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This research is to predict the global warming potential (GWP) of biomass by using Fourier

transform near-infrared (FT-NIR) spectroscopy. A partial least squares regression model of 197
biomass chip samples was developed for predicting GWP of fast-growing trees and agricultural
residues. The reference value of GWP of biomass sample was calculated by the method provided by
Intergovernmental Panel on Climate Change (IPCC). After applying different spectral pretreatments
and variable selection methods, the best model for predicting GWP was found using the 1st derivative
spectrum pretreatment and covariance method (COVM) based variable selection. The results indicate
GWP model exhibit good predictive capabilities, where the model can be usable with caution for any
purpose including research, by achieving a coefficient of determination for prediction set (R?,) of
0.86, and ratio of prediction to deviation (RPD) of 2.6. Additionally, the RMSEP of 0.00063 suggests

a low prediction error. This pioneering approach presents a swift and efficient means to determine
GWP, the complex functionality parameter, which reveals an optimal relationship model, showcasing
its efficacy in a significant advancement in the assessment of biomass functionality related to

climate change issue. Additionally, the further research is recommended to integrate FT-NIR data
with thermogravimetric analyser to simulate of different thermal conversion of biomass type where
different emission gases are generated and with gas chromatography-mass spectrometry for
evaluation of concentration of the generated gases for further refine GWP predictions which providing
more comprehensive insights and exact content of emission gases affect global warming to support
the IPCC.
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Abbreviations

C Carbon

CHNS Elemental analyzer

GA Geneticalgorithm

H Hydrogen

HHV Higher heating value
LVs Latent variable number
Max Maximum

Min Minimum

MP Multi-preprocessing
MSC Multiplicative scatter correction
N Nitrogen

NT Total number of samples
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N Number of sample in corresponded set

NIRS Near infrared spectroscopy

¢ Oxygen

PLSR Partial least squares regression

R? Coefficient of determination

R%, Coefficient of determination of calibration set
R? Coefficient of determination of prediction set

P 4
RMSEC  Root means square error of calibration set
RMSEP Root means square error of prediction set

RPD Ratio of prediction to deviation
S Sulfur

SD Standard deviation

SEC Standard error of calibration set
SEL Standard error of laboratory
SEP Standard error of prediction set
SNV Standard normal variate

SPA Successive projection algorithm
SW Selected wavenumber

wt.% Weight percentage

The concept of global warming potential (GWP) serves as a comparative measure of the amount of heat a
greenhouse gas traps in the atmosphere relative to the heat trapped by an equivalent mass of carbon dioxide.
Consequently, the GWP factor of CO, is set at 1. GWP is typically calculated over specific time horizons of
20, 100, or 500 yearsl. Climate is characterized by mean air temperature, relative humidity, wind patterns,
precipitation, and frequency of extreme weather events, typically measured at least thirty years®. Climate change
represents the most significant global threat humanity primarily driven by atmospheric carbon emission®.
Climate change can occur naturally due to variation in the Sun's energy or through persistent human activities,
such as the emission of greenhouse gases, sulfate aerosol or black carbon or changes in the land use?. Examples of
climate change include global warming and the increase severity and frequency of floods and drought in various
part of the world over recent decades’. Climate change includes both natural variability and anthropogenic
changes®. According to the Sixth Assessment Report (AR6 2021) by the Intergovernmental Panel on Climate
Change (IPCC), human activities have warmed the atmosphere, ocean, and land’. The United Nations is
concerned primarily with anthropogenic climate change, both because it poses a threat to global security and
because it can be altered by altering human and governmental behavior. For this reason, the United Nation
Framework of Climate Change defines climate change as a change of climate which is attributed directly or
indirectly to human activity that alters the composition of the global atmosphere and which is in addition to
natural climate variability observed over comparable time periods®. The international agreements overseen by
the United Nations Framework Convention on Climate Change (UNFCCC), including the 1992 Kyoto Protocol
and 2015 Paris climate agreement sought to build global consensus on fighting climate change and set clear
goals for emission reductions’. The climate conference in Kyoto, Japan, resulted in an argument by industrialized
nations to reduce emissions of six key greenhouse gases (GHGs) to about 5% below 1990 emissions level by
the year 2012!°. Reducing greenhouse gas emissions is one of the significant benefits of biomass. Biomass may
function on a closed carbon cycle, in contrary to fossil fuels, which emit carbon dioxide stored for millions of
years. This indicates that, when biomass is burned sustainably, the amount of carbon dioxide released during
combustion is about equal to the amount absorbed by the plants during growth, leaving a net neutral effect on
atmospheric CO, levels"'. Additionally, biomass contributes to energy security through dedicated energy crops
and municipal solid waste conversion, while stimulating economic development in rural areas by creating jobs
and revitalizing economies. The integration of biomass with other renewables like solar and wind, coupled with
ongoing technological advancements, improves efficiency and competitiveness, making it essential for achieving
net zero emissions (NZE) of IEA (International Energy Agency, France) targets and addressing climate change'?.

Biomass serves as a key renewable bio-resource, offering a carbon-neutral alternatives that is widely available
across the globe!®. Defined broadly, biomass encompasses all organic materials derived from plants, including
algae, trees, and crops. The materials results from the process of photosynthesis, where green plants convert
sunlight into organic matter'%. Biomass includes terrestrial and aquatic vegetation as well as organic waste
materials. The composition of biomass primarily consists of three polymers: cellulose, hemicellulose, and lignin,
with variations contingent upon the specific type of biomass'®. For instance, hardwood and herbaceous biomass
contain approximately 43-47% and 33-38% cellulose, 25-35% and 26-32% hemicellulose and 16-24% and
17-19% lignin, respectively'®. Biomass can be evaluated for its energy potential by analyzing its higher heating
values (HHV) and ultimate analysis, which provides information on its elemental composition, including the
percentage of carbon (C), hydrogen (H), nitrogen(N), sulfur (S), and oxygen (O). The HHV, measured using
bomb calorimeter, is a crucial indicator of biomass energy content. Biomass with higher C and H, and/or O and
H contents, and lower N and S contents, is preferable for energy use as enhances the HHV'’. Biomass is highly
responsive to Near Infrared (NIR) radiation, particularly indicated by spectra shown in the range of 1100 nm
to 2500 nm!”. Tt primarily interacts with hydrogen bonds in biological materials like C-H, O-H, N-H and S-H
and C=O0 too. This property makes biomass suitable for assessment using Near Infrared Spectroscopy (NIRS)
which combined NIR spectral variables to chemometric algorithms to determine energy-related properties such
as HHV and elemental composition'®, where provide rapid, non-destructive analysis with minimal or no sample
preparation and no chemical used leading to environment safe. In the present scenario, biomass is one potential
source of renewable energy and the conversion of plant material into a suitable form of energy, usually electricity

Scientific Reports|  (2025) 15:33725 | https://doi.org/10.1038/s41598-025-10584-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

or as a fuel for an internal combustion engine, can be achieved using a number of different routes, each with
specific pros and cons'. For carbondioxide (CO,) emission from biomass combustion though will be achieving
net zero emissions (NZE) as explained, though, by GWP of CO, calculated by IPCC can be used for estimation
of how much heat can be absorbed by biomass plants. For methane (CH,) and nitrous oxide (N,0), using Global
Warming Potential (GWP) indices higher than those specified by the Kyoto Protocol (100-year time horizon)
would better reflect historical temperature trends. The GWP of CH, aligns most accurately with historical
temperature data when calculated over a 44-year time horizon. In contrast, the GWP of N,O does not closely
match historical temperatures regardless of the time horizon used?. Hao and Ward?! reported about 85% of the
total CH » emitted in the tropical area, is mainly the result of shifting cultivation, fuelwood use, and deforestation
and may have increased by at least 9% during the last decade because of increases in tropical deforestation and
the use of fuelwood. There were some reports on N,O emissions by biomass burning e.g. from power geration
using oil palm empty fruit branch was reported®? and using rice husk?.

A complex pattern of peaks and troughs of NIR spectrum can be analyzed using chemometric techniques to
deduce the sample's chemical composition and physical properties. The advantage of NIRS lies in its ability to
provide rapid, non-destructive analysis with minimal or no sample preparation and no chemical used leading
to environment safe. This makes it particularly valuable in fields such as agriculture, pharmaceuticals, and food
industries, where it is used for quality control and compositional analysis.

Fourier Transform Near Infrared (FT-NIR) spectrometer is a analytical instrument that utilizes the NIR
region to analyze materials. FT-NIR spectroscopy is a powerful analytical technique used for identifying and
quantifying gases due to its high sensitivity and accuracy?’. This method involves measuring the absorption
of NIR radiation by gases, allowing for precise determination of their concentrations in the atmosphere. By
integrating GWP estimation with FT-NIR spectroscopy, by result at the end of this report, it becomes possible
to enhance the accuracy of greenhouse gas inventories and improve the reliability of climate models, thereby
supporting more effective climate action.

The principle behind the IPCC’s used the GWP calculation to quantify the impact of various green house
gases (GHGs), mainly carbon dioxide (CO,), along with smaller amounts of methane (CH,) and nitrous oxide
(N,0), on global warming relative to CO, is depended on the HHV which is the total energy content in the
biomass, including the energy contained in the water vapor produced during combustion. It is important for
estimating the potential emissions per unit of biomass. IPCC’s GHG emissions estimation is calculated by using
Emission Factor is a standard coefficient provided by IPCC guidelines, which estimates the amount of a specific
greenhouse gas emitted per unit of energy produced by the biomass. The emission factors typically measure
emissions in kilograms of CO,, CH,, or N,O per unit of energy (T]) in the biomass, and they allow us to quantify
the emission per unit of HHV. How much heat a gas traps in the atmosphere over a specific period, typically
20, 100 or 500 years, compared to CO,. This is based on the radiative efficiency of the gas (how effectively it
absorbs heat per molecule) and its atmospheric lifetime (how long it remains in the atmosphere). CO, is set
as the baseline (GWP =1) for comparison, as it is the most prevalent GHG emitted by human activities. Other
gases are compared relative to CO,’s warming effect. GWP values depend on a chosen time horizon (e.g. GWP-
20, GWP-100). Short lived gases, like CH,, have a higher GWP over a 20-year horizon due to their potent
but shorter-lived impact, whereas the GWP-100 of CH, is lower because it dissipates faster than CO,. GWP
represents the cumulative impact of a pulse emission over the chosen time horizon. The calculation integrates
the warming effects of the gas over time, taking into account both the immediate warming effect and gradual
decay of the gas. This method provides a standardized way to compare the warming impacts of different GHGs
and is instrumental for climate policy, as it allows policymakers to prioritize mitigation efforts based on the long
term and short-term impacts of various gases.

The database report presents developed models tailored for different biological materials, for example, the
evaluation of HHV sorghum samples?’, using partial least squares regression (PLSR) and principal component
regression (PCR), calibration models were constructed for both full and reduced wavenumber regions to predict
HHV and the contents of carbon, hydrogen, nitrogen, sulfur, and oxygen. Particularly noteworthy was the
exceptional accuracy demonstrated by the HHV and carbon content models, underscoring their reliability in
prediction and with a rapid measurement time (from 100 to 1 min)®. Predicting Global Warming Potential
(GWP) using FT-NIR spectroscopy represents a novel approach. To develop the prediction model, the reference
two key papers that utilize PLSR. There were two reports of our research group contributed to the results of
NIR prediction models for ultimate analysis parameters of the non-wood and wood samples, including Pitak,
Sirisomboon, Saengprachatanarug, Wongpichet, and Posom?® who developed the PLSR using the spectra
obtained by line-scan NIR hyperspectral imager in which the most effective model for the prediction of C, H
and N content of 160 non-wood and wood biomass pellets The second report was contributed by Shrestha et al.'”
using FT-NIR spectrometry, where the ground non-wood and wood samples spectra, which were 110 samples
of agricultural residues and 90 samples of fast growing trees, were used to develop the PLSR models combined
with multi-preprocessing methods for ultimate analysis.

The prediction model that is applicable for determining the GWP for different species and utilized the
species as for GWP production is essential for the policy makers, energy companies, and researchers who can
utilize these findings for proper identification, management, and the utilization of resources to save the planet.
Therefore, the main objective of this research is to propose a novel estimation approach for GWP by combined
the GWP calculation method obtained from IPCC!"! which utilizing HHV of the biomass and FT-NIR spectra of
biomass samples by formulating a PLSR prediction model which can drastically reduce the experiment period
from 40 min for HHV measurement by bomb calorimeter include sample preparation time!” to a reduction to
3 min by only use the spectrum of the biomass chips.

Traditional methods are time-consuming (40 min), chemical unavoidable (e.g. tablets of benzoic acid and
combustion polyethylene bag) cause non-environmental friendly, well trained technician is required, costly (15
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USD per sample) and destructive whileFT-NIR offers a fast (3 min), chemical free cause environmental friendly,
general worker can work, evaluation and operation cost per sample (<1 USD) and non-destructive.

It is an Al approach to be an alternative instead of traditional method for estimating GWP from biomass,
aiding sustainable biomass utilization and climate impact assessment. We believe readers will find this work
insightful and valuable, as it introduces a rapid, non-destructive, and cost-effective approach for GWP
assessment, addressing a critical gap in biomass analysis and climate change mitigation.

Materials and methods
In this manuscript, we introduce a novel approach for predicting Global Warming Potential (GWP) using a
spectroscopy non-destructive and rapid method but by using diverse biomass sources including fast growing
tree and agricultural residue collected in Shrestha et al.'”. In Shrestha et al.!” only the higher heating value and
ultimate analysis elements were predicted. To the best of our knowledge, no prior research has explored this
specific application, making it a novel contribution to the field, especially in climate change environment sector.

This research is the longitudinal research and builds on the study referenced at Shrestha et al.!” https://doi.or
g/https://doi.org/10.3390/en16145351, where in previous paper traditional CHN/S elemental analyzer was used
to determine elements such as C, N, O, and S, and bomb calorimeter was used for measuring HHV. Using of
same sample spectrum set, we have developed a new model that offers an alternative approach to determining
GWP and HHV data using PLSR. This streamlined model is designed to provide a faster and more accessible
method for estimating GWP in biomass applications.

Figure 1 illustrates the comprehensive research methodology for assessing the HHV and GWP of ground
biomass for energy applications, employing NIRS in conjunction with PLSR analysis.

Biomass

Shrestha et al.!” gathered Nepal biomass samples focusing on five fast-growing tree species: Alnus nepalensis,
Pinus roxburghii, Bambusa vulgaris, Bombax ceiba, and Eucalyptus and five types of agriculture residues: Zea
mays (cob, shell, and stover), Oryza sativa (husk), and Saccharum officinarum (bagasse). There were 200 samples
in total.

Outliers in the GWP calculated data were identified using z-score equation in Eq. (1), which is the Z score
and when the Z score is>3, it means that the x value is outside the+3SD range where 99.7% of data is and
the x value will be considered as outlier”. x is the reference value of GWP, X is the average GWP, and SD is the
standard deviation. There were 3 outliers found.

X; —X

> 1
D > | £ 3 (1)

The spectral outlier samples were determined by using the Mahalanobis distance limit, based on the distribution
of all calibration spectra, where a normal distribution, a one-sided limit is defined that covers a probability of
99.999%2%. However, there was no spectral outlier found. Hence, 197 samples for modeling.The investigation
is significant as it addresses biomass sample from both tree species and agricultural residues, offering a board
understanding of the potential energy yields from two critical categories of biomass resources. The study sheds
light on renewable energy opportunities that can be derived from diverse plant species and residues, each with
its distinct chemical and structural characteristics.

Spectroscopy scanning

Shrestha et al.!” scanned biomass samples using an FT-NIR spectroscopy (MPA, Bruker, Germany) in diffuse
reflectance mode with a rotating sample holder. The use of diffuse reflectance mode and the rotating mode
holder was instrumental in achieving uniform sample exposure to the spectrometer beam, which is critical in
analyzing heterogeneous materials like biomass. The study highlights the importance of proper background
calibration and careful sample handling in obtaining accurate FT-NIR spectra ensuring that environmental
factors such as humidity and temperature for no skew the results?.

Wet-lab measurement

The complex nature of NIR absorbance data, it is essential to correlate it with reference values obtained from
a standard laboratory method to ensure accuracy’. Accordingly, the reference data for the biomass samples,
which included higher heating (HHV), were evaluated following the procedure outlined by Shrestha et al.””
after scanning with an FT-NIR spectrometer. Prior to HHV measurement, the grinding process is crucial for it
ensures uniform particle size, which in turn improves the consistency of the combustion process and enhances
the precision of the calorimetric analysis. The using Bomb calorimeter to find the HHV is widely recognized for
its reliability in determining the calorific value of various type of fuel, including biomass. The use of an automatic
bomb calorimeter ensures precise temperature control during combustion, allowing accurate measurement of
the energy content released by the samples. This data is crucial for understanding the potential of biomass as a
renewable energy source and optimizing its use in various applications.

Estimation of global warming potential and emission of greenhouse gas (GHG)

IPCC guidelines7'31 was used to obtain main emission factors for CO,, CH,, and N,O from stationary biomass
combustion on the 100 years based reported in AR6’. These emission factors are typically expressed in grams of
gas per unit of fuel burned energy (e.g., CO, kg TJ™! of fuel). Calculate the emissions of CO,, CH,, and N,O from
the biomass combustion using the following formula:where Emissions is the total amount of emissions produced
(kg); Mass of sample is the total mass of a sample being burned (kg); High Heating Value is the Gross Calorific
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FT-NIR Spectrometer Scanning (4000-12500 cm™)

Sample Spectral Processing Referance data measuremeant
[Raw Spectra, SMV. First Derivativas, HHV (T)/kg): Bomb Calorimeter
Sacond Derivatives Global Warming Potential: IPCC

Total data set (100%) (Spectral + Reference)
Calibration Set (B0 Validation Sat {20%)
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Xvanable (Spectral iable (Spectral data
[Reference data) xvarisbls (Spectral date)

datal

Selection of optimum LWVs using full cross validation

Calibration Modsl
Full PLSR with no praprocessing [Raw spectrum) and traditional
preprocessing (MY, First Dervatives and Second Derivatives)
Selectad wavelength,

Model Development-Full Wawvelsngth, Correlation, Varance,
Covariance and VIP mathod.

Prediction Value ywarnakble (Reference data)

Model Parformance
R*z, RMSEC, R*:, RMSEF, RPD, Bias,

Selection of the best model for each parameater to establish an alternative method for
rapid and reliable evaluation to characterize biomass for HHY and GWP

Fig. 1. Flow chart of the overall research methodology for the evaluation of the GWP by HHV using NIRS
combined with PLSR.

Value, measures the total amount of energy that can be obtained from a fuel sample when it is completely burned
(TJ.kg"); Emission Factor is based on energy consumption for wood/ woody residues: 112 kg CO, TJ™!, 30 kg
CH, TJ"}, and 4 kg N,O TJ'7*L,

To determine the emission factor for biomass combustion, follow a systematic approach to ensure accuracy.
Begin by identifying the type of biomass, such as fast-growing trees and agriculturalresidues, as each type has
distinct emission factors. Reliable sources for these factors include the IPCC Guidelines. Next, measure the
HHYV of the biomass, often determined experimentally via bomb calorimetry and expressed in TJ kg!. Select
an appropriate emission factor based on the biomass type and combustion conditions; for example, wood
combustion factors range from 1 to 150 kg CO, TJ™%.
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Determine the GWP of the emissions using the IPCC's GWP values for a specific time horizon (e.g. 100 years).
The GWP are calculated by converting the emissions of CH, and N,O into CO,-equivalents (CO,e) based on
their relative warming potential.

[ aicidt

P=—7F"F
GW [5 aCO2CCO2dt

)

where ai is Absolute instantaneous concentration of the gas i at time #; ¢i is Radiative efficiency (or radiative
forcing) of the gas i per unit mass; aco, is Absolute instantaneous concentration of CO, at time £; cco, is Radiative
efficiency (or radiative forcing) of CO, per unit mass; a is Time horizon over which the GWP is calculated
100 years (typically 20 or 100 years); ¢ is Time variable.

The total GWP calculated the combined impact of different greenhouse gases (GHGs) on global warming.
Each GHG has a specific GWP value, which represents its warming effect relative to CO, over a specific time
horizon, typically 100 years. For calculation, the total GWP is determined by summing the products of the GWP
values and the emission quantities for each gas. Specifically, it includes the GWP of CO, multiplied by the amount
of CO, emissions, the GWP of methane (CH,) multiplied by the amount CH, emissions, and the GWP of nitrous
oxide (N,0) emissions multiplied by the amount N,O emissions. By accounting for the different contributions of
these gases, the formula provides a comprehensive measure of the overall impact of multiple GHGs on climate

change, allowing for a more accurate assessment of their collective influence on global warming.

For calculating GWP, use the formula:
Step 1 : (CO2, CHy4, N2O) emissions (kg) = Mass of Fuel (kg)
x Carbon emission factor (kg TJ_I) x HHV (kg TJ_I)

Step 2 : Total GWP =
+ (GWP of CH4 x CH4 emissions) +

(GWP of COz x COg emissions)
(GWP of N2O x N3O emissions)

Table 1 shows example of emission gases by Alnus Nepalensis biomass combustion.

Alnus nepalensis

Remarks

IPCC guideline

Calculation of CO, emission

Higher Heating Value =17,932,000 ] kg™!

CO, emission factor=112 kg TJ"!,

we can follow these steps:

Convert HHV to TJ] kg':

Since 1 TJ=10'2 ], we need to convert the HHV from J kg™! to TJ kg™:
HHYV in TJ kg'!=17,932,000 ] kg! / 10'2=1.7932x 1073 TJ kg!

CO, emission (kg) = Mass of fuel (kg) x CO, emission factor (kg TJ" xHHV (T] kg')

CO emission (kg) =1 kg>< 112 kg TJ"! 0. 017932 TJ kg

Therefore, the CO, emission from stationary fuel combustion with an HHV of 17,932,000 J kg! and using the default CO, emission factor of 112 kg TJ ! would be
approximately 2. 00831073 kg of CO, per kg of fuel

CO, emission
factor: 112 kg
dry matter
TJ ! (typical
for wood
combustion)

Calculation of CH, emission

Hight Heating Value=17,932, 000 Jkg!

CH, emission factor =30 kg T]

Convert HHV unit to TJ kg™!

1TJ=10"?]

HHYV from ] kg! to TJ kg™:

HHYV in TJ kg1 =17,932,000 ] kg! / 10'2=1,7932x 10> TJ kg!

CH, emission (kg) = Mass of Fuel (kg) xCH, emrsslon factor (kg TJ"") x HHV (T] kg™)
CH emission (kg) =1 kgx30 kg TJ1x1,7932x 10> TJ kg™!
CH emission (kg) =5.3796 x 10~ kg of CH, per kg of fuel

CH, emission
factor: 30 kg
dry matter TJ!

Calculation of N,O emission

Hight Heating Value =17,932,000 ] kg!

N, O emission factor =4 kg T] !

Convert HHYV unit to TJ kg™!

1T]=10%]

HHYV from ] kg'! to TJ kg'*:

HHV in TJ kg1=17,932,000 J kg / 10'2=1.7932x 10> TJ kg

N,O emission (kg) = Mass of Fuel (kg) xN,O emission factor (kg TJ" )xHHV (T] kg!)
N O emission (kg) =1 kgx4 kgT] x 1. 7932 x107° T kg™!
N, ’0 emission (kg)=7.1728 x 107 kg of N,O per kg offuel

N, O emission
factor 4 kg dry
matter/T]

reference gas, normally taken as carbon dioxide, under this definition, co, would have a GWP value of 1

Alnus nepalensis

Total GWP =(GWP of CO, >< CO, emissions) + (GWP of CH, x CH, emissions) + (GWP of N,0 x N,O emissions)
Total GWP=1x2. 0083><10 +29 8x5.379x1074+273x 7. 1728>< 10 s

Total GWP=0.0376 kg CO,e

This calculation is by 100 years based GWP of emission gases followed ARG’

The concept of global warming potential (GWP) was introduced in IPCC —-ARI1 (Shine et al. 1990) to compare the greenhouse effects of different greenhouse gases relative to a

Table 1. Calculation example of emission gases by Alnus nepalensis biomass combustion.
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The Table 2 shows the compares the GWPs of three greenhouse gases i.e. CO,, CH,, and N,O—over two
different time periods (100 years and 20 years) based on assessments from the IPCC's Assessment Reports (AR4
2007%2, AR5 20143, and AR6 20217). For CO,, the GWP remains consistent across all reports and time periods
with a value of 1, indicating its role as the baseline for comparison. CH, shows variations in GWP depending on
its origin (fossil or non-fossil) and whether climate-carbon feedback is considered. The GWP for fossil-origin
CH, increases from 25 in AR4 to 34 in AR6 over a 100-year period, highlighting the growing recognition of
its impact. For non-fossil-origin CH,, the GWP is slightly lower at 27.2 over 100 years in AR6. Over a 20-year
period, CH,'s GWP is significantly higher, emphasizing its short-term potency as a greenhouse gas. N,O also
shows variations, with its GWP slightly decreasing from AR4 to AR5 but increasing again in AR6, both over 100-
year and 20-year periods. The data reflects the evolving understanding of the greenhouse effects of these gases,
with updates in each assessment report based on the latest scientific research.

Model development and validation

The PLSR method were used to develop the model. The samples were divided into calibration set (80%) and a
prediction set (20%) by using Kennard-Stone method. Kennard-Stone data separation algorithm is based on an
Euclidian distance calculation, where the sample with maximum distance to all other samples are selected, then
the samples which are as far away as possible from the selected samples are selected, until the selected number
of samples is reached*. This means that the samples are selected in such a way that they will uniformly cover the
complete sample space, reducing the need for extrapolation of the remaining samples. Initially, the model was
developed using raw spectra, standard normal variate (SNV), 1st derivative and 2nd derivative transformations.
The model was optimized by selecting wavenumbers through various variable selection methods, including the
Correlation Method (CM), Variance Method (VM), Co-Variance Method (COVM), and Variable Importance
Projection (VIP). The spectral data were pretreated using raw spectra, standard normal variate (SNV), as well
as first derivative and second derivative transformations. The following spectra pretreatment methods: Standard
Normal Variate (SNV) is for corrects scatter effects and baseline variations®, 1st and 2nd Derivative enhances
spectral resolution by removing baseline shifts and emphasizing key spectral features, leading to better signal
clarity®.

Feature selection methods: Correlation-based selection identifies the most relevant spectral variables by
assessing their relationship with dependent variable which in our case is GWP and HHV; VIP prioritizes key
spectral features that significantly contribute to the PLSR model, enhancing predictive accuracy, VM selects
variables based on their variance, ensuring only features with significant variation are retained and COVM
identifies variables with strong covariance relationships, helping in feature reduction while preserving important
predictive information®®.

MATLAB-R2020b (MathWorks, Natick, MA, USA) was used for both spectrum pretreatment and model
development. The calibration model’s performance was assessed using the coefficient of determination (R*c) and
root mean square error of calibration (RMSEC).

The obtained model wasvalidated using the prediction set, and their performance was evaluated based on
coefficient of determination of prediction (R%p), root mean square error of prediction (RMSEP), bias and the
ratio of prediction of deviation (RPD).

These parameters were calculated as follows, where y is the measured value, ¥ is the predicted value, i is
subscript used to indicate the number of the sample, y is mean of the measured value, N is the number of samples
in respective set, and SD is the standard deviation of the measured values of the prediction set:

& \2
R, B2, —1- &I 0

’ S (v, — 71)?

N —
RMSEC, RMSEP — 2:1@% "
SD
0~ Rusep 5)
N . R

Bias = W o

100-year time period 20-year time period
AR4 2007 | AR52014 | AR6 2021 AR4 2007 | AR52014 | AR6 2021
Greenhouse Gas Feedback not included Feedback included | Feedback not included Feedback included
CO2 1 1 1 1 1 1 1 1
CH, fossil origin 29.8 82.5
25 28 34 72 84 86
CH, non fossil origin 27.2 80.8
NZO 298 265 298 273 289 264 268 273

Table 2. Global warming potential (GWP) of greenhouse gas emissions indicated in IPCC ARG report’.
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Fig. 2. Spectra of biomass chips of fast-growing trees and agricultural residue: raw (a) and pretreated

spectra by SNV (b), 1st derivative (c) and 2nd derivative (d) where (a) raw spectra showing unprocessed
near-infrared (NIR) data with baseline variations and scattering effects. (b) Standard Normal Variate (SN'V)
corrected spectra, reducing baseline shifts and scattering effects. (c) 1st derivative corrected spectra, to obtain
common spectra baseline. (d) 2nd derivative corrected spectra, to obtain common spectra baseline and reveal
overlapping peaks.

The better model was selected based on the tradeoff value between the highest R%., R?, and RPD and lowest
RMSEC, RMSEP, and bias. In this study, the performance result, namely the R? and RPD value were interpreted
based on the recommendations of Williams et al.?’.

Result

Spectral data processing

In data of 200 biomass samples for GWP PLSR modeling, 3 outliers were identified and removed, resulting in
a final dataset of 197 samples. The removal of outliers ensured the genuine performance of the model, allowing
for more accurate predictions.

Figure 2a illustrates the raw spectra of log (1/R) versus wavenumber in the range of 3600-12500 cm™,
showing high absorption peak such as 6711, 5076 and 4636 cm™! for both fast growing tree and agriculture
residues sample. It shows the significant absorption features corresponding to various molecular vibrations in
the biomass. The peak at 6711 cm™! (1490 nm) of the broad band can be the shifted peak of 1471 nm is the first
overtone of N-H stretching of CONHR typically found in amides or proteins and or 1450 nm attributed to 1st
overtone of O-H vibration including of water and starch®*. The combustion of starch is a significant process,
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Fig. 2. (continued)

as it releases carbon dioxide (CO,), a major greenhouse gas that contributes to global warming**~*? for example
in biomass combustion, though, it is carbon neutral fuel.

The peak at 5076 cm ™! (1970 nm) is the shifted peak of 1940 nm is linked to O-H combination of fundamental
of O-H stretching and bending vibrations*. The peak of 4636 cm™ (2157 nm) corresponds to C-H aromatic
C-H*. The wavenumber increases beyond 6000 cm™' shows the flat spectral lines without dominant peaks,
suggesting in the biomass a very less bond vibration in the wavenumber range due to NIR absorption.

Posom et al.*? indicated the similar peaks for milled bamboo which is solely one specie of biomass where the
main peaks were 6823 cm™! (1466 nm), 5192 cm™! (1926 nm), 4752 cm™! (2104 nm) and 3992 cm™! (2505 nm).
These indicate the influence of different kinds of biomass species on average spectrum.

Figure 2b shows the absorbance spectra pretreated using SNV transformation. A similar peak structure of
raw spectrum is maintained in SNV spectrum. However, SNV preprocessing effectively mitigates baseline shifts,
enhancing spectral comparability. Although both sample types exhibit similar spectral characteristics, but the
main peaks after 12,500-6000 cm™! the absorption of agricultural residue exhibit higher, including the range
between 4397 cm™ (2274 nm, lignin vibration) and 4011 cm™! (2493 nm, lignin and cellulose vibration)** and
near to 4755 cm™! (2103 nm) is the band for a-d- glucose, and 4000 cm™~! (2500 nm) is the band corresponding to
C-H stretching + C-C stretching of starch®. But the vibration of between 6000-5600 cm™! which is broad weak
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band of lignin and cellulose where the peak 5951 cm™! (1680 nm) is the peak of pure lignin®3, the band of both
species is very close absorption. Though, beyond 6000 cm™ the absorption is lower obviously.

Figure 2c shows the plot of the 1st derivative of log (1/R) versus wavenumber that reveals distinct spectral
features. Significant peaks were observed in the 4000 to 7000 cm™! range, with the most prominent peaks around
7050, 5245, 4775, 4428, 4381 and 4057 cm™!. Specifically, the peak at 7050 cm™ is related to C-H combination
bands found in hydrocarbons or aromatic®®. The peak at 5245 cm ™! relates with P~-OH groups in phosphate. The
peak of 4775 cm™! corresponds to the O-H deformation band, which is present in alcohol or water*®. The peak
at 4428 cm™! represents lignin®®. The peak at 4381 cm™! corresponds to C-H stretching and CH, deformation
bending in polysaccharides®®. The peak 4057 cm™ corresponds to the CONH, groups commonly present in
proteins®. These peaks indicate the rapid change absorption points in raw spectra at these wavenumbers. Beyond
7000 cm’!, the data trend stabilizes, showing minimal variations up to 12500 cm™!. This stabilization suggests
very low and consistent absorption characteristics in the higher wavenumber range. The zero absorption in 1st
derivative spectrum is the peak absorption in raw spectrum.

Figure 2d shows the 2nd derivative plot of log (1/R) versus wavenumber providing insights to reveal the
overlapping peaks in the raw absorption spectra and due to the gap of derivative, the shifted peaks of 6711 cm™
(1490 nm), 5951 cm™! (1680 nm), 5076 cm™! (1970 nm), near to 4755 cm™! (2103 nm), 4636 cm™! (2157 nm),
4397 cm™! (2274 nm), 4011 cm™! (2493 nm), and 4000 cm™! (2500 nm) in raw and SNV spectra are shown.

Statistic values of GWP and HHV
The provided data in Table 3 comprehensively details the statistical analysis used in the development of
a PLSR model. It shows that the GWP parameter in calibration set includes 148 samples. The values range
from a maximum of 0.0390 to a minimum of 0.0330, with a mean of 0.0330 and an SD of 0.0012. The SD is
approximately 36.4 times less than the mean (0.0330/0.0012), suggesting that the data points are closely clustered
around the mean value. The prediction set of 50 samples is designed to test the accuracy and precision of the
model developed using the calibration data set. For the GWP parameter, the prediction set samples have a
slightly lower maximum, minimum and mean value and a higher SD of 0.0030 shows greater variability in the
prediction set data compared to the calibration set.

The HHV (] g'!) statistics in the prediction set has slightly lower variation than the calibration set with SD of
836 ] g'! compared to 848 J ¢! indicating the same distribution of data.

Predicting performance of biomass GWP using PLSR

GWP is a critical metric for assessing the environmental impact of various biomass. Accurate prediction of GWP
can inform sustainable practices and policy decision. In this study, the PLSR method is utilized to model and
predict the GWP of different biomass samples including fast growing trees and agricultural residue.

Table 4 shows the results for predicting GWP of various biomass developed from raw spectra and different
spectra pre-treatment and different number of wavenumbers from the respective feature variable selection
method, demonstrating by the number of latent factors, RZC, RMSEC, RZP, RMSEP, RPD and Bias. The prediction
results depended on the development methods, spectral pre-treatment, and the number of wavenumbers. The
models with different variable selection methods gave the same performance, but the number of wavenumbers
differed. The model developed with CM (reduction of 1150 wavenumber of full range to 325 wavenumber) of 1
derivative spectra, gave best performance with R*, was 0.87 (Table 4).

In the context of predicting GWP of biomass using FT-NIR spectroscopy, the following Williams et a
indicated R? showed the proportion of the variance of the NIRS predicted data, i.e. GWP can be explained by the
spectral variables or log 1/R and shows the degree of which the predicted data can be change, for a given change
in the spectral data which higher values of R? indicating better predictive accuracy.

Figure 3 illustrates the scatter plot of the GWP of biomass calculated using IPCC method and predicted
by NIRS using the 1% derivative of the 325 wavenumbers obtained by COVM which outperformed the other
predictive model's performance of GWP. The COVM variable reduction method helps identify and retain
the most relevant wavenumber, enhancing the model's efficiency and accuracy. The R%. and R?, of featured
wavenumber selection model was 0.92 and 0.85, respectively, indicating a linear relationship between the
predicted and calculated values during both the calibration and prediction. From Table 4 the RMSEC is 0.00053,
and RMSEP is 0.00063 show low prediction errors. The bias, which measures the systematic error, is -0.00014,
showing minimal deviation from zero and thus negligible bias in the predictions. The RPD value of 2.6 signifies a
fair predictive capability of the model for functional parameter including GWP, as values 2.5-2.9 were considered
for screening applications®. This method effectively enhances average the model's performance by focusing
on the most informative wavenumber prediction and reducing dimensionality, leading to more accurate and
reliable predictions. These high R?, values (0.85) in predicting the GWP indicate the model usable with caution
for most application including research which the threshold of R? indicated by Willams guidelines is between
0.83-0.90%".

1.37

Calibration set Predictionset
Parameter | Method NT | NC | Max Min Mean | SD NP | Max Min Mean | SD
GWP IPCC guidelines 197 | 147 | 0.03905 | 0.03080 | 0.03564 | 0.00180 | 50 | 0.038943 | 0.033002 | 0.03577 | 0.00165
HHV () g'l) Bomb calorimeter | 197 | 147 | 18,616 16,405 16,976 | 910 50 | 17,950 15,268 17,051 787

Table 3. Statistic values of GWP and HHYV for modeling.
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Calibration
set Prediction set
Variable selection method | Spectral pretreatment | Number of wavenumber | Factor | R%. | RMSEC RZP RMSEP | Bias RPD
Raw 1150 10 0.80 | 0.00054 | 0.76 | 0.00061 | -0.0004 2.7
Full wavelength SNV 1150 8 0.90 | 0.00053 | 0.82 | 0.00065 | -0.0007 2.5
FstDev 1150 9 0.89 | 0.00055 | 0.82 | 0.00062 | -0.0006 2.6
SecDev 1150 9 0.87 | 0.00054 | 0.84 | 0.00062 |-0.0004 2.6
Raw 220 10 0.80 | 0.00054 | 0.76 | 0.00063 | -0.0002 2.6
oM SNV 220 8 0.92 | 0.00053 | 0.80 | 0.00062 | -0.0004 2.6
FstDev 325 9 0.91 | 0.00054 | 0.74 | 0.00068 | -0.0003 24
SecDev 555 9 0.89 | 0.00053 | 0.83 | 0.00062 | -0.0005 2.6
Raw 520 10 0.93 | 0.00065 | 0.80 | 0.00071 | -0.00005 2.3
M SNV 795 8 0.79 | 0.00082 | 0.85 | 0.00061 | -0.00004 2.7
FstDev 590 9 0.91 | 0.0006 0.74 | 0.00083 | -0.00006 1.9
SecDev 885 9 0.89 | 0.0006 0.82 | 0.00061 | -0.00003 2.6
Raw 510 10 0.89 | 0.00061 | 0.82 | 0.00063 | -0.00071 2.6
SNV 895 8 0.95 | 0.00039 | 0.78 | 0.00076 | -0.00011 2.1
COVM
FstDev 325 9 0.92 | 0.00053 | 0.85 | 0.00063 | -0.00014 2.6
SecDev 450 9 0.92 | 0.00053 | 0.81 | 0.00071 | 3.4553e-05 |2.3
Raw 950 10 0.80 | 0.00084 | 0.76 | 0.00062 | -0.00014 2,6
vIP SNV 850 8 0.78 | 0.00084 | 0.84 | 0.00063 | -0.00011 2.6
FstDev 750 9 0.91 | 0.00053 | 0.74 | 0.00083 | -.0.00012 1.9
SecDev 985 9 0.89 | 0.00061 | 0.82 | 0.00068 | -5.1928e-05 | 2.4

Table 4. Prediction of GWP of biomass of fast-growing tree and agriculture residue by PLSR. N: Number

of samples in calibration set, RZC: coeflicient of determination of calibration set, n: number of samples in
prediction set, R2 : coefficient of determination of prediction set, RPD: ratio of prediction to deviation, CM:
correlation method, VM: variance method, COVM: co-variance method, VIP: variable. Significant values are
in [bold].
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Fig. 3. IPCC calculated GWP versus NIRS predicted GWP in calibration and prediction sets. This PLSR
modeling based on the first derivative spectra of 325 selected wavenumbers by covariance method, which
demonstrated superior predictive performance compared to other models (R*.=0.92, R?,=0.85).
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Prediction result of HHV using PLSR

Table 5 displays the optimal result of PLSR-based models using the full wavenumber range (3600-12,500 cm™)
to evaluate the HHV of the chip biomass from the fast-growing trees and agricultural residues. Shrestha et al.!”
has described the HHV of the grounded biomass measured using the isoperibol method with an automatic
bomb calorimeter (IKA C 200, Staufen, Baden-Wiirttemberg, Germany). The data presents the performance
of various pre-processing techniques—Raw Spectra, SNV, First Derivative, and Second Derivative—across
calibration and prediction sets. Key metrics such as the number of latent factors, R*. and R* , RMSEP, bias, and
RPD were provided. Among these techniques, SNV demonstrates the highest R? . and R2 , though the value were
low i.e. R2 (0.5879) and RZP (0.4972) values, indicating that while SNV prov1des some 1mpr0vement in model
performance compared to other preprocessing methods, the overall predictive capability of the model remains
limited?®. Additionally, SN'V exhibits the lowest SEP (1.44 ] g'!) and RMSEP (2.88 ] g!) values, suggesting more
precise and accurate predictions compared to other techniques, though the R?; is very low making the model is
not recommended to be used.

Figure 4 shows the best model for predicting the HHV of biomass was developed using the 2nd derivative
spectra and variable selection by the COVM method. This approach reduced the number of variables from 1150
to 365 wavenumbers, significantly enhancing the model's performance (R?. of 0.98 and R?, of 0.87) indicating
the model usable with caution for most application including research in predicting the HHV, and RPD value of
2.7 signifies a fair predictive capability of the model for functional parameter including GWP, as values 2.5-2.9
were considered for screening applications’.

Regression coefficient and x-loading of GWP model
Prominent peaks were identified and the bond vibration interpretation is shown in Table 7 and the vibration
indicated by Workman and Weyer® at the wavenumbers in bold were not found or not related to biomass.
Figure 5a presents the regression coefficient plot for the optimal PLS model predicting the GWP in biomass
using the full-range wavenumber spectra. Prominent peaks were found at 4011 (Cellulose), 4196 [C-H (1v) +
C-H (18)], 4651 [C-H (1v) + C-C (1v)], 4744, 5214 (water), 5400, 6001, 6086, 6441 (water) and 7151 [CH, (2v)
+ CH, (18)] cm™!. In comparison, the regression coefficient plot for the selected wavenumber model (Frg 5b)
revealed key peaks at 4142 [C-H (1v) + C-H (19)], 4389 [C-H (1v) + CH, (19)], 4605 proteins, 4867 amides/
proteins, 5338, 6017, 7097, 7189 [CH, (2v) + CH, (18)] and 8686 cm™L,
Figure 6a shows the X-loading plot of the first latent variable (LV1) for the full-spectrum model, highlighting
wavenumbers that contribute significantly to model performance. Notable peaks were observed at 4196, 4451,
4528 [N-H (3v)], 5060 (water), 5292, 6791, and 7050 cm™!, where the X-loading of 1st latent variable Selected

Calibration set Prediction set
Variable selection method | Pretreatment | Wavenumber | Factor [N | R*, |RMSEC (Jg') [n |R?, |RMSEP (Jg') |Bias(Jg') | RPD
Raw 1150 10 147 | 0.94 | 200.35 50 | 0.81 | 386.38 53.99 23
Fall wavelength SNV 1150 8 147 | 0.95 | 173.26 50 | 0.82 | 373.07 23.18 2.4
FstDev 1150 9 147 | 0.98 | 94.02 50 | 0.85 | 334.48 77.90 2.6
SecDev 1150 9 147 | 0.97 | 31.94 50 | 0.58 | 578.46 -64.75 1.5
Raw 440 10 147 | 0.94 | 203.35 50 | 0.81 | 386.38 53.99 2.3
SNV 205 8 147 | 0.95 | 174.26 50 | 0.82 | 375.07 23.18 2.4
oM FstDev 490 9 147 | 0.98 | 94.02 50 | 0.85 | 331.48 77.90 26
SecDev 365 9 147 | 0.97 | 31.94 50 | 0.58 | 577.46 -64.75 1.5
Raw 800 10 147 | 0.94 | 201.35 50 | 0.81 | 387.38 53.99 23
. SNV 1130 8 147 | 0.96 | 173.26 50 | 0.82 | 374.07 23.18 2.4
FstDev 325 9 147 | 0.98 | 93.02 50 | 0.85 | 333.48 77.90 26
SecDev 195 9 147 | 0.98 | 31.94 50 | 0.58 | 576.41 -64.75 1.5
Raw 790 10 147 | 0.94 |200.35 50 | 0.81 | 386.38 53.99 1.7
CovM SNV 1130 8 147 | 0.96 | 173.26 50 | 0.83 | 375.07 23.18 1.7
FstDev 360 9 147 | 0.94 |201.23 50 | 0.85 | 343.52 56.55 1.8
SecDev 365 9 147 | 0.98 | 92.02 50 | 0.86 | 332.48 77.90 2.7
Raw 205 10 147 | 091 |261.22 50 | 0.75 | 446.09 -27.75 2.0
SNV 315 8 147 | 0.91 |250.93 50 | 0.78 | 441.35 10.83 2.2
VP FstDev 535 9 147 | 0.94 | 201.63 50 | 0.85 | 344.56 57.68 2.6
SecDev 280 9 147 | 0.98 | 119.18 50 | 0.74 | 451.07 24.60 2.0
Table 5. Result of HHV prediction by PLSR using different preprocessing spectra and different variable
selected methods. N: Number of samples in calibration set, RZC: coefficient of determination of calibration
set, n: number of samples in prediction set, R?,: coefficient of determination of prediction set, RPD: ratio of
prediction to deviation, CM: correlation method, VM: variance method, COVM: co-variance method, VIP:
variable importance of projection, FstDev: 1st derivative, SecDev: 2nd derivative. Significant values are in
[bold].
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Fig. 4. HHV measured by bomb calorimeter versus predicted value by NIR spectroscopy. The optimal
model for predicting the HHV of biomass was developed using the 2nd derivative spectra combined with
wavenumber selection via the correlation method. This approach reduced the number of variables from 1150
to 365 wavelengths, significantly improving model performance (R?.=0.98, R%,=0.86).

wavenumber-loading plot for the selected wavenumber model (Fig. 6b) shows influential peaks at 4065 [CH,
(36)], 4304 [C-H (1v) + CH, (18)], 4397 (glucose), 4682, 5230 (phosphate), 5307, 6970, 7436, and 8647 cm™L

The vibration of most molecular bonds which had strong contribution in prediction of GWP, were in
hydrocarbons including cellulose; glucose; water; and protein, even GWP is a functional properties not a
constituent in the biomass.

Regression coefficient and x-loading of HHV model
Prominent peaks were identified and the bond vibration interpretation is shown in Table 7 and the vibration
indicated by Workman and Weyer?® at the wavenumbers in bold were not found or not related to biomass.

For the HHV prediction model, the regression coefficient plots are presented in Fig. 7. In the full-spectrum
model (Fig. 7a), prominent peaks were observed at 4397 (glucose), 4960 [C-H (1v) + O-H (15)], 5168 (water),
5330, 5947 [C-H (2v)], 6672, and 7506 cm™'. In contrast, the selected wavenumber model (Fig. 7b) exhibited
dominant peaks at 4111 [C-H (1v) + C-H (18)], 4520 [N-H (3v)], 4644 [C-H (1v) + C-C (1v)], 5307, 5369, 5978
[C-H (1v) + C-H (1v)], 6063, 7020, and 7220 cm™.

The LV1 of X-loading plots, shown in Fig. 8, highlights the critical wavenumbers contributing to the model’s
performance. In the full-spectrum model (Fig. 8a), significant peaks were found at 4165 [C-H (1v) + C-H (18)],
4435, 4520, 5037, 5292, 6595, and 7112 [O-H (2v)] cm™. The selected wavenumber model (Fig. 8b) revealed
key peaks at 4034, 4134 [C-H (1v) + C-H (19)], 4443, 4983, 5230 (phosphate), 5361, 5963 [C-H (2v)], 7081 and
7274 cm™L,

The similar bond vibration contributed to prediction of both HHV and GWP including 5230 (phosphate),
(5168 and 5214 nm, respectively) water, (4651, 4644 nm, respectively) [C-H (1v) + C-C (1v)], (4520, 4528 nm,
respectively) [N-H (3v)], 4397 (glucose), and (4134, 4142 nm, respectively) [C-H (1v) + C-H (18)], obviously.

Averaging reference value of GWP and HHV parameter of biomass

GWP and HHYV are essential for optimizing biomass as a renewable energy source and mitigating its
environmental impact. The environmental sustainability of biomass is primarily assessed using the GWP
measured in CO, equivalents over a 100-year period.

Table 6 illustrates the average reference value of GWP and HHV (J g!) of fast-growing trees and agricultural
residues. It shows that the fast-growing trees possess variability in their values reflect slight variations in their
chemical composition and energy content, influencing the different biomass applications. They underline
the variability within agricultural residues, impacting their efficiency and environmental impact when used
as bioenergy sources. It shows that fast-growing trees generally possess higher heating values and carbon
content, making them more efficient as biomass fuels. However, the GWP values indicate varying degrees of
environmental impact, whichis crucial for sustainable energy production. Most of agricultural residues, while
slightly lower in energy content, offer a viable alternative due to their abundance and ease of collection with
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Fig. 5. Regression coefficient of GWP calibration model using 1st derivative spectra with full wavenumbers (a)
and selected wavenumber (b). The peaks in the regression coefficient plot highlight molecular bond vibrations,
where high positive and high negative peaks indicate the vibration of the wavenumber is significantly high
influence theprediction values.

their lower GWP values necessitate careful consideration in their use to mitigate climate impact. These insights
into the chemical and energy profiles of various biomass resources provide a foundation for selecting optimal
materials for bioenergy, balancing efficiency, and environmental sustainability (Table 7).

The scatter plot illustrates the correlation between GWP and HHV across three distinct sample groups: fast-
growing trees (Fig. 9a), agricultural residues (Fig. 9b), and a mixture of fast-growing trees and agricultural
residues (Fig. 9¢). The results indicate a strong linear relationship between GWP and HHYV, with a coefficient
of determination (R?) equal to 1, demonstrating perfect fit. The equation governing the calculation of GWP
from HHYV is consistent across all sample types and is expressed as GWP or GWP total =2098.0 x HHV in T]
kg =0.000002098 x HHV in kJ kg'! =0.000002098 x HHV in Jg.

However, the HHV directly measurement is destructive, time consuming and chemical is necessary, therefore,
it is not environmentally friendly. But our NIRS proposed method in this report is non-destructive, fast and no
chemical is necessary, therefore, environmentally friendly.

It can be perfect fit based on the IPCC guideline recommendation, the GHG emission in our calculation is for
1 kg biomass sample (It can be perfect fit even if the different number is used but it have to be fixed throughtout
the calculation).

The calculation for proving the perfect fit between GWP and HHV is shown in following
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Fig. 6. X-loading plot of latent variable 1 of GWP model developed using 1st derivative spectra with full
wavenumber range (a) and selected wavenumber (b). The peaks in the X-loading plot highlight molecular
bond vibrations, where high positive and high negative peaks indicate the vibration of the wavenumber is
significantly high influence the latent variable score values.

GHG (e.g. CO2, or CHy, or N2O) Emissions (kg)
= Mass of biomass sample (kg) x HHV of biomass sample (TJ kgfl) (7)
x Emission Factor (EF) of corresponding GHG (kg TJ_l)

GHG Emissions (kg) represents the total amount of emissions produced. Mass of biomass samples (kg) refers to
the total mass of the biomass sample burnt. High heating value (HHV) (T] kg!) is the total amount of energy in
TJ obtained by 1 kg of biomass completely burnt in bomb calorimeter. According to the IPCC 2021 Guidelines,
default greenhouse gas emission factors (in kg TJ!) for wood and woody biomass combustion are 112 kg CO,/T]
(non-biogenic CO, only), 30 kg CH,/TJ, and 4 kgN,O/TJ, expressed based on energy content of the fuel burned”.

Substitute the constant numbers and solely the HHV is variable which multiplied with constant number
provided simple linear equation and the constant number is slope of the equation

GHG (e.g. CO,, or CH,, or N,0O) Emissions (kg) = 1 (kg) x HHV of biomass sample (T] kg!) x 112 kg COo,/
TJ (non-biogenic CO, only) or 30 kg CH,/TJ, or 4 kg N,O/T], respectively, used for Emission Factor (EF) of
corresponding GHG (kg TJ ™)

COZ, or CH4, or N20 Emissions (kg) = 112 x HHV, 30 x HHV and 4 x HHV for COZ, or CH4, or NZO)
Emissions, respectively
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Fig. 7. Regression coeflicient of HHV calibration model using 1st derivative spectra with full wavenumbers (a)
and selected wavenumber (b). The peaks in the regression coefficient plot highlight molecular bond vibrations,
where high positive and high negative peaks indicate the vibration of the wavenumber is significantly high
influence the prediction values.

Using the Global Warming Potential (GWP) values recommended by IPCC (2021) 6th Assessment Reports
(AR6), 1 by CO,, 29.8 by CH,, and 273 by N, O, the total GWP was computed for 100 year based as:
Substitute the constant numbers and solely the HHV is variable which multiplied with constant number
provided simple linear equation and the constant number is slope of the equation

GWP for CO2, or CHy, or N2O Emissions =

(1 x CO2 Emission)
or (29.8 x CH4 Emission) or (273 x N2O Emission)

= (1 x 112 HHV) for CO2Emissionor(29.8 x 30 HHV)

for CH4 Emissionor(273 x 4 HHV) for N2O Emission

=112.0 x HHV for CO2 Emissionor 894.0 x HHV

for CH4 Emissionor 1092.0 x HHV for NoO Emission

and GWP total = 2098.0 (HHV, TJkg ')
= 0.000002098 kJ kg " = 0.000002098 Jg~*

(8)
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Fig. 8. X-loading plot of HHV model developed by using 2nd derivative spectra with full wavenumbers (a)
and selected wavenumber (b). The peaks in the regression coeflicient plot highlight molecular bond vibrations,
where high positive and high negative peaks indicate the vibration of the wavenumber is significantly high
influence the prediction values.

Category Name of Species CO, Emission (kg) | GWP mean value (+SD) | HHV (J g
Alnus nepalensis 2.05x10-3 0.0364+0.0010 17,932
Pinus roxiburghii 2.00x10-3 0.0416£0.0009 18,349

fast-growing tree Bombusa vulagris 1.93x10-3 0.0367+0.0012 17,310
Ecucalyptus Camaldulensis | 1.91 x10-3 0.0372+0.0009 17,105
Bombax Ceiba 1.91x10-3 0.0375+0.0007 17,077
Zea mays(cob) 1.93x10-3 0.0379+0.0007 17,297
Zea mays(shell) 1.90x10-3 0.0375£0.0011 16,409

agricultural residue | Zea mays (stover) 1.87x10-3 0.0367 +£0.0003 16,753
Oryza sativa 1.83x10-3 0.0347 £0.0006 15,417
Saccharum officinarum 1.72x10-3 0.0376+0.0004 17,029

Table 6. Average of reference value of GWP and HHV (J g!) of fast-growing trees and agricultural residues.
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Wavenumber (cm™)
Wavenumber (cm™') | indicated in3® Bond vibration Structure Model
4011 4019 C-H (1v)+C-C (1v) Cellulose GWP Regression Coefficient Fullwave
4065 4068 CH, (39) Hydrocarbons GWP X-loading of 1st latent variable Selected wavenumber
GWP Regression Coefficient Fullwave
GWP Regression Coefficient Selected wavenumber
GWP X-loading of 1st latent variable Fullwave
e 4134 41424165 4190.4090 C-H (1v) +C-H (15) C-H Aryl ¢
96 HHYV Regression Coefficient Selected wavenumber
HHYV X-loading of st latent variable Fullwave
HHYV X-loading of st latent variable Selected wavenumber
4304 4307 C-H (1v) +CH, (19) Glucose GWP X-loading of st latent variable Selected wavenumber
4389 4386 C-H (1v) +CH, (18) Polysaccharides GWP Regression Coefficient Selected wavenumber
GWP X-loading of 1st latent variable Selected wavenumber
4397 4400 O-H (1v) +C-O (1v) Glucose
HHYV Regression Coefficient Fullwave model
GWP X-loading of Ist latent variable Fullwave
4520, 4528 4525 N-H (3v) Ammonia in water | HHV Regression Coefficient Selected wavenumber
HHYV X-loading of 1st latent variable Fullwave
4605 4600 CONH, Proteins GWP Regression Coefficient Selected wavenumber
GWP Regression Coefficient Fullwave
4644, 4651 4644 C-H (1v)+C-C (1v) C-H Aryl
HHYV Regression Coeflicient Selected wavenumber
4867 4866 N-H (1v)+C=0 (1v) (amide I) | Amides/proteins GWP Regression Coefficient Selected wavenumber
4960 4960 O-H (1v) +O-H (15) Methanol O-H HHYV Regression Coefficient Fullwave
5060 5049 N-H (1v) +N-H (195) Aromatic amine GWP X-loading of 1st latent variable Fullwave
5168 5160 O-H —v2+v3 water HHYV Regression Coefficient Fullwave
5214 5200 O-H (1v) +O-H (15) water GWP Regression Coefficient Fullwave
GWP X-loading of 1st latent variable Selected wavenumber
5230 5241 P-OH — O-H (2v) Phosphate
HHYV X-loading of 1st latent variable Selected wavenumber
HHYV Regression Coeflicient Fullwave
5947, 5963 5952 C-H (2v) Hydrocarbons
HHYV X-loading of st latent variable Selected wavenumber
5978 5985 C-H (1v)+C-H (1v) C-H Aryl HHYV Regression Coefficient Selected wavenumber
6441 6450 O-H water GWP Regression Coefficient Fullwave
7112 7100 O-H (2v) O-H (Methanol) HHYV X-loading of st latent variable Fullwave
7151 7163 CH, (2v) +CH, (19) Hydrocarbons GWP Regression Coefficient Fullwave
7189 7194 CH, (2v) +CH, (19) Hydrocarbons GWP Regression Coefficient Selected wavenumber

Table 7. The function groups corresponding to wavenumber shown in regression coeflicient plot and
x-loading plot of models for GWP and HHV. *1v, fundamental stretching vibration; 2v, 1st overtone of
fundamental stretching vibration; 3v, 2nd overtone of fundamental stretching vibration; 5v, 4th overtone of
fundamental stretching vibration; 16, fundamental bending (deformation) vibration; 39, 2nd overtone of
fundamental bending (deformation) vibration; 1, symmetric stretching vibration; 2, bending vibration; 3,
asymmetric stretching vibration; and +is combination.

Discussion

The prediction of GWP of biomass using FT-NIR spectroscopy presents an innovative approach to evaluating
the environmental impact of biomass energy sources. Biomass is increasingly considered a vital renewable
energy resource, but its sustainability is contingent upon a comprehensive understanding of its environmental
implications, particularly its GWP, which reflects its contribution to climate change.

Correlation between HHV and GWP
The results exhibit a correlation between the chemical composition of biomass within its FT-NIR spectrum, and
its GWP. The FT-NIR technique scanned the vibrational signatures of molecular bonds in the biomass, which
reveal its composition, particularly in terms of cellulose, hemicellulose, lignin, and moisture content®. These
compositional factors directly influence the biomass's HHV and, consequently, its GWP. The positive correlation
examined in the study between HHV and GWP suggests that biomass with a higher energy content tends to
have a higher GWP, likely due to the increased carbon content, which results in greater CO, emissions upon
combustion. NIR spectroscopy can be used to assess biomass's carbon content, which is directly connected to
the amount of CO, it emits when burned*. Building on this, our work incorporates emissions of CH, and N,O
in addition to CO, and establishes a direct correlation between GWP and the NIR spectral data.
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Fig. 9. Scatter plots of GWP value with different HHV of every sample of fast-growing trees (a), every sample
of agriculture residues (b) and every sample of fast-growing trees and agriculture residue (c). The scatter plot
with a trend line, illustrating the relationship between Higher Heating Value (HHV) and Global Warming
Potential (GWP) for fast-growing trees and agricultural residue biomass. The plot shows a positive correlation,
indicating that biomass with higher HHV tends to contribute more to GWP. Data points are color-coded by
biomass type and mostly fall within the mid-range of HHV (15,800-18,000 J g™!) and GWP (0.0320-0.0380).
This suggests that higher energy content in biomass is associated with greater environmental impact due to
increased emissions.

Prediction model and its accuracy

The predictive models shown in Fig. 3 used FT-NIR data and modeling technique of PLSR exhibit for the
acceptable accuracy in estimating the GWP of various biomass types. The R?, values of 0.85 indicated optimized
325 wavenumber found by COVM with 1st derivative spectra in our study provided the model with a substantial
proportion of the variance in GWP can be explained by the spectral data, affirming the effectiveness of FT-NIR
as a non-destructive, rapid, and cost-effective method for GWP estimation. The prediction of GWP in real-time
can substantially enhance the decision-making process in biomass selection for energy production, ensuring
sustainability goals. This is the innovative and unique model to find out the GWP using FT-NIR spectroscopy.
The model performance of HHV is shown in Fig. 4, where the R?, values is 0.86 by 2nd derivative spectra of
optimized 365 wavenumbers found by COVM.
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Fig. 9. (continued)

Williams et al.*” have developed a guideline for model performance interpretation based on R?, value and
RPD value, where, our case, R2P of 0.85 for GWP and 0.86 for HHYV is in the range of 0.83-0.90 is usable with
caution for most applications including research and RPD of 2.6 for GWP and 2.7 for HHV are in the range of
2.5-2.9 for functionality parameter such as GWP and HHV indicating the models are fair and can be used for
screening. We therefore, interpret our GWP and HHV optimized models can be usable with caution for most
applications including research based on its R?,

The developed PLSR model is built on a mixture of five fast-growing tree species and five types of agricultural
residues, which is same biomass data set as Shrestha et al.!® who reported the effect of diffent species to model
performance for prediction of C, H, N, and O content in biomass. The result shows for C model to be better the
pine and corn stover should not be include in modeling, for N model, pine, and bagasse should not be included,
for H, pine, Alnus, corn shell, and bagasse should not be included; and for O, pine should not be included for
better performance of the models'®. This indicated pine was not be included in any model of these groups of
biomass with the rational by Williams principle*’ to be explained.

Williams et al.?” explained that the rate of change of Y (measured value) is a function of the rate of change
of X (NIR predicted value) can be indicated by slope of the trend line ploted between Y and X'#%7, when the R
approached 1 and the slope approached 1 and the intercept approached zero, the model approached excellence™.
This is the dictation principal to remove or keep the species which have negative and positive effect, respectively,
on the model performance. The combined different species of biomass, for example, in our case, the fast-growing
trees and agricultural residue, Shrestha et al.’® indicated the inclusion of different species in a model, the species
have to be not only in the different values of the constituents to make a wider range for a robust model, but every
specie also must provide the characteristic of the same rate of change of NIR predicted values with the measured
values (same slope and slope should approach 1, and intercept is same (no gap) and approached zero), for high
performance of prediction. Some species whose characteristics were similar, the trends were common supported
the each other but might positively or negatively to the prediction performace of the model'®. By scatter plot
(trend line) analysis, which of the species affecting the model negatively were identified and dictated how to
improve the model performance!®.

The H content contributed more on HHV compared to C content?*®. Higher concentrations of O and
moisture (HZO), in turn, lower the HHYV, resulting in incomplete combustion®s. High C and H but low in N,
S, and H,0 is the besttype of biomass maximizing the amount of energy i.e. HHV*3. These element in biomass
highly related to GHG emissions*, therefore, GWP. The further study and investigation of these relations can
bring some conclusions of Global warming management effectively.

Analysis of traditional method and FT-NIR spectroscopy
The traditional methods of GWP estimation, which often involve complex chemical analyses and life cycle
assessment (LCA) models whereas FT-NIR spectroscopy approaches a more streamlined. Traditional methods,
while comprehensive, can be time-consuming and resource intensive. FI-NIR, by contrast, provides rapid
results, making it an attractive tool for routine analysis and large-scale biomass screening®.

Though, FT-NIR offers rapid, non-destructive, and cost-effective GWP prediction, it has certain limitations.
For instance, the developed model's accuracy will be affected by other variability in biomass composition, such
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as differences in moisture content, lignin, or cellulose levels, if were not included in the model. The updating
model can be optimized by include more varieties and species of biomass to obtain more robust prediction
performance. However, it is essential to note that while FT-NIR can predict GWP based on biomass composition,
it does not account for the entire lifecycle emissions, such as those from cultivation, harvesting, transportation
or processing. While FT-NIR is highly effective for rapid screening, it should be used in conjunction with other
LCA tools for a holistic assessment.

Sustainable approach to implications for biomass energy sector

The ability to predict GWP using FT-NIR spectroscopy has significant implications for the biomass energy
sector. By enabling more precise selection of biomass feedstocks with lower GWP, this approach supports
the development of more sustainable bioenergy systems. This could lead to a reduction in the overall carbon
footprint of bioenergy production, making it a more competitive alternative to fossil fuels in the context of global
climate change mitigation®.

Future research and way forward

Future research should focus on expanding the database of biomass types analyzed using FT-NIR to improve
the robustness and generalizability of the predictive models. Additionally, integrating FT-NIR data with
thermogravimetric analysis (TGA) where the simulation of different type thermal conversion of biomass
degrading in which the different emission gases are generated and with gas chromatography-mass spectrometry
(GC-MS) for evaluation of concentration of the generated emission gases could further refine GWP predictions
by providing more comprehensive insights and exact content of emission gases effect global warming to support
the IPCC. Moreover, exploring the use of FT-NIR in conjunction with different machine learning algorithms
could enhance the predictive power of the models, allowing for more accurate GWP estimation across a broader
range of biomass types.

Conclusion

In this research, PLSR-based model developed and compared using FT-NIR spectroscopy to analyze the global
warming potential (GWP) of fast-growing trees and agricultural residue biomass. All chip biomass samples
were scanned within 3600-12,500 cm™! on the diffuse reflectance with macro sphere sample rotating mode,
with a particular emphasis on their suitability for energy applications. The prediction model was developed
using the full standard normal variate (SNV) or featured wavenumbers obtained by Correlation Matrix (CM),
Variance Matrix (VM), Covariance Matrix (COVM) and Variable Importance of Projection (VIP) coupled with
four pretreatment methods including raw spectra, 1st Derivative, 2nd Derivative, and standard normal variate
(SNV). The model with the optimum performance was selected based on trade-off parameters of R? ., RMSEC,
RZP, RMSEP, RPD and bias.

This research lays a foundation in NIRS, showing that preprocessing on the full wavenumber range spectra
with various techniques can enhance model accuracy. The recommended PLSR models for rapid assessing GWP
by biomass combustion developed by 1st derivative pretreated spectra with selected wavenumber obtained by
COVM can serve as a reliable and nondestructive alternative method without of using the measured higher
heating value (HHV) value when employing NIRS which only the NIR spectrum of the biomass is needed. It
is nondestructive protocol developed for the first time for climate change which usable with caution for most
applications including research interpreted followed Williams Guidelines®’. Therefore, it is necessary to expand
sample size from various samples to enhance the model robustness and validate it with unknown samples for
proving. We employed the GWP calculation method indicated by IPCC combined with PLSR (Partial Least
Squares Regression) modeling achieving a prediction model performance with R?C=0.92 and R*P=0.85
which demonstrates an optimized model could be used with caution for most application including research.
In upcoming paper modeling, we plan to further enhance the model performance by other machine learning
techniques such as Random Forest and Support Vector Regression and deep learning such as CNN which may
or may not be more accurate in GWP predictions than PLSR in this manuscript.

GWP varies significantly with changes in both HHV and the Emission Factor. This analysis indicates that
while both parameters directly influence GWP, the magnitude of their impact can differ depending on specific
conditions. For instance, a 10% increase in the Emission Factor could result in a signiﬁcant rise in GWP, whereas
a similar 10% increase in HHV might have a less impact on GWP. This explains that focusing on reducing
emissions (e.g. through cleaner combustion technologies or better fuel treatment) could be more effective in
reducing overall GWP than merely increasing fuel efficiency.

Furthermore, the research finding could assist academic and research institutions, policymaking think tanks,
and energy companies in effective planning, managing, and utilization of bio-resources to meet future energy
demands and mitigating the global warming. Additionally, this research outcomes open opportunities for NIR-
based research to implement similar approaches.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to reasons of no
permission of research grant resource but are available from the corresponding author on reasonable request.
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