KIT | KIT-Bibliothek | Impressum | Datenschutz

Towards precision in bolted joint design: a preliminary machine learning-based parameter prediction

Boujnah, Ines 1; Afifi, Nehal ORCID iD icon 2; Wettstein, Andreas 1; Matthiesen, Sven 2
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Produktentwicklung (IPEK), Karlsruher Institut für Technologie (KIT)

Abstract:

Bolted joints are critical for maintaining structural integrity and reliability. Accurate prediction of parameters is essential for optimal performance. Traditional methods often fail to capture the non-linear behavior or require significant computational resources, limiting accuracy and efficiency. This study addresses these limitations by combining empirical data with a feed-forward neural network. Leveraging experimental data and systematic preprocessing, the model effectively captures nonlinear relationships, including rescaling output variables to address scale discrepancies, achieving 95% predictive accuracy. While limited dataset size restricts generalizability, the findings demonstrate the potential of neural networks as a reliable, efficient alternative for bolted joint design. Future work aims to expand datasets and explore hybrid modeling techniques to enhance applicability.


Verlagsausgabe §
DOI: 10.5445/IR/1000185994
Veröffentlicht am 22.10.2025
Originalveröffentlichung
DOI: 10.1017/pds.2025.10335
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktentwicklung (IPEK)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2025
Sprache Englisch
Identifikator ISSN: 2732-527X
KITopen-ID: 1000185994
Erschienen in Proceedings of the Design Society
Verlag Cambridge University Press (CUP)
Band 5
Seiten 3211–3220
Vorab online veröffentlicht am 27.08.2025
Schlagwörter Machine learning, Functional modelling, Artificial intelligence, Data-driven design, Bolted Joints
Nachgewiesen in OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page