Al4 O Ee0SC



mailto:lisana.berberi@kit.edu

Al4 | ¢NeoSC Outline

7

1] MLOps definition and components

21 MLOps platforms/tools

31 Model Performance Monitoring
\.

4 { Key takeaways

Funded by
the European Union 04 | 06 | 2025 — Lisana Berberi — EGI 2025




Al4 | ¢NeoSC Outline

-
1/ MLOps definition and components

21 MLOPps platforms/tools

31 Model Performance Monitoring
\_

4{ Key takeaways

Funded by
the European Union 04 | 06 | 2025 — Lisana Berberi — EGI 2025




Al4 | ¢NeoSC Outline

f

1/ MLOps definition and components
\.

21 MLOps platforms/tools

31 Model Performance Monitoring

4[] Key takeaways

\.

Funded by
the European Union 04 | 06 | 2025 — Lisana Berberi — EGI 2025




Al4 | ¢NeoSC Outline

r

11 MLOps definition and components
\_

21 MLOps platforms/tools

31 Model Performance Monitoring
\_

4 -[ Key takeaways

Funded by
the European Union 04 | 06 | 2025 — Lisana Berberi — EGI 2025




Al4 O Ee0SC

| MLOps definition and components |

#*"*. | Funded by
*.,.* | the European Union 04| 06 | 2025 - Lisana Berberi — EGI 2025




Al4 | D eoSC DevOps vs MLOps

DevOps

set of practices and tools
to streamline the software
development lifecycle
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Google Search Trends for Al-related Topics (2010-2025)
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Adapted from Google %
(MLOps: Continuous delivery and automation pipelines in machine learning) | =8
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= Three-step evaluation framework [L. Berberi et al. (2025)]

%Feature/ Capability Analysis

- Evaluated 16 MLOps open
source platforms across
core capabilities.

- 10 capabilities drawn from
the Al-Infrastructure Report
(2023) and academic
literature.

- Focus: Experiment tracking,
model development,
orchestration etc.
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Al4 HeosC MLOps platforms/tools

= Three-step evaluation framework [L. Berberi et al. (2025)]

Table 3 Notable open-source MLOps platforms

~ DT CM MTV ETMS DVM
o LMDV Model MI  MDP coae VY MPM
. o Distri- - Code  ypoje) et Model Model ~ Cxperiment DataVer-yp g b0 pull  Partial
Product GitHub Orche- buted Man- . . Tracking  sioning . . .
i . Stars  stration  Train- age- Deval- ”;g’_/- Infer- Deploy- and Meta- and Man- Iurnlmnf'(: Score Score
eatu re/ Capabmty AnaIyS|S ing ment opment ‘ahda- ence ment data Store  agement Monitoring
tion
MLflow 19K v vV ' v 30% 10%
Prefect 17.7 K 'e% s Vv 20% 10%
- Evaluated 16 MLOps open Kubeflow U5K vV 2% v v VY vV 60% 20%
Dagster 12K vV v v vV 30% 10%
source platrorms across
core Capabllltles WEB (WB) 92K v s Vv vV Vv v v vV Vv T0% 10%
g staFlow 1K 20 210
_ 10 CapabllltleS draWn from MetaFlow 8.3 K ‘e v s v v 20% 30%
Mage S K vV vV v v vV v 30% 30%
the Al-Infrastructure Report = § ‘ ‘
0 Pachyderm 6.2 K 'es v v vV Vv vV v v vV 60% 30%
(2023) and academic ) i i
It t Flyte 5.8 K Vv vV Vv Vv Vv Vv vV v Vv 90% 0%
ierature. . . ClearML 5.7 K vV v vV vV vV 'e% vV v v 'es 100% 0%
- FOCUS EXperIment traCkIng’ Seldon core 14K v v v ' v 'ea 50% 10%
model development, ZenML 12K v N N ooy VS i 100% 0%
orchestration etc. Poywon 36K v v/ v AV A v oo v 0% 10%
TFX 21K v s v v v v ' v 24 70% 20%
MLeap 15K vV vV vV ' 30% 10%
MLRun 15K ' s v e v Vv Vv e vV vV 80% 20%
/ .
|lI |. fll f \ \
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= Three-step evaluation framework [L. Berberi et al. (2025)]

%’zeature/ Capability Analysis I/il

- Evaluated 16 MLOps open

source platforms across

core capabilities. =
- 10 capabilities drawn from

the Al-Infrastructure Report

(2023) and academic

literature.
- Focus: Experiment tracking,

model development,

orchestration etc.
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Growth Assessment

Assessed average GitHub
stars growth over the last
years.

Goal: Highlight developer
interest and adoption
trends
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= Three-step evaluation framework [L. Berberi et al. (2025)]

Average of GitHub Stars Over Years

& degoaideami
8 /, — combustimleap
/ —& dapster-ofdagster

& ey

A 4 lubefowubefon
- mage-aimage-dl
%‘zeature/ Capability Analysis I/il GitHub Stars 5 -
Growth Assessment bl
- Assessed average GitHub : Ezziwﬁ%m
- Evaluated 16 MLOps open stars growth over the last : - s
source platforms across years. <o B
core capabilities. - Goal: Highlight developer
- 10 capabilities drawn from interest and adoption w ]
the Al-Infrastructure Report trends
(2023) and academic 5
literature.
- Focus: Experiment tracking, .
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orchestration etc. z
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Al4 ©HeosC  MLOps platforms/tools

= Three-step evaluation framework [L. Berberi et al. (2025)]

©)
%’zeature/ Capability Analysis Iﬂ GitHub Stars .‘ Weighted Scoring &

Growth Assessment Feature Extraction
- Assessed average - Calculated weighted
- Evaluated 16 MLOps open GitHub stars growth over scores combining platform
source platforms across the last years. features and growth
el Capa,l?'_l't'es' - Goal: Highlight developer metrics.
- 10 capabilities drawn from interest and adoption - List top 5 tools
the Al-Infrastructure Report e

(2023) and academic
literature.

- Focus: Experiment tracking,
model development,
orchestration etc. -~
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%’zeature/ Capability Analysis I/il

GitHub Stars
Growth Assessment

Table 4 The weighted score for each product

©)
‘ Weighted Scoring &

Feature Extraction

Product Weight (w;) Feature-Score Weighted-Score
Kubeflow 8.89 7 62.21

WandB (W&B) 4.79 8 38.30

MLAow 10.00 3.5 35.00
Pachyderm 4.34 7.5 32.55

ClearML 2.94 10 29.38

Flyte 2.98 9 26.82

Polyaxon 2.65 9.5 25.22

ZenML 2.20 10 22.01

Dagster 6.13 3.5 21.44

Prefect 8.35 2.5 20.87

Mage 3.98 4.5 17.90

Metaflow 4.11 3.5 14.40

Seldon core 2.59 5.5 14.23 /
TFX 1.30 8 10.40

MLRun 1.00 9 9.00

MLeap 1.32 3.5 4.61
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= Three-step evaluation framework [L. Berberi et al. (2025)]

- LI B
" : /'I : ©) : :
eature/ Capability Analysis all GitHub Stars Weighted Scoring &
Growth Assessment Feature Extraction
Table 4 The weighted score for each product
*  Product Weight (w;) Feature-Score Weighted-Score
- 1 [ Kubeflow 8.89 7 Kubernetes bound 62.21 )
th WandB (W&B) 4.79 8limited features in the free versi&i8.30
MLHAow 10.00 3.5 35.00
Pachyderm 4.34 7.5 32.55
ClearML 2.94 10 29.38
Flyte 2.98 9 26.82
-Foc Polyaxon 2.65 9.5 25.22
ZenML 2.20 10 22.01
Dagster 6.13 3.5 21.44
Prefect 8.35 2.5 20.87
Mage 3.98 4.5 17.90
Metaflow 4.11 3.5 14.40
Seldon core 2.59 5.5 14.23 /
TFX 1.30 8 10.40
= MLRun 1.00 9 9.00
#*"*. | Funded by MLeap 1.32 3.5 4.61

*...* | the European
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E Table 4 The weighted score for each product
*  Product Weight (w;) Feature-Score Weighted-Score
-1 Kubeflow 8.89 7 62.21
th ~WandB (W&B) 4.79 8 38.30 Al
( MLflow 10.00 3.5 35.00 ]
Pachyderm 1.34 7.5 32.55 neosc
ClearML 2.94 10 29.38 =
Flyte 2.08 9 26.82 o L]
-Foc Polyaxon 2.65 9.5 25.22 Y
ZenML 2.20 10 22.01 ik
Dagster 6.13 3.5 21.44
Prefect 8.35 2.5 20.87 Sconmel
Mage 3.98 4.5 17.90
Metaflow 4.11 3.5 14.40
Seldon core 2.59 5.5 14.23 /
TFX 1.30 8 10.40
= MLRun 1.00 9 9.00
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*...* | the European



https://doi.org/10.1007/s10462-025-11164-3

Al4 O Ee0SC

| Model Performance Monitoring |

- | Funded by
.-+ | the European Union 04|06 | 2025 - Lisana Berberi — EGI 2025




A4 cHEeosC
Drift frameworks comparison

Data drift is a shift in the distributions of the ML model
input features.
Concept drift is a change in input-output relationships.
Different modes of execution:
o  streaming: data arrives sequentially, e.g. online
monitoring
o  batch: full dataset available at time of test, e.g.
offline model evaluation

Frameworks:

o Frouros

o River

o Evidently

o NannyML

o Alibi-Detect
Dataset:

o  Energy Data
| Heating energy consumption data from
educational buildings
(schools/universities)

Funded by
the European Union

Data drift

Target: sales ® oniine

@ offline
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https://frouros.readthedocs.io/en/latest/
https://riverml.xyz/0.8.0/
https://www.evidentlyai.com/
https://www.nannyml.com/
https://docs.seldon.io/projects/alibi-detect/en/latest/
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Drift frameworks comparison
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IS

original repo D3bench: https://github.com/mohamedyd/D3Bench

- Publication:

-
= Evidently
—
-

Framework
Alibi-Detect

Frouros
NannyML

Average CPU Time (seconds)

Extended repo:
https://github.com/BorjaEst/D3Bench/tree/dev/results

Poster:

& &

Scan me!

Average CPU Time Across Frameworks
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https://github.com/mohamedyd/D3Bench
https://github.com/BorjaEst/D3Bench/tree/dev/results
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Drift frameworks comparison

- Tool evaluation results:

10t Average Runtime Across Frameworks ot Average CPU Time Across Frameworks
Framework Framework
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Al4 OHeosC Key takeaways

« MLOps is critical for scaling machine
learning beyond experimentation into
production.

« MLOps maturity levels help assess and

plan ML lifecycle automation. MLflow cloud  MLflow video-1 MLflow video-2

- Evaluate state-of the art drift ][]
frameworks using the Extended ' '?:I"
D3Bench tool

[=] £

Scan me!

Scan me!

AI4EOSC  AI4EOSC MLflow D3bench.extension
Dashboard Docs | / '
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X Al4e0sc

aideosc-po@listas.csic.es

</>

ai4eosc.eu

Thank you for your attention

Funded by
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Reach us!

The AI4EOSC consortium_
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