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ABSTRACT

Deep learning (DL), and especially long short-term memory (LSTM) networks, have shown strong potential for groundwater level (GWL) pre-

diction, but remain limited across sites and at scale due to data scarcity and reliance on sparse, inconsistent, or physically ambiguous static

site descriptors. This study advances prediction in three key ways. First, we present the first global, large-sample evaluation of multi-site

LSTM models trained on over 1,800 wells across nine global regions and evaluate their performance under realistic data constraints.

Second, we show that trainable site embeddings enable the model to learn site-specific behavior directly from time series without relying

on externally defined site descriptors. Third, we analyze the embedding space, revealing emergent spatial and functional patterns that reflect

hydrogeological structure. Embedding-based models achieve strong predictive performance in data-rich regions (median Nash–Sutcliffe effi-

ciency (NSE). 0.7) and remain robust across a combined global dataset. Our findings further challenge the assumption that larger datasets

naturally improve predictions, especially in data-sparse regions. These findings describe both the potential and current limitations of scalable,

entity-aware LSTM models for multi-site GWL prediction under data scarcity, paving the way for truly geographically global DL in hydrology.
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HIGHLIGHTS

• Multi-site long short-term memory models were trained on 1,800 wells across nine global regions for groundwater level prediction.

• Embedding-based models outperformed others and achieved NSE. 0.7 in data-rich regions.

• Global models matched regional performance, showing strong scalability.

• Site embeddings captured meaningful hydrogeological patterns without static input.

• This study shows promise for deep learning under data scarcity and diverse conditions.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Groundwater supplies water for half of the world’s domestic use and 38% of the world’s irrigated land (United Nations 2022).
As part of the hydrological cycle, groundwater influences climate regulation and supports biodiversity and ecosystem services
(Gleeson et al. 2020b). It requires observational data and modeling techniques to gain an understanding of past and future
trends in groundwater recharge and availability (Sanford 2002; Scanlon et al. 2002). Currently, in-situ monitoring provides

the most accurate insights into groundwater availability, with groundwater level (GWL) data being the most commonly avail-
able parameter, enabling groundwater modeling and trend estimations. However, GWL data often remains sparse in many
places (Lall et al. 2020; United Nations 2022), and GWL prediction is further complicated by the inherent complexity of

its dynamics and the numerous components and interactions within groundwater systems, driven by both climate and
human activities (de Graaf et al. 2019; Gleeson et al. 2020a).

Traditional numerical groundwater model approaches approximate or simplify system complexity. Data scarcity, as well as

the time-consuming data standardization and integration process, often limit these approaches. In addition, addressing the
potential impacts of climate change on future groundwater resources generally requires high-quality, long-term, continuous
GWL time series, which are rarely available in many regions worldwide. Therefore, GWLs are often analyzed with a limited
number of representative wells for large regions (e.g., Bloomfield et al. 2019; Cuthbert et al. 2019b). This underscores the

necessity of bridging the gap between the consideration of localized hydro(geo)logic processes based on local data and
large-scale effects, a critical step for water management in practice (United Nations 2022). It calls for innovative approaches
that can effectively scale predictions by integrating diverse datasets and capturing complex interactions across different

spatial scales (Massei et al. 2020; Gleeson et al. 2021). In this regard, data-driven algorithms have significantly advanced,
with deep learning (DL), a subset of machine learning (ML) characterized by its use of layered neural networks, emerging
as a particularly promising tool for accurate GWL prediction with minimal a priori process understanding at well locations

(Rajaee et al. 2019; Tao et al. 2022). Beyond groundwater, DL and other ML approaches have been widely applied in hydrol-
ogy, including rainfall forecasting (Mekanik et al. 2013), streamflow and runoff prediction (Kratzert et al. 2019;
Balacumaresan et al. 2024), water supply and demand modeling (Mohammadi et al. 2024), and water quality monitoring

(Najah et al. 2013), demonstrating their broad potential for capturing nonlinear hydrological processes across domains
(Shen & Lawson 2021).

Early DL efforts in surface and subsurface hydrology were primarily focused on training models for individual wells with
carefully selected high-quality time series (Lee et al. 2019; Solgi et al. 2021; Wunsch et al. 2022; Chidepudi et al. 2023). More

recently, attention has shifted toward multi-site DL architectures – specifically long short-term memory (LSTM) networks
(Hochreiter & Schmidhuber 1997) – trained on large, spatially distributed datasets, enabling simultaneous simulation of
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hydrological behavior across multiple locations. In this context, neural networks are trained on time series from numerous

spatially distributed sites, allowing them to learn shared patterns while retaining local specificity. A key methodological
advancement enabling this transition has been the introduction of entity-aware modeling by Kratzert et al. (2018, 2019),
which equips models with the ability to distinguish between individual sites, or ‘entities’, during training and prediction.

This is typically achieved by providing the models with two types of input: dynamic input features such as meteorological
forcing and static features relevant to describing the physical environment (e.g., hydrogeological and topographic attributes).
These static features are intended to inform the model about inter-site (dis)similarities in hydrological functioning, thereby
guiding the learning of inter-site similarities and improving predictive skill across sites (Kratzert et al. 2019; Heudorfer

et al. 2024; Kunz et al. 2024).
In surface hydrology, standardized datasets like CAMELS (Addor et al. 2017) provide well-tested, spatially aligned static

features that support this modeling paradigm for large spatial scales. In hydrogeology, however, no comparable global or con-

tinental-scale datasets exist. Groundwater systems are characterized by high spatial heterogeneity, limited observability, and
often incomplete or uncertain information regarding aquifer properties, geology, or anthropogenic impacts. Furthermore, the
derivation of static features frequently relies on proximity-based proxies (e.g., using nearby or regional land cover, soil, or

topography to represent local hydrogeological properties) or aggregated statistics within spatial buffer zones around wells
to capture environmental characteristics, which can introduce additional uncertainty due to spatial heterogeneity and limited
representativity of these features for subsurface dynamics (Haaf et al. 2023; Heudorfer et al. 2024; Kunz et al. 2024). Recent
studies have begun to question the added value of such static features in LSTM-based hydrological models. Evidence from
both groundwater and surface water applications shows that time series-derived statistics, random site identifiers, or one-
hot encoded site labels can yield predictive performance comparable to that of models using detailed environmental descrip-
tors, implying that static features often function more as unique entity identifiers than as meaningful representations of

hydrological or hydrogeological processes (Li et al. 2022; Heudorfer et al. 2024, 2025). Under this assumption, their absence
may not substantially reduce model performance, raising the question of whether models can instead learn site-specific be-
havior and shared representations directly from time series.

In this study, we follow this assumption and investigate whether LSTM-based multi-site GWL prediction models can learn
site-specific behavior and potentially shared representations directly from dynamic inputs and site identifiers, without relying
on predefined static descriptors. Our approach is based on modeling and evaluating GWL time series from over 1,800 wells

across five continents, encompassing a wide range of data quality, record lengths, and sampling frequencies. In contrast to
prior studies using high-quality or pre-screened time series (e.g., Heudorfer et al. 2024; Chidepudi et al. 2025), we evaluate
the performance of the model under realistic global conditions. This includes time series of varying completeness, noise
levels, and hydrological contexts, which are conditions commonly encountered in practice but rarely modeled. In doing

so, we address a critical question: whether multi-site LSTM models can offer accurate, scalable solutions for groundwater
prediction under data scarcity conditions – both in terms of time series and static feature availability.

As part of our investigation, we implement embeddings as a form of self-learned entity identification, assigning each moni-

toring well a trainable numerical vector that is updated during model training. This enables the model to capture site-specific
behavior and inter-site similarity without requiring explicit physical metadata – unlike one-hot encodings, which treat all sites
as unrelated (e.g., Chidepudi et al. 2025). The approach is comparable to the process by which embeddings in natural

language processing capture contextual relationships between words (Akbik et al. 2018; Wang et al. 2020). A similar mech-
anism was applied by Clark et al. (2022) in a multi-site DeepAR model for GWL prediction, where categorical embeddings
were used to represent individual wells. However, the structure and meaning of the learned embeddings were not analyzed or

interpreted by the authors. In contrast, our study introduces an explicit, trainable embedding layer and evaluates its utility for
site differentiation and the internal representation of cross-site variability under data-scarce conditions. This assessment is
inherently constrained by the same lack of independent physical descriptors that initially motivated the use of embeddings
over predefined static features. Recent work in surface hydrology has demonstrated that learned internal representations

in DL models can capture meaningful hydrological behavior. Lees et al. (2021) suggested that LSTM cell states can reflect
soil moisture dynamics, while Bassi et al. (2024) used autoencoder-derived landscape fingerprints to explain streamflow varia-
bility. Botterill & McMillan (2023) developed convolutional encoders to derive low-dimensional hydrological ‘signatures’
from time series, offering an interpretable alternative to classical catchment descriptors.

The rest of this paper is organized as follows. Section 2 introduces the data and well locations. Section 3 outlines our meth-
odology, employing LSTMs in an explorative approach, where we use this model architecture with either only dynamic input
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data or with additional site identifiers provided through one-hot encoding or trainable embeddings. Section 4 presents the

results and discussion, focusing on both model performance and the explanation of embeddings to address our study objec-
tives and their broader implications. Finally, Section 5 concludes the study by outlining its contributions to advancing large-
scale environmental modeling using DL, particularly in the context of data scarcity.

2. STUDY AREA AND DATA

Precipitation and temperature data were used as dynamic input features and originated from the ERA5 dataset, the fifth gen-
eration of atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts (ECMWF) (Hersbach et al.
2020). Additionally, we used a third dynamic input feature that has proven valuable for GWL prediction in previous studies
(Wunsch et al. 2021; Heudorfer et al. 2024). This feature involved fitting an annual sinusoidal curve to the temperature data,
which potentially allows the model to capture seasonal patterns more effectively.

The modeled GWL time series originate from a global dataset previously compiled to investigate coastal GWL dynamics
within 100 km of the shoreline (Nolte et al. 2024). The corresponding data sources are listed in Supplementary Table S1. For
this study, we selected shallow wells with a maximum median water table depth of 20 m to focus on near-surface conditions.
The CoastalDEM elevation dataset (Kulp & Strauss 2019) was used to convert groundwater elevation data to GWLs refer-

enced to the ground surface (if applicable), ensuring a consistent reference point across the dataset. Wells in semi-
confined or confined aquifers were excluded when such information was available, as these aquifers often show different
hydraulic behaviors compared with unconfined aquifers. This makes their dynamic features less comparable. From this

data pool, GWL time series were selected and preprocessed. We chose GWL data from the period 1979 to 2018, because
this period aligns with the ERA5 climate data availability. The time series were aggregated to a weekly resolution and clus-
tered with respect to geographic regions, creating nine datasets with over 200 GWL time series each.

The following selection criteria were applied, with specific values provided in Table 1: (1) the time series length in years
(length); (2) the proportion of the data points in weekly aggregated time series that have GWL data available (availability);
and (3) the maximum duration, measured in weeks, during which no GWL data is available (gap length). In some cases, the

data selection includes only segments of the time series, i.e., not necessarily the complete time series. Time series selected
using these criteria then underwent visual screening – a step still recommended to identify and minimize errors, noise,
and anthropogenic effects inside the GWL data (Barthel et al. 2022; Retike et al. 2022). We found data points significantly
outside the value range (outliers), sudden sharp level changes over specific periods, and patterns potentially indicative of well

pumping or anthropogenic recharge events, guided by our own experience and illustrative examples shown in Retike et al.
(2022). Additionally, we applied Density-Based Spatial Clustering of Applications with Noise (DBSCAN; Ester et al. 1996)
to rescue a few GWL time series by grouping similar data points into clusters based on their spatial and temporal proximity

while identifying and excluding outliers. Finally, we randomly selected 200 time series for each refined regional dataset to
ensure equally large sample sizes for every region and enhance comparability. These 200 wells were drawn from initial
regional pools ranging from approximately 280 to 480 wells each. Geographical delineations of focus regions are illustrated

in Figure 1(a). Based on the nine focus regions (Figure 1(b)), the full, global dataset includes 1,800 GWL time series that vary
in data quantity, including periods covered, data gaps, and overall sample sizes (Supplementary Figure S1). The focus regions
also span a wide range of climatic conditions (Supplementary Figure S2). Rather than being perfectly physiographically

Table 1 | Criteria for selecting GWL time series per focus region (Figure 1(a)), including length, availability, and gap length; median GWL per
focus region

Criteria AU DE FR IN NA-N NA-S NL Scand ZA

1. Length (years) 9 15 6a 15 12 12 12a 15 4

2. Availability (%) 40 90 90 7 20 20 90 20 20

3. Gap length (weeks) 12 2 2 26 12 12 2 12 12

GWL median �5.0 �4.5 �5.0 �4.6 �3.8 �3.2 �1.2 �2.9 �4.5

More information on the selection criteria is available in Section 2.
aInitially, about 30 GWL time series with a minimum length of 15 years were chosen. Afterward, the remaining GWL time series that met the length criteria given in the table were

randomly selected from the dataset.
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representative or reflective of typical data quality and quantity in their respective regions, the datasets reflect the diverse and

often inconsistent nature of global groundwater datasets.
For the modeling task, each time series dataset at the selected well locations (GWL, precipitation, temperature, and temp-

erature seasonality) was standardized to have a mean of zero and a standard deviation of one, addressing discrepancies in

scale and the impact of errors across different time series. This standardization, which was fitted on the training portion
of the data (Section 3.2), ensures that no single series dominates the learning process.

3. METHODS

3.1. Scope and experimental design

This study focuses on model development for GWL prediction by evaluating the utility of LSTM-based models in data-scarce,
large-scale settings, where both time series and static input features are limited. While benchmarking against process-based,

hybrid, or alternative ML models remains an active area of research, previous studies have demonstrated that LSTMs often
outperform (i.e., achieve higher predictive accuracy, such as improved NSE or lower RMSE when capturing observed ground-
water or streamflow dynamics) or complement traditional approaches for hydrological time series prediction and are widely

regarded as a state-of-the-art, well-established DL method in this context (Kratzert et al. 2019; Rajaee et al. 2019; Lees et al.
2021). Building on these findings, we assess LSTM performance under real-world data constraints and investigate the role of
trainable embeddings for representing site-specific behavior.

Figure 1 | (a) Maps of the focus regions highlighting the geographical areas from which regional datasets have been sourced for this study:
Australia (AU); Germany (DE); France (FR); India (IN); North America – North (NA-N); North America – South (NA-S); Netherlands (NL); Scan-
dinavia containing Denmark and Sweden (Scand); South Africa (ZA). Colored dots represent the well locations of selected GWL time series. (b)
Overview of model application scale. Each of the nine regional datasets contains 200 wells, collectively forming the full, global dataset used in
the global modeling experiments (n¼ 1,800).
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We tested the prediction capabilities of LSTM models within a multi-site architecture in a series of experiments using two

setups (Figure 2): a standard configuration (Section 3.2) and a modified setup with embeddings (Section 3.3). Both model
setups were applied to each of the individual regional datasets as well as to the global dataset (Figure 1(b)). In the standard
setup, we used either exclusively dynamic input data comprising precipitation and temperature (nofeat models), or static site

information in the form of one-hot-encoded well identifiers (ohe features; ohefeat models), which were concatenated to the
dynamic inputs at each time step. This allows the multi-site model to distinguish between different groundwater dynamics of
individual wells. Similarly, the embedding-based setup (embeddings models) uses well identifiers to generate trainable vectors
that serve as compact representations of individual wells. In this setup, the matrix from the static input has the dimension of

the embeddings instead of being multiplied by the number of wells as in the ohefeat models. To explore how embeddings
might enhance model interpretability and capture spatially meaningful patterns, we applied dimensionality reduction and
clustering techniques (Section 3.3). We structured the evaluation of our modeling framework around three main analytical

dimensions:

1. Model architecture comparison (Sections 4.1 and 4.2): We compared LSTM models with different site representations (no

static input, one-hot encoding, and embeddings) across all regional datasets. This allowed us to assess the role of dynamic
and site-specific information and evaluate the benefit of embedding-based representations.

2. Training data scope, quantity, and cross-regional learning (Sections 4.3 and 4.4): We evaluated the effects of data volume,

diversity, and completeness by comparing regionally trained models among themselves and against a global model, asses-
sing trade-offs between specialization and the integration of diverse datasets under varying data conditions.

3. Learned spatial representations and internal differentiation across sites (Section 4.5): We analyzed the embedding space to
assess whether site-specific groundwater dynamics were internally encoded in a way that reflects spatial and functional

similarity, enabling differentiation across wells without predefined static features.

3.2. Standard LSTM

We applied a standard LSTM architecture in which all input features enter the model through the same input layer (Hochrei-
ter & Schmidhuber 1997). For more details on the model architecture, we refer to previous applications, such as those by
Kratzert et al. (2019). The LSTM model was trained to make predictions at a weekly resolution.

Figure 2 | LSTM network model structure for the three model variants: nofeat (three dynamic input features only), ohefeat (dynamic inputs
combined with one-hot encoded well identifiers i, increasing the input dimensionality by n, the number of individual GWL time series), and
embeddings (dynamic input features combined with seven learned well embeddings e).
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In the multi-site architecture, data from multiple wells were combined: all time series were aligned chronologically, and

missing values were retained as gaps. Each GWL time series was split into three set parts for training (70%), validation
(15%), and testing (15%). We then pooled the sequences from all wells into three ‘buckets’ (train/stop/test). We conducted
a preliminary investigation on the validation set to assess general performance and examine the effects of the newly

implemented embeddings (Section 3.3).
Model performance was primarily assessed using the Nash–Sutcliffe efficiency (NSE), calculated on the independent test

set to ensure unbiased evaluation. High NSE values (closer to 1) indicate strong agreement between model predictions and
observed variance during the test period. In addition to NSE, we computed several complementary metrics: Kling–Gupta effi-

ciency (KGE), coefficient of determination (R2), bias, mean squared error (MSE), and root mean squared error (RMSE).
However, NSE was used as the primary performance indicator throughout the analysis.

LSTM networks are designed to capture long-term dependencies in time series data through memory cells and gating mech-

anisms, making them well-suited for irregular temporal patterns. However, they do not inherently handle missing values,
which must be explicitly addressed during training. We applied a masking technique that excluded missing values from
error calculations, ensuring that training and evaluation focused only on available data points.

The MSE served as the loss function in the training process. During training, the Adam optimizer (Kingma & Ba 2014) was
used to find the set of weights that minimizes this loss. The standardization of the GWL time series (see Section 2) prevented
specific wells, particularly those with larger fluctuations or inherently larger values, from disproportionately influencing the

loss. Standardization also aligned the scale of the MSE used in training with that of the NSE used in testing, ensuring that
error metrics were consistent and comparable across wells in a multi-site setup (Heudorfer et al. 2024).

Hyperparameters control both the architecture and the learning procedure of the LSTM. Following common practice in
large-sample hydrology, we used a single-layer LSTM with 256 hidden units, followed by dropout and a dense output layer

(Figure 2; full settings in Supplementary Section C). This architecture was originally selected in Kratzert et al. (2019) via
grid search with cross-validation on the CAMELS basins, has therefore been applied across diverse hydroclimatic settings,
and is now a common baseline (e.g., Frame et al. 2022; Klotz et al. 2022; Loritz et al. 2024; Heudorfer et al. 2025). To
keep model capacity appropriate for dataset size and aligned with prior applications of this architecture (typically mid-hun-
dreds of basins/wells), we limited each regional dataset to 200 wells so that regional and global experiments were on a
comparable scale. We did not perform additional hyperparameter optimization to maximize comparability across setups

and datasets, and because we aimed to understand the capabilities and limitations of the LSTM models rather than to
push absolute performance. In this context, further tuning typically brings incremental improvements rather than categorical
differences when the model is already reasonably sized, i.e., not excessively large or small.

To assess the robustness of the model results, each of the three model variants (Figure 2) was trained and evaluated 10 times

using different random seeds, resulting in distinct weight and bias initializations. While more advanced uncertainty quanti-
fication methods (e.g., Monte Carlo dropout) exist (Klotz et al. 2022), this approach follows standard practice and is
sufficient for model robustness evaluation in similar hydrological DL studies (e.g., Kratzert et al. 2019; Chidepudi et al.
2025; Mangukiya & Sharma 2025). It allowed us to evaluate performance variability across training runs and ensured that
findings were not driven by a single initialization.

3.3. LSTM with embeddings

The model architecture in the LSTM with the embeddings model setup is similar to that in the standard LSTM model setup
described in Section 3.2, with one exception: the substitution of the one-hot encoding with an embedding layer (Figure 2).
Like the ohefeat models, the encoding process of the embeddings models differentiates between individual wells in the data-
set. However, well identifiers are converted into a dense, lower-dimensional space in the embedding layer. Specifically, we

employed a seven-dimensional embedding space for representing well identifiers in our LSTM models. This dimensionality
was chosen to balance computational efficiency and the capability to capture and distinguish well characteristics across the
large dataset. By doing so, it greatly reduces the number of input dimensions compared with one-hot encoding.

For each well identifier, an embedding is retrieved from an embedding matrix E, where each row corresponds to a unique
well identifier. This can be expressed as:

Ei ¼ E[Xstatic[i]]
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where Ei represents the embedding for the ith well identifier in the input vector Xstatic. While these embeddings do not encode

wells uniquely in the way one-hot encoded vectors do, they may help the model capture shared behavior patterns among wells
based on their time series.

The embedding layer, implemented using the Python library Keras, learns an embedding matrix during training to optimize

the representations of the individual wells for the task. The embeddings are adjusted during the training process to minimize
the prediction error by capturing similarities in patterns within the time series. Specifically, the embeddings are optimized to
predict GWLs using combined static (embedding-derived) and dynamic (meteorological) inputs. After this transformation,
both inputs are concatenated and fed into the LSTM layer, similar to the ohefeat model variant (Figure 2).

3.4. Exploring learned representations through embeddings

The embedding layer (Section 3.3) provides an opportunity to investigate how the model organizes information about indi-
vidual wells based on their time series. LSTM models are often regarded as ‘black boxes’ due to their complex internal states

and lack of direct interpretability. Although embeddings do not constitute explainability in the classical sense of feature attri-
bution (e.g., SHAP or LIME), they allow for post hoc analysis of how the model internally differentiates between sites.

To investigate these learned representations, we analyzed the distribution of the embeddings values in relation to geo-
graphical location and GWL dynamics, which have previously been linked to environmental descriptors such as

topography and lithology (Nolte et al. 2024). Both linear (principal component analysis, PCA) and nonlinear (t-distributed
stochastic neighbor embedding, t-SNE; van der Maaten & Hinton 2008) dimensionality reduction techniques were used to
project the seven-dimensional embedding space into two dimensions for visual exploration. The resulting projections were

then visualized using color-coding to assess whether the embeddings captured meaningful structure. Two coloring strategies
were employed: (a) based on geographical information, to reflect large-scale climatic influences and (b) based on clusters of
GWL dynamics previously defined by Nolte et al. (2024). For (a), wells were categorized by geographical regions (continents

and countries). For (b), wells were assigned to one of four clusters derived from statistical patterns in hydrographs (Heudorfer
et al. 2019) representing different types of GWL behavior (e.g., stable seasonal cycles, rapid recharge responses, and interann-
ual variability). These clusters were based on approximately 8,000 globally distributed groundwater hydrographs and included
nearly all wells from the DE dataset and about 35% of the wells in the full dataset of this study.

Beyond visual comparisons, a quantitative method can help to assess the alignment between the learned embeddings and
the prior GWL dynamics clusters. Specifically, we compared the four prior clusters with four newly generated clusters
obtained by applying k-means clustering to the embeddings (using the same settings and number of principal components

as in the prior study). Cluster cohesion and separation was evaluated using silhouette scores (Rousseeuw 1987), where
higher values indicate more internally consistent clusters. In addition, the normalized mutual information (NMI; Strehl &
Ghosh 2002) was used to compare both sets of clusters, i.e., to quantify the correspondence between the learned and refer-

ence clusters. In addition, we used DBSCAN (eps¼ 0.25, min_samples¼ 2) to identify inliers and outliers in the embedding
space, aiming to detect wells that were isolated or underrepresented in the learned representation. The subsequent compari-
son of model performance metrics between these groups aimed to assess whether sparsely represented wells were associated

with lower predictive skill.

4. RESULTS AND DISCUSSION

4.1. Model performance across regions

This section presents the results of LSTM models trained and tested on regional datasets only. Across the nine regions, a total

of 270 model runs were conducted, covering three model variants and accounting for variability through multiple training
initializations. The resulting model performances, summarized in Table 2 and Figure 3, show how predictive skill varies
by region and input configuration. Spatial patterns in model accuracy across individual wells are illustrated in Supplementary
Section D, showing regional and local variation within the datasets.

Models using embeddings and one-hot encoded site identifiers (ohefeat) consistently outperformed the variant without
static input features (nofeat), as discussed in more detail in Section 4.2. The embeddings variant achieved the highest
median performance in eight out of nine regions. In five regional datasets – AU, DE, FR, NA-N, and NL – these models

achieved moderate to high performance, with median NSE scores ranging between 0.67 and 0.80. In contrast, moderate
to low performance, with median NSE scores from 0.40 to 0.55, was derived for the datasets from IN, NA-S, Scand, and
ZA. Regions with higher performance also exhibited lower variability in the models with site identifiers, as reflected by
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smaller interquartile ranges (Q90–Q10). For instance, in FR, the embeddings and ohefeat models both achieved stable predic-

tive skill, with NSE values ranging between 0.78 and 0.81. Additional evaluation metrics (Supplementary Table S2) support
these findings.

4.2. Superior performance of entity-aware models

While dynamic input features, which capture temporal patterns and enable learning from historical variability, are most
important for GWL prediction, the inclusion of direct site identifiers in the ohefeat and embeddings models further improved

performance by 16–37% (Table 2; Figure 3). Except for the datasets from IN and NA-S, the nofeatmodels show notably lower
performance compared with the model variants with site identification. Among these, the embeddings models outperformed
the ohefeat models across all datasets except FR, with median NSE improvements of up to 0.1 in several datasets.

Our findings of enhanced predictive capabilities in models with direct site identifiers align with previous studies that

demonstrated the success of these models in learning hydrological patterns across catchments in the United States (Kratzert
et al. 2019) and GWL dynamics in Germany (Heudorfer et al. 2024; Kunz et al. 2024). These models, often referred to as
entity-aware, can help overcome current limitations posed by uncertainties in descriptive environmental data. However,

we observed only marginal performance improvements from including site identifiers in the IN dataset. In this case, the
GWL data are particularly sparse but regularly distributed (Supplementary Figure S1), suggesting a potential upper limit
to the ability of the model to discern patterns at the given temporal resolution and data quality (compare Section 4.4). Con-

sequently, a minimum monthly data frequency appears necessary to support the effective use of site-specific static input.
Performance benefits with site identifiers are evident for most wells. The cumulative distribution functions (CDFs) in

Figure 3(a) show a steeper ascent for the embeddings and ohefeat models compared with the nofeat model, indicating a

higher proportion of wells achieving elevated NSE scores when site identification is included. Wells with medium to high
baseline scores exhibit noticeable improvements in predictive accuracy. In contrast, wells with initially low scores show
little to no performance gain, suggesting that modeling challenges in these cases are primarily driven by limited or compro-
mised data. Similarly, a subset of wells with negative NSE values – indicating less accurate predictions than the average of the

observed data – remain difficult to model across all model variants. This is consistent with previous multi-site LSTM studies in
both surface and groundwater hydrology (Kratzert et al. 2019; Li et al. 2022; Heudorfer et al. 2024).

The ohefeat model requires substantially more computational resources due to increased input dimensionality, while the

embeddings model provides a more resource-efficient alternative by reducing input space without compromising perform-
ance. This makes the embeddings approach particularly advantageous for large-sample datasets with extensive GWL time
series and for large-scale applications, such as the global dataset used in this study (see Section 4.3).

Table 2 | Mean, 10th percentile (Q10), and 90th percentile (Q90) NSE scores across 10 random initializations, evaluated for the three model
variants nofeat, embeddings, and ohefeat (Figure 2) across the nine focus regions shown in Figure 1(a)

NSE Q10 Q50 Q90 Q10 Q50 Q90 Q10 Q50 Q90

AU DE FR

nofeat 0.425 0.495 0.544 0.399 0.462 0.529 0.549 0.594 0.626

embeddings 0.670 0.701 0.739 0.708 0.729 0.746 0.774 0.788 0.798

ohefeat 0.637 0.670 0.691 0.664 0.701 0.745 0.781 0.795 0.806

IN NA-N NA-S

nofeat 0.489 0.509 0.524 0.522 0.536 0.554 0.382 0.398 0.414

embeddings 0.488 0.523 0.552 0.679 0.692 0.701 0.437 0.459 0.477

ohefeat 0.448 0.466 0.489 0.674 0.682 0.690 0.381 0.404 0.421

NL Scand ZA

nofeat 0.424 0.488 0.562 0.362 0.385 0.415 0.369 0.398 0.440

embeddings 0.674 0.688 0.708 0.569 0.585 0.609 0.496 0.599 0.667

ohefeat 0.655 0.675 0.698 0.446 0.492 0.537 0.509 0.552 0.589

Additional evaluation metrics are available in Supplementary Table S2. Bold values indicate the highest NSE score among the three model variants (nofeat, embeddings, ohefeat) for

each region and quantile.
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4.3. Global models match regional performance

To evaluate the effects of combining data from regions with richer, higher-quality GWL time series and those with less com-
prehensive or lower-quality data (compare Section 4.4), we conducted experiments using the entire global GWL dataset,
which consists of 1,800 time series. In contrast to the regional model runs discussed in Sections 4.1 and 4.2 (Figure 3 and

Table 2), where models were trained separately for each region, the global model is trained on the complete, worldwide data-
set, bringing together all available wells into a single training framework. Given the high computational demands of the
ohefeat model, which become increasingly prohibitive as the number of time series increases, and the superior performance

of the embeddings model (Section 4.2), we focused our comparison on the embeddings and nofeat models.
Figure 4 compares the performance of models trained on the full global dataset with those trained separately on each

region. In Figure 4(a), the CDFs of NSE scores show that both the global embeddings model and the nofeat model perform

Figure 3 | NSE scores for the three model variants nofeat, embeddings, and ohefeat (Figure 2), across the nine focus regions shown in
Figure 1(a). (a) CDFs of individual well NSE scores. Solid lines represent the median across 10 models with different random initializations;
shaded envelopes indicate the range of those runs. (b) Boxplots showing the distribution of median NSE scores from the 10 model runs for
each region and model variant.
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almost identically to their respective ensembles of regional models. The median NSE scores from the global dataset are 0.44

(nofeatmodel) and 0.63 (embeddingsmodel), closely aligning with the median across all regional models combined (compare
Section 4.1). This consistency also holds at the level of individual wells: as shown in Figure 4(b), most points lie close to the
1:1 line, indicating that NSE values for individual wells remain largely stable when switching from regional to global training.

These results have two key implications.
First, increasing the size of the training dataset introduces greater variability, which in theory can help DL models gener-

alize better by exposing them to a broader range of patterns. However, this does not automatically improve model
performance for region-specific or local GWL predictions. Previous studies have shown that LSTM models trained in

multi-site setups often outperform single-site models (e.g., in Heudorfer et al. 2024). Furthermore, training on data-rich
regions has been found to improve runoff estimations (Ma et al. 2021; Le et al. 2024) and GWL simulations (Clark et al.
2022) in data-sparse regions. However, unlike previous approaches that randomly combined data or grouped catchments

based on hydrological similarity (Fang et al. 2022; Kratzert et al. 2024) or hydrogeological similarity to reduce data complex-
ity (Chidepudi et al. 2025), our regional datasets were defined by geographic proximity. This means that each regional dataset
contains a full array of time series from its respective geographic area, capturing a wide range of GWL dynamics that can vary

significantly. This variation often occurs even within small spatial extents due to subsurface heterogeneity and scale-depen-
dent processes (Blöschl & Sivapalan 1995; Neuman & Di Federico 2003; Nolte et al. 2024). Therefore, the most relevant
dynamics for each region (including both dominant and more localized temporal patterns) are likely already well represented

within its dataset. We conclude that incorporating additional data from geographically and climatologically dissimilar regions
(Supplementary Figure S2) may not provide meaningful context for supporting the modeling task in this study. This is not

Figure 4 | Comparison of NSE scores for the nofeat and embeddings models trained on the global dataset (global model) versus models
trained separately on regional datasets (regional models). (a) CDFs of individual well NSE scores. Solid lines represent the median across 10
model initializations; shaded envelopes indicate the range across runs. (b) Scatter plots comparing NSE scores from global models (x-axis)
against regional models (y-axis) for individual wells, colored by focus region as defined in Figure 1(a).
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because the model cannot integrate heterogeneous inputs, but because the added data do not contribute temporal or hydro-

geological patterns beyond those already represented in the target region.
Second, while no additional benefits were found with the global model for the data-sparse regions in this study, the com-

parable performance of the global model to regional models highlights the potential for multi-site architectures to integrate

diverse datasets from around the world without compromising prediction accuracy for individual regions or time series. The
ability to effectively incorporate data from regions with varying hydrogeological conditions and data quality reduces the need
for time-consuming time series selection. Furthermore, it underscores the potential scalability of these approaches with DL.

While the global model did not yield performance gains for data-sparse regions in this study, previous research has shown

that comprehensive datasets can offer substantial benefits under different conditions. For example, transfer learning – where
models are applied across regions (Wagenaar et al. 2018; Ma et al. 2021), typically supported by static input features that help
guide cross-regional generalization – has demonstrated such benefits. In contrast, our setup omits such features, relying solely

on dynamic inputs and learned site representations. Future experiments could build on this work by leveraging high-resol-
ution datasets (e.g., daily) to improve model performance or simulate finer-scale dynamics in regions where only lower-
resolution data (e.g., monthly) are available. Similar advantages have also been shown for addressing unforeseen climatic con-

ditions not represented in the training data (Fang et al. 2022; Wi & Steinschneider 2024). Developing such capabilities is
critical for advancing DL models toward practical deployment in operational GWL forecasting, though such experiments
lie beyond the scope of this study. Overall, the multi-site framework presented here offers a promising foundation for

these future directions by enabling modeling across diverse hydrogeological and climatic conditions – even at the global
scale and without relying on predefined static features.

4.4. Data quantity and quality limitations

The observed differences in performance across regional models are closely linked to data quantity (the availability of GWL
measurements within each time series; Supplementary Figure S1). Figure 5 illustrates the differences by showcasing selected
time series whose NSE scores are near the median for their respective region. In general, the model performance is much

better in regions with greater data availability and fewer gaps (DE, FR, NL) compared with those with more limited or irre-
gular data (IN, ZA). These findings further support that sufficient and relevant training data improve model performance –

not only in single-well data-driven modeling (Wunsch et al. 2021) but also in multi-site configurations. In LSTM models, low

data availability or quality may hinder stabilization during training, reducing predictive accuracy and increasing variability
across runs. As discussed in Section 4.2 for the IN dataset, it appears that there are thresholds in data quantity below
which the model struggles to learn and represent GWL dynamics effectively. These thresholds remain understudied in DL
groundwater modeling, as most prior studies focused on high-quality, complete time series.

Our results suggest that, beyond the general principle that more information creates better results, a minimum aggregation
frequency of monthly observations appears necessary not only for reliable model performance but also for enabling the model
to learn site-specific groundwater dynamics. This is evident from the IN models, which were the only ones among all regions

to show minimal benefit from including site identifiers, likely due to the very low measurement frequency, with only a few
observations per year. Site-specific characteristics, such as how aquifers respond to climatic inputs, are difficult to capture
with such sparse data. In addition, models in FR performed well despite being trained on fewer than seven years of data,

suggesting that measurement frequency may be more critical for model performance than the total length of the time
series. High-frequency inputs allow models to better capture temporal variability, especially in systems influenced by
strong seasonal or short-term fluctuations (Taylor & Alley 2001) and to avoid aliasing effects (Bender 2007). Similarly,

Wunsch et al. (2023) showed that high-frequency (weekly) inputs are essential for learning seasonal and short-term ground-
water processes, which are often lost at coarser temporal resolutions.

By contrast, data with longer but consistent intervals smooth out variability, simplifying the prediction task. This effect is
seen in the results for IN, where quarterly sampling intervals produced performance comparable to that of regions with irre-

gular, sparse data (ZA, Scand). The irregular intervals and large gaps in these datasets make it more challenging for models to
capture and adapt to inconsistent GWL dynamics – even though those dynamics might be equally or more predictable than in
IN if the prediction targets were similarly aggregated (quarterly). In this sense, the seemingly better performance in IN may

reflect a less complex prediction target, rather than inherently more predictable groundwater behavior. While time series
length was less critical for our short-term, weekly-ahead predictions, it becomes essential for long-term groundwater forecast-
ing. Climate-driven GWL trends often evolve slowly and are masked by low-frequency variability, requiring multi-decadal
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records to distinguish persistent changes (Baulon et al. 2022), which long-term (DL) forecasts typically rely on (e.g., Wunsch
et al. 2022). These aspects highlight the importance of aligning the prediction target with data properties when selecting GWL
time series and evaluating model performance.

Other factors beyond data quantity that might influence model performance include the complexity of the system being
modeled and the quality of the time series data. The characteristics of the modeled aquifer systems, such as groundwater
depth, permeability, and aquifer type, can affect how aquifers respond to climatic inputs. While the regional datasets in

this study are comparable in terms of groundwater depths (Table 1) and associated climate–groundwater interactions
(Cuthbert et al. 2019a), detailed information on other aquifer properties is not consistently available across datasets, limiting
a more in-depth assessment. Instead, the differing model performances between NA-N and NA-S, despite similar data quan-

tities, may be partially explained by large-scale map products: wells in NA-N are often located in smaller, localized aquifers
that may respond rapidly to rainfall, whereas those in NA-S are more often associated with larger regional groundwater sys-
tems (Richts et al. 2011). Aquifer responsiveness may significantly influence how effectively LSTM models can capture
groundwater dynamics in response to changes in precipitation and temperature. Additionally, human activities – such as

extensive unsustainable groundwater pumping, as observed in California (de Graaf et al. 2019; Liu et al. 2022) – can decouple
GWLs from climate drivers, thereby reducing model performance. Similar effects have been observed in single-well regional
modeling in Northern Germany, where lower performance was attributed to anthropogenic influences like proximity to

waterworks (Gomez et al. 2024).
Lastly, the accuracy of the dynamic input data must be considered. In this study, inputs were solely derived from ERA5

reanalysis, which offers global consistency but may not match the resolution or precision of regionally available climate

Figure 5 | Example GWL time series in the test period from two wells in each of the nine focus regions (see Figure 1(a)), selected to
approximate the median NSE value of their respective regional embeddings models. GWL is shown in meters above reference point (marp).
Simulated values (orange dashed) are compared against observed measurements (blue). The figure illustrates regional differences in data
resolution and prediction accuracy.
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data. In some regions or at certain well sites, finer-resolution or more localized inputs might yield locally improved

predictions.

4.5. Insights into spatial representation through embeddings

The embedding layer introduced in our LSTM model (see Section 3.3) enables exploration of how GWL dynamics are intern-
ally represented. By transforming well identifiers into trainable vectors, the model learns to differentiate between wells in a
way that supports GWL prediction from climate inputs. This differentiation is learned directly from the time series data, with-
out relying on externally provided static features. In the following, we examine whether the resulting embedding space may

capture meaningful variation across wells that relates to underlying physical conditions.
Despite the inherently abstract nature of embeddings, we found discernible patterns in the reduced embedding space using

PCA and t-SNE. Wells grouped by continent (Figure 6(a)) and by country within Europe (Figure 6(b)) show considerable over-

lap in the embedding space, supporting the findings from Section 4.3, where we hypothesized that the global model does not
outperform regional models because a broad variety of GWL dynamics is already represented within regional datasets. Nota-
bly, wells from Europe (EU; blue dots), which dominate the dataset, display the widest dispersion in the embedding space,

reflecting the high diversity in GWL dynamics across the continent. In contrast, wells from India (IN; black dots) cluster
more tightly, suggesting more homogeneous behavior among the 200 Indian wells compared with the 1,000 wells from differ-
ent parts of Europe. Among the visible groupings in the 2D t-SNE space, distinct subclusters appear, including those in the

right corner containing wells from the Netherlands (blue dots in Figure 6(a) and 6(b)) and Australia (turquoise dots in
Figure 6(a)). The partial alignment of embeddings with geographic groupings is expected to some extent, given similarities
in climate-driven GWL responses, as also suggested by the performance of climate-only models in Section 4.2. At the
same time, the observed differences in overlap and separation between and within regions suggest that the embeddings

may also capture site-specific functional variation, such as differences in hydrograph behavior.
To test this, we compared embedding-based clustering to hydrograph-based GWL clusters (see Section 3.4), which rep-

resent distinct temporal response patterns such as differences in seasonal amplitude, timing, and regularity (Nolte et al.
2024). The alignment between both clusterings was moderate, with silhouette scores between 0.17 and 0.21 and NMI
scores between 0.24 and 0.31 across runs. While the relatively low silhouette scores indicate weak to moderate separation
(Kaufman & Rousseeuw 1990), this is consistent with the original hydrograph-based clusters, which were not sharply

delineated. The NMI scores offer further context: they are comparable to values reported in other hydrological studies,
such as Gupta & Karthikeyan (2024), where similarly modest NMI scores emerged when comparing clusters based on
different drought-related features. In that context, the low agreement reflected both the fuzzy nature of functional
types and the fact that different input features emphasize different aspects of system behavior. Likewise, in our case,

embedding-based and hydrograph-based clusterings offer distinct but partially overlapping perspectives on groundwater
dynamics.

The partial alignment with hydrograph types, together with the visual patterns in Figure 7, suggests that the embedding

space captures meaningful variation across wells related to underlying physical conditions such as climate, water table
depth, and lithology (Nolte et al. 2024). In particular, the hydrograph-based clusters can be visually distinguished in the
embedding space, forming partially separated regions that support the idea that embeddings reflect functional similarity

across wells. This occurred despite the model not receiving any explicit physical descriptors, highlighting the potential of
embeddings to differentiate groundwater behavior beyond simple geographic correlation and to infer hydrogeological simi-
larity directly from time series alone (Barthel et al. 2021).

While this suggests encouraging potential, the low silhouette and NMI values also underline a fundamental limitation: stat-
istical clustering may struggle to capture functional (dis)similarity in groundwater systems, where dynamics often form
gradual continua rather than discrete classes. Confirming hydrogeological similarity in embedding space, therefore, remains
challenging without corresponding high-resolution or even site-specific environmental data. Future work should therefore

aim to validate embedding interpretations using independent descriptors where available. Yet, recent studies highlight the
limitations of this approach in practice: Chidepudi et al. (2025), working with wells across France, found that static environ-
mental features often lack sufficient resolution or reliability to support meaningful interpretation using tools like SHAP, while

Kunz et al. (2024), in a Germany-based study, observed only marginal performance gains from including static descriptors
and noted that many such features fail to capture site-specific hydrogeological conditions, thus constraining both predictive
value and interpretability.
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The interpretability of embeddings depends not only on actual groundwater behavior but also on data quality. Sparse, short,
irregular, or noisy time series can distort embedding formation, not due to hydrogeological distinctiveness, but because of
reduced learnability. This introduces a circular dependency: poor data quality can degrade embeddings, which in turn

limits interpretability and obscures the underlying cause. To investigate this, we applied DBSCAN (see Section 3.4) to flag
outliers in the embedding space and compared their predictive performance. Across regional models, these outlier wells con-
sistently showed lower NSE scores than inliers (Figure 8), suggesting that they are either underrepresented in the training data
or exhibit atypical behavior due to natural variability, anthropogenic influence, or poor data quality.

Looking ahead in terms of embedding implementation, evaluating embedding stability across model runs could pro-
vide deeper insight into the robustness of learned representations. Similarly, testing lower-dimensional embeddings,
such as two or three dimensions, may offer more interpretable representations without loss of predictive performance.

Preliminary tests (not shown) indicated that reducing from seven to three dimensions preserved nearly identical predic-
tive skill, suggesting that compact representations (Bassi et al. 2024) may be sufficient for both modeling and
interpretation.

Figure 6 | Visualization of the embedding space from the global model using PCA and t-SNE, colored by (a) continent such as Europe (EU),
North America (NA), Australia (AU), South Africa (ZA), and India (IN) and (b) European country such as the Netherlands (NL), Denmark (DK),
Sweden (SE), Germany (DE), and France (FR). Each point represents a well, and its position reflects relationships in GWL dynamics as learned
by the model through embeddings.
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Figure 7 | Visualization of the embedding space from (a) the global model and (b) the DE model using PCA and t-SNE. Wells that are shared
between this study and Nolte et al. (2024) are plotted and color-coded according to four clusters representing distinct GWL dynamics, as
previously defined using hydrograph analysis (Nolte et al. 2024). Each point represents a well, and its position reflects relationships in GWL
dynamics as learned by the model through embeddings.

Figure 8 | Median NSE scores for inlier and outlier wells across nine focus regions, based on DBSCAN clustering (with eps¼ 0.25, min_-
samples¼ 2) in the embedding space. Numbers above bars indicate the number of wells per group (inliers in black, outliers in gray). The
comparison reveals a systematically lower model performance for wells identified as outliers in the embedding space.
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5. CONCLUSIONS

This study advances large-scale GWL modeling in three key ways. First, it presents the first global, systematic evaluation of
multi-site LSTM models across more than 1,800 globally distributed wells, using GWL time series with realistic variability in
completeness, sampling frequency, and potential noise. Second, it demonstrates that trainable site identification (also called

embeddings) can partially and effectively substitute for static environmental descriptors, which are often unavailable or
uncertain, and which recent studies have shown to function more as unique site identifiers than physically meaningful pre-
dictors. Third, it provides the first analysis of the learned embedding space in a groundwater context, revealing emergent

spatial and functional patterns that suggest the model captures some relevant hydrogeological structure even without explicit
physical input. More broadly, the methods explored here may also support applications across the wider field of hydrology.

Embeddings provide a scalable and efficient alternative to one-hot encodings. Embedding-based models achieved high per-

formance in data-rich regions, with median NSE scores exceeding 0.7 in countries like France and Germany. This indicates
that the models not only work technically but also achieve a level of predictive accuracy that allows for practical application
in regional analysis where data availability is sufficient. The analysis of the embedding space suggests that DL models can

internally capture site-specific behavior directly from time series data, which, in the case of GWL time series, can be related
to differences in seasonal recharge dynamics, response timing, or longer-term variability – all of which may reflect underlying
factors such as lithology or water table depth. The embeddings approach, therefore, holds promise not only for improving
predictive performance but also for uncovering previously unrecognized patterns in groundwater systems, opening new

ways for data-driven discovery. However, confidence in explaining these representations remains limited because this ulti-
mately depends on the availability of independent physical descriptors, which may be explored through targeted case
studies where such data exist.

The study also shows that global models perform comparably to regional models, even when integrating lower-quality data.
This eliminates the need for separate region-specific or single-site models and highlights the potential for truly geographically
global DL applications. However, a limitation is that adding high-quality GWL time series from other regions did not improve

predictions in data-sparse regions. Achieving reliable performance in such settings remains a key challenge for multi-site DL
models and warrants further investigation. These findings underscore the importance of acquiring sufficient data coverage,
particularly at high temporal resolution, within the same regions for which predictive accuracy is currently limited.

Looking ahead, entity-aware multi-site models offer a promising direction for scalable time series prediction at continental
to global scales. To support operational use cases such as real-time monitoring and climate impact assessments, future work
should evaluate the model performance in true forecasting settings and further assess the stability and interpretability of site
embeddings. Particular attention is needed for data-scarce or irregular time series, where strategies like transfer learning may

help overcome current limitations in model accuracy. While embeddings cannot generalize to entirely unseen wells, they pro-
vide a powerful solution when static input features are missing or unreliable, and may be extended to new wells through
targeted fine-tuning. Future work may also explore more advanced data fusion strategies beyond simple concatenation to

better integrate static and dynamic information. Together, these directions will help advance DL toward becoming a practical
and reliable tool for large-scale groundwater prediction under real-world data constraints.
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