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Abstract
We analyze nonlinear Friedrichs systems where the differential equation and the initial data contain the inverse of a
small parameter 𝜀, which causes oscillations with wavelengths proportional to 𝜀 in time and space. In diffractive optics,
such problems have to be solved on time intervals with length of (1∕𝜀). Approximating the solution numerically with
a standard method is hopeless, because traditional methods require an extremely fine resolution in time and space. A
possible alternative is to replace the original problem by a new system of partial differential equation, which is more
suitable for numerical computations but still yields a sufficiently accurate approximation. Such models are often based on
the slowly varying envelope approximation or generalizations thereof. For applications in nonlinear optics, a rigorous analysis
of the accuracy of such approximations is of utmost importance. We show that under a number of natural assumptions
the error of the slowly varying envelope approximation is proportional to 𝜀

2. For a higher-order generalization, we
improve the error bound from (𝜀2) to (𝜀3). Both proofs are based on a careful analysis of the nonlinear interaction
between oscillatory and nonoscillatory terms, and on a priori bounds for certain “parts” of the approximations, which
are identified by suitable projections.

Keywords
high-frequency wave propagation, nonlinear Friedrichs system, diffractive geometric optics, slowly varying envelope
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1 Introduction

1.1 High-Frequency Wave Propagation
High-frequency wave propagation in nonlinear, dispersive media can be modeled by Friedrichs systems of the form:

𝜕tu + A(𝜕)u + 1
𝜀

Eu = 𝜀T(u, u, u), t ∈ (0, tend∕𝜀], x ∈ ℝd, (1.1a)

u(0, x) = p(x)ei(𝜿⋅x)∕𝜀 + c.c., (1.1b)

with a trilinear nonlinearity T : ℝn ×ℝn ×ℝn → ℝn and a differential operator

A(𝜕) =
d∑

𝓁=1

A𝓁𝜕𝓁 , (1.2)
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(d, n ∈ ℕ). We assume that the matrices A1,… , Ad ∈ ℝn×n in (1.2) are symmetric, and that E ∈ ℝn×n in (1.1a) is skew-
symmetric. In the initial data, a smooth and localized envelope function p : ℝd → ℂn is multiplied by a phase with a given
wave vector 𝜿 ∈ ℝd ⧵ {0}. Here and below, “X + c.c.” means X +X, where X is the complex conjugate of X. An important
example in this class of problems is the Maxwell–Lorentz system, which is a classical model for the propagation of light in
a Kerr medium; cf. Colin and Lannes (2009), Colin et al. (2005), Donnat and Rauch (1997a), Donnat and Rauch (1997b),
Joly et al. (1996), and Lannes (1998, 2011).

The partial differential equation (PDE) (1.1a), the initial data in (1.1b), and the time interval involve a small positive
parameter 𝜀 ≪ 1. Although the nonlinearity in (1.1a) is multiplied by 𝜀, the problem (1.1) is strongly nonlinear, because
the length of the time interval is proportional to 𝜀−1. In fact, by rescaling 𝜏 = 𝜀t and w(𝜏, x) = u(t, x), we could convert
(1.1a) into the equivalent form:

𝜕
𝜏
w + 1

𝜀
A(𝜕)w + 1

𝜀2
Ew = T(w, w, w), 𝜏 ∈ (0, tend], x ∈ ℝd, (1.3)

where the nonlinear term and the time interval do not depend on 𝜀 anymore. However, we will consider the original version
(1.1), which is the representation considered, for example, in Baumstark (2022), Baumstark and Jahnke (2023), Baumstark
et al. (2024), Colin and Lannes (2009), and Lannes (2011).

The small parameter 𝜀 accounts for different scales in time and space. The terms e±i(𝜿⋅x)∕𝜀 in the initial data cause
spatial oscillations with wavelength of (𝜀), whereas p changes on a scale of (1), roughly speaking. As a consequence,
the solution u(t, x) is a wave packet with a high-frequency carrier wave modulated by a smooth envelope. Concerning the
evolution in time, the initial value problem (1.1) is scaled in such a way that nonlinear and diffractive effects appear on
long time intervals of length tend∕𝜀 for some tend > 0, whereas the envelope of the wave packet propagates with speed
(1). The solution itself, however, evolves on a third scale, because the linear part A(𝜕)u + (1∕𝜀)Eu of the PDE causes
rapid oscillations in time with wavelength of (𝜀). Because of the highly oscillatory nature and the long time interval,
an attempt to approximate the vector-valued solution u : [0, tend∕𝜀] × ℝd → ℝn of (1.1) numerically with a traditional
method is bound to fail, because the time and space discretizations would require an extremely fine resolution and hence
an impracticable runtime. The equivalent form (1.3) does not have any advantage for numerical approximation, because
the 𝜀-independent time interval is counterbalanced by an extra factor 1∕𝜀 in each term apart from the time derivative.

Remark 1.1. In this paper, we consider wave packets where the wavelength of the oscillations is much shorter than
the scale on which the envelope varies. This assumption excludes short or chirped pulses, which have been analyzed, for
example, in Alterman and Rauch (2000, 2003), Barrailh and Lannes (2002), Chung et al. (2005), Colin and Lannes (2009),
Colin et al. (2005), and Lannes (2011).

1.2 Slowly Varying Envelope Approximation (SVEA) and Generalizations
A feasible approach is to replace (1.1) by a different model, which can be solved numerically with significantly less efforts
and at the same time provide a decent approximation to u. Such models are often based on the SVEA or generalizations
thereof, which are derived as follows. For every 𝛽 ∈ ℝd, the matrix

A(𝛽) =
d∑

𝓁=1

𝛽𝓁A𝓁 ∈ ℝn×n

is symmetric, and

(𝛼, 𝛽) = −𝛼I + A(𝛽) − iE ∈ ℂn×n (1.4)

is Hermitian for all 𝛼 ∈ ℝ and 𝛽 ∈ ℝd. Let 𝜿 ∈ ℝd ⧵ {0} be the (given) wave vector, which appears in (1.1b), and

let 𝜔 = 𝜔(𝜿) be an eigenvalue of A(𝜿) − iE (1.5)

Then, (𝜔,𝜿) has a nontrivial kernel, and the pair (𝜔,𝜿) is said to fulfill the dispersion relation. We assume the following.
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Assumption 1.2. (i) The kernel of (𝜔,𝜿) is one-dimensional.
(ii) The function p in (1.1b) has the structure

p = p0 + 𝜀p1 with p0(x) ∈ ker ((𝜔,𝜿)) a.e. (1.6)

and p0, p1 ∈ L∞(ℝd,ℂn).

Assumption (i) is only made in order to keep the notation simple; cf. Remark 4.6. Assumption (ii) is a polariza-
tion condition, which was also imposed in a similar way in Baumstark and Jahnke (2023), Colin and Lannes (2009,
Theorem 1), Lannes (2011, Theorem 2.15), and other works.

As in Baumstark and Jahnke (2023), we seek an approximation of the form:

u(t, x) ≈ ũ(m)(t, x) =
∑

j∈ (m)

eij(𝜿⋅x−𝜔t)∕𝜀uj(t, x), u−j = uj, (1.7)

for  (m) = {±1,±3,… ,±m}, where m ∈ ℕ is an odd integer. The condition u−j = uj ensures that ũ(m) is real-valued.
If we substitute (1.7) into (1.1), then the trilinear nonlinearity generates higher harmonics, that is, terms with prefactor
eij(𝜿⋅x−𝜔t)∕𝜀 for |j| > m. These terms appear only on the right-hand side of (1.1a), because all terms on the left-hand side
are linear. Ignoring higher harmonics and then comparing terms on both sides yields the PDE system

𝜕tuj +
i
𝜀
( j𝜔, j𝜿)uj + A(𝜕)uj = 𝜀

∑
j1+j2+j3=j

T(uj1
, uj2

, uj3
) (1.8a)

for j ∈ 
(m)
+ = 

(m) ∩ ℕ, t ∈ (0, tend∕𝜀], x ∈ ℝd,

with initial conditions

u1(0, ⋅) = p, uj(0, ⋅) = 0 for j ∈ 
(m)
+ ⧵ {1}. (1.8b)

The sum on the right-hand side of (1.8a) is to be taken over the set

{
J = ( j1, j2, j3) ∈ ( (m))3 : #J := j1 + j2 + j3 = j

}
,

and T is now the trilinear extension of the real nonlinearity from (1.1a) to T : ℂn × ℂn × ℂn → ℂn. It is sufficient to
consider positive j ∈ 

(m)
+ = 

(m) ∩ℕ instead of j ∈ 
(m) in (1.8a), because the uj with negative index j are obtained from

the condition u−j = uj. For m = 1 and 
(1) = {−1, 1}, we obtain the SVEA

u(t, x) ≈ ũ(1)(t, x) = ei(𝜿⋅x−𝜔t)∕𝜀u1(t, x) + c.c., (1.9)

with u1 being the solution of

𝜕tu1 +
i
𝜀
(𝜔,𝜿)u1 + A(𝜕)u1 = 𝜀

∑
j1+j2+j3=1

T(uj1
, uj2

, uj3
) (1.10a)

= 𝜀
(
T(u1, u1, u−1) + T(u1, u−1, u1) + T(u−1, u1, u1)

)
,

u1(0, ⋅) = p, (1.10b)

as a special case of (1.7) and (1.8). Note that the initial data in (1.8b) are smooth, nonoscillatory functions, in contrast to
(1.1b). Hence, solutions to (1.8) can be discretized in space on a 𝜀-independent grid, which is a significant advantage over
(1.1). However, typical solutions of (1.8) do still oscillate in time due to the term (i∕𝜀)( j𝜔, j𝜿)uj in (1.8a).

For the error of the SVEA (1.9), (1.10a), and (1.10b), the bound

sup
t∈[0,tend∕𝜀]

‖u(t, ⋅) − ũ(1)(t, ⋅)‖L∞(ℝd ,ℝn) ≤ C𝜀 (1.11)

was shown in Colin and Lannes (2009, Section 2.2). Under additional assumptions, one can replace the PDE (1.10a) by a
nonlinear Schrödinger equation without spoiling the error bound (1.11); cf. Colin and Lannes (2009, Corollary 2) and also
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Colin (2002), Donnat et al. (1996), Joly et al. (1998), Lannes (2011) and Schneider and Uecker (2017). This nonlinear
Schrödinger equation has the advantage that it does not involve 𝜀 at all when considered in a comoving coordinate system,
and that it only has to be solved on the 𝜀-independent time interval [0, tend]. Hence, standard numerical methods can be
used to solve the nonlinear Schrödinger equation numerically, which then yields an (𝜀)-approximation to ũ(1) and, via
(1.11), to the solution of (1.1).

In this paper, we consider the situation where an error of (𝜀) is not small enough to be acceptable. For the
approximation

u(t, x) ≈ ũ(3)(t, x) =
(
ei(𝜿⋅x−𝜔t)∕𝜀u1(t, x) + e3i(𝜿⋅x−𝜔t)∕𝜀u3(t, x)

)
+ c.c.

we have already shown the error bound

sup
t∈[0,t

⋆
∕𝜀]

‖u(t, ⋅) − ũ(3)(t, ⋅)‖L∞(ℝd ,ℝn) ≤ C𝜀2 (1.12)

for some t
⋆
∈ (0, tend] in Baumstark and Jahnke (2023). The proof is rather long and technical because of the complicated

self-interaction of the oscillatory solution via the nonlinearity. Moreover, the approximation ũ(3) is more complicated than
(1.9) because of the additional coefficient function u3.

1.3 Main Results
Numerical experiments indicate that the estimates (1.11) and (1.12) are both not optimal; see Sections 4.2 and 5.3. In this
work, we will prove the following stronger error bounds.

Main Results (Informal Version). Under a number of assumptions the inequalities

sup
t∈[0,tend∕𝜀]

‖u(t, ⋅) − ũ(1)(t, ⋅)‖L∞(ℝd ,ℝn) ≤ C𝜀2, (1.13)

sup
t∈[0,t

⋆
∕𝜀]

‖u(t, ⋅) − ũ(3)(t, ⋅)‖L∞(ℝd ,ℝn) ≤ C𝜀3, (1.14)

hold for some t
⋆
∈ (0, tend] and with a constant C ≥ 0, which does not depend on 𝜀.

Mathematically rigorous formulations of these two results with a detailed specification of the assumptions are given in
Theorems 4.3 and 5.7. The bound (1.13) explains the error behavior which appears in numerical examples where a refer-
ence solution can be computed. Moreover, this inequality shows that the SVEA yields a significantly higher accuracy than
the classical nonlinear Schrödinger approximation, which has an error of (𝜀). This fact was apparently not known until
now. The numerical experiment and the discussion in Section 4.1 indicate that the result is sharp in the sense that a higher
convergence order can in general not be expected; cf. Remark 4.5. The second error bound (1.14) states that in applications
where an error of (𝜀2) is still too large, the refined approximation ũ(3) offers the possibility of reducing the error down to
(𝜀3) at the cost of higher computational work. Our error bounds are not only crucial for estimating the accuracy of the
reduced models in nonlinear optics, but also for deciding whether the SVEA ũ(1) or the refined approximation ũ(3) should
be used in a specific application.

Natural questions are whether and under which additional assumptions the approximations ũ(m) with m > 3 have a
higher order of convergence than ũ(3), and how much the order of convergence improves. Since these questions have been
discussed by the first author in Section 4.4 of his PhD thesis (Baumstark, 2022), we only give a short summary of the
most important findings. Numerical experiments for d = 1 suggest that increasing m does indeed increase the order of
convergence. Unfortunately, it is almost impossible to perform significant numerical tests for d > 1, because computing
a highly accurate reference solution would require immense computational ressources. On the analytical side, we were
not able to prove error bounds for ũ(m) with m > 3 and d > 1 without making certain nonresonance assumptions. These
nonresonance assumptions, however, are not realistic as they do not hold for the Maxwell–Lorentz system, which is the
most important application in the problem class (1.1). We will return to this issue in Subsection 5.3.

1.3.1 Delineation From Other Results. In Donnat and Rauch (1997a), Joly et al. (1993, 2000), Rauch (2012), and other
contributions, asymptotic expansions of solutions to problems similar to (1.1) have been analyzed in the regime of geo-
metric optics, that is, for time intervals of length (1). This differs from the regime of diffractive geometric optics, where
the PDE system has to be solved on time intervals of length (1∕𝜀), which is the situation we consider here. Approxi-
mations in diffractive geometric optics have been constructed in Donnat et al. (1996) and Joly et al. (1998) for semilinear
and quasilinear systems with a more general nonlinearity, but with 𝜀E instead of E∕𝜀 in Donnat et al. (1996) and with
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E = 0 in Joly et al. (1998). Quasilinear systems with dispersion and dispersive problems with bilinear nonlinearity are
approximated in Lannes (1998) and Colin (2002), respectively, but without an explicit rate of convergence. In Baumstark
et al. (2024), we have constructed modulated Fourier expansions for (1.1) with nonlinear polarization of the initial data.
This approach is likewise based on the ansatz (1.7) and (1.8), but the nonlinear polarization considered in Baumstark et al.
(2024) means that p1 depends on p0 in (1.6), which excludes, for example, the case p1 = 0. In the present work, p1 and p0
are completely independent. Recently, another related but different way to construct approximations to (1.1) was analyzed
in Logioti et al. (2025). As in Baumstark et al. (2024), the approach does not require the solution of highly oscillatory
PDEs, and in contrast to Baumstark et al. (2024), it can be extended to nonpolarized initial data. However, even for an
accuracy of (𝜀1∕2) a large system of coupled equations has to be solved. The book (Schneider & Uecker, 2017) provides
an extensive analysis of the approximation of PDEs by nonlinear Schrödinger equations and other modulation equations.

1.4 Structure of the Paper and Notation
In Section 2, we specify the analytical framework, we review results on local wellposedness of (1.1) and (1.8), and we
introduce a transformation of the coefficient functions uj, which was already employed in Baumstark and Jahnke (2023).
The proofs of the error bounds (1.13) and (1.14) rely on the fact that for a certain projection 

𝜀
the Fourier transform û1 of

the coefficient function u1 can be decomposed into an essentially nonoscillatory part 
𝜀
û1 and an oscillatory but “small”

part (I − 
𝜀
)û1. For the SVEA (i.e. for m = 1), we compile the corresponding results in Section 3. Then, in Section 4,

we prove the error bound (1.13) for the SVEA, and we corroborate this result by a numerical experiment. In Section 5,
we turn to the case m = 3. We show the error bound (1.14) and we give reasons why we observe an even better rate of
convergence in a numerical example with a one-dimensional Klein–Gordon system.

1.4.1 Notation. Throughout the text, v ⋅ w = v∗w is the Euclidean scalar product of v, w ∈ ℂn, and |v|q is the q norm
of v. The identity in ℝn×n is denoted by I. For space- and time-dependent functions f = f (t, x), we will often denote the
mapping x ↦ f (t, x) by f (t) instead of f (t, ⋅). Likewise, we will omit the second argument of the Fourier transform f̂ (t, k) of
such a function. From now on, we will use the short-hand notation L1 and L∞ for L1(ℝd,ℂn) and L∞(ℝd,ℂn), respectively.
The symbol i =

√
−1 is the imaginary unit, whereas i appears as an index in a few formulas.

2 Analytical Setting

2.1 Wiener Algebra and Evolution Equations in Fourier Space
As in Baumstark (2022), Baumstark and Jahnke (2023), Baumstark et al. (2024), Colin and Lannes (2009), and Lannes
(2011), we will analyze the accuracy in the Wiener algebra

W =
{

f ∈
(


′(ℝd)
)n

: f̂ ∈ L1
}

, ‖ f‖W = ‖ f̂‖L1 =
∫ℝd

| f̂ (k)|2 dk (2.1)

of vector-valued functions. Here and below, f̂ =  f denotes the Fourier transform

( f )(k) := (2𝜋)−d∕2
∫ℝd

f (x)e−ik⋅xdx

of f . For s ∈ ℕ0 and 𝛼 = (𝛼1,… , 𝛼d) ∈ ℕd
0, we define 𝜕𝛼 = 𝜕

𝛼1
1 … 𝜕

𝛼d
d and

Ws = { f ∈ W : 𝜕𝛼f ∈ W for all 𝛼 ∈ ℕd
0, |𝛼|1 ≤ s}, ‖ f‖Ws =

∑
|𝛼|1≤s

‖𝜕𝛼f‖W .

It is well-known that Ws is a Banach algebra with continuous embedding W ↪ L∞, cf. Colin and Lannes (2009,
Proposition 1) and Lannes (2011, Proposition 3.2).

In order to work in the Wiener algebra, we apply the Fourier transform to the PDE system (1.8a). This yields

𝜕tûj(t, k) + i
𝜀
j(𝜀k)ûj(t, k) =𝜀

∑
#J=j


(
ûj1

, ûj2
, ûj3

)
(t, k), (2.2a)

j ∈ 
(m)
+ , t ∈ (0, tend∕𝜀], k ∈ ℝd
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with initial conditions

û1(0, ⋅) = p̂, ûj(0, ⋅) = 0 for j ∈ 
(m)
+ ⧵ {1} (2.2b)

and the notation

j(𝜃) = ( j𝜔, j𝜿 + 𝜃) = j(0) + A(𝜃), j ∈ 
(m)
+ , (2.3)


(
ûj1

, ûj2
, ûj3

)
(k) = 

(
T(uj1

, uj2
, uj3

)
)
(k)

= 1
(2𝜋)d ∫ℝd ∫ℝd

T(ûj1
(k(1)), ûj2

(k(2)), ûj3
(k − k(1) − k(2))) dk(2)dk(1),

cf. Baumstark and Jahnke (2023, Section 2.2). In (2.3), we have used that by definition the mapping 𝛽 ↦ A(𝛽) is linear.
With the shorthand notation

K =
(
k(1), k(2), k(3)

)
∈ ℝd ×ℝd ×ℝd, #K := k(1) + k(2) + k(3) ∈ ℝd, (2.4a)

and

∫#K=k
T(ûj1

(k(1)), ûj2
(k(2)), ûj3

(k(3))) dK

=
∫ℝd ∫ℝd

T(ûj1
(k(1)), ûj2

(k(2)), ûj3
(k − k(1) − k(2))) dk(2) dk(1), (2.4b)

the Fourier transform of the nonlinearity can be expressed as


(
ûj1

, ûj2
, ûj3

)
(k) = (2𝜋)−d

∫#K=k
T(ûj1

(k(1)), ûj2
(k(2)), ûj3

(k(3))) dK. (2.5)

Later we will often use that
‖‖‖ ( f̂1, f̂2, f̂3)

‖‖‖L1
≤ C


‖ f̂1‖L1‖ f̂2‖L1‖ f̂3‖L1 (2.6)

with a constant C


, which depends on  and on n. Via trilinearity, we obtain that

‖‖‖ ( f̂1, f̂2, f̂3) −  (ĝ1, ĝ2, ĝ3)
‖‖‖L1

≤ C

‖ f̂1 − ĝ1‖L1‖ f̂2‖L1‖ f̂3‖L1

+ C

‖ĝ1‖L1‖ f̂2 − ĝ2‖L1‖ f̂3‖L1

+ C

‖ĝ1‖L1‖ĝ2‖L1‖ f̂3 − ĝ3‖L1 . (2.7)

We set u−j = uj throughout, which implies that û−j(t, k) = ûj(t,−k). The system (2.2a) can be extended to j ∈ 
(m)

(including negative indices) if we define

−j(𝜃) = −j(−𝜃) for j ∈ 
(m)
+ . (2.8)

2.2 Local Wellposedness
The polarization condition (Assumption 1.2(ii)) is not needed to prove existence and uniqueness of solutions to the original
problem (1.1) and the PDE system (1.8). For the sake of consistency, however, we always allow for 𝜀-dependent initial
data of the form:

p = p0 + 𝜀p1 with p0, p1 ∈ W𝜎 (2.9)
for some 𝜎 ∈ ℕ. The value of 𝜎 will be specified whenever we refer to (2.9).

Lemma 2.1 (Local wellposedness of (1.1)). If p0, p1 ∈ W, then there is a tend > 0 such that for every 𝜀 ∈ (0, 1] the
original problem (1.1) with p = p0 + 𝜀p1 has a unique mild solution u ∈ C([0, tend∕𝜀), W), which is uniformly bounded,
that is, there is a constant c > 0 such that

sup
t∈[0,tend∕𝜀]

‖u(t)‖W ≤ c for all 𝜀 ∈ (0, 1].
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We omit the proof, because Lemma 2.1 can be shown with the usual fixed-point argument. Other proofs for well-
posedness of (1.1) via approximation by the SVEA are given in Colin and Lannes (2009, Theorem 1) and Lannes (2011,
Theorem 3.8).

Lemma 2.2 (Local wellposedness of (1.8)). Let m ∈ ℕ be an odd integer.

(i) If (2.9) holds with 𝜎 = 0 and Cu,0 > ‖p0‖W + ‖p1‖W, then there is a tend > 0 such that for every 𝜀 ∈ (0, 1] the
system (1.8) has a unique mild solution

{uj}j∈ (m)
+

, uj ∈ C([0, tend∕𝜀), W),

which is uniformly bounded, that is,

sup
t∈[0,tend∕𝜀]

‖uj(t)‖W ≤ Cu,0 for all j ∈ 
(m)
+ and all 𝜀 ∈ (0, 1].

(ii) If (2.9) holds with 𝜎 = 1, then the mild solution on [0, tend∕𝜀] is a classical solution with

uj ∈ C1([0, tend∕𝜀], W) ∩ C([0, tend∕𝜀], W1), j ∈ 
(m)
+ ,

sup
t∈[0,tend∕𝜀]

‖uj(t)‖W1 ≤ Cu,1.

(iii) If (2.9) holds with 𝜎 ∈ {2, 3}, then

uj ∈ C𝜎−𝓁([0, tend∕𝜀], W𝓁) for every 𝓁 = 0,… , 𝜎, j ∈ 
(m)
+ ,

sup
t∈[0,tend∕𝜀]

‖uj(t)‖W𝜎 ≤ Cu,𝜎 . (2.10)

The constants Cu,𝜎 , 𝜎 ∈ {0, 1, 2, 3}, depend on the nonlinearity T and on tend, ‖p0‖W𝜎 , ‖p1‖W𝜎 , but not on 𝜀 ∈ (0, 1].

For m = 3, a slightly different version of this result was shown in Baumstark and Jahnke (2023, Lemma 2.3). The
extension to arbitrary odd m is straightforward; cf. Baumstark (2022, Lemma 3.6.1). Wellposedness of the SVEA (m = 1)
was already proven in Colin and Lannes (2009, Theorem 1) and Lannes (2011, Theorem 3.8).

Although tend does in general not have the same value in Lemmas 2.1 and 2.2, we will henceforth assume that solutions
to (1.1) and (1.8) exist on the same interval [0, tend∕𝜀], as suggested by our notation. This is not a restriction as one can
always consider the smaller one of the two possibly different intervals.

2.3 Eigendecompositions
The highly oscillatory behavior of the coefficient functions ûj originates from the linear part (i∕𝜀)j(𝜀k)ûj(t, k) in (2.2a).
It is thus not surprising that the eigendecomposition of j(𝜃) = ( j𝜔, j𝜿 + 𝜃) plays a crucial role in our analysis. As in
Baumstark and Jahnke (2023, Assumption 2.2), we assume the following.

Assumption 2.3. (i) The matrix (0, 𝛽) = A(𝛽) − iE has a smooth eigendecomposition: if 𝜔𝓁(𝛽) is an eigenvalue of
(0, 𝛽) for some 𝓁 ∈ {1,… , n}, then 𝜔𝓁 ∈ C∞(ℝd ⧵ {0},ℝ), and there is a corresponding eigenvector 𝜙𝓁(𝛽) with
𝜙𝓁 ∈ C∞(ℝd ⧵ {0},ℂn). With no loss of generality, we assume that |𝜙𝓁(𝛽)|2 = 1 for all 𝛽 and all 𝓁 = 1,… , n. The
enumeration is chosen in such a way that 𝜔 = 𝜔1(𝜿) in (1.5).

(ii) Every eigenvalue 𝜔𝓁(𝛽) of (0, 𝛽) is globally Lipschitz continuous, that is, there is a constant C such that

|𝜔𝓁(𝛽) − 𝜔𝓁(𝛽)| ≤ C|𝛽 − 𝛽|1 for all 𝛽, 𝛽 ∈ ℝd and 𝓁 = 1,… , n.

(iii) The eigenvalue 𝜔 = 𝜔1(𝜿) is bounded away from the other eigenvalues: There is a constant C > 0 such that

|𝜔 − 𝜔𝓁(𝛽)| ≥ C for all 𝛽 ∈ ℝd and 𝓁 = 2,… , n.
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Assumption (i) corresponds to Assumption 2 in Colin and Lannes (2009), whereas Assumption (iii) is a part of
Assumption 3 in Colin and Lannes (2009).

Remark 2.4. Explicit formulas for the eigenvalues in case of the Maxwell–Lorentz system and the Klein–Gordon system
are given in Colin and Lannes (2009, Examples 3 and 4), and one can check that the Assumptions (i) and (ii) on the
eigenvalues are true. Assumption (iii) is true if we choose 𝜔 to be the largest or smallest eigenvalue in (1.5).

For j ∈ 
(m)
+ and every 𝜃 ∈ ℝd let

j(𝜃) = Ψj(𝜃)Λj(𝜃)Ψ∗
j (𝜃) (2.11a)

be the eigendecomposition of (2.3): the real diagonal matrix

Λj(𝜃) = diag(𝜆j1(𝜃),… , 𝜆jn(𝜃)) ∈ ℝn×n (2.11b)

contains the eigenvalues 𝜆j𝓁(𝜃) ∈ ℝ of j(𝜃), and

Ψj(𝜃) =
(
𝜓j1(𝜃) ∣ ⋯ ∣ 𝜓jn(𝜃)

)
∈ ℂn×n (2.11c)

is unitary with the corresponding normalized eigenvectors 𝜓j𝓁(𝜃) ∈ ℂn in its columns. By Assumption 1.2(i) 1(0) =
(𝜔,𝜿) has a one-dimensional kernel, and we choose the enumeration of the eigenvalues and eigenvectors in such a way
that 𝜆11(0) = 0 and ker 1(0) = span{𝜓11(0)}. Equation (2.8) implies that Ψ−j(𝜃) = Ψj(−𝜃) and Λ−j(𝜃) = −Λj(−𝜃) =
−Λj(−𝜃).

The matrices (0, j𝜿 + 𝜃) and ( j𝜔, j𝜿 + 𝜃) = −j𝜔I + (0, j𝜿 + 𝜃) have the same eigenvectors, and their eigenvalues
𝜔𝓁( j𝜿 + 𝜃) and 𝜆j𝓁(𝜃) = −j𝜔 + 𝜔𝓁( j𝜿 + 𝜃) differ only by a shift. Hence, it follows from Assumption 2.3 that 𝜆j𝓁 ∈
C∞(ℝd ⧵ {−j𝜿},ℝ) and 𝜓j𝓁 ∈ C∞(ℝd ⧵ {−j𝜿},ℂn) with

|𝜆j𝓁(𝜃) − 𝜆j𝓁(𝜃)| ≤ C|𝜃 − 𝜃|1 for all 𝜃, 𝜃 ∈ ℝd, (2.12)

|𝜆1𝓁(𝜃)| ≥ C for all 𝜃 ∈ ℝd and 𝓁 = 2,… , n. (2.13)

2.4 Transformation of the Coefficient Functions
The strategy in the proofs of (1.13) and (1.14) is, roughly speaking, to distinguish the oscillatory “parts” of the solution
from the nonoscillatory ones, and to carefully analyze how these parts interact in the nonlinearity. For this purpose, the
following transformation was introduced in Baumstark and Jahnke (2023).

Let Û(m) = {ûj}j∈ (m)
+

be the solution of (2.2) for 𝜀 ∈ (0, 1]. For every t ≥ 0 and k ∈ ℝd, we define

zj(t, k) = Sj,𝜀(t, k)ûj(t, k), z−j(t, k) = zj(t,−k), j ∈ 
(m)
+ (2.14)

with transformation matrix

Sj,𝜀(t, k) = exp
( it
𝜀
Λj(𝜀k)

)
Ψ∗

j (𝜀k) = Ψ∗
j (𝜀k) exp

( it
𝜀
j(𝜀k)

)
, j ∈ 

(m)
+ , (2.15a)

S−j,𝜀(t, k) := Sj,𝜀(t,−k). (2.15b)

It follows from (2.14) and (2.2a) that

𝜕tzj(t) = 𝜀

∑
#J=j

F
(

t, Û(m), J
)

, Û(m) = {ûj}j∈ (m)
+

, (2.16)

where F is given by

F(t, Û(m), J) = Sj,𝜀(t)
(
ûj1

, ûj2
, ûj3

)
(t), J = ( j1, j2, j3) ∈ ( (m))3, j = #J. (2.17)
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By means of the inverse transform ûj(t, k) = S∗
j,𝜀(t, k)zj(t, k) we could turn (2.16) into a closed system of evolution equations

for {zj}j∈ (m) , but with a rather complicated right-hand side. The initial conditions are

zj(0, k) = Sj,𝜀(0, k)ûj(0, k) =

{
Ψ∗

1(𝜀k)p̂(k) if j = 1,
0 if j ∈ 

(m)
+ ⧵ {1},

(2.18)

according to (2.2b), (2.14), and (2.15).
The transformations (2.14) and (2.15) are motivated by the fact that in the linear case, the exact solution of (2.2) is

ûj(t, k) = S∗
j,𝜀(t, k)zj(0, k) for  (⋅, ⋅, ⋅) = 0,

because zj(t) = zj(0) is constant in time for  (⋅, ⋅, ⋅) = 0 according to (2.16) and (2.17). But even in the nonlinear
case  (⋅, ⋅, ⋅) ≠ 0 the right-hand side of (2.16) is formally only (𝜀) instead of (1∕𝜀) in (2.2a), because the linear
part (i∕𝜀)j(𝜀k)ûj(t, k) is cancelled by the transformation. The transformed functions zj do still oscillate in time, but the
oscillations appear on a much smaller scale, and in this sense, zj is smoother than ûj.

2.5 Projectors
Recall that by Assumption 1.2(i), the matrix (𝜔,𝜿) = 1(0) has a one-dimensional kernel spanned by 𝜓11(0). This is the
reason why the first eigenspace of the matrix 1(𝜀k) = 1(0) + 𝜀A(k), which appears in (2.2a) will play a special role in
our analysis. We denote the orthogonal projection onto this eigenspace by

ŵ ↦ 
𝜀
ŵ, 

𝜀
(k) = 𝜓11(𝜀k)𝜓∗

11(𝜀k) ∈ ℂn×n (2.19)

and the projector onto the orthogonal complement by 
⟂
𝜀
= I −

𝜀
. Assumption 1.2(ii) is equivalent to 

⟂
0 p̂ = 𝜀

⟂
0 p̂1, and

for p0, p1 ∈ W1 it was shown in the proof of Lemma 3 in Colin and Lannes (2009) that

‖⟂
𝜀

p̂‖L1 ≤ C𝜀(‖p1‖W + ‖∇p‖W ) ≤ C𝜀(‖p0‖W1 + ‖p1‖W1). (2.20)

For the transformed function (2.14), we obtain from (2.15) that


𝜀
(k)û1(t, k) = 𝜓11(𝜀k) exp

(
− it
𝜀
𝜆11(𝜀k)

)
z11(t, k) = S∗

1,𝜀(t, k)Pz1(t, k), (2.21)

where z11(t, k) is the first entry of z1(t, k) ∈ ℂn and

P : ℂn → ℂn, (w1,… , wn)⊤ ↦ (w1, 0,… , 0)⊤ (2.22)

is the orthogonal projection of a vector w onto span{(1, 0,… , 0)⊤}. For P⟂ = (I − P) the estimate (2.20) yields

‖P⟂z1(0, ⋅)‖L1 ≤ C𝜀(‖p0‖W1 + ‖p1‖W1), (2.23)

because with (2.21), we obtain

P⟂z1(0, ⋅) = z1(0, ⋅) − Pz1(0, ⋅) = S1,𝜀(0, k)⟂
𝜀
(k)û1(0, k).

2.6 Useful Identities and Inequalities
Throughout, we will frequently use the following facts. Since we have chosen the Euclidean vector norm | ⋅ |2 to define
‖ ⋅ ‖L1 in (2.1), the norm ‖ f̂‖L1 of f̂ ∈ L1 is invariant under multiplication of f̂ (k) ∈ ℂn with a unitary matrix S(k) ∈ ℂn×n.
This means, in particular, that for the transformed functions zj(t, k) = Sj,𝜀(t, k)ûj(t, k) from (2.14) the identities

|zj(t, k)|2 = |ûj(t, k)|2, ‖zj(t)‖L1 = ‖ûj(t)‖L1 = ‖uj(t)‖W (2.24)
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and, via (2.21), the equations

|Pz1(t, k)|2 = |
𝜀
(k)û1(t, k)|2, ‖Pz1(t)‖L1 = ‖

𝜀
û1(t)‖L1 ,

|P⟂z1(t, k)|2 = |⟂
𝜀
(k)û1(t, k)|2, ‖P⟂z1(t)‖L1 = ‖⟂

𝜀
û1(t)‖L1 (2.25)

hold for all t ≥ 0, k ∈ ℝd, and 𝜀 ∈ (0, 1]. Moreover, we will use that for all w ∈ ℂn and f ∈ L1 the inequalities

|Pw|2 ≤ |w|2, ‖Pf‖L1 ≤ ‖ f‖L1 , (2.26)
|

𝜀
(k)w|2 ≤ |w|2, ‖

𝜀
f‖L1 ≤ ‖ f‖L1 (2.27)

hold, as well as the same inequalities with P and 
𝜀

replaced by P⟂ and 
⟂
𝜀

, respectively.

3 Why 
𝜀
û1 is Smooth and 

⟂
𝜀

û1 is Small in the SVEA
In this and the next section, we analyze the SVEA (1.9)–(1.10), which corresponds to setting

m = 1, 
(m) = 

(1) = {−1, 1}, 
(1)
+ = {1}

in (1.7), (1.8), and (2.2), respectively. Our main goal is to prove the error bound (1.13), which will be achieved in Section
4; cf. Theorem 4.3. This proof is based on a number of auxiliary results, which we compile now. We start by quoting two
important inequalities from Colin and Lannes (2009).

Lemma 3.1. Let m = 1, let 𝜎 = 1 in (2.9), and let u1 be the classical solution of (1.10), which was established in Lemma
2.2(ii). Under Assumptions 2.3 and 1.2(i), there is a constant C such that

sup
t∈[0,tend∕𝜀]

‖𝜕t𝜀û1(t)‖L1 ≤ C. (3.1)

The constant C depends on Cu,1 from (2.10) and thus also on tend, but not on 𝜀 ∈ (0, 1].

Proof. See Colin and Lannes (2009, Lemma 2).

Proposition 3.2. Let m = 1 and let u1 be the classical solution of (1.10) with initial data of the form (2.9) with 𝜎 = 1.
Under Assumptions 1.2 and 2.3, there is a constant C such that

sup
t∈[0,tend∕𝜀]

‖⟂
𝜀

û1(t)‖L1 ≤ C𝜀 (3.2)

for all 𝜀 ∈ (0, 1].

Proof. See Colin and Lannes (2009, Lemma 3).

In Baumstark (2022), a similar result was shown without Assumption 2.3(iii), but on a possibly smaller interval [0, t
⋆
∕𝜀]

for some t
⋆
≤ tend.

These results can be interpreted as follows. The term (i∕𝜀)1(𝜀k)û1(t, k) in (2.2a) suggests that formally 𝜕tû1 = (1∕𝜀).
Lemma 3.1 shows, however, that the time derivative of the projected part 

𝜀
û1 is bounded uniformly in 𝜀. Hence, we

can consider 
𝜀
û1 as “the nonoscillatory part of û1,” although strictly speaking this interpretation is not correct, because

oscillations in 
𝜀
û1 can still be detected on a very small scale; cf. Remark 3.6 at the end of this subsection.

For the time derivatives of the other part ⟂
𝜀

û1 = û1 − 
𝜀
û1 a corresponding result does not hold, which means that

𝜕t
⟂
𝜀

û1 = (1∕𝜀) in general. Proposition 3.2 shows, however, that ‖⟂
𝜀

û1(t)‖L1 = (𝜀) even on the long time interval
[0, tend∕𝜀]. Hence, we can think of ⟂

𝜀
û1 as “small but oscillatory” in the sense that its time derivative is much larger than


⟂
𝜀

û1 itself. Exploiting the different properties of 
𝜀
û1 and 

⟂
𝜀

û1 will be crucial in the proof of Theorem 4.3 in Section 4.
Before that, we have to extend Lemma 3.1 and Proposition 3.2 to a stronger norm.
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Let D
𝜇

denote the Fourier multiplier (D
𝜇
ŵ)(k) = ik

𝜇
ŵ(k) for 𝜇 ∈ {1,… , d}. We want to show that under stronger

regularity assumptions Proposition 3.2 remains true when 
⟂
𝜀

û1(t) is replaced by D
𝜇


⟂
𝜀

û1(t); cf. Proposition 3.4. This
corresponds to an extension of the inequality (3.2) from

‖⟂
𝜀

û1(t)‖L1 = ‖−1(⟂
𝜀

û1(t))‖W

to the stronger norm

‖⟂
𝜀

û1(t)‖L1 +
d∑
𝜇=1

‖D
𝜇


⟂
𝜀

û1(t)‖L1 = ‖−1(⟂
𝜀

û1(t))‖W1 .

As a first step, we prove the following counterpart of Lemma 3.1.

Lemma 3.3. Let m = 1, let 𝜎 = 2 in (2.9), and let u1 be the classical solution of (1.10), which was established in Lemma
2.2(iii). Under Assumptions 2.3 and 1.2(i), there is a constant C such that

sup
t∈[0,tend∕𝜀]

‖𝜕tD𝜇

𝜀
û1(t)‖L1 ≤ C.

The constant C depends on Cu,2 from (2.10) and thus also on tend, but not on 𝜀 ∈ (0, 1].

Proof. The proof is similar to the proof of Lemma 3.1. We choose 𝜇 ∈ {1,… , d} and apply D
𝜇

𝜀
(k) to both sides of

(2.2a) with j = m = 1. This yields

𝜕tD𝜇

𝜀
(k)û1(t, k) = − i

𝜀
D
𝜇

𝜀
(k)1(𝜀k)û1(t, k) + 𝜀D

𝜇

𝜀
(k)

∑
#J=1


(
ûj1

, ûj2
, ûj3

)
(t, k) (3.3)

for all t ∈ (0, tend∕𝜀] and k ∈ ℝd. The first term on the right-hand side is

− i
𝜀

D
𝜇

𝜀
(k)1(𝜀k)û1(t, k) = − i

𝜀
𝜆11(𝜀k)

𝜀
(k)D

𝜇
û1(t, k) (3.4)

because of (2.19) and (2.11). The Lipschitz continuity (2.12) of the eigenvalues and the fact that 𝜆11(0) = 0 yield

|𝜆11(𝜀k)| = |𝜆11(𝜀k) − 𝜆11(0)| ≤ C𝜀|k|1,

and together with (3.4) and (2.27), this gives

‖‖‖
i
𝜀

D
𝜇

𝜀
1(𝜀 ⋅)û1(t)

‖‖‖L1
≤ C

∫ℝd
|k|1|𝜀(k)D𝜇

û1(t, k)|2 dk

≤ C
∫ℝd

|k|21|û1(t, k)|2 dk = C ⋅ Cu,2, (3.5)

with Cu,2 from Lemma 2.2(iii). For the nonlinear term on the right-hand side of (3.3), we have

D
𝜇

(
ûj1

, ûj2
, ûj3

)
= 

(
D
𝜇
ûj1

, ûj2
, ûj3

)
+ 

(
ûj1

, D
𝜇
ûj2

, ûj3

)
+ 

(
ûj1

, ûj2
, D

𝜇
ûj3

)
, (3.6)

which corresponds to the product rule. Since there are three multiindices J ∈ ( (1))3 with #J = 1, namely
(1, 1,−1), (1,−1, 1), (−1, 1, 1), we obtain with (2.6) and (3.6)

𝜀
‖‖‖D

𝜇

𝜀

∑
#J=1


(
ûj1

, ûj2
, ûj3

)
(t)‖‖‖L1

≤ 9𝜀C


C3
u,1. (3.7)

The assertion follows by combining (3.3), (3.5), (3.7), and using that 𝜀 ≤ 1 by assumption.

With Lemma 3.3, we can now show the following extension of Proposition 3.2.
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Proposition 3.4. Let m = 1 and let u1 be the classical solution of (1.10) with initial data of the form (2.9) with 𝜎 = 2.
Under the assumptions of Proposition 3.2 there is a constant C such that

sup
t∈[0,tend∕𝜀]

‖D
𝜇


⟂
𝜀

û1(t)‖L1 ≤ C𝜀 (3.8)

for all 𝜀 ∈ (0, 1] and all 𝜇 ∈ {1,… , d}.

Proof. Choose a fixed 𝜇 ∈ {1,… , d} and set

v̂(t, k) = (D
𝜇


⟂
𝜀

û1)(t, k) = ik
𝜇


⟂
𝜀
(k)û1(t, k). (3.9)

We apply D
𝜇


⟂
𝜀

to (2.2) with m = j = 1 and use that ⟂
𝜀

commutes with 1(𝜀k). This yields

𝜕t v̂(t) +
i
𝜀
1(𝜀 ⋅)̂v(t) = 𝜀

∑
#J=1

D
𝜇


⟂
𝜀

(
ûj1

, ûj2
, ûj3

)
(t),

v̂(0) = D
𝜇


⟂
𝜀

p̂

with 1(𝜀 ⋅) denoting k ↦ 1(𝜀k). Now we adapt the proof of Proposition 3.2. With Duhamel’s formula and the short-hand
notation

 (ûJ) =  (ûj1
, ûj2

, ûj3
) for J = ( j1, j2, j3),

we obtain

v̂(t) = v̂[1](t) + v̂[2](t) + v̂[3](t)
with the three terms

v̂[1](t) = exp
(
− it
𝜀
1(𝜀 ⋅)

)
D
𝜇


⟂
𝜀

p̂,

v̂[2](t) = 𝜀

∑
#J=1

∫

t

0
exp

(
i(s − t)
𝜀

1(𝜀 ⋅)
)

D
𝜇


⟂
𝜀

(

𝜀
ûJ(s)

)
ds,

v̂[3](t) = 𝜀

∑
#J=1

∫

t

0
exp

(
i(s − t)
𝜀

1(𝜀 ⋅)
)

D
𝜇


⟂
𝜀

[

(
ûJ(s)

)
− 

(

𝜀
ûJ(s)

) ]
ds.

We will show that

‖v̂[𝜂](t)‖L1 ≤ c1𝜀 + c2𝜀
∫

t

0

‖‖‖v̂(s)‖‖‖L1
ds for t ∈ [0, tend∕𝜀] and 𝜂 = 1, 2, 3 (3.10)

with constants c1 ≥ 0 and c2 ≥ 0, which do not depend on 𝜀 ∈ (0, 1]. If (3.10) is true, then applying Gronwall’s lemma
and using that 𝜀t ≤ tend proves that supt∈[0,tend∕𝜀] ‖v̂(t)‖L1 ≤ C𝜀 which, via (3.9), is equivalent to (3.8).

For the first term v̂[1](t), the inequality (2.20) implies

‖‖‖v̂[1](t)‖‖‖L1
= ‖⟂

𝜀
D
𝜇
p̂‖L1 ≤ C𝜀(‖p0‖W2 + ‖p1‖W2 ),

which verifies (3.10) for 𝜂 = 1 (with c2 = 0).
For the third term v̂[3](t), we infer with (2.27), (3.6), (2.7), and Proposition 3.2 that

‖v̂[3](t)‖L1 ≤ 3𝜀
∫

t

0

‖‖‖D
𝜇

(
ûJ(s)

)
− D

𝜇

(

𝜀
ûJ(s)

) ‖‖‖L1
ds

≤ C𝜀
∫

t

0

(‖‖‖û1(s) − 
𝜀
û1(s)

‖‖‖L1
+ ‖‖‖D

𝜇
û1(s) − D

𝜇

𝜀
û1(s)

‖‖‖L1

)
ds

= C𝜀
∫

t

0

(‖‖‖⟂
𝜀

û1(s)
‖‖‖L1

+ ‖‖‖v̂(s)‖‖‖L1

)
ds

≤ c1𝜀 + c2𝜀
∫

t

0

‖‖‖v̂(s)‖‖‖L1
ds
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with constants c1, c2, which depend on C


, Cu,1, and in case of c1 also on the constant from (3.2).
Now we consider the second term v̂[2](t). Since there are three multiindices J ∈ ( (1))3 with #J = 1, we obtain

‖v̂[2](t)‖L1 ≤ 3𝜀
∫ℝd

|||∫
t

0
exp

(
i(s − t)
𝜀

1(𝜀k)
)(

D
𝜇


⟂
𝜀
 (

𝜀
ûJ)

)
(s, k) ds|||2 dk

= 3𝜀
∫ℝd

|||∫
t

0
exp

(
i(s − t)
𝜀

1(𝜀k)
)


⟂
𝜀
(k)q̂(s, k) ds|||2 dk (3.11)

with the abbreviation

q̂(s, k) =
(
D
𝜇
 (

𝜀
ûJ)

)
(s, k). (3.12)

The goal is now to integrate by parts to gain one additional factor 𝜀, which is then used to compensate the long time
interval. However, this requires some care, because the matrix 1(0) = (𝜔,𝜿) is singular; see (1.5) or Assumption 1.2(i).
What saves us here is the projector ⟂

𝜀
(k) in (3.11). For every k ∈ ℝd, the restriction of 1(𝜀k) to the subspace ⟂

𝜀
(k)ℂn is

given by


⟂
1 (𝜀k) : ⟂

𝜀
(k)ℂn → 

⟂
𝜀
(k)ℂn,


⟂
1 (𝜀k) = 1(𝜀k)⟂

𝜀
(k) =

n∑
𝓁=2

𝜆1𝓁(𝜀k)𝜓1𝓁(𝜀k)𝜓∗
1𝓁(𝜀k).

By (2.13), this mapping is regular with uniformly bounded inverse

(

⟂
1 (𝜀k)

)−1
: ⟂

𝜀
(k)ℂn → 

⟂
𝜀
(k)ℂn,

(

⟂
1 (𝜀k)

)−1 =
n∑

𝓁=2

1
𝜆1𝓁(𝜀k)

𝜓1𝓁(𝜀k)𝜓∗
1𝓁(𝜀k).

The presence of ⟂
𝜀
(k) in (3.11) allows us to replace 1(𝜀k) by 

⟂
1 (𝜀k) and to integrate by parts in the inner integral of

(3.11). This yields

|||∫
t

0
exp

(
i(s − t)
𝜀

1(𝜀k)
)


⟂
𝜀
(k)q̂(s, k) ds|||2

≤
|||
𝜀

i
(

⟂
1 (𝜀k)

)−1
q̂(t, k) − 𝜀

i
exp

(
− it
𝜀

⟂
1 (𝜀k)

) (

⟂
1 (𝜀k)

)−1
q̂(0, k)|||2

+ |||
𝜀

i ∫

t

0
exp

(
i(s − t)
𝜀


⟂
1 (𝜀k)

)(

⟂
1 (𝜀k)

)−1
𝜕tq̂(s, k) ds|||2

≤ C𝜀
(
|q̂(t, k)|2 + |q̂(0, k)|2

)
+ C𝜀

∫

t

0
|𝜕tq̂(s, k)|2 ds,

and substituting this into (3.11) leads to

‖v̂[2](t)‖L1 ≤ C𝜀2
(
‖q̂(t)‖L1 + ‖q̂(0)‖L1

)
+ C𝜀tend sup

s∈[0,tend∕𝜀]
‖𝜕tq̂(s)‖L1 . (3.13)

With (3.12), (3.6), and (2.6), we obtain that

‖q̂(t)‖L1 = ‖ (D
𝜇
 (

𝜀
ûJ)

)
(t)‖L1 ≤ 3C


C3

u,1, ‖q̂(0)‖L1 ≤ 3C


C3
u,1, (3.14)

and that

‖𝜕tq̂(s)‖L1 = ‖𝜕tD𝜇

(

𝜀
ûJ(s)

) ‖L1

≤ 6C

‖𝜕t𝜀û1(s)‖L1‖D

𝜇

𝜀
û1(s)‖L1‖𝜀û1(s)‖L1

+ 3C

‖𝜕tD𝜇


𝜀
û1(s)‖L1‖𝜀û1(s)‖2

L1 .
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Since ‖𝜕t𝜀û1(s)‖L1 and ‖𝜕tD𝜇

𝜀
û1(s)‖L1 are uniformly bounded by Lemmas 3.1 and 3.3, respectively, this shows that

‖𝜕tq̂(s)‖L1 is uniformly bounded in s ∈ [0, tend∕𝜀] and 𝜀 ∈ (0, 1]. Combining this with (3.14) and (3.13) yields (3.10) for
𝜂 = 2. This completes the proof.

Before closing this section, we prove that even the second time derivative of 
𝜀
û1(t) is uniformly bounded. This some-

what simple observation will be crucial for showing the error bound for the SVEA; cf. (4.28) in step 4 of the proof of
Theorem 4.3.

Lemma 3.5. Let m = 1, let 𝜎 = 2 in (2.9), and let u1 be the classical solution of (1.10). Under Assumptions 2.3 and 1.2(i),
the second time derivative of 

𝜀
û1(t) is uniformly bounded, that is, there is a constant C such that

sup
t∈[0,tend∕𝜀]

‖𝜕2
t 𝜀û1(t)‖L1 ≤ C.

The constant C depends on Cu,2 from (2.10) and thus also on tend, but not on 𝜀.

Proof. Applying 
𝜀
(k)𝜕t on both sides of (2.2a) with j = m = 1 gives


𝜀
(k)𝜕2

t û1(t, k) = − i
𝜀

𝜀
(k)1(𝜀k)𝜕tû1(t, k) + 𝜀

𝜀
(k)

∑
#J=1

𝜕t
(
ûj1

, ûj2
, ûj3

)
(t, k)

for t ∈ (0, tend∕𝜀] and k ∈ ℝd. By adapting the arguments from the proof of Lemma 3.3, we arrive at the bound

|||
i
𝜀

𝜀
1(𝜀k)𝜕tû1(t, k)|||2 ≤ C|k|1 |||𝜀𝜕tû1(t, k)|||2 = C

d∑
𝜇=1

|||𝜕tD𝜇

𝜀
û1(t, k)|||2

for the first term. For the nonlinear term, the product rule yields

𝜕t
(
ûj1

, ûj2
, ûj3

)
= 

(
𝜕tûj1

, ûj2
, ûj3

)
+ 

(
ûj1

, 𝜕tûj2
, ûj3

)
+ 

(
ûj1

, ûj2
, 𝜕tûj3

)
,

and with (2.6) we obtain

‖𝜕2
t 𝜀û1(t)‖L1 ≤ C

d∑
𝜇=1

‖‖‖𝜕tD𝜇

𝜀
û1(t)

‖‖‖L1
+ 9𝜀C


‖𝜕tû1(t)‖L1‖û1(t)‖2

L1 .

Now the assertion follows from Lemma 3.3 and the fact that ‖𝜕tû1(t)‖L1 ≤ C𝜀−1.

Remark 3.6. By taking more derivatives of (2.2a) and proceeding as in the proof of Lemma 3.5, it can be shown that
‖𝜕𝓁t 𝜀û1(t)‖L1 = (𝜀2−𝓁) for 𝓁 ≥ 3. Hence, higher-order time derivatives are not uniformly bounded, which means that
our interpretation of 

𝜀
û1 as the nonoscillatory part of û1 is only true to a certain extent.

4 Convergence Analysis for the SVEA
With the results from the previous section we are now in a position to prove the error bound (1.13), where ũ(1) is the SVEA
(1.9)–(1.10). We assume that p has the form (2.9) with 𝜎 = 2. Then, by Lemmas 2.1 and 2.2, there is a constant Cu such
that

sup
𝜀∈(0,1]

sup
t∈[0,tend∕𝜀]

‖u(t)‖W ≤ Cu and sup
𝜀∈(0,1]

sup
t∈[0,tend∕𝜀]

‖ũ(1)(t)‖W ≤ Cu. (4.1)

The error bound requires the following assumption on the eigenvalues of j(0) = ( j𝜔, j𝜿).

Assumption 4.1 (Nonresonance condition). The matrix (3𝜔, 3𝜿) is regular and has no common eigenvalues with
1(0) = (𝜔,𝜿), that is, 𝜆3i(0) ≠ 𝜆1𝓁(0) for all i,𝓁 ∈ {1,… , n}.

Remark 4.2. As mentioned earlier, explicit formulas for the eigenvalues in case of the Klein–Gordon system and the
Maxwell–Lorentz system can be found in Colin and Lannes (2009, Examples 3 and 4). For these applications, one can
check that Assumption 4.1 holds if the chosen eigenvalue 𝜔 = 𝜔(𝜿) is not constant with respect to 𝜿.
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4.1 Improved Error Bound for the SVEA
The following theorem is our first main result. It states that the SVEA converges with second order. We recall that the
SVEA (1.9)–(1.10) is identical to (1.7)–(1.8) with m = 1 and 

(1) = {−1, 1}.

Theorem 4.3 (Error bound for the SVEA). Suppose that (2.9) holds with 𝜎 = 2, and let u be the solution of (1.1). Let u1
be the classical solution of (1.10) established in part (iii) of Lemma 2.2, and let ũ(1) be the approximation defined in (1.9).
Under Assumptions 1.2, 2.3, and 4.1, there is a constant C such that

sup
t∈[0,tend∕𝜀]

‖u(t) − ũ(1)(t)‖W ≤ C𝜀2, (4.2)

sup
t∈[0,tend∕𝜀]

‖u(t) − ũ(1)(t)‖L∞ ≤ C𝜀2. (4.3)

The following lemma is a preparation for the proof of Theorem 4.3.

Lemma 4.4. Let R be the residual of the approximation ũ(1), that is,

R = 𝜀T(ũ(1), ũ(1), ũ(1)) −
(
𝜕tũ

(1)(t, x) + A(𝜕)ũ(1) + 1
𝜀

E ũ(1)
)

,

and let R̂ be its Fourier transform. If the inequality

sup
t∈[0,tend∕𝜀]

‖‖‖∫
t

0
exp

(
(s − t)

(
iA(⋅) + 1

𝜀
E
))

R̂(s) ds‖‖‖L1
≤ C𝜀2 (4.4)

holds with a constant C, which does not depend on 𝜀, then the error bounds (4.2) and (4.3) are true.

Proof of Lemma 4.4. We will prove that (4.4) implies (4.2). Then, the second error bound (4.3) follows directly from
(4.2) via the embedding W ↪ L∞. By definition of R, the difference 𝛿 = u − ũ(1) is the solution of

𝜕t𝛿 = −A(𝜕)𝛿 − 1
𝜀

E𝛿 + 𝜀
[
T(u, u, u) − T(ũ(1), ũ(1), ũ(1))

]
+ R, (4.5a)

𝛿(0) = 0. (4.5b)

Now we investigate the structure of the residual. By (1.9), the approximation ũ(1) can be expressed as

ũ(1)(t, x) = ei(𝜿⋅x−𝜔t)∕𝜀u1(t, x) + e−i(𝜿⋅x−𝜔t)∕𝜀u−1(t, x) =
∑

j∈ (1)

eij(𝜿⋅x−𝜔t)∕𝜀uj(t, x).

Substituting this into the left-hand side of (1.1) and using (1.10a) yields

𝜕tũ
(1)(t, x) + A(𝜕)ũ(1)(t, x) + 1

𝜀
E ũ(1)(t, x)

=
∑

j∈ (1)

eij(𝜿⋅x−𝜔t)∕𝜀
(
𝜕tuj(t, x) + i

𝜀
( j𝜔, j𝜿)uj(t, x) + A(𝜕)uj(t, x)

)

= 𝜀

∑
j∈ (1)

∑
#J=j

eij(𝜿⋅x−𝜔t)∕𝜀T(uj1
, uj2

, uj3
)(t, x), (4.6)

whereas on the right-hand side of (1.1), we obtain

𝜀T(ũ(1), ũ(1), ũ(1))(t, x) = 𝜀

∑
J∈( (1))3

ei#J(𝜿⋅x−𝜔t)∕𝜀T(uj1
, uj2

, uj3
)(t, x)

= 𝜀

∑
j odd
|j|≤3

∑
#J=j

eij(𝜿⋅x−𝜔t)∕𝜀T(uj1
, uj2

, uj3
)(t, x). (4.7)
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The only difference between (4.6) and (4.7) is that the terms with j = ±3 are missing in (4.6). These terms are exactly the
higher harmonics, which were omitted in the derivation of (1.8) and hence of the SVEA. Equations (4.6) and (4.7) yield
the representation

R(t, x) = 𝜀

∑
j∈{±3}

∑
#J=j

eij(𝜿⋅x−𝜔t)∕𝜀T(uj1
, uj2

, uj3
)(t, x)

of the residual.
Since (4.2) is equivalent to

sup
t∈[0,tend∕𝜀]

‖𝛿(t)‖L1 ≤ C𝜀2, (4.8)

we need an evolution equation for 𝛿 = 𝛿. In Fourier space, (4.5a) reads

𝜕t𝛿(t, k) = −
(

iA(k) + 1
𝜀

E
)
𝛿(t, k) + 𝜀

(
u, ũ(1)

)
(t, k) + R̂(t, k) (4.9)

with


(
u, ũ(1)

)
=  (u,u,u) − 

(
 ũ(1), ũ(1), ũ(1)

)
,

R̂(t, k) = 𝜀

∑
j∈{±3}

∑
#J=j


(
T(uj1

, uj2
, uj3

)eij𝜿⋅x∕𝜀) (t, k)e−ij𝜔t∕𝜀

= 𝜀

∑
j∈{±3}

∑
#J=j

 (ûj1
, ûj2

, ûj3
)
(

t, k −
j𝜿
𝜀

)
e−ij𝜔t∕𝜀, (4.10)

and with  defined in (2.5). We apply Duhamel’s formula to (4.9) and use that 𝛿(0, k) = 0 to obtain

𝛿(t, k) = 𝜀
∫

t

0
exp

(
(s − t)

(
iA(k) + 1

𝜀
E
))


(
u(s), ũ(1)(s)

)
(k) ds

+
∫

t

0
exp

(
(s − t)

(
iA(k) + 1

𝜀
E
))

R̂(s, k) ds. (4.11)

For every k ∈ ℝd, the matrix iA(k) + E∕𝜀 is skew-Hermitian, and hence exp(t(iA(k) + E∕𝜀)) is unitary for every t ∈ ℝ.
The first term on the right-hand side of (4.11) can thus be bounded in L1 by

𝜀
∫

t

0 ∫ℝd

||| exp
(
(s − t)

(
iA(k) + 1

𝜀
E
))


(
u(s), ũ(1)(s)

)
(k)|||2 dk ds

= 𝜀
∫

t

0 ∫ℝd

|||
(
u(s), ũ(1)(s)

)
(k)|||2 dk ds

≤ 3C


C2
u 𝜀∫

t

0
‖𝛿(s)‖L1 ds. (4.12)

In the last step, we have used (2.7) and (4.1). Now it follows from (4.11), (4.12), and (4.4) that

‖𝛿(t)‖L1 ≤ CC2
u 𝜀∫

t

0
‖𝛿(s)‖L1 ds + C𝜀2,

and applying Gronwall’s lemma yields the desired inequality (4.8) with a constant, which depends on Cu and tend.

The central task in the proof of Theorem 4.3 is thus to prove (4.4). Equation (4.10) shows that ‖R̂(s)‖L1 = (𝜀), but
straightforward estimates yield only

sup
t∈[0,tend∕𝜀]

‖‖‖∫
t

0
exp

(
(s − t)

(
iA(⋅) + 1

𝜀
E
))

R̂(s) ds‖‖‖L1
≤ sup

t∈[0,tend∕𝜀]∫

t

0

‖‖‖R̂(s)‖‖‖L1
ds

≤
tend

𝜀
sup

t∈[0,tend∕𝜀]

‖‖‖R̂(s)‖‖‖L1
≤ C.
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Compared to this simple bound, we have to gain a factor of 𝜀2. This is where the real work starts.

Proof of Theorem 4.3. In view of Lemma 4.4, we have to prove (4.4). The strategy, notation, and presentation are very
similar to the proof of Theorem 4.2 in Baumstark and Jahnke (2023), but there are some crucial differences which we
point out below.

Step 1. In this step, we express the integral term from (4.4) in an appropriate way. We use (1.4), (2.3), and (4.10) to
obtain

∫

t

0
exp

(
(s − t)

(
iA(k) + 1

𝜀
E
))

R̂(s, k) ds

= 𝜀
∫

t

0
exp

(
(s − t)

(
iA(k) + 1

𝜀
E
)) ∑

j∈{±3}

∑
#J=j

 (ûj1
, ûj2

, ûj3
)
(

s, k −
j𝜿
𝜀

)
e−ij𝜔s∕𝜀 ds

= 𝜀e−ij𝜔t∕𝜀
∑

j∈{±3}

∑
#J=j

∫

t

0
exp

( i
𝜀
(s − t)( j𝜔, 𝜀k)

)
 (ûj1

, ûj2
, ûj3

)
(

s, k −
j𝜿
𝜀

)
ds

= 𝜀e−ij𝜔t∕𝜀
∑

j∈{±3}

∑
#J=j

∫

t

0
exp

( i
𝜀
(s − t)j(𝜀k′)

)
 (ûj1

, ûj2
, ûj3

)(s, k′) ds

with the shifted variable k′ = k− j𝜿∕𝜀. In order to keep the notation simple, we write again k instead of k′ in the following.
Since later we integrate over k, the difference between k and k′ does not really matter.

With (2.17) and (2.15), we can represent the integrand as

exp
( i
𝜀
(s − t)j(𝜀k)

)
 (ûj1

, ûj2
, ûj3

)(s, k) = exp
(
− it
𝜀
j(𝜀k)

)
Ψj(𝜀k)F(s, {û1}, J)(k)

= S∗
j,𝜀(t, k)F(s, {û1}, J)(k).

Since S∗
j,𝜀(t) is unitary and does not depend on s, it follows that the term which appears on the left-hand side of (4.4) can

be bounded by

‖‖‖∫
t

0
exp

(
(s − t)

(
iA(⋅) + 1

𝜀
E
))

R̂(s) ds‖‖‖L1
≤ 𝜀

∑
j∈{±3}

∑
#J=j

‖‖‖∫
t

0
F(s, {û1}, J) ds‖‖‖L1

. (4.13)

Step 2. The goal in this and the following steps is to prove that

sup
t∈[0,tend∕𝜀]

∑
j∈{±3}

∑
#J=j

‖‖‖∫
t

0
F(s, {û1}, J) ds‖‖‖L1

≤ C𝜀. (4.14)

If (4.14) holds, then the crucial inequality (4.4) follows via1 (4.13), which then completes the proof of (4.2). The sum in
(4.14) is taken over multiindices J ∈ ( (1))3 = {1,−1}3 with #J = j ∈ {3,−3}. There are only two possibilities, namely
J = (1, 1, 1), j = 3 and J = −(1, 1, 1), j = −3. Since both cases can be treated mutatis mutandis, we will only consider the
first one, that is, J = (1, 1, 1), j = 3, and thus

F(s, {û1}, J) = S3,𝜀(s)
(
û1, û1, û1

)
(s).

We have to show that

sup
t∈[0,tend∕𝜀]

‖‖‖∫
t

0
S3,𝜀(s)

(
û1, û1, û1

)
(s) ds‖‖‖L1

≤ C𝜀. (4.15)
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In order to use Proposition 3.2, we decompose the nonlinearity into eight parts


(
û1, û1, û1

)
= 

(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
+ 

(

𝜀
û1,

𝜀
û1,⟂

𝜀
û1
)

+ 
(

𝜀
û1,⟂

𝜀
û1,

𝜀
û1
)
+ 

(


⟂
𝜀

û1,
𝜀
û1,

𝜀
û1
)

+ 
(

𝜀
û1,⟂

𝜀
û1,⟂

𝜀
û1
)
+ 

(


⟂
𝜀

û1,
𝜀
û1,⟂

𝜀
û1
)

+ 
(


⟂
𝜀

û1,⟂
𝜀

û1,
𝜀
û1
)
+ 

(


⟂
𝜀

û1,⟂
𝜀

û1,⟂
𝜀

û1
)

.

The last four terms are those where ⟂
𝜀

û1 appears in at least two of the three arguments of  (⋅, ⋅, ⋅). These terms are (𝜀2)
because of Proposition 3.2, and their contribution to the left-hand side of (4.14) can be estimated in a straightforward way.
For example, (2.6) and the fact that S3,𝜀(s) is unitary yields

‖‖‖∫
t

0
S3,𝜀(s)

(


⟂
𝜀

û1,⟂
𝜀

û1,
𝜀
û1
)
(s) ds‖‖‖L1

≤ C

∫

t

0

(
‖⟂

𝜀
û1(s)‖L1 ‖⟂

𝜀
û1(s)‖L1 ‖𝜀û1(s)‖L1

)
ds ≤ Ct𝜀2

≤ Ctend𝜀.

For the first four parts of  (û1, û1, û1) the analysis is much more involved. We have to prove that

‖‖‖∫
t

0
S3,𝜀(s)

(


⟂
𝜀

û1,
𝜀
û1,

𝜀
û1
)
(s) ds‖‖‖L1

≤ C𝜀, (4.16)

‖‖‖∫
t

0
S3,𝜀(s)

(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(s) ds‖‖‖L1

≤ C𝜀, (4.17)

because bounds for the terms involving  (
𝜀
û1,⟂

𝜀
û1,

𝜀
û1) and  (

𝜀
û1,

𝜀
û1,⟂

𝜀
û1) can be shown in the same way as

(4.16).

Step 3. In this step, we prove (4.16). To accomplish this, we have to identify the oscillatory “parts” of the integrand.
We use that (2.21), (2.14), and (2.15) yield the representation


⟂
𝜀

û1(t, k) = S∗
1,𝜀(t, k)P⟂z1(t, k) =

n∑
𝓁=2

exp
(
− it
𝜀
𝜆1𝓁(𝜀k)

)
z1𝓁(t, k)𝜓1𝓁(𝜀k), (4.18)

where again 𝜆1𝓁(𝜀k) is the 𝓁-th eigenvalue of 1(𝜀k) and 𝜓1𝓁(𝜀k) is the corresponding eigenvector, as defined in (2.11).
Combining (4.18) with (2.15) and (2.5) results in

∫

t

0
S3,𝜀(s, k)

(


⟂
𝜀

û1,
𝜀
û1,

𝜀
û1
)
(s, k) ds

= 1
(2𝜋)d ∫

t

0
exp

( is
𝜀
Λ3(𝜀k)

)
Ψ∗

3(𝜀k)
∫#K=k

T
(


⟂
𝜀

û1(s, k(1)),
𝜀
û1(s, k(2)),

𝜀
û1(s, k(3))

)
dK ds

=
n∑

𝓁=2
∫#K=k ∫

t

0
exp

( is
𝜀

[
Λ3(𝜀k) − 𝜆1𝓁(𝜀k(1))I

])
f
𝜀,𝓁(s, K) ds dK

with the shorthand notation from (2.4), and with

f
𝜀,𝓁(s, K) = 1

(2𝜋)d
Ψ∗

3(𝜀k)T
(
z1𝓁(s, k(1))𝜓1𝓁(𝜀k(1)),

𝜀
û1(s, k(2)),

𝜀
û1(s, k(3))

)
,
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where k = #K. Taking the norm yields

‖‖‖∫
t

0
S3,𝜀(s)

(


⟂
𝜀

û1,
𝜀
û1,

𝜀
û1
)
(s) ds‖‖‖L1

=
∫ℝd

|||∫
t

0
S3,𝜀(s, k)

(


⟂
𝜀

û1,
𝜀
û1,

𝜀
û1
)
(s, k) ds|||2 dk

≤

n∑
𝓁=2

∫ℝd ∫#K=k

|||∫
t

0
exp

( is
𝜀

[
Λ3(𝜀k) − 𝜆1𝓁(𝜀k(1))I

])
f
𝜀,𝓁(s, K) ds|||2 dK dk. (4.19)

Now we focus on the inner integral. The exponential function

s ↦ exp
( is
𝜀

[
Λ3(𝜀k) − 𝜆1𝓁(𝜀k(1))I

])

in (4.19) oscillates if all diagonal entries of the diagonal matrix Λ3(𝜀k) − 𝜆1𝓁(𝜀k(1))I are bounded away from zero, but we
cannot expect this to be true for all k, k(1) ∈ ℝd. For this reason, we define

Δ𝓁(𝜃, 𝜃(1)) = Λ3(𝜃) − 𝜆1𝓁(𝜃(1))I, for 𝜃, 𝜃(1) ∈ ℝd,

g
𝜀,𝓁(s, K) = exp

( is
𝜀

[
Δ𝓁(𝜀k, 𝜀k(1)) − Δ𝓁(0, 0)

])
f
𝜀,𝓁(s, K)

and reformulate the inner integral in (4.19) as

|||∫
t

0
exp

( is
𝜀

[
Λ3(𝜀k) − 𝜆1𝓁(𝜀k(1))I

])
f
𝜀,𝓁(s, K) ds|||2 = |||∫

t

0
exp

( is
𝜀
Δ𝓁(0, 0)

)
g
𝜀,𝓁(s, K) ds|||2. (4.20)

By Assumption 4.1, the diagonal matrix

Δ𝓁(0, 0) = Λ3(0) − 𝜆1𝓁(0)I = diag
(
𝜆31(0) − 𝜆1𝓁(0),… , 𝜆3n(0) − 𝜆1𝓁(0)

)

is regular for all 𝓁. Hence, we can now integrate by parts to obtain

|||∫
t

0
exp

( is
𝜀
Δ𝓁(0, 0)

)
g
𝜀,𝓁(s, K) ds|||2

= |||
𝜀

i
Δ𝓁(0, 0)−1

(
exp

( it
𝜀
Δ𝓁(0, 0)

)
g
𝜀,𝓁(t, K) − g

𝜀,𝓁(0, K)
) |||2

+ |||
𝜀

i
Δ𝓁(0, 0)−1

∫

t

0
exp

( is
𝜀
Δ𝓁(0, 0)

)
𝜕tg𝜀,𝓁(s, K) ds|||2

≤ C𝜀
(
|g
𝜀,𝓁(t, K)|2 + |g

𝜀,𝓁(0, K)|2
)
+ C𝜀

∫

t

0

|||𝜕tg𝜀,𝓁(s, K)|||2 ds. (4.21)

By definition of g
𝜀,𝓁 , we have

𝜕tg𝜀,𝓁(s, K) = i
𝜀

[
Δ𝓁(𝜀k, 𝜀k(1)) − Δ𝓁(0, 0)

]
g
𝜀,𝓁(s, K)

+ exp
( is
𝜀

[
Δ𝓁(𝜀k, 𝜀k(1)) − Δ𝓁(0, 0)

])
𝜕t f

𝜀,𝓁(s, K),

and since |g
𝜀,𝓁(s, K)|2 = | f

𝜀,𝓁(s, K)|2 this yields

|||𝜕tg𝜀,𝓁(s, K)|||2 ≤
C
𝜀

|||Δ𝓁(𝜀k, 𝜀k(1)) − Δ𝓁(0, 0)|||2| f
𝜀,𝓁(s, K)|2 + |𝜕t f

𝜀,𝓁(s, K)|2.
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With (4.21), (4.20), and (4.19), we infer that

‖‖‖∫
t

0
S3,𝜀(s)

(


⟂
𝜀

û1,
𝜀
û1,

𝜀
û1
)
(s) ds‖‖‖L1

≤ C𝜀
(

X1(t, 𝜀) + X2(t, 𝜀) + X3(t, 𝜀)
)

with

X1(t, 𝜀) =
n∑

𝓁=2
∫ℝd ∫#K=k

(
|g
𝜀,𝓁(t, K)|2 + |g

𝜀,𝓁(0, K)|2
)

dK dk,

X2(t, 𝜀) =
n∑

𝓁=2
∫ℝd ∫#K=k ∫

t

0

1
𝜀

|||Δ𝓁(𝜀k, 𝜀k(1)) − Δ𝓁(0, 0)|||2|f𝜀,𝓁(s, K)|2 ds dK dk,

X3(t, 𝜀) =
n∑

𝓁=2
∫ℝd ∫#K=k ∫

t

0
|𝜕t f

𝜀,𝓁(s, K)|2 ds dK dk.

In order to complete the proof of (4.16), we have to show that X1(t, 𝜀), X2(t, 𝜀), and X3(t, 𝜀) are uniformly bounded in
𝜀 ∈ (0, 1] and t ∈ [0, tend∕𝜀]. For X2(t, 𝜀) and X3(t, 𝜀), this is not obvious because of the integration over the possibly long
time interval [0, t] with t ≤ tend∕𝜀. We use that

n∑
𝓁=2

| f
𝜀,𝓁(s, K)|2 ≤ C

n∑
𝓁=2

|||T
(

z1𝓁(s, k(1))𝜓1𝓁(𝜀k(1)),
𝜀
û1(s, k(2)),

𝜀
û1(s, k(3))

)|||2
≤ C|||⟂

𝜀
û1(s, k(1))|||2

|||𝜀û1(s, k(2))|||2
|||𝜀û1(s, k(3))|||2

holds, because of the normalization |𝜓1𝓁(𝜀k(1))|2 = 1 and the fact that

n∑
𝓁=2

|z1𝓁(s, k(1))| = |P⟂z1(s, k(1))|1 ≤ C|P⟂z1(s, k(1))|2 = C|||⟂
𝜀

û1(s, k(1))|||2

by (2.25). With |g
𝜀,𝓁(s, K)|2 = | f

𝜀,𝓁(s, K)|2 this implies that

n∑
𝓁=2

∫ℝd ∫#K=k
|g
𝜀,𝓁(s, K)|2 dK dk

≤ C
∫ℝd ∫#K=k

(|||⟂
𝜀

û1(s, k(1))|||2
|||𝜀û1(s, k(2))|||2

|||𝜀û1(s, k(3))|||2
)

dK dk

= C
∫ℝd

|||⟂
𝜀

û1(s, k(1))|||2 dk(1)
∫ℝd

|||𝜀û1(s, k(2))|||2 dk(2)
∫ℝd

|||𝜀û1(s, k(3))|||2 dk(3)

= C‖⟂
𝜀

û1(s)‖L1‖𝜀û1(s)‖2
L1

≤ C𝜀

for all s ∈ [0, tend∕𝜀] due to Proposition 3.2, Lemma 2.2(i), and (2.27). This shows, in particular, that X1(t, 𝜀) is uniformly
bounded2 in 𝜀 ∈ (0, 1] and t ∈ [0, tend∕𝜀].

For X2(t, 𝜀), we use that the Lipschitz continuity (2.12) of the eigenvalues yields

|||Δ𝓁(𝜀k, 𝜀k(1)) − Δ𝓁(0, 0)|||2 ≤
|||Λ3(𝜀k) − Λ3(0)

|||2 +
|||𝜆1𝓁(𝜀k(1)) − 𝜆1𝓁(0)

|||
≤ C𝜀(|k|1 + |k(1)|1),
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and the 𝜀 in the second line compensates the factor 1∕𝜀 in X2(t, 𝜀). For K = (k(1), k(2), k(3)) with k = #K = k(1) + k(2) + k(3),
we have that |k|1 ≤ |k(1)|1 + |k(2)|1 + |k(3)|1. Hence, it follows that

X2(t, 𝜀) =
n∑

𝓁=2
∫ℝd ∫#K=k ∫

t

0

1
𝜀

|||Δ𝓁(𝜀k, 𝜀k(1)) − Δ𝓁(0, 0)|||2| f
𝜀,𝓁(s, K)|2 ds dK dk

≤ C
n∑

𝓁=2
∫ℝd ∫#K=k ∫

t

0
(|k(1)|1 + |k(2)|1 + |k(3)|1)| f

𝜀,𝓁(s, K)|2 ds dK dk

and proceeding as before yields with Lemma 2.2(ii) and (2.27) that

X2(t, 𝜀) ≤ C
d∑
𝜇=1

∫

t

0

(
‖D

𝜇


⟂
𝜀

û1(s)‖L1‖𝜀û1(s)‖2
L1 + 2‖⟂

𝜀
û1(s)‖L1‖D

𝜇

𝜀
û1(s)‖L1‖𝜀û1(s)‖L1

)
ds

≤ C
d∑
𝜇=1

∫

t

0
‖D

𝜇


⟂
𝜀

û1(s)‖L1 ds + C
∫

t

0
‖⟂

𝜀
û1(s)‖L1 ds.

Since both integrands are (𝜀) according to Propositions 3.2 and 3.4, respectively, the right-hand side is uniformly bounded
for t ∈ [0, tend∕𝜀].

In a similar way, one can show that

X3(t, 𝜀) =
n∑

𝓁=2
∫ℝd ∫#K=k ∫

t

0
|𝜕t f

𝜀,𝓁(s, K)|2 ds dK dk

≤ C
n∑

𝓁=2
∫

t

0

(
‖𝜕tP

⟂z1(s)‖L1‖𝜀û1(s)‖2
L1 + 2‖P⟂z1(s)‖L1‖𝜕t𝜀û1(s)‖L1‖𝜀û1(s)‖L1

)
ds.

Since ‖P⟂z1(s)‖L1 = ‖⟂
𝜀

û1(s)‖L1 ≤ C𝜀 by Proposition 3.2, since ‖𝜕t𝜀û1(s)‖L1 is uniformly bounded by Lemma 3.1, and
since

‖𝜕tP
⟂z1(s)‖L1 ≤ ‖𝜕tz1(s)‖L1 ≤ 𝜀

∑
#J=1

‖ (
ûj1

, ûj2
, ûj3

)
(t)‖L1 ≤ C𝜀

by (2.16) and (2.17), we conclude that X3(t, 𝜀) is uniformly bounded, too. We have thus shown the inequality (4.16).

Step 4. In this step, we prove (4.17). For the proof of (4.16) in the previous step, it was crucial that ⟂
𝜀

û1 appears
in one of the arguments of  , because this allowed us to use Propositions 3.2 and 3.4. In (4.17), however, this is not
possible, because all three arguments of  are 

𝜀
û1instead of ⟂

𝜀
û1. Hence, we have to proceed in a different way. The

crucial observation is that 
𝜀
û1 and thus also  (

𝜀
û1,

𝜀
û1,

𝜀
û1) are nonoscillatory in the sense that the first two time

derivatives of 
𝜀
û1 are uniformly bounded according to Lemmas 3.1, 3.3, and 3.5. The only oscillatory function on the

left-hand side of (4.17) is S3,𝜀(s). The strategy is now to integrate by parts twice, which generates a factor 𝜀 each time. One
of these factors is then used to compensate the long time interval.

We set Δ3(𝜀k) = Λ3(𝜀k) − Λ3(0) and

f
𝜀
(t, k) = exp

( it
𝜀
Δ3(𝜀k)

)
Ψ∗

3(𝜀k)
(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(t, k).

With (2.15), we obtain the representation

‖‖‖∫
t

0
S3,𝜀(s)

(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(s) ds‖‖‖L1

= ‖‖‖∫
t

0
exp

( is
𝜀
Λ3(0)

)
f
𝜀
(s) ds‖‖‖L1
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of the left-hand side of (4.17). By Assumption 4.1, the matrix 3(0) = (3𝜔, 3𝜿) and thus also Λ3(0) is invertible. Hence,
we can integrate by parts twice and obtain

‖‖‖∫
t

0
exp

( is
𝜀
Λ3(0)

)
f
𝜀
(s) ds‖‖‖L1

≤ C𝜀
[
‖ f

𝜀
(0)‖L1 + ‖ f

𝜀
(t)‖L1 + ‖‖‖∫

t

0
exp

( is
𝜀
Λ3(0)

)
𝜕t f

𝜀
(s) ds‖‖‖L1

]

≤ C𝜀
[
‖ f

𝜀
(0)‖L1 + ‖ f

𝜀
(t)‖L1 + 𝜀‖𝜕t f

𝜀
(0)‖L1 + 𝜀‖𝜕t f

𝜀
(t)‖L1

+ 𝜀‖‖‖∫
t

0
exp

( is
𝜀
Λ3(0)

)
𝜕

2
t f
𝜀
(s) ds‖‖‖L1

]
. (4.22)

Now, we have to show that all terms inside the big bracket [ … ] are uniformly bounded in t ∈ [0, tend∕𝜀] and 𝜀 ∈ (0, 1].
As a preparatory step, we note that applying (2.6), (2.27), and the product rule yields

‖‖‖
(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(t)‖‖‖L1

≤ C

‖û1(t)‖3

L1 , (4.23)

‖‖‖D
𝜇

(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(t)‖‖‖L1

≤ 3C


‖‖‖D
𝜇
û1(t)

‖‖‖L1
‖û1(t)‖2

L1 , (4.24)

‖‖‖D
𝜇
D
𝜈

(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(t)‖‖‖L1

≤ C


(
6‖‖‖D

𝜇
û1(t)

‖‖‖L1

‖‖‖D
𝜈
û1(t)

‖‖‖L1

+ 3‖‖‖D
𝜇
D
𝜈
û1(t)

‖‖‖L1

‖‖‖û1(t)
‖‖‖L1

)‖‖‖û1(t)
‖‖‖L1

(4.25)

for all 𝜇, 𝜈 ∈ {1,… , d}. The right-hand side of (4.23), (4.24), and (4.25) is uniformly bounded by Lemma 2.2(iii). In a
similar way, we obtain the inequalities

‖‖‖𝜕t
(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(t)‖‖‖L1

≤ 3C


‖‖‖𝜕t𝜀û1(t)
‖‖‖L1

‖û1(t)‖2
L1 , (4.26)

‖‖‖D
𝜇
𝜕t

(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(t)‖‖‖L1

≤ C


(
6‖‖‖D

𝜇
û1(t)

‖‖‖L1

‖‖‖𝜕t𝜀û1(t)
‖‖‖L1

+ 3‖‖‖D
𝜇
𝜕t𝜀û1(t)

‖‖‖L1

‖‖‖û1(t)
‖‖‖L1

)‖‖‖û1(t)
‖‖‖L1

, (4.27)

‖‖‖𝜕2
t 

(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(t)‖‖‖L1

≤ 3C


(‖‖‖𝜕t𝜀û1(t)
‖‖‖

2

L1

+ ‖‖‖𝜕2
t 𝜀û1(t)

‖‖‖L1
‖û1(t)‖L1

)
‖û1(t)‖L1 , (4.28)

and applying Lemmas 3.1, 3.3, and 3.5 yields uniform boundedness of the right-hand sides of (4.26), (4.27), and (4.28).
Since the matrix exp((it∕𝜀)Δ3(𝜀k))Ψ∗

3(𝜀k) is unitary, (4.23) implies that ‖ f
𝜀
(t)‖L1 is uniformly bounded. Taking the time

derivative of f
𝜀
(t) gives

𝜕t f
𝜀
(t, k) = f [1,1]

𝜀
(t, k) + f [1,2]

𝜀
(t, k),

f [1,1]
𝜀

(t, k) = i
𝜀
Δ3(𝜀k)f

𝜀
(t, k),

f [1,2]
𝜀

(t, k) = exp
( it
𝜀
Δ3(𝜀k)

)
Ψ∗

3(𝜀k)𝜕t
(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(t, k). (4.29)

The fact that Λ3 is globally Lipschitz continuous by (2.12) yields

| i
𝜀
Δ3(𝜀k)|2 = 1

𝜀
|Λ3(𝜀k) − Λ3(0)|2 ≤ C|k|1
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with a constant which does not depend on 𝜀 and k. Using again that exp((it∕𝜀)Δ3(𝜀k))Ψ∗
3(𝜀k) is a unitary matrix gives

| f [1,1]
𝜀

(t)|2 ≤ C|k|1| f
𝜀
(t, k)|2 ≤ C|k|1|||

(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(t, k)|||2

= C
d∑
𝜇=1

|||D𝜇

(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(t, k)|||2,

| f [1,2]
𝜀

(t)|2 ≤ |𝜕t
(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(t, k)|2, (4.30)

and by combining this with (4.29), (4.24), and (4.26), we infer that 𝜀‖𝜕t f
𝜀
(t)‖L1 ≤ C𝜀. This (𝜀) estimate is even better

than the uniform boundedness which we require at this point. Finally, we show uniform boundedness of the integral term
in (4.22). Since t ∈ [0, tend∕𝜀], we can use that

𝜀
‖‖‖∫

t

0
exp

( is
𝜀
Λ3(0)

)
𝜕

2
t f
𝜀
(s) ds‖‖‖L1

≤ tend sup
s∈[0,tend∕𝜀]

‖𝜕2
t f
𝜀
(s)‖L1

with

𝜕
2
t f
𝜀
(s) = 𝜕

2
t

(
exp

( it
𝜀
Δ3(𝜀k)

)
Ψ∗

3(𝜀k)
(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(s, k)

)

= f [2,1]
𝜀

(s, k) + 2f [2,2]
𝜀

(s, k) + f [2,3]
𝜀

(s, k),

f [2,1]
𝜀

(s, k) =
( i
𝜀
Δ3(𝜀k)

)2
f
𝜀
(s, k),

f [2,2]
𝜀

(s, k) = i
𝜀
Δ3(𝜀k)f [1,2]

𝜀
(s, k),

f [2,3]
𝜀

(s, k) = exp
( it
𝜀
Δ3(𝜀k)

)
Ψ∗

3(𝜀k)𝜕2
t 

(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(s, k).

Proceeding as before yields

| f [2,1]
𝜀

(s, k)|2 ≤ C|k|21| f
𝜀
(s, k)|2

= C|k|21|||
(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(s, k)|||2

= C
d∑
𝜇=1

d∑
𝜈=1

|||D𝜇
D
𝜈

(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(s, k)|||2,

and hence uniform boundedness of ‖ f [2,1]
𝜀

(s)‖L1 follows from (4.25). In a similar way, we obtain with (4.30)

| f [2,2]
𝜀

(s, k)|2 ≤ C|k|1| f [1,2]
𝜀

(s, k)|2
≤ C|k|1|𝜕t

(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(s, k)|2

= C
d∑
𝜇=1

|D
𝜇
𝜕t

(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(s, k)|2,

such that (4.27) yields uniform boundedness of ‖ f [2,2]
𝜀

(s)‖L1 . Uniform boundedness of ‖ f [2,3]
𝜀

(s)‖L1 follows from (4.28).
We have thus shown that all terms in the big bracket [ … ] in (4.22) are uniformly bounded, which completes the proof
of (4.17).

According to step 2, the inequalities (4.16) and (4.17) imply the bound (4.15) and hence (4.4). Now the assertion of
Theorem 4.3 follows from Lemma 4.4.

Remark 4.5. The proof shows that, in general, the error of the SVEA cannot be expected to be smaller than (𝜀2). We
have seen in Lemma 4.4 that the accuracy is determined by the right-hand side of (4.4), and in order to improve this
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inequality, we have to replace (4.16) and (4.17) by something better3. But this is impossible, which can be seen in the
proof of (4.17) in step 4. Since supt∈[0,tend∕𝜀] ‖𝜀û1(t)‖L1 = (1) it follows that

‖ f
𝜀
(t)‖L1 = ‖ (


𝜀
û1,

𝜀
û1,

𝜀
û1
)
(t)‖L1 = (1), (4.31)

and as a consequence, the right-hand side of (4.22) cannot be smaller than (𝜀). We would like to point out that (4.31) is
not the only bottleneck in the proof, and that there are many terms for which a better bound is not feasible. The only way
to achieve a higher accuracy is thus to change the approximation, that is, to use (1.7) and (1.8) with m > 1. This is the
topic of Section 5.

Remark 4.6. We have assumed throughout that the kernel of (𝜔,𝜿) is one-dimensional; see Assumption 1.2(i). In
case of the Maxwell–Lorentz system, however, most of the eigenvalues of (0,𝜿) = A(𝜿) − iE occur with multiplicity
2, as pointed out in Baumstark (2022, Example 3.2.4), and if the eigenvalue 𝜔 chosen in (1.5) has multiplicity 2, then
(𝜔,𝜿) = −𝜔I +(0,𝜿) has a two-dimensional kernel. For this reason, we would like to emphasize that the only purpose
of Assumption 1.2(i) is to keep the notation simple, and that all results and proofs in this work could be adapted to cases
where the dimension of the kernel is two or larger, as has been done in Baumstark (2022). If the kernel of (𝜔,𝜿) has
dimension 2, then 𝓁 = 2,… , n in Assumption 2.3(iii) has to be replaced by 𝓁 = 3,… , n, and the definitions of the
projectors (2.19) and (2.22) have to be modified in an obvious way. Likewise,

∑n
𝓁=2 … has to be replaced by

∑n
𝓁=3 … in

the proofs of Proposition 3.4 and Theorem 4.3.

4.2 Numerical Experiment
We illustrate Theorem 4.3 by a numerical example. As a model problem, we use a Klein–Gordon system in one space
dimension; cf. Example 2 in Colin and Lannes (2009) and Example 1.5 in Lannes (2011). This system is a special case of
(1.1a) with

d = 1, n = 2, A(𝜕x) =
(

0 1
1 0

)
𝜕x, A(𝜿) =

(
0 𝜿

𝜿 0

)
, E =

(
0 −𝛾
𝛾 0

)
.

We set

tend = 1, 𝜿 = 1.2, 𝛾 = 0.7, T( f1, f2, f3) = ( f1 ⋅ f2)Ef3.

The eigenvalues of A(𝜿) − iE ∈ ℂ2×2 are ±
√
𝜿

2 + 𝛾2 ≈ ±1.3892, and we select 𝜔 = 𝜔(𝜿) to be the one with the positive
sign. For the initial data in (1.1b), we choose p(x) = e−(x−0.5)2

𝜈 with 𝜈 ∈ ker((𝜔,𝜿)), such that the polarization condition
(Assumption 1.2(ii)) holds with p = p0 and p1 = 0. The initial data and the values for 𝜿 and 𝛾 were chosen more or
less arbitrarily. The numerical results reported below remained qualitatively the same for other parametrizations we have
tested.

Since numerical approximations of (1.1) and (1.10) can only be computed on a bounded domain, we switch to comoving
coordinates

𝜉 = x − cgt, v(t, 𝜉) = u(t, x), v1(t, 𝜉) = u1(t, x)

with group velocity cg = ∇𝜔(𝜿) = 𝜿∕𝜔(𝜿). For d = 1, this turns (1.1) into

𝜕tv + A(𝜕
𝜉
)v − cg𝜕𝜉v +

1
𝜀

Ev = 𝜀T(v, v, v), t ∈ (0, tend∕𝜀], 𝜉 ∈ ℝ, (4.32a)

v(0, 𝜉) = p(𝜉)ei(𝜿𝜉)∕𝜀 + c.c., (4.32b)

and (1.9)–(1.10) into

v(t, 𝜉) ≈ ṽ(1)(t, 𝜉) = ei(𝜿𝜉+(𝜿cg−𝜔)t)∕𝜀v1(t, 𝜉) + c.c.,

𝜕tv1 +
i
𝜀
(𝜔,𝜿)v1 + A(𝜕

𝜉
)v1 − cg𝜕𝜉v1 = 𝜀

∑
j1+j2+j3=1

T(vj1
, vj2

, vj3
),

v1(0, ⋅) = p. (4.33)
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Figure 1. Accuracy of the Slowly Varying Envelope Approximation (SVEA) for Different Values of 𝜀. See Text for Details.

Then, we replace 𝜉 ∈ ℝ by 𝜉 ∈ [−64, 64] with periodic boundary conditions and approximate v1 with a Strang splitting
method with very small step-size (tend∕105) and mesh-width (128∕214 = 2−7). Inserting this numerical approximation of
v1 into (4.33) yields a numerical approximation to ṽ(1), which is then compared with a numerical approximation to the
solution of (4.32). As we have explained in the introduction, such an approximation can unfortunately not be obtained by
applying a standard method to (4.32) in a straightforward way, because the highly oscillatory solution behavior imposes
a very fine discretization in time and space, which causes huge computational costs even in one space dimension. As a
remedy, we have used (1.7) and (1.8) with m = 5 to compute a reference solution in comoving coordinates.

Figure 1 shows the numerical counterpart of

sup
t∈[0,tend∕𝜀]

‖v(t, ⋅) − ṽ(1)(t, ⋅)‖L∞

for different values of 𝜀 (blue line) in logarithmic axes. Comparing with 𝜀 ↦ 𝜀
2 (black dashed line) shows that the error is

proportional to 𝜀2, as predicted by Theorem 4.3.

5 Convergence Analysis for m = 3
In this section, we analyze the approximation (1.7) with

m = 3 and 
(3) = {±1,±3}.

As mentioned in the introduction, we have shown in Baumstark and Jahnke (2023) that ũ(3) approximates the exact solution
u of (1.1) up to an error of (𝜀2); cf. (1.12). In this section, we prove that actually the error is only (𝜀3) if (2.9) holds
with 𝜎 = 3.

By definition the approximation

ũ(3)(t, x) =
∑

j∈ (3)

eij(𝜿⋅x−𝜔t)∕𝜀uj(t, x)

=
(

ei(𝜿⋅x−𝜔t)∕𝜀u1(t, x) + e3i(𝜿⋅x−𝜔t)∕𝜀u3(t, x)
)
+ c.c.

is based on two functions u1, u3 and their complex conjugates u−j = uj. These functions u1, u3 are determined by the
coupled system (1.8), and thus u1 (which now depends on u3) is not the same as u1 in the case m = 1. As a consequence,
we cannot readily use the auxiliary results concerning u1, which we have shown in Lemmas 3.1, 3.3, and 3.5. However,
these results can be extended to the case m = 3 with little effort. We summarize this in the following lemma.
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Lemma 5.1. Let m = 3, let 𝜎 = 1 in (2.9), and let {u1, u3} be the classical solution of (1.8).

(i) Under Assumptions 2.3 and 1.2(i), there is a constant C independent of 𝜀 ∈ (0, 1] such that

sup
t∈[0,tend∕𝜀]

‖𝜕t𝜀û1(t)‖L1 ≤ C, (5.1)

sup
t∈[0,tend∕𝜀]

‖𝜕tD𝜇

𝜀
û1(t)‖L1

≤ C. (5.2)

(ii) If in addition 𝜎 = 2 in (2.9), then there is a constant C such that

sup
t∈[0,tend∕𝜀]

‖𝜕2
t 𝜀û1(t)‖L1 ≤ C. (5.3)

(iii) If in addition 𝜎 = 3 in (2.9), then there is a constant C such that

sup
t∈[0,tend∕𝜀]

‖D
𝜇
𝜕

2
t 𝜀û1(t)‖L1 ≤ C. (5.4)

Proof. The bound (5.1) was shown in Baumstark and Jahnke (2023, Lemma 3.5). To show (5.2) and (5.3), the proofs
of Lemmas 3.3 and 3.5 carry over almost verbatim. The only difference is that for m = 3 the sum

∑
#J=1  (ûj1

, ûj2
, ûj3

)
contains more terms than for m = 1, for example,  (û3, û−1, û−1), and thus the constants in the very last inequality of each
proof change a bit. The proof of (5.4) is more complicated than the proof of (5.3), because new terms arise due to the
presence of D

𝜇
, but these terms do not cause any essential new difficulty.

5.1 Bounds on the Coefficient Functions
As a first step, we prove that for m = 3 it is still true that ‖⟂

𝜀
û1(t)‖L1 = (𝜀), and that in addition ‖û3(t)‖L1 = (𝜀2); cf.

Corollary 5.4. For this purpose, we define the scaled norm ||| ⋅ |||
𝜀

of a pair Y (3) = {y1, y3} of functions yj ∈ L1 by

|||Y (3)|||
𝜀
= 2‖Py1‖L1 + 2

𝜀
‖P⟂y1‖L1 + 2

𝜀2
‖y3‖L1 . (5.5)

In Baumstark and Jahnke (2023, Equation (3.3)), we have used a similar definition, but with factor 2∕𝜀 instead of 2∕𝜀2 in
the last term. This difference is important. The motivation for multiplying every term on the right-hand side with 2 is that
then equation (5.9) below holds true.

Proposition 5.2. Suppose that the initial data in (1.8b) have the form (2.9) with 𝜎 = 2. Let U(3) = {u1, u3} be the classical
solution of (1.8) with m = 3 and let Û(3) = {û1, û3}. Let z1 and z3 be the transformed functions defined in (2.14), and set
Z(3) = {z1, z3}. For every sufficiently large r > 0 there is a t

⋆
∈ (0, tend] such that under the Assumptions 1.2 and 2.3

sup
t∈[0,t

⋆
∕𝜀]

|||Z(3)(t)|||
𝜀
≤ r for all 𝜀 ∈ (0, 1]. (5.6)

The constant t
⋆

depends on tend, r, Cu,2, and C


, on the inverse of the nonzero eigenvalues of Λ1(0), and on the Lipschitz
constant in (2.12), but not on 𝜀.

Remark 5.3. The proof yields an explicit formula for t
⋆

; cf. (5.14). Numerical computations indicate that this formula is
way too pessimistic in most cases, but for our goals it is sufficient that for every r there is a t

⋆
such that (5.6) holds, and

that t
⋆

does not depend on 𝜀. The number t
⋆

obtained from (5.14) is positive only if r > C∙, where C∙ is a constant which
appears in the proof. This is what we mean by “sufficiently large r.”

Before we prove Proposition 5.2, we note that the following corollary is an immediate consequence of (2.25), (2.24),
(5.5), and (5.6).
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Corollary 5.4. Under the assumptions of Proposition 5.2 the bounds

sup
t∈[0,t

⋆
∕𝜀]

‖⟂
𝜀

û1(t)‖L1 = sup
t∈[0,t

⋆
∕𝜀]

‖P⟂z1(t)‖L1 ≤ C𝜀,

sup
t∈[0,t

⋆
∕𝜀]

‖û3(t)‖L1 = sup
t∈[0,t

⋆
∕𝜀]

‖z3(t)‖L1 ≤ C𝜀2,

hold with a constant independent of 𝜀 ∈ (0, 1].

Corollary 5.4 reveals that Proposition 5.2 can be understood as an extension of Proposition 3.2 from m = 1 to the
case m = 3. However, a substantial difference between the two cases is the fact that the proof of Proposition 3.2 (see
Colin and Lannes 2009, Lemma 3) is based on Gronwall’s lemma, whereas the proof of Proposition 5.2 requires other
techniques. The reason is, roughly speaking, that for m = 3 there are two functions, ⟂

𝜀
û1(t) and û3(t), which we have to

estimate simultaneously. This is also the reason why Proposition 5.2 refers to a possibly smaller interval [0, t
⋆
∕𝜀] instead

of [0, tend∕𝜀].

Proof of Proposition 5.2. We integrate (2.16) for m = 3 from 0 to t ∈ [0, tend∕𝜀]. This yields

|||Z(3)(t)|||
𝜀
≤ |||Z(3)(0)|||

𝜀
+ 2

∑
#J=1

(
𝜀
‖‖‖∫

t

0
PF(s, Û(3), J) ds‖‖‖L1

+ ‖‖‖∫
t

0
P⟂F(s, Û(3), J) ds‖‖‖L1

)

+ 2
𝜀

∑
#J=3

‖‖‖∫
t

0
F(s, Û(3), J) ds‖‖‖L1

(5.7)

with F defined in (2.17). Since z3(0) = 0 by (2.18), it follows from (2.23) that

|||Z(3)(0)|||
𝜀
= 2‖Pz1(0)‖L1 + 2

𝜀
‖P⟂z1(0)‖L1 ≤ C(‖p0‖W1 + ‖p1‖W1).

Now, we define

a±1(t) = ‖Pz1(t)‖L1 + 1
𝜀
‖P⟂z1(t)‖L1 and a±3(t) =

1
𝜀2

‖z3(t)‖L1 (5.8)

and note that

∑
j∈ (3)

aj(s) = 2a1(s) + 2a3(s) = |||Z(3)(s)|||
𝜀

(5.9)

by (5.5). Our goal is to prove that there are constants C
⋆

and Ĉ such that for all t ∈ [0, tend∕𝜀] the inequality

𝜀
‖‖‖∫

t

0
PF(s, Û(3), J) ds‖‖‖L1

+ ‖‖‖∫
t

0
P⟂F(s, Û(3), J) ds‖‖‖L1

≤ C
⋆
+ Ĉ𝜀

∫

t

0

3∏
i=1

aji
(s) ds (5.10)

holds for every J = ( j1, j2, j3) ∈ ( (3))3 with #J = 1, and that

1
𝜀

‖‖‖∫
t

0
F(s, Û(3), J) ds‖‖‖L1

≤ C
⋆
+ Ĉ𝜀

∫

t

0

3∏
i=1

aji
(s) ds (5.11)
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holds for every J = ( j1, j2, j3) ∈ ( (3))3 with #J = 3. Substituting (5.10) and (5.11) into (5.7) yields

|||Z(3)(t)|||
𝜀
≤ C∙ + 2Ĉ𝜀

∑
j∈{1,3}

∑
#J=j

∫

t

0

3∏
i=1

aji
(s) ds

≤ C∙ + Ĉ𝜀
∑

j∈ (3)

∑
#J=j

∫

t

0

3∏
i=1

aji
(s) ds

= C∙ + Ĉ𝜀
∫

t

0

( ∑
j∈ (3)

aj(s)
)3

ds

= C∙ + Ĉ𝜀
∫

t

0
|||Z(3)(s)|||3

𝜀
ds (5.12)

by (5.9). The constant C∙ depends on ‖p0‖W1 , ‖p1‖W1 , C
⋆

, and the (finite) number of multiindices J with #J = 1 and
#J = 3, respectively. Now let t

⋆
∈ (0, tend] be a number to be determined below. Then, (5.12) implies that

|||Z(3)(t)|||
𝜀
≤ C∙+Ĉt

⋆
sup

s∈[0,t
⋆
∕𝜀]

|||Z(3)(s)|||3
𝜀

for all t ∈ [0, t
⋆
∕𝜀]. (5.13)

If we choose t
⋆

in such a way that the right-hand side of this inequality is not larger than r for some r > C∙, then we can
infer from (5.13) that |||Z(3)(t)|||

𝜀
≤ r for all t ∈ [0, t

⋆
∕𝜀]. Hence, the desired inequality (5.6) holds with

t
⋆
=

r − C∙

Ĉr3
. (5.14)

To prove the first inequality (5.10), we can adapt the arguments from Baumstark and Jahnke (2023, Section 3.2.2),
because the fact that a3(t) was defined with a different prefactor in Baumstark and Jahnke (2023, equation (3.7)) does not
matter for this part. To complete the proof of Proposition 5.2, we have to show (5.11). In Baumstark and Jahnke (2023,
Section 3.2.1), we have proven such a bound, but without the factor 1∕𝜀 on the left-hand side. Let #J = 3 and recall that

F(s, Û(3), J) = Sj,𝜀(s)
(
ûj1

, ûj2
, ûj3

)
(s), j = #J = 3

according to (2.17). We first consider the (easy) case where |J|1 > #J = 3 and thus |J|1 ≥ 5 because |J|1 is an odd integer.
In this case, (2.6) implies

1
𝜀

‖‖‖∫
t

0
F(s, Û(3), J) ds‖‖‖L1

= 1
𝜀 ∫

t

0

‖‖‖
(
ûj1

, ûj2
, ûj3

)
(s)‖‖‖L1

ds

≤
C


𝜀 ∫

t

0

3∏
i=1

‖ûji
(s)‖L1 ds

=
C


𝜀 ∫

t

0

3∏
i=1

‖zji
(s)‖L1 ds

= C

𝜀
|J|1−4

∫

t

0

3∏
i=1

(
𝜀

1−|ji|‖zji
(s)‖L1

)
ds

≤ C

𝜀
∫

t

0

3∏
i=1

aji
(s) ds,

which is an estimate of the form (5.11) with C
⋆
= 0. In the last step, we have used that |J|1 − 4 ≥ 1 and 𝜀1−|ji|‖zji

(s)‖L1 ≤

aji
(s) by definition (5.8).
Now let |J|1 = #J = 3, which is only true for J = (1, 1, 1). Since

F
(

s, Û(3), (1, 1, 1)
)
= S3,𝜀(s)

(
û1, û1, û1

)
(s),
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we have to show that

1
𝜀

‖‖‖∫
t

0
S3,𝜀(s)

(
û1, û1, û1

)
(s) ds‖‖‖L1

≤ C
⋆
+ Ĉ𝜀

∫

t

0
a3

1(s) ds. (5.15)

At this point, it seems that the inequality (4.15), which we have shown in steps 2–4 of the proof of Theorem 4.3, readily
implies (5.15) with Ĉ = 0. This is not quite true, because (4.15) refers to the case m = 1, not m = 3, and we have pointed
out at the beginning of this section that û1 is not the same function in these two cases. But the parts (i) and (ii) of Lemma
5.1 ensure that for m = 3 the function û1 has still all the properties which were used to prove (4.15), and this allows us to
use that proof verbatim.

Before we proceed, we have to extend Corollary 5.4 to a stronger norm as in Section 3. The following result is the
counterpart of Proposition 3.4 in the case m = 3.

Proposition 5.5. Suppose that the assumptions of Proposition 5.2 hold, and that in addition (2.9) is true with 𝜎 = 3. Then,
the bounds

sup
t∈[0,t

⋆
∕𝜀]

‖D
𝜇


⟂
𝜀

û1(t)‖L1 = sup
t∈[0,t

⋆
∕𝜀]

‖D
𝜇
P⟂z1(t)‖L1 ≤ C𝜀,

sup
t∈[0,t

⋆
∕𝜀]

‖D
𝜇
û3(t)‖L1 = sup

t∈[0,t
⋆
∕𝜀]

‖D
𝜇
z3(t)‖L1 ≤ C𝜀2,

hold with a constant independent of 𝜀 ∈ (0, 1].

Proof. Using the higher regularity and, in particular, (5.4), the bound

sup
t∈[0,t

⋆
∕𝜀]

|||D
𝜇
Z(3)(t)|||

𝜀
≤ C for all 𝜀 ∈ (0, 1],𝜇 ∈ {1,… , d}.

can be shown with standard techniques. Then, the assertion follows from the definition (5.5).

5.2 Improved Error Bound for m = 3
For the error analysis of ũ(3), we need a second nonresonance condition similar to Assumption 4.1.

Assumption 5.6 (Nonresonance condition). The matrix 5(0) = (5𝜔, 5𝜿) is regular and has no common eigenvalues
with 3(0) = (3𝜔, 3𝜿), that is, 𝜆5i(0) ≠ 𝜆3𝓁(0) for all i,𝓁 = 1,… , n.

We are now in a position to formulate and prove our second main result.

Theorem 5.7 (Error bound for m = 3). Let p have the form (2.9) with 𝜎 = 3 and let u be the solution of (1.1). Let ũ(3) be
the approximation defined in (1.7) with m = 3. Under Assumptions 1.2, 2.3, 4.1, and 5.6 there is a constant C such that

sup
t∈[0,t

⋆
∕𝜀]

‖u(t) − ũ(3)(t)‖W ≤ C𝜀3, (5.16)

sup
t∈[0,t

⋆
∕𝜀]

‖u(t) − ũ(3)(t)‖L∞ ≤ C𝜀3. (5.17)

Proof. We use the proofs of Theorem 4.2 in Baumstark and Jahnke (2023) and of Theorem 4.3 in the present paper as a
blueprint and focus on what has to be changed. In Baumstark and Jahnke (2023, proof of Theorem 4.2), we have shown
that the Fourier transform 𝛿 of 𝛿 = u − ũ(3) is the solution of

𝜕t𝛿(t, k) = −
(

iA(k) + 1
𝜀

E
)
𝛿(t, k) + 𝜀

(
u, ũ(3)

)
(t, k) + R̂(t, k)
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with


(
u, ũ(3)

)
=  (u,u,u) − 

(
 ũ(3), ũ(3), ũ(3)

)
,

R̂(t, k) = 𝜀

∑
|j|∈{5,7,9}

∑
#J=j

 (ûj1
, ûj2

, ûj3
)
(

t, k −
j𝜿
𝜀

)
e−ij𝜔t∕𝜀,

and with  defined by (2.5). Our main task is to prove that

sup
t∈[0,t

⋆
∕𝜀]

‖‖‖∫
t

0
exp

(
(s − t)

(
iA(⋅) + 1

𝜀
E
))

R̂(s) ds‖‖‖L1
≤ C𝜀3 (5.18)

uniformly in 𝜀 ∈ (0, 1]. If (5.18) holds, then the estimate (5.16) can be shown by applying Duhamel’s formula as in the
proof of Theorem 4.3, and (5.17) follows from the embedding W ↪ L∞.

In Baumstark and Jahnke (2023, proof of Theorem 4.2), we have already derived the inequality

‖‖‖∫
t

0
exp

(
(s − t)

(
iA(⋅) + 1

𝜀
E
))

R̂(s) ds‖‖‖L1
≤ 𝜀

∑
|j|∈{5,7,9}

∑
#J=j

‖‖‖∫
t

0
Sj,𝜀(s)

(
ûj1

, ûj2
, ûj3

)
(s) ds‖‖‖L1

.

In order to prove (5.18), we thus have to show that

∑
|j|∈{5,7,9}

∑
#J=j

‖‖‖∫
t

0
Sj,𝜀(s)

(
ûj1

, ûj2
, ûj3

)
(s) ds‖‖‖L1

≤ C𝜀2 (5.19)

with a constant C which does not depend on 𝜀 nor on t ∈ [0, t
⋆
∕𝜀].

As before, we consider several cases. First, suppose that | j| ∈ {7, 9}. If J = ( j1, j2, j3) ∈ ( (3))3 with #J = j, then at
least two of the three entries must have a modulus of 3, such that with Corollary 5.4 we even obtain the bound

‖‖‖∫
t

0
Sj,𝜀(s)

(
ûj1

, ûj2
, ûj3

)
(s) ds‖‖‖L1

≤
t
⋆

𝜀
sup

s∈[0,t
⋆
∕𝜀]

‖ (
ûj1

, ûj2
, ûj3

)
(s)‖L1

≤
Ct

⋆

𝜀
sup

s∈[0,t
⋆
∕𝜀]

3∏
i=1

‖ûji
(s)‖L1 ≤ C𝜀3. (5.20)

If |j| = 5 and #J = j but |J|1 > j (e.g. if j = 5 and J = (3,−1, 3)), we can proceed in the same way. The difficult case is the
one where |j| = 5 = #J = |J|1. We consider only j = 5 and J = (3, 1, 1), because all other such combinations can be treated
analogously. Now we cannot use (5.20), because Corollary 5.4 yields only

∏3
i=1 ‖ûji

(s)‖L1 = ‖û3(s)‖L1‖û1(s)‖2
L1 ≤ C𝜀2,

which is not enough due to the factor t
⋆
∕𝜀 in (5.20).

Since û1(t) = 
𝜀
û1(t) + 

⟂
𝜀

û1(t) and since supt∈[0,t
⋆
∕𝜀] ‖⟂

𝜀
û1(t)‖L1 ≤ C𝜀 by Corollary 5.4, the problem boils down to

showing the bound

‖‖‖∫
t

0
S5,𝜀(s)

(
û3,

𝜀
û1,

𝜀
û1
)
(s) ds‖‖‖L1

≤ C𝜀2. (5.21)

To prove this, we use similar techniques as in step 3 of the proof of Theorem 4.3. The strategy is again to identify the
oscillatory “parts” of the integrand.

We use the representation

û3(t, k) = S∗
3,𝜀(t, k)z3(t, k) =

n∑
𝓁=1

exp
(
− it
𝜀
𝜆3𝓁(𝜀k)

)
z3𝓁(t, k)𝜓3𝓁(𝜀k), (5.22)
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which follows from (2.11), (2.14), and (2.15). With (2.15), (2.4), and (2.5), this allows us to reformulate the integral in
(5.21) as

∫

t

0
S5,𝜀(s)

(
û3,

𝜀
û1,

𝜀
û1
)
(s) ds

= 1
(2𝜋)d ∫

t

0
exp

( is
𝜀
Λ5(𝜀k)

)
Ψ∗

5(𝜀k)
∫#K=k

T
(
û3(s, k(1)),

𝜀
û1(s, k(2)),

𝜀
û1(s, k(3))

)
dK ds

=
n∑

𝓁=1
∫#K=k ∫

t

0
exp

( is
𝜀

[
Λ5(𝜀k) − 𝜆3𝓁(𝜀k(1))I

])
f
𝜀,𝓁(s, K) ds dK

with

f
𝜀,𝓁(s, K) = 1

(2𝜋)d
Ψ∗

5(𝜀k)T
(
z3𝓁(s, k(1))𝜓3𝓁(𝜀k(1)),

𝜀
û1(s, k(2)),

𝜀
û1(s, k(3))

)

and k = #K. The left-hand side of (5.21) can thus be bounded by

‖‖‖∫
t

0
S5,𝜀(s)

(
û3,

𝜀
û1,

𝜀
û1
)
(s) ds‖‖‖L1

≤

n∑
𝓁=1

∫ℝd ∫#K=k

|||∫
t

0
exp

( is
𝜀

[
Λ5(𝜀k) − 𝜆3𝓁(𝜀k(1))I

])
f
𝜀,𝓁(s, K) ds|||2 dK dk. (5.23)

After setting

Δ𝓁(𝜃, 𝜃(1)) = Λ5(𝜃) − 𝜆3𝓁(𝜃(1))I for 𝜃, 𝜃(1) ∈ ℝd,

g
𝜀,𝓁(s, K) = exp

( is
𝜀

[
Δ𝓁(𝜀k, 𝜀k(1)) − Δ𝓁(0, 0)

])
f
𝜀,𝓁(s, K), (5.24)

the inner integral reads

|||∫
t

0
exp

( is
𝜀

[
Λ5(𝜀k) − 𝜆3𝓁(𝜀k(1))I

])
f
𝜀,𝓁(s, K) ds|||2 = |||∫

t

0
exp

( is
𝜀
Δ𝓁(0, 0)

)
g
𝜀,𝓁(s, K) ds|||2.

By Assumption 5.6, the diagonal matrix 𝚫𝓁(0, 0) = Λ5(0) − 𝜆3𝓁(0)I is regular such that we can integrate by parts and
obtain

|||∫
t

0
exp

( is
𝜀
𝚫𝓁(0, 0)

)
g
𝜀,𝓁(s, K) ds|||2 ≤ C𝜀

(
|g
𝜀,𝓁(t, K)|2 + |g

𝜀,𝓁(0, K)|2
)

+ C𝜀|||∫
t

0
exp

( is
𝜀
𝚫𝓁(0, 0)

)
𝜕tg𝜀,𝓁(s, K) ds|||2. (5.25)

The term C𝜀(|g
𝜀,𝓁(t, K)|2 + |g

𝜀,𝓁(0, K)|2) on the right-hand side leads to a contribution of (𝜀3) in (5.23), because

n∑
𝓁=1

|g
𝜀,𝓁(t, K)|2 =

n∑
𝓁=1

| f
𝜀,𝓁(s, K)|2

≤ C
n∑

𝓁=1

|||T
(
z3𝓁(s, k(1))𝜓3𝓁(𝜀k(1)),

𝜀
û1(s, k(2)),

𝜀
û1(s, k(3))

) |||2
≤ C|z3(s, k(1))|2|𝜀û1(s, k(2))|2|𝜀û1(s, k(3))|2
≤ C𝜀2
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by Corollary 5.4. For the other term on the right-hand side of (5.25), the product rule gives

C𝜀|||∫
t

0
exp

( is
𝜀
𝚫𝓁(0, 0)

)
𝜕tg𝜀,𝓁(s, K) ds|||2

≤ C𝜀|||∫
t

0
exp

( is
𝜀
𝚫𝓁(0, 0)

) i
𝜀

[
𝚫𝓁(𝜀k, 𝜀k(1)) − 𝚫𝓁(0, 0)

]
g
𝜀,𝓁(s, K) ds|||2

+ C𝜀|||∫
t

0
exp

( is
𝜀
𝚫𝓁(0, 0)

)
exp

( is
𝜀

[
𝚫𝓁(𝜀k, 𝜀k(1)) − 𝚫𝓁(0, 0)

])
𝜕t f

𝜀,𝓁(s, K) ds|||2
≤ C𝜀|||∫

t

0

i
𝜀

[
𝚫𝓁(𝜀k, 𝜀k(1)) − 𝚫𝓁(0, 0)

]
exp

( is
𝜀
𝚫𝓁(𝜀k, 𝜀k(1))

)
f
𝜀,𝓁(s, K) ds|||2

+ C𝜀|||∫
t

0
exp

( is
𝜀
𝚫𝓁(𝜀k, 𝜀k(1))

)
𝜕t f

𝜀,𝓁(s, K) ds|||2. (5.26)

The Lipschitz continuity (2.12) of the eigenvalues yields

|||𝚫𝓁(𝜀k, 𝜀k(1)) − 𝚫𝓁(0, 0)|||2 ≤
|||Λ5(𝜀k) − Λ5(0)

|||2 +
|||𝜆3𝓁(𝜀k(1)) − 𝜆3𝓁(0)

|||
≤ C𝜀(|k|1 + |k(1)|1),

and together with Corollary 5.4 it can be shown that the first term in (5.26) causes a contribution of (𝜀2) in (5.23).
Unfortunately, the second term in (5.26) requires a bit more efforts. By definition of f

𝜀,𝓁 , we formally have

𝜕t f
𝜀,𝓁(s, K)

= 1
(2𝜋)d

Ψ∗
5(𝜀k)

[
T
(
𝜕tz3𝓁(s, k(1))𝜓3𝓁(𝜀k(1)),

𝜀
û1(s, k(2)),

𝜀
û1(s, k(3))

)

+ T
(
z3𝓁(s, k(1))𝜓3𝓁(𝜀k(1)), 𝜕t𝜀û1(s, k(2)),

𝜀
û1(s, k(3))

)

+ T
(
z3𝓁(s, k(1))𝜓3𝓁(𝜀k(1)),

𝜀
û1(s, k(2)), 𝜕t𝜀û1(s, k(3))

) ]

= 1
(2𝜋)d

Ψ∗
5(𝜀k)T

(
𝜕tz3𝓁(s, k(1))𝜓3𝓁(𝜀k(1)),

𝜀
û1(s, k(2)),

𝜀
û1(s, k(3))

)
+ (𝜀2)

because 𝜕t𝜀û1 is uniformly bounded by (5.1) and z3𝓁(s, k(1)) = (𝜀2) due to Corollary 5.4. Proving the desired bound for
the (𝜀2)-part of 𝜕t f

𝜀,𝓁(s, K) in the second term in (5.26) is straightforward because the factor 𝜀 compensates the integral.
The difficulty is that 𝜕tz3𝓁(s, k(1)) is not (𝜀2) in general. We can only infer from (2.16), (2.17), and Corollary 5.4 that

𝜕tz3(t) = 𝜀

∑
#J=3

S3,𝜀(t)
(
ûj1

, ûj2
, ûj3

)
(t)

= 𝜀S3,𝜀(t)
(
û1, û1, û1

)
(t) + (𝜀3)

= 𝜀S3,𝜀(t)
(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(t) + (𝜀2).

The 𝓁-th entry of the dominating part of 𝜕tz3(t, k(1)) is thus

𝜀

[
S3,𝜀(t, k(1))

(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(t, k(1))

]
𝓁

= 𝜀

[
exp

( it
𝜀
Λ3(𝜀k(1))

)
Ψ∗

3(𝜀k(1))
(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(t, k(1))

]
𝓁

= 𝜀 exp
( it
𝜀
𝜆3𝓁(𝜀k(1))

)
𝜓

∗
3𝓁(𝜀k(1))

(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(t, k(1))

= 𝜀 exp
( it
𝜀
𝜆3𝓁(𝜀k(1))

)
𝜑
𝜀
(t, k(1))

with the abbreviation

𝜑
𝜀
(t, k(1)) = 𝜓

∗
3𝓁(𝜀k(1))

(

𝜀
û1,

𝜀
û1,

𝜀
û1
)
(t, k(1)).
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Figure 2. Accuracy of ũ(3) for Different Values of 𝜀. Parameters, Data, and Discretizations are the Same as in the Numerical
Experiment Described in Section 4.2.

All in all, it follows that

𝜕t f
𝜀,𝓁(s, K) = 𝜀 exp

( is
𝜀
𝜆3𝓁(𝜀k(1))

)
Φ
𝜀
(s, K) + (𝜀2) (5.27)

with

Φ
𝜀
(s, K) = 1

(2𝜋)d
Ψ∗

5(𝜀k)T
(
𝜑
𝜀
(s, k(1))𝜓3𝓁(𝜀k(1)),

𝜀
û1(s, k(2)),

𝜀
û1(s, k(3))

)
.

Substituting the right-hand side of (5.27) into the second term in (5.26) yields

C𝜀|||∫
t

0
exp

( is
𝜀
𝚫𝓁(𝜀k, 𝜀k(1))

)
𝜕t f

𝜀,𝓁(s, K) ds|||2
= C𝜀2|||∫

t

0
exp

( is
𝜀
𝚫𝓁(𝜀k, 𝜀k(1))

)
exp

( is
𝜀
𝜆3𝓁(𝜀k(1))

)
Φ
𝜀
(s, K) ds|||2 + (𝜀2)

= C𝜀2|||∫
t

0
exp

( is
𝜀
Λ5(𝜀k)

)
Φ
𝜀
(s, K) ds|||2 + (𝜀2)

because by definition 𝚫𝓁(𝜀k, 𝜀k(1)) = Λ5(𝜀k) − 𝜆3𝓁(𝜀k(1))I; see (5.24). In order to show uniform boundedness of

|||∫
t

0
exp

( is
𝜀
Λ5(𝜀k)

)
Φ
𝜀
(s, K) ds|||2 = |||∫

t

0
exp

( is
𝜀
Λ5(0)

)
exp

( is
𝜀

[
Λ5(𝜀k) − Λ5(0)

])
Φ
𝜀
(s, K) ds|||2,

we can use integration by parts again, because Λ5(0) is regular by Assumption 5.6 and the time derivative of
exp(is∕𝜀[Λ5(𝜀k) − Λ5(0)])Φ𝜀

(s, K) is uniformly bounded. This completes the proof of Theorem 5.7.

5.3 Numerical Experiment and Discussion
We have repeated the numerical experiment described in Section 4.2 with m = 3 instead of m = 1, and with t

⋆
= tend = 1.

Figure 2 shows that in this example, the numerical counterpart of the error supt∈[0,t
⋆
∕𝜀] ‖u(t) − ũ(3)(t)‖L∞ scales like 𝜀4,

which is better than what the error bound (5.17) in Theorem 5.7 predicts. We believe, however, that this advantageous
error behavior cannot be expected, in general, and we briefly sketch the reasons.

If we want to improve (5.17) in such a way that 𝜀3 is replaced by 𝜀4, then instead of (5.19) we have to prove that

∑
|j|∈{5,7,9}

∑
#J=j

‖‖‖∫
t

0
Sj,𝜀(s)

(
ûj1

, ûj2
, ûj3

)
(s) ds‖‖‖L1

≤ C𝜀3.
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As before, the critical indices are those where |j| = 5 = #J = |J|1, and we consider again j = 5 and J = (3, 1, 1) as an
example. Now instead of (5.21), we have to show that

‖‖‖∫
t

0
S5,𝜀(s)

(
û3,⟂

𝜀
û1,

𝜀
û1
)
(s) ds‖‖‖L1

≤ C𝜀3 (5.28a)

and ‖‖‖∫
t

0
S5,𝜀(s)

(
û3,

𝜀
û1,

𝜀
û1
)
(s) ds‖‖‖L1

≤ C𝜀3. (5.28b)

We will now explain why the first inequality (5.28a) cannot be true in general. Since û3 = (𝜀2) and 
⟂
𝜀

û1 = (𝜀) by
Corollary 5.4, the integrand is formally (𝜀3), but since t ∈ [0, tend∕𝜀] we need one more factor of 𝜀 to compensate the
long integration interval. By (2.15) and (2.5), the integral in (5.28a) reads

∫

t

0
S5,𝜀(s)

(
û3,⟂

𝜀
û1,

𝜀
û1
)
(s) ds

= 1
(2𝜋)d∫

t

0
exp

( is
𝜀
Λ5(𝜀k)

)
Ψ∗

5(𝜀k)
∫#K=k

T
(
û3(s, k(1)),⟂

𝜀
û1(s, k(2)),

𝜀
û1(s, k(3))

)
dK ds.

After substituting (4.18), (5.22), and 
𝜀
û1(s, k(3)) = 𝜓11(𝜀k(3))e−is𝜆11(𝜀k(3))∕𝜀z11(s, 𝜀k(3)) we obtain

∫

t

0
S5,𝜀(s)

(
û3,⟂

𝜀
û1,

𝜀
û1
)
(s) ds

=
n∑

𝓁1=1

n∑
𝓁2=2

∫#K=k ∫

t

0
exp

( is
𝜀

[
Λ5(𝜀k) −

(
𝜆3𝓁1

(𝜀k(1)) + 𝜆1𝓁2
(𝜀k(2)) + 𝜆11(𝜀k(3))

)
I
])

f
𝜀,𝓁1,𝓁2

(s, K) ds dK,

with a smooth function f
𝜀,𝓁1,𝓁2

. (Details do not matter at this point.) In order to generate an 𝜀 via integration by parts, we
need that the diagonal matrix

Λ5(0) −
(
𝜆3𝓁1

(0) + 𝜆1𝓁2
(0) + 𝜆11(0)

)
I

is regular. Since 𝜆11(0) = 0, this is equivalent to the condition

𝜆5𝓁(0) − 𝜆3𝓁1
(0) − 𝜆1𝓁2

(0) ≠ 0 for all 𝓁,𝓁1,𝓁2 ∈ {1,… , n}, 𝓁2 ≠ 1. (5.29)

This is a nonresonance condition similar to what we have assumed in Assumptions 4.1 and 5.6, but now with three terms.
In contrast to those assumptions, however, (5.29) is not true in case of the Klein–Gordon system with d > 1, nor for the
Maxwell–Lorentz system, as we will show now. In these applications, the eigenvalues 𝜔𝓁(𝛽) of (0, 𝛽) = A(𝛽) − iE have
the following properties:

(P1) The largest eigenvalue 𝜔1(𝛽) is related to the smallest eigenvalue 𝜔n(𝛽) by 𝜔n(𝛽) = −𝜔1(𝛽).
(P2) (0, 𝛽) has at least one vanishing eigenvalue, that is, there is an index 𝓁∙ with 1 ≠ 𝓁∙ ≠ n and 𝜔𝓁∙

(𝛽) = 0 for all 𝛽.

Recall that 𝜔 = 𝜔(𝜿) is an eigenvalue of (0,𝜿) = A(𝜿) − iE (cf. (1.5)), and suppose that we have chosen 𝜔 = 𝜔1(𝜿). By
definition, the eigenvalues of

j(0) = ( j𝜔, j𝜿) = −j𝜔I + (0, j𝜿)
are 𝜆j𝓁(0) = −j𝜔 + 𝜔𝓁( j𝜿). If we choose 𝓁 = 𝓁1 = 𝓁∙ and 𝓁2 = n in (5.29), then we obtain

𝜆5𝓁∙
(0) − 𝜆3𝓁∙

(0) − 𝜆1n(0) = (−5𝜔 + 𝜔𝓁∙
(5𝜿)) − (−3𝜔 + 𝜔𝓁∙

(3𝜿)) − (−𝜔 + 𝜔n(𝜿))
= −5𝜔 + 0 + 3𝜔 − 0 + 𝜔 − (−𝜔1(𝜿))
= −𝜔 + 𝜔1(𝜿) = 0,

which shows that the nonresonance condition (5.29) is not true. This is only one counterexample among many others. The
corresponding nonoscillatory terms in the integrand cause contributions of (t𝜀3), which eventually leads to a contribution
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of (𝜀2) instead of (𝜀3) on the left-hand side of (5.28a). Similar resonance problems appear also in the integral in (5.28b),
such that this inequality cannot be true for the applications mentioned above.

A noteworthy exception is the Klein–Gordon system in one space dimension (d = 1, n = 2), which we have used in our
numerical experiments. Here, the two eigenvalues of the matrix (0,𝜿) = A(𝜿) − iE ∈ ℂ2×2 are w = w1(𝜿) =

√
𝜿

2 + 𝛾2

and w2(𝜿) = −w1(𝜿), as we have mentioned in Section 4.2. These eigenvalues have property (P1), but not property (P2),
such that the counterexample does not apply. We conjecture that in this special case, one could indeed prove that (5.17)
even holds with 𝜀4 instead of 𝜀3 on the right-hand side, which is the behavior observed in Figure 2.

This discussion raises the question if the convergence behavior predicted by Theorem 5.7 could be observed in a
numerical example with a two-dimensional Klein–Gordon equation, because then the eigenvalues have also the property
(P2). The problem is that in order to test the accuracy of the approximation u ≈ ũ(3), the PDEs (1.1) and (1.8) have to be
solved numerically with such a high precision that the numerical error is negligible compared to the analytical error. But
approximating u with sufficiently high precision by applying a standard method to (1.1) was already hopeless in one space
dimension (cf. Section 4.2), and computing a reference solution via (1.7) and (1.8) with m = 5 was already extremely
expensive in the one-dimensional case, because the functions uj still oscillate in time. For these reasons, we were not able
to produce a reliable numerical example in two space dimensions.

The approach to approximate the solution u of (1.1) via (1.7) and (1.8) has the advantage that the coefficient functions uj
do not oscillate in space. This gives us the possibility to use a space discretization where the number of grid points depends
only on the regularity of uj(t, ⋅), but not on 1∕𝜀. To realize the full potential of this approach, however, it is important to
develop tailor-made time integrators for (1.8), which use nonstandard techniques to handle the oscillations in time, and
which are far more efficient than traditional schemes such as the splitting method used in our numerical examples. In a
joint work with Johanna Mödl (KIT), the second author has recently constructed and analyzed such a tailor-made time
integrator; cf. Jahnke and Mödl (2024).
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Notes
1. Note that the right-hand side of (4.13) contains a factor 𝜀, which was omitted on the left-hand side of (4.14).
2. In fact, we have even shown that X1(t, 𝜀) ≤ C𝜀 for all 𝜀 ∈ (0, 1] and t ∈ [0, tend∕𝜀].
3. In addition, a number of terms which were estimated in a straightforward way in our proof would require a more sophisticated

analysis.
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