KIT | KIT-Bibliothek | Impressum | Datenschutz

Data-Driven Functional Modeling of Corroded Bolted Joints: A Framework for Remanufacturing

Afifi, Nehal ORCID iD icon 1; Kaiser, Jan-Philipp 2; Wettstein, Andreas 1; Lanza, Gisela 2; Matthiesen, Sven 1
1 Institut für Produktentwicklung (IPEK), Karlsruher Institut für Technologie (KIT)
2 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract:

The circular economy, emphasizing resource efficiency and sustainability, highlights remanufacturing as a key aspect. However, ensuring the quality and reliability of remanufactured products is challenging due to uncertainties from prior product usage, especially for bolted joints affected by corrosion. Current methodologies, including analytical, numerical, and empirical models, often fail to meet accuracy and computation time criteria. Addressing this research gap, this paper presents a data-driven framework that couples empirical methods with artificial intelligence techniques to develop a predictive functional model. This model aims to accurately predict key variables such as load-bearing capacity and thread friction coefficient for the remanufactured bolted joints. The proposed framework comprises three main components: development of a test rig and experimental analysis, identification of key variables, and development of a predictive model. The model is based on empirical data from various Design of Experiments (DoE) tests and is refined using machine learning techniques. By embracing a data-driven approach, this research seeks to fill the gaps left by existing modeling techniques, enhancing the reliability of modeling techniques for corroded bolted joints. ... mehr


Originalveröffentlichung
DOI: 10.1115/IMECE2024-145271
Scopus
Zitationen: 1
Zugehörige Institution(en) am KIT Institut für Produktentwicklung (IPEK)
Institut für Produktionstechnik (WBK)
Fakultät für Maschinenbau – Institut für Werkzeugmaschinen und Betriebstechnik (wbk)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 17.11.2024
Sprache Englisch
Identifikator ISBN: 978-0-7918-8869-8
KITopen-ID: 1000185995
Erschienen in Proceedings of the ASME 2024 International Mechanical Engineering Congress and Exposition. Volume 11: Safety Engineering, Risk and Reliability Analysis; Research Posters
Veranstaltung ASME International Mechanical Engineering Congress and Exposition (IMECE 2024), Portland, OR, USA, 17.11.2024 – 21.11.2024
Verlag The American Society of Mechanical Engineers (ASME)
Seiten V011T14A028
Schlagwörter artificial intelligence (AI), bolted joints, corrosion, design of experiments (DoE), machine learning (ML)
Nachgewiesen in OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page