜆i(A) − 𝜆i(B)| ≤ ||A − B|| (A1)

holds. A conclusion from Proposition 1 is that
√

kn(𝚺̂n − 𝚺) = OP(1) and there-
fore (A1) yields

(𝜆n,1,…, 𝜆n,d−1) = (𝜆1,…, 𝜆d−1) + OP(1∕
√

kn).

(b) The result corresponds to Dauxois et al. (1982, Proposition 8), which is based on
a similar convergence as Proposition 1. ▪
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A.1 Proof of Theorem 2
For the proof of Theorem 2, we combine ideas for the spiked covariance model from Johnstone
and Yang (2018) and for compositional data from Jiang et al. (2023). First, we derive an alternative
representation for 𝚺̂

(n)
in (2.4).

As a consequence of the independence between the radial components Z1,…,Zn and the
directional components X(n)

1 ∕||X(n)
1 ||,…,X(n)

kn
∕||X(n)

kn
||, we obtain

𝚯̂(n) =
n∑

j=1

𝚪(n)1∕2V(n)
j||𝚪(n)1∕2V(n)
j ||1{Zj > Z(kn+1,n)}


=

kn∑
j=1

X(n)
j||X(n)
j || ,

and similarly

𝚺̂(n)′ ∶= 1
kn

kn∑
j=1

⎛⎜⎜⎝
X(n)

j||X(n)
j || − 1

kn

kn∑
i=1

X(n)
i||X(n)
i ||

⎞⎟⎟⎠
⎛⎜⎜⎝

X(n)
j||X(n)
j || − 1

kn

kn∑
i=1

X(n)
i||X(n)
i ||

⎞⎟⎟⎠
⊤


= 𝚺̂

(n)
. (A2)

The eigenvalues of 𝚺̂(n)′ are denoted by 𝜆′n,1 ≥…≥ 𝜆′n,dn
and due to (A2) we receive that

(𝜆′n,1,…, 𝜆′n,dn
)

= (𝜆n,1,…, 𝜆n,dn). (A3)

Thus, to prove Theorem 2, it suffices to derive the asymptotic behavior of (𝜆′n,1,…, 𝜆′n,dn
), which

relies on the spectral analysis of the empirical covariance matrix of 𝚪(n)1∕2V(n). Therefore, assume
that V(n)

1 ,…,V(n)
kn

is an i.i.d. sequence with distribution V(n), that is, V(n)
i ∈ Rdn has i.i.d. entries

with mean 0 and variance 1. Then we define the sequence of matrices

𝚼(n) ∶= 1
kn

kn∑
i=1

(
𝚪(n)1∕2V(n)

i − 1
kn

kn∑
j=1

𝚪(n)1∕2V(n)
j

)
⋅

(
𝚪(n)1∕2V(n)

i − 1
kn

kn∑
j=1

𝚪(n)1∕2V(n)
j

)⊤

, n ∈ N,

(A4)

whose eigenvalues are denoted by 𝜉n,1 > · · · > 𝜉n,dn > 0. The aim now is to write 𝚺̂(n)′ and 𝚼(n) as
matrix products. Therefore, define

 (n) ∶= (V(n)
1 ,…,V(n)

kn
) ∈ R

dn×kn

and

T(n) ∶= diag(||𝚪(n)1∕2V(n)
1 ||−1,…, ||𝚪(n)1∕2V(n)

kn
||−1) ∈ R

kn×kn ,

which allows us to write

⎛⎜⎜⎝
X(n)

1||X(n)
1 || ,…,

X(n)
kn||X(n)
kn

||
⎞⎟⎟⎠
⊤

= 𝚪(n)1∕2 (n)T(n).
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BUTSCH and FASEN-HARTMANN 31

Finally, with the projection matrix P(n) ∶= (Ikn − 1kn 1⊤kn
∕kn), the matrices 𝚺̂(n)′ and𝚼(n), as defined

in (A2) and (A4), can be written as

𝚺̂(n)′ = 1
kn

(𝚪(n)1∕2 (n)T(n)P(n))(𝚪(n)1∕2 (n)T(n)P(n))⊤,

𝚼(n) = 1
kn

(𝚪(n)1∕2 (n)P(n))(𝚪(n)1∕2 (n)P(n))⊤. (A5)

In the following theorem, the connection between the eigenvalues 𝜉n,i and dn𝜆
′
n,i is derived.

Theorem 10. Let Model 1 be given. Suppose that 𝚪n → 𝚪 and (𝜉n,1,…, 𝜉n,p∗ ) →
(𝜉1,…, 𝜉p∗ ) as n → ∞. If 𝜉n,1 ≥…≥ 𝜉n,dn

denote the eigenvalues of 𝚼(n) in (A4) and
𝜆′n,1 ≥…≥ 𝜆′n,dn

denote the eigenvalues of 𝚺̂(n)′ in (A2), then as n → ∞,

max
1≤i≤dn

|||𝜉n,i − dn𝜆
′
n,i
||| P

−−→ 0.

Proof of Theorem 10. Due to Theorem A.46 in Bai and Silverstein (2010) and the
submultiplicativity of the spectral norm, we receive that

max
1≤i≤dn

|||||
√

𝜉n,i −
√

dn𝜆
′
n,i

||||| ≤
‖‖‖‖‖‖
√

dn𝚪(n)1∕2 (n)T(n)P(n)√
kn

− 𝚪(n)1∕2 (n)P(n)√
kn

‖‖‖‖‖‖
≤ ‖‖‖P(n)‖‖‖ ⋅ ‖‖‖√dnT(n) − Ikn

‖‖‖ ⋅
‖‖‖‖‖‖𝚪

(n)1∕2 (n)√
kn

‖‖‖‖‖‖
= ‖‖‖√dnT(n) − Ikn

‖‖‖ ⋅
‖‖‖‖‖‖𝚪

(n)1∕2 (n)√
kn

‖‖‖‖‖‖ =∶ Jn ⋅ Hn, (A6)

where we used that the spectral norm of P(n) is bounded by 1, because the only
eigenvalues of P(n) are 1 and 0 as P(n) is a projection matrix.

Step 1. First, we show that Jn in (A6) converges to 0 in probability. Therefore, we
use the partitioning of the random vector𝚪(n)1∕2V(n)

j into the first p∗ dependent entries
and the remaining dn − p∗ independent entries

𝚪(n)1∕2V(n)
j =

(
𝚪1∕2

n V(n)
j,{1,…,p∗}

V(n)
j,{p∗+1,…,dn}

)
=∶

(
(U (n)

j,1 ,…,U (n)
j,p∗ )⊤

(Vj,(p∗+1),…,Vj,dn)
⊤

)
.

The eigenvalues of (
√

dnT(n) − Ikn) correspond to the diagonal entries. Since we apply
the spectral norm, we receive that

J1∕2
n = ‖‖‖√dnT(n) − Ikn

‖‖‖1∕2
= max

1≤i≤kn

||||||||
√

dn(∑p∗

l=1U (n)
i,l

2
+

∑dn
l=p∗+1V 2

i,l

)1∕2 − 1

||||||||.
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32 BUTSCH and FASEN-HARTMANN

On the one hand, by E[V 2
i,l] = 1, dn∕kn → c > 0 and Bai and Yin (1993, Lemma 2), we

obtain that as n → ∞

max
1≤i≤kn

|||||||
∑dn

l=p∗+1V 2
i,l

dn
− 1

|||||||
P-a.s.
−−−−→ 0.

On the other hand, for 1 ≤ i ≤ kn,

p∗∑
l=1

U (n)
i,l

2
= ||𝚪1∕2

n V(n)
i,{1,…,p∗}||2 ≤ ||𝚪1∕2

n ||2||V(n)
i,{1,…,p∗}||2 = 𝜉n,1

p∗∑
l=1

V 2
i,l.

Since the second moment of V 2
1 exists, we can conclude from Markov’s inequality for

𝜀 > 0

P

(
𝜉n,1

dn
max

1≤i≤kn

||||||
p∗∑

l=1
V 2

i,l

|||||| > 𝜀

)
≤

kn∑
i=1

P

(||||||
p∗∑

l=1
V 2

i,l

|||||| >
dn

𝜉n,1
𝜀

)

= knP

(||||||
p∗∑

l=1
V 2

1,l

|||||| >
dn

𝜉n,1
𝜀

)

≤ kn
𝜉2

n,1

d2
n𝜀

2
E

||||||
p∗∑

l=1
V 2

1,l

||||||
2

, (A7)

where the right-hand side converges to 0 as n → ∞, since kn∕dn → c−1 and 𝜉2
n,1∕dn →

0 as n → ∞. Therefore, we get

max
1≤i≤kn

|||||||
∑p∗

l=1U (n)
i,l

2

dn

||||||| ≤
𝜉n,1

dn
max

1≤i≤kn

||||||
p∗∑

l=1
V 2

i,l

||||||
P

−−→ 0.

To summarize,

max
1≤i≤kn

|||||||
⎛⎜⎜⎝
∑p∗

l=1U (n)
i,l

2
+

∑dn
l=p∗+1V 2

i,l

dn

⎞⎟⎟⎠ − 1
||||||| ≤ max

1≤i≤kn

|||||||
⎛⎜⎜⎝
∑p∗

l=1U (n)
i,l

2

dn

⎞⎟⎟⎠
|||||||

+ max
1≤i≤kn

|||||||
⎛⎜⎜⎝
∑dn

l=p∗+1V 2
i,l

dn

⎞⎟⎟⎠ − 1
|||||||

P

−−→ 0.

Finally, by the mean value theorem the inequality|||1 − 1∕
√

x||| ≤ 2|x − 1| for x >
1
2

holds and hence, as n → ∞,

J1∕2
n = max

1≤i≤kn

|||||||1 −

(
1

dn

p∗∑
l=1

U (n)
i,l

2
+ 1

dn

dn∑
l=p∗+1

V 2
i,l

)−1∕2|||||||
P

−−→ 0. (A8)
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BUTSCH and FASEN-HARTMANN 33

Step 2. Next, we show that Hn in (A6) is P-a.s. bounded. By Yin et al. (1988, Theorem
3.1) (cf. Bai & Silverstein, 2010, Theorem 5.8)

Hn =
‖‖‖‖‖‖𝚪

(n)1∕2 (n)√
kn

‖‖‖‖‖‖ ≤ ‖‖‖𝚪(n)1∕2‖‖‖ ⋅
‖‖‖‖‖‖  (n)√

kn

‖‖‖‖‖‖
2

= 𝜉n,1
𝜆max( (n)⊤ (n))

kn

P-a.s.
−−−−→ 𝜉1

as n → ∞, where 𝜆max(⋅) denotes the largest eigenvalue of a matrix.
Finally, a combination of (A6), Step 1 and Step 2 result in the statement. ▪

Remark 11. For the convergence of the right-hand side of (A7) and hence, (A8) to
zero, it is not necessary that 𝜉n,1 is bounded; it is sufficient that 𝜉n,1 = o(

√
dn) as n →

∞. But if all moments of V1 exist, it is even sufficient to assume that 𝜉n,1 = o(d𝛽
n) as

n → ∞ for some 𝛽 < 1. Indeed, we get analog to (A8) for 𝜀 > 0 that

P

(
𝜉n,1

dn
max

1≤i≤kn

||||||
p∗∑

l=1
V 2

i,l

|||||| > 𝜀

)
≤ kn

𝜉
1∕(1−𝛽)
n,1

d1∕(1−𝛽)
n

𝜀1∕(1−𝛽)
E

⎡⎢⎢⎣
||||||

p∗∑
l=1

V 2
1,l

||||||
1∕(1−𝛽)⎤⎥⎥⎦ → 0

as n → ∞, since kn∕dn → c and 𝜉
(1−𝛽)−1

n,1 ∕d(1−𝛽)−1−1
n = (𝜉n,1∕d𝛽

n)1∕(1−𝛽) = o(1) as n → ∞.

Next, we will repeat results on the asymptotic distribution of the eigenvalues of 𝚼(n), which
are mainly based on Bai and Yao (2012) and Bai et al. (2018).

Lemma 2. Let Model 1 be given. Suppose that 𝚪n → 𝚪 and (𝜉n,1,…, 𝜉n,p∗ ) → (𝜉1,…, 𝜉p∗ )
as n → ∞ with 𝜉p∗ > 1 +

√
c. Then the following statements hold.

(a) If 1 ≤ i ≤ p∗ (i.e., 𝜉i > 1 +
√

c), then 𝜉n,i
P-a.s.
−−−−→𝜑c(𝜉i) as n → ∞.

(b) Define l∗ ∶= 0 if c ≤ 1 and l∗ ∶= 1 − c−1 if c > 1. Then

lim
n→∞

sup
𝛼∈(l∗,1)

|||F𝚼(n) ←(𝛼) − F←
c (𝛼)||| = 0 P-a.s.,

where F𝚼(n) ← is the generalized inverse of the empirical spectral distribution func-
tion of 𝚼(n) and Fc(x) is defined as in Theorem 2.

(c) If in(𝛼) > p∗ (i.e., 𝜉in(𝛼) = 1) and in(𝛼)∕dn → 𝛼 ∈ (0, 1) as n → ∞, then

sup
𝛼∈(0,1)

|||𝜉n,in(𝛼) − F←
c (1 − 𝛼)||| P-a.s.

−−−−→ 0, as n → ∞.

In particular, if (qn)n∈N is a sequence in N with qn = o(dn) as n → ∞ and qn > p∗,
then 𝜉n,qn

P-a.s.
−−−−→ (1 +

√
c)2.

(d) Suppose 0 < c ≤ 1 and (qn)n∈N is a sequence in N with qn = o(dn) as n → ∞. Then
as n → ∞,

1
dn − qn

dn∑
i=qn+1

𝜉n,i
P-a.s.
−−−−→ 1

and for qn > p∗, we receive that 𝜉n,qn

P-a.s.
−−−−→ (1 +

√
c)2.
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34 BUTSCH and FASEN-HARTMANN

(e) Suppose c > 1 and (qn)n∈N is a sequence in N with qn = o(dn) as n → ∞. Then as
n → ∞,

1
kn − qn

kn∑
i=qn+1

𝜉n,i
P-a.s.
−−−−→ c

and for qn > p∗, we receive that 𝜉n,qn

P-a.s.
−−−−→ (1 +

√
c)2.

Proof.

(a) When the eigenvalues (𝜉n,1,…, 𝜉n,p∗ ) = (𝜉1,…, 𝜉p∗ ) do not depend on n, (a) goes
back to Bai and Yao (2012, Theorem 4.1) (cf. Bai et al., 2018, Lemma 2.1). In the
case 𝚪n → 𝚪 and (𝜉n,1,…, 𝜉n,p∗ ) → (𝜉1,…, 𝜉p∗ ) as n → ∞ the assertion also holds
because by Bai and Silverstein (2010, Theorem A.46) and similar arguments as
before it can be shown that

max
1≤i≤p∗

|||||
√

𝜉n,i(𝚪n) −
√

𝜉n,i(𝚪)
||||| ≤ ||𝚪n − 𝚪||‖‖‖‖‖‖  (n)√

kn

‖‖‖‖‖‖||P(n)|| P-a.s.
−−−−→ 0,

where 𝜉n,i(𝚪n) and 𝜉n,i(𝚪) is the empirical eigenvalue when 𝚪n and 𝚪, respectively
is used.

(b) The second part is similar to Bai and Yao (2012, Theorem 4.1); however, the
wording is not clear and therefore we prefer to include the proper statement and
proof here. Note, if dn∕kn → c > 0 as n → ∞, then for almost all 𝜔 ∈ Ω, F𝚼(n) (𝜔)
converges in distribution to Fc (cf. Bai et al., 2018, p. 1054), Silverstein (1995,
Theorem 1.1)). This means that there exists a set Ω0 ∈  with P(Ω0) = 1 and for
any 𝜔 ∈ Ω0 and any continuity point x ∈ R of Fc,

lim
n→∞

F𝚼(n)
(x, 𝜔) = Fc(x).

Since the distribution function Fc is continuous on the interval I ∶=
((1 −

√
c)2, (1 +

√
c)2), a conclusion of Polya’s Theorem is the uniform conver-

gence

lim
n→∞

sup
x∈I

|||F𝚼(n)
(x, 𝜔) − Fc(x)

||| = 0,

which implies by de Haan and Ferreira (2006, Lemma 1.1.1) and again Polya’s
Theorem as well as the uniform convergence of the quantile function

lim
n→∞

sup
𝛼∈(l∗,1)

|||F𝚼(n) ←(𝛼, 𝜔) − F←
c (𝛼)||| = 0.

(c) Since 𝜉n,in(𝛼) = F𝚼(n) ←(1 − in(𝛼)∕dn) the statement follows directly from (b).
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BUTSCH and FASEN-HARTMANN 35

(d) Due to (b), we receive that

1
dn − qn

dn∑
i=qn+1

𝜉n,i =
dn

dn − qn ∫
1− qn

dn

0
F𝚼(n) ←(1 − 𝛼) d𝛼

P-a.s.
−−−−→ 1 ⋅ ∫

1

0
F←

c (1 − 𝛼) d𝛼 = 1.

(e) Similar to (d), we have

1
kn − qn

kn∑
i=qn+1

𝜉n,i =
dn

kn − qn ∫
1− qn

dn

1− kn
dn

F𝚼(n) ←(1 − 𝛼) d𝛼

P-a.s.
−−−−→ c∫

1

1−c−1
F←

c (1 − 𝛼) d𝛼 = c.
▪

Finally, we have all auxiliary results for the proof of Theorem 2.

Proof of Theorem 2 (a). An assumption is that 𝜉i > 1 +
√

c and hence, 𝜉i is a dis-
tant spiked eigenvalue for i = 1,…, p∗. A conclusion of Lemma 2(a) is then that

𝜉n,i
P-a.s.
−−−−→𝜑c(𝜉i). Combined with Theorem 10, we receive that dn𝜆

′
n,i

P

−−→𝜑c(𝜉i) as n →

∞. Due to (A3), the identical distribution of 𝜆′n,i and 𝜆n,i, we obtain the final statement,

dn𝜆n,i
P

−−→𝜑c(𝜉i) as n → ∞.
Similarly as in (a), the statements (b)–(d) are combinations of Lemma 2,

Theorem 10 and (A3). ▪

A.2 Proof of Theorem 3
For the proof of Theorem 3, Theorem 10 is not useful and an adapted version does not exist. There-
fore, the approach is slightly different. First, the next lemma gives the asymptotic distribution of
the eigenvalues from 𝚺̂(n)′, which is then used for the proof of Theorem 3.

Lemma 3. Let Model 1 with 𝜉n,p∗ → ∞ and 𝜉n,1 = o(d1∕2
n ) as n → ∞ be given. If i ∈

{1,…, p∗} then

dn𝜆
′
n,i

𝜉n,i

P

−−→ 1 as n → ∞.

Proof. We proceed similarly to the proof of Bai et al. (2018, Lemma 2.2)
and use the spectral decomposition of 𝚪(n). Let 𝚪(n) = W(n)D(n)W(n)⊤, where
W(n) = (W(n)

1 ,…,W(n)
dn
) is a (dn × dn)-dimensional orthogonal matrix and D(n) ∶=

diag(Dn, Idn−p∗ ) ∶= diag(𝜉n,1,…, 𝜉n,p∗ , 1,…, 1) ∈ Rdn×dn consists of the eigenvalues of
𝚪(n). Then with representation (A5) and

A(n) ∶=  (n)T(n)P(n)T(n) (n)⊤ (A9)

we receive

𝚺̂(n)′ = 1
kn

W(n)D(n)1∕2W(n)⊤ (n)T(n)P(n)T(n) (n)⊤W(n)D(n)1∕2W(n)⊤

= 1
kn

W(n)D(n)1∕2W(n)⊤A(n)W(n)D(n)1∕2W(n)⊤. (A10)

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.70026 by K

arlsruher Institut Für T
echnologie, W

iley O
nline L

ibrary on [22/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



36 BUTSCH and FASEN-HARTMANN

Further, the eigenvectors are partitioned into the first p∗ and the remaining eigen-
vectors by defining W

(n)
= (W(n)

1 ,…,W(n)
p∗ ) in Rdn×p∗and W̃

(n)
= (W(n)

p∗+1,…,W(n)
dn
) in

Rdn×(dn−p∗) such that

𝚺̂(n)′ = 1
kn

W(n)
⎛⎜⎜⎝
D

1∕2
n W

(n)⊤
A(n)W

(n)
D

1∕2
n D

1∕2
n W

(n)⊤
A(n)W̃

(n)

W̃
(n) ⊤

A(n)W
(n)

D
1∕2
n W̃

(n) ⊤
A(n)W̃

(n)

⎞⎟⎟⎠W(n)⊤.

Similarly, we receive with (A5) and

B(n) ∶=  (n)P(n) (n)⊤ (A11)

that

𝚼(n) = 1
kn

W(n)
⎛⎜⎜⎝
D

1∕2
n W

(n)⊤
B(n)W

(n)
D

1∕2
n D

1∕2
n W

(n)⊤
B(n)W̃

(n)

W̃
(n) ⊤

B(n)W
(n)

D
1∕2
n W̃

(n) ⊤
B(n)W̃

(n)

⎞⎟⎟⎠W(n)⊤.

Let i ∈ {1,…, p∗}. The Courant–Fischer min-max theorem (Horn & Johnson, 2013,
Theorem 4.2.6) gives

dn𝜆
′
n,i

𝜉n,i
= dn

𝜉n,i
inf

v1,…,vi−1∈Rdn
sup

w⊥v1,…,vi−1,||w||=1
w⊤𝚺̂(n)′w. (A12)

The proof is split into two parts, wherein we establish that dn𝜆
′
n,i∕𝜉n,i is bounded below

and above by a random variable which converges in probability to 1 as n → ∞.
Step 1: First, we derive a lower bound of (A13), which converges in probability to

1. Therefore, note for arbitrary uj ∈ Rdn with ||uj|| = 1 for 1 ≤ j ≤ p∗, Bai et al. (2018,
Lemma A.2) yields that as n → ∞,

max
1≤j≤p∗

|||||u⊤
j

B(n)

kn
uj − 1

||||| P-a.s.
−−−−→ 0, (A13)

where B(n) is defined as in (A12). Now, let A(n) be defined as in (A10). Then

|||||u⊤
j

(
B(n)

kn
− dnA(n)

kn

)
uj

||||| ≤
‖‖‖‖‖B(n)

kn
− dnA(n)

kn

‖‖‖‖‖
= 1

kn

‖‖‖‖ (n)
(

P(n) − dnT(n)P(n)T(n)⊤
) (n)⊤‖‖‖‖

≤ 1
kn

|| (n)||2||P(n)||(1 + ||√dnT(n)||)‖‖‖√dnT(n) − Ikn

‖‖‖.
On the one hand, Yin et al. (1988, Theorem 3.1) implies that

1
kn

|| (n)||2 =

(
1√
kn

|| (n)||)2
P-a.s.
−−−−→ (1 +

√
c)2.
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BUTSCH and FASEN-HARTMANN 37

On the other hand, since 𝜉n,1 = o(d1∕2
n ) as n → ∞, a conclusion of Remark 11 is that||√dnT(n) − Ikn || P

−−→ 0 and ||√dnT(n)|| ≤ ||Ikn || + ||√dnT(n) − Ikn || P

−−→ 1. In summary,
as n → ∞ |||||u⊤

j

(
B(n)

kn
− dnA(n)

kn

)
uj

||||| ≤
‖‖‖‖‖B(n)

kn
− dnA(n)

kn

‖‖‖‖‖ P

−−→ 0, (A14)

and finally, using (A14) we have as well

max
1≤j≤p∗

|||||u⊤
j

dnA(n)

kn
uj − 1

||||| P

−−→ 0. (A15)

Further, for arbitrary vectors v1,…, vi−1 ∈ Rdn we take a vector wv =
∑i

j=1ajW(n)
j

orthogonal to v1,…, vi−1 with
∑i

j=1a2
j = 1 and hence, ||wv|| = 1. Since W(n) is an

orthogonal matrix, we receive with representation (A10) that

dn

𝜉n,i
w⊤

v 𝚺̂(n)′wv = dn

𝜉n,i

i∑
j,l=1

ajalW(n)
j

⊤
W(n)D(n)1∕2W(n)⊤ A(n)

kn
W(n)D(n)1∕2W(n)⊤W(n)

l

=
i∑

j=1
a2

j
𝜉n,j

𝜉n,i
W(n)

j
⊤ dnA(n)

kn
W(n)

j .

A conclusion of (A12), ||W(n)
j || = 1 and (A15) is then

dn𝜆
′
n,i

𝜉n,i
≥ inf

v1,…,vi−1∈Rdn

dn

𝜉n,i
w⊤

v 𝚺̂(n)′wv ≥ inf
a∈Ri∶

∑i
j=1a2

j =1

i∑
j=1

a2
j W(n)

j
⊤ dnA(n)

kn
W(n)

j

≥ 1 − max
1≤j≤p∗

|||||W(n)
j

⊤ dnA(n)

kn
W(n)

j − 1
||||| P

−−→ 1

as n → ∞.
Step 2: Next, we derive an upper bound for (A12) which converges in probability

to 1. Therefore, note that

dn𝜆
′
n,i

𝜉n,i
= dn

𝜉n,i
inf

v1,…,vi−1∈Rdn
sup

w⊥v1,…,vi−1,||w||=1
w⊤𝚺̂(n)′w ≤ dn

𝜉n,i
sup

w⊥W(n)
1 ,…,W(n)

i−1,||w||=1
w⊤𝚺̂(n)′w.

Since W(n)
l ⊥W(n)

j for l ≠ j we can write a vector w⊥W(n)
1 ,…,W(n)

i−1 with ||w|| = 1 as

w = c2u + (1 − c2)v,

where c ∈ [0, 1],u =
∑p∗

j=iajW(n)
j = W

(n)
a, ||a|| = ∑p∗

j=ia
2
j = 1 and v =

∑dn
j=p∗+1bjW(n)

j =

W̃
(n)

b satisfying
∑dn

j=p∗+1b2
j = 1. Recall that W̃

(n) ⊤
𝚺̂(n)′W̃

(n)
= W̃

(n) ⊤ A(n)

kn
W̃

(n)
. Then,
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38 BUTSCH and FASEN-HARTMANN

dn

𝜉n,i
sup

w⊥W(n)
1 ,…,W(n)

i−1,||w||=1
w⊤𝚺̂(n)′w

≤ dn

𝜉n,i
sup

c∈[0,1]

⎧⎪⎨⎪⎩c2 sup
a∈Rp∗−i+1 ,||a||=1

a⊤W
(n)⊤

𝚺̂(n)′W
(n)

a + (1 − c2) sup
b∈Rd−p∗ ,||b||=1

b⊤W̃
(n) ⊤

𝚺̂(n)′W̃
(n)

b
⎫⎪⎬⎪⎭

≤ sup
c∈[0,1]

⎧⎪⎨⎪⎩c2 sup
a∈Rp∗−i+1 ,||a||=1

p∗∑
j=i

a2
j W(n)

j
⊤ dnA(n)

kn
W(n)

j + (1 − c2) dn

𝜉n,i

‖‖‖‖‖W̃
(n) ⊤ A(n)

kn
W̃

(n)‖‖‖‖‖
⎫⎪⎬⎪⎭.

Note that (A14) and W̃
(n)

being an orthogonal matrix imply that

‖‖‖‖‖W̃
(n) ⊤

(
dnA(n)

kn
− B(n)

kn

)
W̃

(n)‖‖‖‖‖ ≤ ‖‖‖‖‖dnA(n)

kn
− B(n)

kn

‖‖‖‖‖ P

−−→ 0.

We then conclude from ||W̃(n) ⊤ B(n)

kn
W̃

(n)|| P

−−→ (1 +
√

c)2 (cf. proof of Bai et al., 2018,
Lemma 2.2 (i)) and 𝜉n,i → ∞ that as n → ∞,

1
𝜉n,i

‖‖‖‖‖W̃
(n) ⊤ dnA(n)

kn
W̃

(n)‖‖‖‖‖ P

−−→ 0.

Additionally, with W(n)
j

⊤ dnA(n)

kn
W(n)

j
P

−−→ 1 for j = i + 1,…, p∗ by (A15) we get,

dn𝜆
′
n,i

𝜉n,i
≤ dn

𝜉n,i
sup

w⊥W(n)
1 ,…,W(n)

i−1 ,||w||=1

w⊤𝚺̂(n)′w
P

−−→ sup
c∈[0,1]

{
c2 sup

p
ji a

2
j 1=

p∗∑
j=i

a2
j

}
= 1

as n → ∞, which proves Step 2. ▪

Lemma 4. Let Model 1 with 𝜉n,p∗ → ∞ and 𝜉n,1 = o(d1∕2
n ) as n → ∞ be given. Then as

n → ∞,

sup
x∈((1−

√
c)2,(1+

√
c)2)

|||Fdn𝚺̂(n)′ (x) − Fc(x)
||| P

−−→ 0,

where Fdn𝚺̂(n)′ is the empirical spectral distribution function of dn𝚺̂(n)′ and Fc(x) is defined
as in Theorem 2.

Proof. For the ease of notation, we define the interval I ∶= ((1 −
√

c)2, (1 +
√

c)2). Let
FW̃

(n) ⊤
B(n)W̃

(n)
∕kn and FW̃

(n) ⊤
dnA(n)W̃

(n)
∕kn be the empirical spectral distribution function of

W̃
(n) ⊤

B(n)W̃
(n)
∕kn and W̃

(n) ⊤
dnA(n)W̃

(n)
∕kn, respectively. Due to (A14), it follows by

Bai and Silverstein (2010, Theorem A.45) that as n → ∞,

sup
x∈I

|||||FW̃
(n) ⊤ B(n)

kn
W̃

(n)

(x) − FW̃
(n) ⊤ dnA(n)

kn
W̃

(n)

(x)
||||| P

−−→ 0.
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BUTSCH and FASEN-HARTMANN 39

By Silverstein (1995, Theorem 1.1) and Bai and Silverstein (2010, Theorem A.44) com-
bined with rank(I − P(n)) = rank( 1

kn
1kn 1⊤kn

) = 1 there exists a set Ω0 ∈  with P(Ω0) =
1 so that for any 𝜔 ∈ Ω0 the convergence

lim
n→∞

sup
x∈I

||||FW̃
(n) ⊤ B(n)

kn
W̃

(n)

(x, 𝜔) − Fc(x)
|||| = 0

holds which ends in

sup
x∈I

|||||FW̃
(n) ⊤ dnA(n)

kn
W̃

(n)

(x) − Fc(x)
||||| P

−−→ 0. (A16)

Since the matrices W(n)⊤dn𝚺̂(n)′W(n) and dn𝚺̂(n)′ share the same eigenvalues
dn𝜆

′
n,p∗+1,…, dn𝜆

′
n,dn

, we get for any i ∈ {p∗ + 1,…, dn − p∗} with the interlacing
theorem for eigenvalues (Horn & Johnson, 2013, Theorem 4.3.28) that P-a.s.

𝜆i

(
W̃

(n) ⊤ dnA(n)

kn
W̃

(n)
)

≥ 𝜆p∗+i

(
W(n)⊤dn𝚺̂(n)′W(n)

)
= dn𝜆

′
n,p∗+i

≥ 𝜆p∗+i

(
W̃

(n) ⊤ dnA(n)

kn
W̃

(n)
)
. (A17)

Therefore, due to (A16) and (A17),

sup
x∈I

|||Fdn𝚺̂(n)′ (x) − Fc(x)
||| = sup

x∈I

|||||| 1
dn

dn∑
i=1

1
{

dn𝜆
′
n,i ≤ x

}
− Fc(x)

||||||
≤ sup

x∈I

|||||FW̃
(n) ⊤ dnA(n)

kn
W̃

(n)

(x) − Fc(x)
||||| + 4p∗

dn

P

−−→ 0,

which is the statement. ▪

Proof of Theorem 3. The proof of Theorem 3 (a)-(d) follows with the same arguments
as the proof of Lemma 2 using only Lemma 3 and Lemma 4 in combination with
𝚺̂
(n) 

= 𝚺̂(n)′ (cf. (A2)). Only the proof (e) remains. Therefore, note that for i < p∗ the
asymptotic behavior dn𝜆n,i

𝜉n,i

P

−−→ 1 and 1
dn−i

∑dn
j=p∗+1

dn𝜆n,j

𝜉n,i

P

−−→ 0 as n → ∞ hold by (a) and
(d), respectively. Hence,

dn𝜆n,i
1

dn−i

∑dn
j=i+1dn𝜆n,j

=
dn𝜆n,i

1
dn−i

∑p∗

j=i+1dn𝜆n,j + 1
dn−i

∑dn
j=p∗+1dn𝜆n,j

≥
dn𝜆n,i

𝜉n,i

p∗−i
dn−i

dn𝜆n,i

𝜉n,i
+ 1

dn−i

∑dn
j=p∗+1

dn𝜆n,j

𝜉n,i

P

−−→∞,

which shows (e). ▪
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40 BUTSCH and FASEN-HARTMANN

APPENDIX B. PROOFS OF SECTION 3

Proof of Theorem 4. Since by Remark 6 (b) the BIC is scale invariant, we assume
w.l.o.g. that 𝜆 = 1.

Step 1: Suppose p > p∗. Note

log(kn)(p + 1)(d − p∕2) −
log(kn)

2
(d − 1)(d + 2) = −

log(kn)
2

(d − p − 2)(d − p + 1).

By the definition of the BIC we obtain

BICkn(p) − BICkn(p
∗) = kn

p∑
i=p∗+1

log(𝜆n,i) + kn(d − 1 − p) log

(
1

d − 1 − p

d−1∑
j=p+1

𝜆n,j

)

− kn(d − 1 − p∗) log

(
1

d − 1 − p∗

d−1∑
j=p∗+1

𝜆n,j

)
−

log(kn)
2

(d − p − 2)(d − p + 1)

+
log(kn)

2
(d − p∗ − 2)(d − p∗ + 1),

where we used that p > p∗. Inserting the alternative representation

(𝜆n,p∗+1,…, 𝜆n,d)⊤ = 1d−p∗ + 1√
kn

Mn,

where

Mn ∶=
√

kn((𝜆n,p∗+1,…, 𝜆n,d)⊤ − 1d−p∗ ),

gives that

BICkn(p) − BICkn(p
∗) = kn

p∑
i=p∗+1

log

(
1 + 1√

kn

Mn,i

)

+ kn(d − 1 − p) log

(
1 + 1

d − 1 − p

d−1∑
j=p+1

1√
kn

Mn,j

)

− kn(d − 1 − p∗) log

(
1 + 1

d − 1 − p∗

d−1∑
j=p∗+1

1√
kn

Mn,j

)
−

log(kn)
2

(d − p − 2)(d − p + 1)

+
log(kn)

2
(d − p∗ − 2)(d − p∗ + 1).

Furthermore, Mn = OP(1) due to Theorem 1 (b). Additionally, the Taylor expansion
of the logarithm as x → 0,

log(1 + x) = x − 1
2

x2 + O(x3),
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BUTSCH and FASEN-HARTMANN 41

gives that

BICkn(p) − BICkn(p
∗)

= kn

p∑
i=p∗+1

(
1√
kn

Mn,i −
1
2

1
kn

M2
n,i + OP(k−3∕2

n )

)

+ kn

⎛⎜⎜⎝
d−1∑

j=p+1

1√
kn

Mn,j −
1

2(d − 1 − p)

( d−1∑
j=p+1

1√
kn

Mn,j

)2

+ OP(k−3∕2
n )

⎞⎟⎟⎠
− kn

⎛⎜⎜⎝
d−1∑

j=p∗+1

1√
kn

Mn,j −
1

2(d − 1 − p∗)

( d−1∑
j=p∗+1

1√
kn

Mn,j

)2

+ OP(k−3∕2
n )

⎞⎟⎟⎠
−

log(kn)
2

(d − p − 2)(d − p + 1) +
log(kn)

2
(d − p∗ − 2)(d − p∗ + 1)

= −1
2

p∑
i=p∗+1

M2
n,i −

1
2(d − 1 − p)

( d−1∑
j=p+1

Mn,j

)2

+ 1
2(d − 1 − p∗)

( d−1∑
j=p∗+1

Mn,j

)2

−
log(kn)

2
(d − p − 2)(d − p + 1) +

log(kn)
2

(d − p∗ − 2)(d − p∗ + 1)

+ OP(k−1∕2
n ). (B1)

An application of Theorem 1 (b) gives then

− 1
2

p∑
i=p∗+1

M2
n,i −

1
2(d − 1 − p)

( d−1∑
j=p+1

Mn,j

)2

+ 1
2(d − 1 − p∗)

( d−1∑
j=p∗+1

Mn,j

)2


−−→ − 1

2

p∑
i=p∗+1

M2
i −

1
2(d − 1 − p)

( d−1∑
j=p+1

Mj

)2

+ 1
2(d − 1 − p∗)

( d−1∑
j=p∗+1

Mj

)2

.

A division of (B1) by log(kn) provides

BICkn(p) − BICkn (p
∗)

log(kn)
P

−−→ 1
2
(d − p∗ − 2)(d − p∗ + 1) − 1

2
(d − p − 2)(d − p + 1),

which is strictly positive. Hence, the assertion follows.
Step 2: Suppose p < p∗. Again by the definition of the BIC we receive

BICkn(p) − BICkn(p
∗)

kn
= −

p∗∑
j=p+1

log(𝜆n,j) + (d − 1 − p) log

(
1

d − 1 − p

d−1∑
j=p+1

𝜆n,j

)

− (d − 1 − p∗) log

(
1

d − 1 − p∗

d−1∑
j=p∗+1

𝜆n,j

)
− log(kn)

(d − p − 2)(d − p + 1) + (d − p∗ − 2)(d − p∗ + 1)
2kn

.
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42 BUTSCH and FASEN-HARTMANN

Due to Theorem 1 (a), 𝜆n,i
P

−−→ 𝜆i for i = 1,…, d − 1 holds and therefore,

BICkn(p) − BICkn(p
∗)

kn

P

−−→ −
p∗∑

j=p+1
log

(
𝜆j
)
+ (d − 1 − p) log

(
1

d − 1 − p

d−1∑
j=p+1

𝜆j

)

= −
d∑

j=p+1
log

(
𝜆j
)
+ (d − 1 − p) log

(
1

d − 1 − p

d−1∑
j=p+1

𝜆j

)

= − log
⎛⎜⎜⎜⎝

∏d
j=p+1𝜆j(

1
d−1−p

∑d−1
j=p+1𝜆j

)(d−1−p)

⎞⎟⎟⎟⎠ > 0,

due to the inequality of arithmetic and geometric means (Uchida, 2008), which
says that (∏d

j=p+1𝜆j

)1∕(d−1−p)

1
d−1−p

∑d−1
j=p+1𝜆j

< 1.

▪

Proof of Theorem 5. Step 1: Suppose p > p∗. Analogously to (B1), we receive

AICkn(p) − AICkn(p
∗) = −1

2

p∑
i=p∗+1

M2
n,i −

1
2(d − 1 − p)

( d−1∑
j=p+1

Mn,j

)2

+ 1
2(d − 1 − p∗)

( d−1∑
j=p∗+1

Mn,j

)2

− (d − p − 2)(d − p + 1)

+ (d − p∗ − 2)(d − p∗ + 1) + OP(k−1∕2
n ).

Again, an application of Theorem 1 (b) gives then

AICkn(p) − AICkn(p
∗)


−−→ − 1

2

p∑
i=p∗+1

M2
i −

1
2(d − 1 − p)

( d−1∑
j=p+1

Mj

)2

+ 1
2(d − 1 − p∗)

( d−1∑
j=p∗+1

Mj

)2

− (d − p − 2)(d − p + 1) + (d − p∗ − 2)(d − p∗ + 1)

which is the statement.
Step 2: Suppose p < p∗. Since as n → ∞,

AICkn(p) − AICkn(p
∗)

kn
−

BICkn(p) − BICkn (p
∗)

kn

=
2 − log(kn)

kn

(
(d − p∗ − 2)(d − p∗ + 1)

2
−

(d − p − 2)(d − p + 1)
2

)
→ 0,

the statement follows from Theorem 5. ▪
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BUTSCH and FASEN-HARTMANN 43

Proof of Remark 7(b). Under the assumptions, ||𝚪(n)1∕2V(n)|| = ||𝚪V|| =√
9 + 4 + 4 + 1 =

√
18 and 𝚯(n) = 𝚯 = (3V1, 2V2, 2V3, V4)∕

√
18. Further E[𝚯] = 04

and 𝚺 = 𝚪∕18 hold, where the eigenvalues of 𝚺 are (1∕2, 2∕9, 2∕9, 1∕18) and the cor-
responding eigenvectors are the unit vectors e1,…, e4 ∈ R4. Consequently, the spiked
covariance assumption is satisfied with 𝜆 = 2∕9, d = 4 and p∗ = 1.

In the following, we calculate the probability P(g2(M) < 0) by first determining
the asymptotic distribution of M. An application of Theorem 1 (b) yields

√
kn

(
(𝜆n,2, 𝜆n,3) − (𝜆, 𝜆)

) 
−−→ (M2,M3)

in R2 where (M2,M3) is the joint distribution of the decreasingly ordered nonzero
eigenvalues of

P𝜆SP𝜆 =

⎛⎜⎜⎜⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

S11 S12 S13 S14

S12 S22 S23 S24

S13 S23 S33 S34

S14 S24 S34 S44

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

0 0 0 0
0 S22 S23 0
0 S23 S33 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
,

where vec(S) follows a centered multivariate normal distribution with covariance
Cov(vec( (𝚯 − E[𝚯])(𝚯 − E[𝚯])⊤)) and P𝜆 ∶= (e2, e3) ⋅ (e2, e3)⊤ ∈ R4×4 is the projec-
tion onto the 2-dimensional eigenspace of the orthonormal eigenvectors e2, e3 corre-
sponding to 𝜆 = 2∕9. Since VAR(S22) = E[Θ4

2] − (E[Θ2
2])2 = 0 and VAR(S33) = 0, the

distributions of S22 and S33 are degenerate with expectation zero. By the symmetry of
P𝜆SP𝜆, the nonzero eigenvalues of the matrix P𝜆SP𝜆 can be calculated directly and
are given by

M2 = S23 and M3 = −S23.

Next, since (d − p∗ − 2)(d − p∗ + 1) − (d − p − 2)(d − p + 1) = 4 for p = 2 and p∗ = 1,
the inequality g2(M) < 0 is equivalent to

4 <
1
2

M2
2 +

1
2

M2
3 −

1
4
(M2 + M3)2 = S2

23.

Due to the definition of S, the distribution of S23 is Gaussian with expectation zero
and VAR(S23) = E[Θ2

2Θ
2
3] = 1 so that P(g2(M) < 0) > 0. ▪

APPENDIX C. PROOFS OF SECTION 4

Proof of Theorem 6. Note, as stated in Remark 6, the information criteria are scale
invariant and hence

AIC◦
kn
(pn; 𝜆n,1,…, 𝜆n,dn−1) =∶ AIC◦

kn
(pn) = AIC◦

kn
(pn; dn𝜆n,1,…, dn𝜆

′
n,dn−1).

Due to Theorem 2 for (a,b) and Theorem 3 for (c), the proof of Bai et al. (2018,
Theorem 3.1) for 𝜉n,1,…, 𝜉n,dn−1 can be carried out step by step for dn𝜆n,1,…, dn𝜆n,dn−1.
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The only difference is that there we have almost sure convergence and here we have
convergence in probability. ▪

Proof of Theorem 7. Due to the scale invariance of the BIC◦
kn
(p∗), log(dn)∕ log(kn)→ 1

as n → ∞, Theorem 2 and Theorem 3, the proof of Bai et al. (2018, Theorem 3.2) for
𝜉n,1,…, 𝜉n,dn−1 can be carried out step by step for dn𝜆n,1,…, dn𝜆n,dn−1. ▪

Proof of Theorem 8. Due to the scale invariance of the AIC∗, Theorem 2 and
Theorem 3, the proof of Bai et al. (2018, Theorem 3.3) for 𝜉n,1,…, 𝜉n,dn−1 can be carried
out step by step for dn𝜆n,1,…, dn𝜆n,dn−1. ▪

Proof of Theorem 9. Due to the scale invariance of the BIC∗, log(dn)∕ log(kn) → 1 as
n → ∞, Theorem 2 and Theorem 3, the proof of Bai et al. (2018, Theorem 3.4) for
𝜉n,1,…, 𝜉n,dn−1 can be carried out step by step for dn𝜆n,1,…, dn𝜆n,dn−1. ▪

APPENDIX D. PROOFS OF SECTION 5

Lemma 5. Let

𝜺d ∼
||||d

(
0d,

100
d

Id

)||||,
where the absolute value is entry-wise. Then

lim
d→∞

VAR(||𝜺d||) = 100∕
√

2.

Proof. Indeed, since ||𝜺d||2 ∼ 100∕d ⋅ 𝜒2
d , where 𝜒2

d is a chi-square distribution with
d degrees of freedom, the formula for the moments of a chi-square distribution (cf.
Theorem 3.3.2 in Hogg et al., 2005) gives

VAR(||𝜺d||) = E[||𝜺d||2] − (E[||𝜺d||])2 = 100
d

⎛⎜⎜⎝d −

(√
2Γ((d + 1)∕2)
Γ(d∕2)

)2⎞⎟⎟⎠.
Further by Gautschi’s inequality (cf. Elezović et al., 2000, p. 1) we have(

d − 1
2

)1∕2

≤ Γ((d + 1)∕2)
Γ(d∕2)

≤
(

d − 1
2

+ 1
)1∕2

and therefore√
2 ⋅ 100 d − 1

2d
= 100

d

√
2
(

d − d − 1
2

− 1
)

≤ VAR(||𝜺d||) ≤ 100
d

√
2
(

d − d − 1
2

)
=

√
2 ⋅ 100 d + 1

2d
.

Letting d → ∞ on the left and on the right-hand side gives the statement. ▪
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