KIT | KIT-Bibliothek | Impressum | Datenschutz

Unlocking superior fracture resistance in micro-ceramics for architected meta-materials via ALD stress engineering

Cheng, Wenjuan; Rossi, Edoardo ; Bauer, Jens 1; Martins, Jose Paolo; Guillemet, Raphael; Pethö, Laszlo; Michler, Johann; Sebastiani, Marco
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Micro-and nano-architected metamaterials exhibit remarkable mechanical properties, particularly damage tolerance from the interplay between design and material properties, yet their fracture mechanisms remain poorly understood. Strategies to tailor toughness in response to the anisotropic stress distributions experienced are lacking. Here, we demonstrate a novel approach to enhance the fracture toughness of micro-trusses by up to 165% via interface engineering, leveraging the high surface-to-volume ratios in these materials. We investigate the role of residual stress induced by Atomic Layer Deposition (ALD) on fracture behavior using cohesive-zone finite element simulations and advanced experimental techniques, including pillar-splitting indentation cracking and advanced residual stress measurements. Experiments were conducted on fused silica micropillars (fabricated via deep reactive ion etching) and glassy carbon micro-pillars (produced via two-photon polymerization and pyrolysis), coated with ALD Al2O3 or ZnO thin films. Our results reveal that median crack geometry combined with tensile residual stress in the coating enhances apparent toughness by inducing beneficial compressive stress in the substrate. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000186096
Veröffentlicht am 27.10.2025
Originalveröffentlichung
DOI: 10.1016/j.actamat.2025.121474
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2025
Sprache Englisch
Identifikator ISSN: 1359-6454
KITopen-ID: 1000186096
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Acta Materialia
Verlag Elsevier
Band 301
Seiten 121474
Nachgewiesen in Dimensions
Web of Science
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page