KIT | KIT-Bibliothek | Impressum | Datenschutz

Learning Boltzmann Generators via Constrained Mass Transport

von Klitzing, Christopher; Blessing, Denis 1; Schopmans, Henrik; Friederich, Pascal ORCID iD icon 2; Neumann, Gerhard 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)
2 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Efficient sampling from high-dimensional and multimodal unnormalized probability distributions is a central challenge in many areas of science and machine learning. We focus on Boltzmann generators (BGs) that aim to sample the Boltzmann distribution of physical systems, such as molecules, at a given temperature. Classical variational approaches that minimize the reverse Kullback-Leibler divergence are prone to mode collapse, while annealing-based methods, commonly using geometric schedules, can suffer from mass teleportation and rely heavily on schedule tuning. We introduce Constrained Mass Transport (CMT), a variational framework that generates intermediate distributions under constraints on both the KL divergence and the entropy decay between successive steps. These constraints enhance distributional overlap, mitigate mass teleportation, and counteract premature convergence. Across standard BG benchmarks and the here introduced ELIL tetrapeptide, the largest system studied to date without access to samples from molecular dynamics, CMT consistently surpasses state-of-the-art variational methods, achieving more than 2.5x higher effective sample size while avoiding mode collapse.


Volltext §
DOI: 10.5445/IR/1000186168
Veröffentlicht am 28.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Institut für Nanotechnologie (INT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 21.10.2025
Sprache Englisch
Identifikator KITopen-ID: 1000186168
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Verlag arxiv
Umfang 33 S.
Schlagwörter Machine Learning (cs.LG)
Nachgewiesen in Dimensions
OpenAlex
arXiv
Globale Ziele für nachhaltige Entwicklung Ziel 10 – Weniger UngleichheitenZiel 16 – Frieden, Gerechtigkeit und starke Institutionen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page