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This research is to predict the global warming potential (GWP) of biomass by using Fourier 
transform near-infrared (FT-NIR) spectroscopy. A partial least squares regression model of 197 
biomass chip samples was developed for predicting GWP of fast-growing trees and agricultural 
residues. The reference value of GWP of biomass sample was calculated by the method provided by 
Intergovernmental Panel on Climate Change (IPCC). After applying different spectral pretreatments 
and variable selection methods, the best model for predicting GWP was found using the 1st derivative 
spectrum pretreatment and covariance method (COVM) based variable selection. The results indicate 
GWP model exhibit good predictive capabilities, where the model can be usable with caution for any 
purpose including research, by achieving a coefficient of determination for prediction set (R2

P) of 
0.86, and ratio of prediction to deviation (RPD) of 2.6. Additionally, the RMSEP of 0.00063 suggests 
a low prediction error. This pioneering approach presents a swift and efficient means to determine 
GWP, the complex functionality parameter, which reveals an optimal relationship model, showcasing 
its efficacy in a significant advancement in the assessment of biomass functionality related to 
climate change issue. Additionally, the further research is recommended to integrate FT-NIR data 
with thermogravimetric analyser to simulate of different thermal conversion of biomass type where 
different emission gases are generated and with gas chromatography–mass spectrometry for 
evaluation of concentration of the generated gases for further refine GWP predictions which providing 
more comprehensive insights and exact content of emission gases affect global warming to support 
the IPCC.
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N	� Number of sample in corresponded set
NIRS	� Near infrared spectroscopy
O	� Oxygen
PLSR	� Partial least squares regression
R2	� Coefficient of determination
R2

c	� Coefficient of determination of calibration set
R2

p	� Coefficient of determination of prediction set
RMSEC	� Root means square error of calibration set
RMSEP	� Root means square error of prediction set
RPD	� Ratio of prediction to deviation
S	� Sulfur
SD	� Standard deviation
SEC	� Standard error of calibration set
SEL	� Standard error of laboratory
SEP	� Standard error of prediction set
SNV	� Standard normal variate
SPA	� Successive projection algorithm
SW	� Selected wavenumber
wt.%	� Weight percentage

The concept of global warming potential (GWP) serves as a comparative measure of the amount of heat a 
greenhouse gas traps in the atmosphere relative to the heat trapped by an equivalent mass of carbon dioxide. 
Consequently, the GWP factor of CO2 is set at 1. GWP is typically calculated over specific time horizons of 
20, 100, or 500  years1. Climate is characterized by mean air temperature, relative humidity, wind patterns, 
precipitation, and frequency of extreme weather events, typically measured at least thirty years2. Climate change 
represents the most significant global threat humanity primarily driven by atmospheric carbon emission3. 
Climate change can occur naturally due to variation in the Sun's energy or through persistent human activities, 
such as the emission of greenhouse gases, sulfate aerosol or black carbon or changes in the land use4. Examples of 
climate change include global warming and the increase severity and frequency of floods and drought in various 
part of the world over recent decades5. Climate change includes both natural variability and anthropogenic 
changes6. According to the Sixth Assessment Report (AR6 2021) by the Intergovernmental Panel on Climate 
Change (IPCC), human activities have warmed the atmosphere, ocean, and land7. The United Nations is 
concerned primarily with anthropogenic climate change, both because it poses a threat to global security and 
because it can be altered by altering human and governmental behavior. For this reason, the United Nation 
Framework of Climate Change defines climate change as a change of climate which is attributed directly or 
indirectly to human activity that alters the composition of the global atmosphere and which is in addition to 
natural climate variability observed over comparable time periods8. The international agreements overseen by 
the United Nations Framework Convention on Climate Change (UNFCCC), including the 1992 Kyoto Protocol 
and 2015 Paris climate agreement sought to build global consensus on fighting climate change and set clear 
goals for emission reductions9. The climate conference in Kyoto, Japan, resulted in an argument by industrialized 
nations to reduce emissions of six key greenhouse gases (GHGs) to about 5% below 1990 emissions level by 
the year 201210. Reducing greenhouse gas emissions is one of the significant benefits of biomass. Biomass may 
function on a closed carbon cycle, in contrary to fossil fuels, which emit carbon dioxide stored for millions of 
years. This indicates that, when biomass is burned sustainably, the amount of carbon dioxide released during 
combustion is about equal to the amount absorbed by the plants during growth, leaving a net neutral effect on 
atmospheric CO2 levels11. Additionally, biomass contributes to energy security through dedicated energy crops 
and municipal solid waste conversion, while stimulating economic development in rural areas by creating jobs 
and revitalizing economies. The integration of biomass with other renewables like solar and wind, coupled with 
ongoing technological advancements, improves efficiency and competitiveness, making it essential for achieving 
net zero emissions (NZE) of IEA (International Energy Agency, France) targets and addressing climate change12.

Biomass serves as a key renewable bio-resource, offering a carbon–neutral alternatives that is widely available 
across the globe13. Defined broadly, biomass encompasses all organic materials derived from plants, including 
algae, trees, and crops. The materials results from the process of photosynthesis, where green plants convert 
sunlight into organic matter14. Biomass includes terrestrial and aquatic vegetation as well as organic waste 
materials. The composition of biomass primarily consists of three polymers: cellulose, hemicellulose, and lignin, 
with variations contingent upon the specific type of biomass15. For instance, hardwood and herbaceous biomass 
contain approximately 43–47% and 33–38% cellulose, 25–35% and 26–32% hemicellulose and 16–24% and 
17–19% lignin, respectively16. Biomass can be evaluated for its energy potential by analyzing its higher heating 
values (HHV) and ultimate analysis, which provides information on its elemental composition, including the 
percentage of carbon (C), hydrogen (H), nitrogen(N), sulfur (S), and oxygen (O). The HHV, measured using 
bomb calorimeter, is a crucial indicator of biomass energy content. Biomass with higher C and H, and/or O and 
H contents, and lower N and S contents, is preferable for energy use as enhances the HHV17. Biomass is highly 
responsive to Near Infrared (NIR) radiation, particularly indicated by spectra shown in the range of 1100 nm 
to 2500 nm17. It primarily interacts with hydrogen bonds in biological materials like C-H, O-H, N-H and S-H 
and C=O too. This property makes biomass suitable for assessment using Near Infrared Spectroscopy (NIRS) 
which combined NIR spectral variables to chemometric algorithms to determine energy-related properties such 
as HHV and elemental composition18, where provide rapid, non-destructive analysis with minimal or no sample 
preparation and no chemical used leading to environment safe. In the present scenario, biomass is one potential 
source of renewable energy and the conversion of plant material into a suitable form of energy, usually electricity 
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or as a fuel for an internal combustion engine, can be achieved using a number of different routes, each with 
specific pros and cons19. For carbondioxide (CO2) emission from biomass combustion though will be achieving 
net zero emissions (NZE) as explained, though, by GWP of CO2 calculated by IPCC can be used for estimation 
of how much heat can be absorbed by biomass plants. For methane (CH4) and nitrous oxide (N2O), using Global 
Warming Potential (GWP) indices higher than those specified by the Kyoto Protocol (100-year time horizon) 
would better reflect historical temperature trends. The GWP of CH4 aligns most accurately with historical 
temperature data when calculated over a 44-year time horizon. In contrast, the GWP of N2O does not closely 
match historical temperatures regardless of the time horizon used20. Hao and Ward21 reported about 85% of the 
total CH4, emitted in the tropical area, is mainly the result of shifting cultivation, fuelwood use, and deforestation 
and may have increased by at least 9% during the last decade because of increases in tropical deforestation and 
the use of fuelwood. There were some reports on N2O emissions by biomass burning e.g. from power geration 
using oil palm empty fruit branch was reported22 and using rice husk23.

A complex pattern of peaks and troughs of NIR spectrum can be analyzed using chemometric techniques to 
deduce the sample's chemical composition and physical properties. The advantage of NIRS lies in its ability to 
provide rapid, non-destructive analysis with minimal or no sample preparation and no chemical used leading 
to environment safe. This makes it particularly valuable in fields such as agriculture, pharmaceuticals, and food 
industries, where it is used for quality control and compositional analysis.

Fourier Transform Near Infrared (FT-NIR) spectrometer is a analytical instrument that utilizes the NIR 
region to analyze materials. FT-NIR spectroscopy is a powerful analytical technique used for identifying and 
quantifying gases due to its high sensitivity and accuracy24. This method involves measuring the absorption 
of NIR radiation by gases, allowing for precise determination of their concentrations in the atmosphere. By 
integrating GWP estimation with FT-NIR spectroscopy, by result at the end of this report, it becomes possible 
to enhance the accuracy of greenhouse gas inventories and improve the reliability of climate models, thereby 
supporting more effective climate action.

The principle behind the IPCC’s used the GWP calculation to quantify the impact of various green house 
gases (GHGs), mainly carbon dioxide (CO2), along with smaller amounts of methane (CH4) and nitrous oxide 
(N2O), on global warming relative to CO2 is depended on the HHV which is the total energy content in the 
biomass, including the energy contained in the water vapor produced during combustion. It is important for 
estimating the potential emissions per unit of biomass. IPCC’s GHG emissions estimation is calculated by using 
Emission Factor is a standard coefficient provided by IPCC guidelines, which estimates the amount of a specific 
greenhouse gas emitted per unit of energy produced by the biomass. The emission factors typically measure 
emissions in kilograms of CO2, CH4, or N2O per unit of energy (TJ) in the biomass, and they allow us to quantify 
the emission per unit of HHV. How much heat a gas traps in the atmosphere over a specific period, typically 
20, 100 or 500 years, compared to CO2. This is based on the radiative efficiency of the gas (how effectively it 
absorbs heat per molecule) and its atmospheric lifetime (how long it remains in the atmosphere). CO2 is set 
as the baseline (GWP = 1) for comparison, as it is the most prevalent GHG emitted by human activities. Other 
gases are compared relative to CO2’s warming effect. GWP values depend on a chosen time horizon (e.g. GWP-
20, GWP-100). Short lived gases, like CH4, have a higher GWP over a 20-year horizon due to their potent 
but shorter-lived impact, whereas the GWP-100 of CH4 is lower because it dissipates faster than CO2. GWP 
represents the cumulative impact of a pulse emission over the chosen time horizon. The calculation integrates 
the warming effects of the gas over time, taking into account both the immediate warming effect and gradual 
decay of the gas. This method provides a standardized way to compare the warming impacts of different GHGs 
and is instrumental for climate policy, as it allows policymakers to prioritize mitigation efforts based on the long 
term and short-term impacts of various gases.

The database report presents developed models tailored for different biological materials, for example, the 
evaluation of HHV sorghum samples25, using partial least squares regression (PLSR) and principal component 
regression (PCR), calibration models were constructed for both full and reduced wavenumber regions to predict 
HHV and the contents of carbon, hydrogen, nitrogen, sulfur, and oxygen. Particularly noteworthy was the 
exceptional accuracy demonstrated by the HHV and carbon content models, underscoring their reliability in 
prediction and with a rapid measurement time (from 100 to 1 min)25. Predicting Global Warming Potential 
(GWP) using FT-NIR spectroscopy represents a novel approach. To develop the prediction model, the reference 
two key papers that utilize PLSR. There were two reports of our research group contributed to the results of 
NIR prediction models for ultimate analysis parameters of the non-wood and wood samples, including Pitak, 
Sirisomboon, Saengprachatanarug, Wongpichet, and Posom26 who developed the PLSR using the spectra 
obtained by line-scan NIR hyperspectral imager in which the most effective model for the prediction of C, H 
and N content of 160 non-wood and wood biomass pellets The second report was contributed by Shrestha et al.17 
using FT-NIR spectrometry, where the ground non-wood and wood samples spectra, which were 110 samples 
of agricultural residues and 90 samples of fast growing trees, were used to develop the PLSR models combined 
with multi-preprocessing methods for ultimate analysis.

The prediction model that is applicable for determining the GWP for different species and utilized the 
species as for GWP production is essential for the policy makers, energy companies, and researchers who can 
utilize these findings for proper identification, management, and the utilization of resources to save the planet. 
Therefore, the main objective of this research is to propose a novel estimation approach for GWP by combined 
the GWP calculation method obtained from IPCC11 which utilizing HHV of the biomass and FT-NIR spectra of 
biomass samples by formulating a PLSR prediction model which can drastically reduce the experiment period 
from 40 min for HHV measurement by bomb calorimeter include sample preparation time17 to a reduction to 
3 min by only use the spectrum of the biomass chips.

Traditional methods are time-consuming (40 min), chemical unavoidable (e.g. tablets of benzoic acid and 
combustion polyethylene bag) cause non-environmental friendly, well trained technician is required, costly (15 
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USD per sample) and destructive whileFT-NIR offers a fast (3 min), chemical free cause environmental friendly, 
general worker can work, evaluation and operation cost per sample (< 1 USD) and non-destructive.

It is an AI approach to be an alternative instead of traditional method for estimating GWP from biomass, 
aiding sustainable biomass utilization and climate impact assessment. We believe readers will find this work 
insightful and valuable, as it introduces a rapid, non-destructive, and cost-effective approach for GWP 
assessment, addressing a critical gap in biomass analysis and climate change mitigation.

Materials and methods
In this manuscript, we introduce a novel approach for predicting Global Warming Potential (GWP) using a 
spectroscopy non-destructive and rapid method but by using diverse biomass sources including fast growing 
tree and agricultural residue collected in Shrestha et al.17. In Shrestha et al.17 only the higher heating value and 
ultimate analysis elements were predicted. To the best of our knowledge, no prior research has explored this 
specific application, making it a novel contribution to the field, especially in climate change environment sector.

This research is the longitudinal research and builds on the study referenced at Shrestha et al.17 ​h​t​t​p​s​:​​/​/​d​o​i​.​​o​r​
g​/​​​​​​​​h​​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​3​3​9​0​/​e​n​1​6​1​4​5​3​5​1​​​​​, where in previous paper traditional CHN/S elemental analyzer was used 
to determine elements such as C, N, O, and S, and bomb calorimeter was used for measuring HHV. Using of 
same sample spectrum set, we have developed a new model that offers an alternative approach to determining 
GWP and HHV data using PLSR. This streamlined model is designed to provide a faster and more accessible 
method for estimating GWP in biomass applications.

Figure 1 illustrates the comprehensive research methodology for assessing the HHV and GWP of ground 
biomass for energy applications, employing NIRS in conjunction with PLSR analysis.

Biomass
Shrestha et al.17 gathered Nepal biomass samples focusing on five fast-growing tree species: Alnus nepalensis, 
Pinus roxburghii, Bambusa vulgaris, Bombax ceiba, and Eucalyptus and five types of agriculture residues: Zea 
mays (cob, shell, and stover), Oryza sativa (husk), and Saccharum officinarum (bagasse). There were 200 samples 
in total.

Outliers in the GWP calculated data were identified using z-score equation in Eq. (1), which is the Z score 
and when the Z score is ≥ 3, it means that the x value is outside the ± 3SD range where 99.7% of data is and 
the x value will be considered as outlier27. x is the reference value of GWP, x is the average GWP, and SD is the 
standard deviation. There were 3 outliers found.

	
Xi − X

SD
≥ | ± 3|� (1)

The spectral outlier samples were determined by using the Mahalanobis distance limit, based on the distribution 
of all calibration spectra, where a normal distribution, a one-sided limit is defined that covers a probability of 
99.999%28. However, there was no spectral outlier found. Hence, 197 samples for modeling.The investigation 
is significant as it addresses biomass sample from both tree species and agricultural residues, offering a board 
understanding of the potential energy yields from two critical categories of biomass resources. The study sheds 
light on renewable energy opportunities that can be derived from diverse plant species and residues, each with 
its distinct chemical and structural characteristics.

Spectroscopy scanning
Shrestha et al.17 scanned biomass samples using an FT-NIR spectroscopy (MPA, Bruker, Germany) in diffuse 
reflectance mode with a rotating sample holder. The use of diffuse reflectance mode and the rotating mode 
holder was instrumental in achieving uniform sample exposure to the spectrometer beam, which is critical in 
analyzing heterogeneous materials like biomass. The study highlights the importance of proper background 
calibration and careful sample handling in obtaining accurate FT-NIR spectra ensuring that environmental 
factors such as humidity and temperature for no skew the results29.

Wet-lab measurement
The complex nature of NIR absorbance data, it is essential to correlate it with reference values obtained from 
a standard laboratory method to ensure accuracy30. Accordingly, the reference data for the biomass samples, 
which included higher heating (HHV), were evaluated following the procedure outlined by Shrestha et al.17 
after scanning with an FT-NIR spectrometer. Prior to HHV measurement, the grinding process is crucial for it 
ensures uniform particle size, which in turn improves the consistency of the combustion process and enhances 
the precision of the calorimetric analysis. The using Bomb calorimeter to find the HHV is widely recognized for 
its reliability in determining the calorific value of various type of fuel, including biomass. The use of an automatic 
bomb calorimeter ensures precise temperature control during combustion, allowing accurate measurement of 
the energy content released by the samples. This data is crucial for understanding the potential of biomass as a 
renewable energy source and optimizing its use in various applications.

Estimation of global warming potential and emission of greenhouse gas (GHG)
IPCC guidelines7,31 was used to obtain main emission factors for CO2, CH4, and N2O from stationary biomass 
combustion on the 100 years based reported in AR67. These emission factors are typically expressed in grams of 
gas per unit of fuel burned energy (e.g., CO2 kg TJ-1 of fuel). Calculate the emissions of CO2, CH4, and N2O from 
the biomass combustion using the following formula:where Emissions is the total amount of emissions produced 
(kg); Mass of sample is the total mass of a sample being burned (kg); High Heating Value is the Gross Calorific 
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Value, measures the total amount of energy that can be obtained from a fuel sample when it is completely burned 
(TJ.kg-1); Emission Factor is based on energy consumption for wood/ woody residues: 112 kg CO2 TJ-1, 30 kg 
CH4 TJ-1, and 4 kg N2O TJ-17,31.

To determine the emission factor for biomass combustion, follow a systematic approach to ensure accuracy. 
Begin by identifying the type of biomass, such as fast-growing trees and agriculturalresidues, as each type has 
distinct emission factors. Reliable sources for these factors include the IPCC Guidelines. Next, measure the 
HHV of the biomass, often determined experimentally via bomb calorimetry and expressed in TJ kg-1. Select 
an appropriate emission factor based on the biomass type and combustion conditions; for example, wood 
combustion factors range from 1 to 150 kg CO2 TJ-1.

Fig. 1.  Flow chart of the overall research methodology for the evaluation of the GWP by HHV using NIRS 
combined with PLSR.
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Determine the GWP of the emissions using the IPCC's GWP values for a specific time horizon (e.g. 100 years). 
The GWP are calculated by converting the emissions of CH4 and N2O into CO2-equivalents (CO2e) based on 
their relative warming potential.

	
GWP = ∫a

0 aicidt

∫a
0 aCO2CCO2dt

� (2)

where ai is Absolute instantaneous concentration of the gas i at time t; ci is Radiative efficiency (or radiative 
forcing) of the gas i per unit mass; aco2 is Absolute instantaneous concentration of CO2 at time t; cco2 is Radiative 
efficiency (or radiative forcing) of CO2 per unit mass; a is Time horizon over which the GWP is calculated 
100 years (typically 20 or 100 years); t is Time variable.

The total GWP calculated the combined impact of different greenhouse gases (GHGs) on global warming. 
Each GHG has a specific GWP value, which represents its warming effect relative to CO2 over a specific time 
horizon, typically 100 years. For calculation, the total GWP is determined by summing the products of the GWP 
values and the emission quantities for each gas. Specifically, it includes the GWP of CO2 multiplied by the amount 
of CO2 emissions, the GWP of methane (CH4) multiplied by the amount CH4 emissions, and the GWP of nitrous 
oxide (N2O) emissions multiplied by the amount N2O emissions. By accounting for the different contributions of 
these gases, the formula provides a comprehensive measure of the overall impact of multiple GHGs on climate 
change, allowing for a more accurate assessment of their collective influence on global warming.

For calculating GWP, use the formula:

	

Step 1 : (CO2, CH4, N2O) emissions (kg) = Mass of Fuel (kg)
×Carbon emission factor

(
kg TJ−1)

× HHV
(
kg TJ−1)

	

Step 2 : Total GWP = (GWP of CO2 × CO2 emissions)
+ (GWP of CH4 × CH4 emissions) + (GWP of N2O × N2O emissions)

Table 1 shows example of emission gases by Alnus Nepalensis biomass combustion.

Alnus nepalensis

Remarks

IPCC guideline

Calculation of CO2 emission

CO2 emission 
factor: 112 kg 
dry matter 
TJ-1 (typical 
for wood 
combustion)

Higher Heating Value = 17,932,000 J kg-1

CO2 emission factor = 112 kg TJ-1,
we can follow these steps:
Convert HHV to TJ kg-1:
Since 1 TJ = 1012 J, we need to convert the HHV from J kg-1 to TJ kg-1:
HHV in TJ kg-1 = 17,932,000 J kg-1 / 1012 = 1.7932 × 10–3 TJ kg-1

CO2 emission (kg) = Mass of fuel (kg) × CO2 emission factor (kg TJ-1) × HHV (TJ kg-1)
CO2 emission (kg) = 1 kg × 112 kg TJ-1 × 0.017932 TJ kg-1

Therefore, the CO2 emission from stationary fuel combustion with an HHV of 17,932,000 J kg-1 and using the default CO2 emission factor of 112 kg TJ-1 would be 
approximately 2.0083 × 10–3 kg of CO2 per kg of fuel

Calculation of CH4 emission

CH4 emission 
factor: 30 kg 
dry matter TJ-1

Hight Heating Value = 17,932,000 J kg-1

CH4 emission factor = 30 kg TJ-1

Convert HHV unit to TJ kg-1

1 TJ = 1012 J
HHV from J kg-1 to TJ kg-1:
HHV in TJ kg-1 = 17,932,000 J kg-1 / 1012 = 1,7932 × 10–5 TJ kg-1

CH4 emission (kg) = Mass of Fuel (kg) × CH4 emission factor (kg TJ-1) × HHV (TJ kg-1)
CH4 emission (kg) = 1 kg × 30 kg TJ-1 × 1,7932 × 10–5 TJ kg-1

CH4 emission (kg) = 5.3796 × 10–4 kg of CH4 per kg of fuel

Calculation of N2O emission

N2O emission 
factor 4 kg dry 
matter/TJ

Hight Heating Value = 17,932,000 J kg-1

N2O emission factor = 4 kg TJ-1

Convert HHV unit to TJ kg-1

1 TJ = 1012 J
HHV from J kg-1 to TJ kg-1:
HHV in TJ kg-1 = 17,932,000 J kg-1 / 1012 = 1.7932 × 10–5 TJ kg-1

N2O emission (kg) = Mass of Fuel (kg) × N2O emission factor (kg TJ-1) × HHV (TJ kg-1)
N2O emission (kg) = 1 kg × 4 kgTJ-1 × 1.7932 × 10–5 TJ kg-1

N2O emission (kg) = 7.1728 × 10–5 kg of N2O per kg offuel

The concept of global warming potential (GWP) was introduced in IPCC –AR1 (Shine et al. 1990) to compare the greenhouse effects of different greenhouse gases relative to a 
reference gas, normally taken as carbon dioxide, under this definition, CO2 would have a GWP value of 1
Alnus nepalensis
Total GWP = (GWP of CO2 × CO2 emissions) + (GWP of CH4 × CH4 emissions) + (GWP of N2O × N2O emissions)
Total GWP = 1 × 2.0083 × 10–3 + 29.8 × 5.379 × 10–4 + 273 × 7.1728 × 10–5

Total GWP = 0.0376 kg CO2e
This calculation is by 100 years based GWP of emission gases followed AR6 7

Table 1.  Calculation example of emission gases by Alnus nepalensis biomass combustion.
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The Table 2 shows the compares the GWPs of three greenhouse gases i.e. CO2, CH4, and N2O—over two 
different time periods (100 years and 20 years) based on assessments from the IPCC's Assessment Reports (AR4 
200732, AR5 201433, and AR6 20217). For CO2, the GWP remains consistent across all reports and time periods 
with a value of 1, indicating its role as the baseline for comparison. CH4 shows variations in GWP depending on 
its origin (fossil or non-fossil) and whether climate-carbon feedback is considered. The GWP for fossil-origin 
CH4 increases from 25 in AR4 to 34 in AR6 over a 100-year period, highlighting the growing recognition of 
its impact. For non-fossil-origin CH4, the GWP is slightly lower at 27.2 over 100 years in AR6. Over a 20-year 
period, CH4's GWP is significantly higher, emphasizing its short-term potency as a greenhouse gas. N2O also 
shows variations, with its GWP slightly decreasing from AR4 to AR5 but increasing again in AR6, both over 100-
year and 20-year periods. The data reflects the evolving understanding of the greenhouse effects of these gases, 
with updates in each assessment report based on the latest scientific research.

Model development and validation
The PLSR method were used to develop the model. The samples were divided into calibration set (80%) and a 
prediction set (20%) by using Kennard-Stone method. Kennard-Stone data separation algorithm is based on an 
Euclidian distance calculation, where the sample with maximum distance to all other samples are selected, then 
the samples which are as far away as possible from the selected samples are selected, until the selected number 
of samples is reached34. This means that the samples are selected in such a way that they will uniformly cover the 
complete sample space, reducing the need for extrapolation of the remaining samples34. Initially, the model was 
developed using raw spectra, standard normal variate (SNV), 1st derivative and 2nd derivative transformations. 
The model was optimized by selecting wavenumbers through various variable selection methods, including the 
Correlation Method (CM), Variance Method (VM), Co-Variance Method (COVM), and Variable Importance 
Projection (VIP). The spectral data were pretreated using raw spectra, standard normal variate (SNV), as well 
as first derivative and second derivative transformations. The following spectra pretreatment methods: Standard 
Normal Variate (SNV) is for corrects scatter effects and baseline variations35, 1st and 2nd Derivative enhances 
spectral resolution by removing baseline shifts and emphasizing key spectral features, leading to better signal 
clarity35.

Feature selection methods: Correlation-based selection identifies the most relevant spectral variables by 
assessing their relationship with dependent variable which in our case is GWP and HHV; VIP prioritizes key 
spectral features that significantly contribute to the PLSR model, enhancing predictive accuracy, VM selects 
variables based on their variance, ensuring only features with significant variation are retained and COVM 
identifies variables with strong covariance relationships, helping in feature reduction while preserving important 
predictive information36.

MATLAB-R2020b (MathWorks, Natick, MA, USA) was used for both spectrum pretreatment and model 
development. The calibration model’s performance was assessed using the coefficient of determination (R2c) and 
root mean square error of calibration (RMSEC).

The obtained model wasvalidated using the prediction set, and their performance was evaluated based on 
coefficient of determination of prediction (R2p), root mean square error of prediction (RMSEP), bias and the 
ratio of prediction of deviation (RPD).

These parameters were calculated as follows, where y is the measured value, ŷ is the predicted value, i is 
subscript used to indicate the number of the sample, y is mean of the measured value, N is the number of samples 
in respective set, and SD is the standard deviation of the measured values of the prediction set:

	
R2

c, R2
p = 1 −

∑
(yi − ŷi)2

∑
(yi − yi)2 � (3)

	
RMSEC, RMSEP =

√∑N
i=1 (yi − ŷi)2

N
� (4)

	
RPD = SD

RMSEP
� (5)

	
Bias =

∑N
i=1 (yi − ŷ)

N
� (6)

Greenhouse Gas

100-year time period 20-year time period

AR4 2007 AR5 2014 AR6 2021 AR4 2007 AR5 2014 AR6 2021

Feedback not included Feedback included Feedback not included Feedback included

CO2 1 1 1 1 1 1 1 1

CH4 fossil origin
25 28 34

29.8
72 84 86

82.5

CH4 non fossil origin 27.2 80.8

N2O 298 265 298 273 289 264 268 273

Table 2.  Global warming potential (GWP) of greenhouse gas emissions indicated in IPCC AR6 report7.
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The better model was selected based on the tradeoff value between the highest R2
C, R2

P and RPD and lowest 
RMSEC, RMSEP, and bias. In this study, the performance result, namely the R2 and RPD value were interpreted 
based on the recommendations of Williams et al.37.

Result
Spectral data processing
In data of 200 biomass samples for GWP PLSR modeling, 3 outliers were identified and removed, resulting in 
a final dataset of 197 samples. The removal of outliers ensured the genuine performance of the model, allowing 
for more accurate predictions.

Figure  2a illustrates the raw spectra of log (1/R) versus wavenumber in the range of 3600–12500 cm−1, 
showing high absorption peak such as 6711, 5076 and 4636 cm−1 for both fast growing tree and agriculture 
residues sample. It shows the significant absorption features corresponding to various molecular vibrations in 
the biomass. The peak at 6711 cm−1 (1490 nm) of the broad band can be the shifted peak of 1471 nm is the first 
overtone of N-H stretching of CONHR typically found in amides or proteins and or 1450 nm attributed to 1st  
overtone of O–H vibration including of water and starch38,39. The combustion of starch is a significant process, 
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Fig. 2.  Spectra of biomass chips of fast-growing trees and agricultural residue: raw (a) and pretreated 
spectra by SNV (b), 1st derivative (c) and 2nd derivative (d) where (a) raw spectra showing unprocessed 
near-infrared (NIR) data with baseline variations and scattering effects. (b) Standard Normal Variate (SNV) 
corrected spectra, reducing baseline shifts and scattering effects. (c) 1st derivative corrected spectra, to obtain 
common spectra baseline. (d) 2nd derivative corrected spectra, to obtain common spectra baseline and reveal 
overlapping peaks.
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as it releases carbon dioxide (CO2), a major greenhouse gas that contributes to global warming40–42 for example 
in biomass combustion, though, it is carbon neutral fuel.

The peak at 5076 cm−1 (1970 nm) is the shifted peak of 1940 nm is linked to O–H combination of fundamental 
of O-H stretching and bending vibrations38. The peak of 4636 cm−1 (2157 nm) corresponds to C-H aromatic 
C-H38. The wavenumber increases beyond 6000 cm−1 shows the flat spectral lines without dominant peaks, 
suggesting in the biomass a very less bond vibration in the wavenumber range due to NIR absorption.

Posom et al.43 indicated the similar peaks for milled bamboo which is solely one specie of biomass where the 
main peaks were 6823 cm−1 (1466 nm), 5192 cm−1 (1926 nm), 4752 cm−1 (2104 nm) and 3992 cm−1  (2505 nm). 
These indicate the influence of different kinds of biomass species on average spectrum.

Figure 2b shows the absorbance spectra pretreated using SNV transformation. A similar peak structure of 
raw spectrum is maintained in SNV spectrum. However, SNV preprocessing effectively mitigates baseline shifts, 
enhancing spectral comparability. Although both sample types exhibit similar spectral characteristics, but the 
main peaks after 12,500–6000 cm−1 the absorption of agricultural residue exhibit higher, including the range 
between 4397 cm−1 (2274 nm, lignin vibration) and 4011 cm−1 (2493 nm, lignin and cellulose vibration)44 and 
near to 4755 cm−1 (2103 nm) is the band for α-d- glucose, and 4000 cm−1 (2500 nm) is the band corresponding to 
C-H stretching + C-C stretching of starch39. But the vibration of between 6000–5600 cm−1 which is broad weak 
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Fig. 2.  (continued)
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band of lignin and cellulose where the peak 5951 cm−1 (1680 nm) is the peak of pure lignin43, the band of both 
species is very close absorption. Though, beyond 6000 cm−1 the absorption is lower obviously.

Figure 2c shows the plot of the 1st derivative of log (1/R) versus wavenumber that reveals distinct spectral 
features. Significant peaks were observed in the 4000 to 7000 cm−1 range, with the most prominent peaks around 
7050, 5245, 4775, 4428, 4381 and 4057 cm−1. Specifically, the peak at 7050 cm−1 is related to C–H combination 
bands found in hydrocarbons or aromatic38. The peak at 5245 cm−1 relates with P–OH groups in phosphate38. The 
peak of 4775 cm−1 corresponds to the O-H deformation band, which is present in alcohol or water38. The peak 
at 4428 cm−1 represents lignin38. The peak at 4381 cm−1 corresponds to C-H stretching and CH2 deformation 
bending in polysaccharides38. The peak 4057 cm−1 corresponds to the CONH2 groups commonly present in 
proteins38. These peaks indicate the rapid change absorption points in raw spectra at these wavenumbers. Beyond 
7000 cm-1, the data trend stabilizes, showing minimal variations up to 12500 cm−1. This stabilization suggests 
very low and consistent absorption characteristics in the higher wavenumber range. The zero absorption in 1st 
derivative spectrum is the peak absorption in raw spectrum.

Figure 2d shows the 2nd derivative plot of log (1/R) versus wavenumber providing insights to reveal the 
overlapping peaks in the raw absorption spectra and due to the gap of derivative, the shifted peaks of 6711 cm−1 
(1490 nm), 5951 cm−1 (1680 nm), 5076 cm−1 (1970 nm), near to 4755 cm−1 (2103 nm), 4636 cm-1 (2157 nm), 
4397 cm−1 (2274 nm), 4011 cm−1 (2493 nm), and 4000 cm−1 (2500 nm) in raw and SNV spectra are shown.

Statistic values of GWP and HHV
The provided data in Table 3 comprehensively details the statistical analysis used in the development of 
a PLSR model. It shows that the GWP parameter in calibration set includes 148 samples. The values range 
from a maximum of 0.0390 to a minimum of 0.0330, with a mean of 0.0330 and an SD of 0.0012. The SD is 
approximately 36.4 times less than the mean (0.0330/0.0012), suggesting that the data points are closely clustered 
around the mean value. The prediction set of 50 samples is designed to test the accuracy and precision of the 
model developed using the calibration data set. For the GWP parameter, the prediction set samples have a 
slightly lower maximum, minimum and mean value and a higher SD of 0.0030 shows greater variability in the 
prediction set data compared to the calibration set.

The HHV (J g-1) statistics in the prediction set has slightly lower variation than the calibration set with SD of 
836 J g-1 compared to 848 J g-1 indicating the same distribution of data.

Predicting performance of biomass GWP using PLSR
GWP is a critical metric for assessing the environmental impact of various biomass. Accurate prediction of GWP 
can inform sustainable practices and policy decision. In this study, the PLSR method is utilized to model and 
predict the GWP of different biomass samples including fast growing trees and agricultural residue.

Table 4 shows the results for predicting GWP of various biomass developed from raw spectra and different 
spectra pre-treatment and different number of wavenumbers from the respective feature variable selection 
method, demonstrating by the number of latent factors, R2

C, RMSEC, R2
P, RMSEP, RPD and Bias. The prediction 

results depended on the development methods, spectral pre-treatment, and the number of wavenumbers. The 
models with different variable selection methods gave the same performance, but the number of wavenumbers 
differed. The model developed with CM (reduction of 1150 wavenumber of full range to 325 wavenumber) of 1st 
derivative spectra, gave best performance with R2

P was 0.87 (Table 4).
In the context of predicting GWP of biomass using FT-NIR spectroscopy, the following Williams et al.37 

indicated R2 showed the proportion of the variance of the NIRS predicted data, i.e. GWP can be explained by the 
spectral variables or log 1/R and shows the degree of which the predicted data can be change, for a given change 
in the spectral data which higher values of R2 indicating better predictive accuracy.

Figure 3 illustrates the scatter plot of the GWP of biomass calculated using IPCC method and predicted 
by NIRS using the 1st derivative of the 325 wavenumbers obtained by COVM which outperformed the other 
predictive model's performance of GWP. The COVM variable reduction method helps identify and retain 
the most relevant wavenumber, enhancing the model's efficiency and accuracy. The R2

C and R2
P of featured 

wavenumber selection model was 0.92 and 0.85, respectively, indicating a linear relationship between the 
predicted and calculated values during both the calibration and prediction. From Table 4 the RMSEC is 0.00053, 
and RMSEP is 0.00063 show low prediction errors. The bias, which measures the systematic error, is -0.00014, 
showing minimal deviation from zero and thus negligible bias in the predictions. The RPD value of 2.6 signifies a 
fair predictive capability of the model for functional parameter including GWP, as values 2.5–2.9 were considered 
for screening applications37. This method effectively enhances average the model's performance by focusing 
on the most informative wavenumber prediction and reducing dimensionality, leading to more accurate and 
reliable predictions. These high R2

P values (0.85) in predicting the GWP indicate the model usable with caution 
for most application including research which the threshold of R2 indicated by Willams guidelines is between 
0.83–0.9037.

Parameter Method NT

Calibration set Predictionset

NC Max Min Mean SD NP Max Min Mean SD

GWP IPCC guidelines 197 147 0.03905 0.03080 0.03564 0.00180 50 0.038943 0.033002 0.03577 0.00165

HHV (J g-1) Bomb calorimeter 197 147 18,616 16,405 16,976 910 50 17,950 15,268 17,051 787

Table 3.  Statistic values of GWP and HHV for modeling.
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Fig. 3.  IPCC calculated GWP versus NIRS predicted GWP in calibration and prediction sets. This PLSR 
modeling based on the first derivative spectra of 325 selected wavenumbers by covariance method, which 
demonstrated superior predictive performance compared to other models (R2

C = 0.92, R2
P = 0.85).

 

Variable selection method Spectral pretreatment Number of wavenumber Factor

Calibration 
set Prediction set

R2
c RMSEC R2

p RMSEP Bias RPD

Full wavelength

Raw 1150 10 0.80 0.00054 0.76 0.00061 -0.0004 2.7

SNV 1150 8 0.90 0.00053 0.82 0.00065 -0.0007 2.5

FstDev 1150 9 0.89 0.00055 0.82 0.00062 -0.0006 2.6

SecDev 1150 9 0.87 0.00054 0.84 0.00062 -0.0004 2.6

CM

Raw 220 10 0.80 0.00054 0.76 0.00063 -0.0002 2.6

SNV 220 8 0.92 0.00053 0.80 0.00062 -0.0004 2.6

FstDev 325 9 0.91 0.00054 0.74 0.00068 -0.0003 2.4

SecDev 555 9 0.89 0.00053 0.83 0.00062 -0.0005 2.6

VM

Raw 520 10 0.93 0.00065 0.80 0.00071 -0.00005 2.3

SNV 795 8 0.79 0.00082 0.85 0.00061 -0.00004 2.7

FstDev 590 9 0.91 0.0006 0.74 0.00083 -0.00006 1.9

SecDev 885 9 0.89 0.0006 0.82 0.00061 -0.00003 2.6

COVM

Raw 510 10 0.89 0.00061 0.82 0.00063 -0.00071 2.6

SNV 895 8 0.95 0.00039 0.78 0.00076 -0.00011 2.1

FstDev 325 9 0.92 0.00053 0.85 0.00063 -0.00014 2.6

SecDev 450 9 0.92 0.00053 0.81 0.00071 3.4553e-05 2.3

VIP

Raw 950 10 0.80 0.00084 0.76 0.00062 -0.00014 2,6

SNV 850 8 0.78 0.00084 0.84 0.00063 -0.00011 2.6

FstDev 750 9 0.91 0.00053 0.74 0.00083 -.0.00012 1.9

SecDev 985 9 0.89 0.00061 0.82 0.00068 -5.1928e-05 2.4

Table 4.  Prediction of GWP of biomass of fast-growing tree and agriculture residue by PLSR. N: Number 
of samples in calibration set, R2

c: coefficient of determination of calibration set, n: number of samples in 
prediction set, R2

p: coefficient of determination of prediction set, RPD: ratio of prediction to deviation, CM: 
correlation method, VM: variance method, COVM: co-variance method, VIP: variable. Significant values are 
in [bold].
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Prediction result of HHV using PLSR
Table 5 displays the optimal result of PLSR-based models using the full wavenumber range (3600–12,500 cm-1) 
to evaluate the HHV of the chip biomass from the fast-growing trees and agricultural residues. Shrestha et al.17 
has described the HHV of the grounded biomass measured using the isoperibol method with an automatic 
bomb calorimeter (IKA C 200, Staufen, Baden-Württemberg, Germany). The data presents the performance 
of various pre-processing techniques—Raw Spectra, SNV, First Derivative, and Second Derivative—across 
calibration and prediction sets. Key metrics such as the number of latent factors, R2

C and R2
p, RMSEP, bias, and 

RPD were provided. Among these techniques, SNV demonstrates the highest R2
C and R2

p, though the value were 
low i.e. R2

C (0.5879) and R2
p (0.4972) values, indicating that while SNV provides some improvement in model 

performance compared to other preprocessing methods, the overall predictive capability of the model remains 
limited26. Additionally, SNV exhibits the lowest SEP (1.44 J g-1) and RMSEP (2.88 J g-1) values, suggesting more 
precise and accurate predictions compared to other techniques, though the R2

P is very low making the model is 
not recommended to be used.

Figure 4 shows the best model for predicting the HHV of biomass was developed using the 2nd derivative 
spectra and variable selection by the COVM method. This approach reduced the number of variables from 1150 
to 365 wavenumbers, significantly enhancing the model's performance (R2

C of 0.98 and R2
P of 0.87) indicating 

the model usable with caution for most application including research in predicting the HHV, and RPD value of 
2.7 signifies a fair predictive capability of the model for functional parameter including GWP, as values 2.5–2.9 
were considered for screening applications37.

Regression coefficient and x-loading of GWP model
Prominent peaks were identified and the bond vibration interpretation is shown in Table 7 and the vibration 
indicated by Workman and Weyer38 at the wavenumbers in bold were not found or not related to biomass.

Figure 5a presents the regression coefficient plot for the optimal PLS model predicting the GWP in biomass 
using the full-range wavenumber spectra. Prominent peaks were found at 4011 (Cellulose), 4196 [C-H (1ν) + 
C-H (1δ)], 4651 [C-H (1ν) + C-C (1ν)], 4744, 5214 (water), 5400, 6001, 6086, 6441 (water) and 7151 [CH3 (2ν) 
+ CH3 (1δ)] cm−1. In comparison, the regression coefficient plot for the selected wavenumber model (Fig. 5b) 
revealed key peaks at 4142 [C-H (1ν) + C-H (1δ)], 4389 [C-H (1ν) + CH2 (1δ)], 4605 proteins, 4867 amides/
proteins, 5338, 6017, 7097, 7189 [CH3 (2ν) + CH3 (1δ)] and 8686 cm−1.

Figure 6a shows the X-loading plot of the first latent variable (LV1) for the full-spectrum model, highlighting 
wavenumbers that contribute significantly to model performance. Notable peaks were observed at 4196, 4451, 
4528 [N-H (3ν)], 5060 (water), 5292, 6791, and 7050 cm−1, where the X-loading of 1st latent variable Selected 

Variable selection method Pretreatment Wavenumber Factor

Calibration set Prediction set

N R2
C RMSEC (J g-1) n R2

P RMSEP (J g-1) Bias (J g-1) RPD

Full wavelength

Raw 1150 10 147 0.94 200.35 50 0.81 386.38 53.99 2.3

SNV 1150 8 147 0.95 173.26 50 0.82 373.07 23.18 2.4

FstDev 1150 9 147 0.98 94.02 50 0.85 334.48 77.90 2.6

SecDev 1150 9 147 0.97 31.94 50 0.58 578.46 -64.75 1.5

CM

Raw 440 10 147 0.94 203.35 50 0.81 386.38 53.99 2.3

SNV 205 8 147 0.95 174.26 50 0.82 375.07 23.18 2.4

FstDev 490 9 147 0.98 94.02 50 0.85 331.48 77.90 2.6

SecDev 365 9 147 0.97 31.94 50 0.58 577.46 -64.75 1.5

VM

Raw 800 10 147 0.94 201.35 50 0.81 387.38 53.99 2.3

SNV 1130 8 147 0.96 173.26 50 0.82 374.07 23.18 2.4

FstDev 325 9 147 0.98 93.02 50 0.85 333.48 77.90 2.6

SecDev 195 9 147 0.98 31.94 50 0.58 576.41 -64.75 1.5

COVM

Raw 790 10 147 0.94 200.35 50 0.81 386.38 53.99 1.7

SNV 1130 8 147 0.96 173.26 50 0.83 375.07 23.18 1.7

FstDev 360 9 147 0.94 201.23 50 0.85 343.52 56.55 1.8

SecDev 365 9 147 0.98 92.02 50 0.86 332.48 77.90 2.7

VIP

Raw 205 10 147 0.91 261.22 50 0.75 446.09 -27.75 2.0

SNV 315 8 147 0.91 250.93 50 0.78 441.35 10.83 2.2

FstDev 535 9 147 0.94 201.63 50 0.85 344.56 57.68 2.6

SecDev 280 9 147 0.98 119.18 50 0.74 451.07 24.60 2.0

Table 5.  Result of HHV prediction by PLSR using different preprocessing spectra and different variable 
selected methods. N: Number of samples in calibration set, R2

C: coefficient of determination of calibration 
set, n: number of samples in prediction set, R2

P: coefficient of determination of prediction set, RPD: ratio of 
prediction to deviation, CM: correlation method, VM: variance method, COVM: co-variance method, VIP: 
variable importance of projection, FstDev: 1st derivative, SecDev: 2nd derivative. Significant values are in 
[bold].
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wavenumber-loading plot for the selected wavenumber model (Fig. 6b) shows influential peaks at 4065 [CH3 
(3δ)], 4304 [C-H (1ν) + CH2 (1δ)], 4397 (glucose), 4682, 5230 (phosphate), 5307, 6970, 7436, and 8647 cm−1.

The vibration of most molecular bonds which had strong contribution in prediction of GWP, were in 
hydrocarbons including cellulose; glucose; water; and protein, even GWP is a functional properties not a 
constituent in the biomass.

Regression coefficient and x-loading of HHV model
Prominent peaks were identified and the bond vibration interpretation is shown in Table 7 and the vibration 
indicated by Workman and Weyer38 at the wavenumbers in bold were not found or not related to biomass.

For the HHV prediction model, the regression coefficient plots are presented in Fig. 7. In the full-spectrum 
model (Fig. 7a), prominent peaks were observed at 4397 (glucose), 4960 [C-H (1ν) + O-H (1δ)], 5168 (water), 
5330, 5947 [C-H (2ν)], 6672, and 7506 cm−1. In contrast, the selected wavenumber model (Fig. 7b) exhibited 
dominant peaks at 4111 [C-H (1ν) + C-H (1δ)], 4520 [N-H (3ν)], 4644 [C-H (1ν) + C-C (1ν)], 5307, 5369, 5978 
[C-H (1ν) + C-H (1ν)], 6063, 7020, and 7220 cm−1.

The LV1 of X-loading plots, shown in Fig. 8, highlights the critical wavenumbers contributing to the model’s 
performance. In the full-spectrum model (Fig. 8a), significant peaks were found at 4165 [C-H (1ν) + C-H (1δ)], 
4435, 4520, 5037, 5292, 6595, and 7112 [O-H (2ν)] cm−1. The selected wavenumber model (Fig. 8b) revealed 
key peaks at 4034, 4134 [C-H (1ν) + C-H (1δ)], 4443, 4983, 5230 (phosphate), 5361, 5963 [C-H (2ν)], 7081 and 
7274 cm−1.

The similar bond vibration contributed to prediction of both HHV and GWP including 5230 (phosphate), 
(5168 and 5214 nm, respectively) water, (4651, 4644 nm, respectively) [C-H (1ν) + C-C (1ν)], (4520, 4528 nm, 
respectively) [N-H (3ν)], 4397 (glucose), and (4134, 4142 nm, respectively) [C-H (1ν) + C-H (1δ)], obviously.

Averaging reference value of GWP and HHV parameter of biomass
GWP and HHV are essential for optimizing biomass as a renewable energy source and mitigating its 
environmental impact. The environmental sustainability of biomass is primarily assessed using the GWP 
measured in CO2 equivalents over a 100-year period.

Table 6 illustrates the average reference value of GWP and HHV (J g-1) of fast-growing trees and agricultural 
residues. It shows that the fast-growing trees possess variability in their values reflect slight variations in their 
chemical composition and energy content, influencing the different biomass applications. They underline 
the variability within agricultural residues, impacting their efficiency and environmental impact when used 
as bioenergy sources. It shows that fast-growing trees generally possess higher heating values and carbon 
content, making them more efficient as biomass fuels. However, the GWP values indicate varying degrees of 
environmental impact, whichis crucial for sustainable energy production. Most of agricultural residues, while 
slightly lower in energy content, offer a viable alternative due to their abundance and ease of collection with 

Fig. 4.  HHV measured by bomb calorimeter versus predicted value by NIR spectroscopy. The optimal 
model for predicting the HHV of biomass was developed using the 2nd derivative spectra combined with 
wavenumber selection via the correlation method. This approach reduced the number of variables from 1150 
to 365 wavelengths, significantly improving model performance (R2

C = 0.98, R2
P = 0.86).
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their lower GWP values necessitate careful consideration in their use to mitigate climate impact. These insights 
into the chemical and energy profiles of various biomass resources provide a foundation for selecting optimal 
materials for bioenergy, balancing efficiency, and environmental sustainability (Table 7).

The scatter plot illustrates the correlation between GWP and HHV across three distinct sample groups: fast-
growing trees (Fig.  9a), agricultural residues (Fig.  9b), and a mixture of fast-growing trees and agricultural 
residues (Fig. 9c). The results indicate a strong linear relationship between GWP and HHV, with a coefficient 
of determination (R2) equal to 1, demonstrating perfect fit. The equation governing the calculation of GWP 
from HHV is consistent across all sample types and is expressed as GWP or GWP total = 2098.0 × HHV in TJ 
kg-1 = 0.000002098 × HHV in kJ kg-1 = 0.000002098 × HHV in Jg-1.

However, the HHV directly measurement is destructive, time consuming and chemical is necessary, therefore, 
it is not environmentally friendly. But our NIRS proposed method in this report is non-destructive, fast and no 
chemical is necessary, therefore, environmentally friendly.

It can be perfect fit based on the IPCC guideline recommendation, the GHG emission in our calculation is for 
1 kg biomass sample (It can be perfect fit even if the different number is used but it have to be fixed throughtout 
the calculation).

The calculation for proving the perfect fit between GWP and HHV is shown in following
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Fig. 5.  Regression coefficient of GWP calibration model using 1st derivative spectra with full wavenumbers (a) 
and selected wavenumber (b). The peaks in the regression coefficient plot highlight molecular bond vibrations, 
where high positive and high negative peaks indicate the vibration of the wavenumber is significantly high 
influence theprediction values.
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GHG (e.g. CO2, or CH4, or N2O) Emissions (kg)
= Mass of biomass sample (kg) × HHV of biomass sample

(
TJ kg−1)

×Emission Factor (EF) of corresponding GHG
(
kg TJ−1) � (7)

GHG Emissions (kg) represents the total amount of emissions produced. Mass of biomass samples (kg) refers to 
the total mass of the biomass sample burnt. High heating value (HHV) (TJ kg-1) is the total amount of energy in 
TJ obtained by 1 kg of biomass completely burnt in bomb calorimeter. According to the IPCC 2021 Guidelines, 
default greenhouse gas emission factors (in kg TJ-1) for wood and woody biomass combustion are 112 kg CO2/TJ 
(non-biogenic CO2 only), 30 kg CH4/TJ, and 4 kgN2O/TJ, expressed based on energy content of the fuel burned7.

Substitute the constant numbers and solely the HHV is variable which multiplied with constant number 
provided simple linear equation and the constant number is slope of the equation

GHG (e.g. CO2, or CH4, or N2O) Emissions (kg) = 1 (kg) × HHV of biomass sample (TJ kg-1) × 112 kg CO2/
TJ (non-biogenic CO2 only) or 30 kg CH4/TJ, or 4 kg N2O/TJ, respectively, used for Emission Factor (EF) of 
corresponding GHG (kg TJ-1)

CO2, or CH4, or N2O Emissions (kg) = 112 × HHV, 30 × HHV and 4 × HHV for CO2, or CH4, or N2O) 
Emissions, respectively
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Fig. 6.  X-loading plot of latent variable 1 of GWP model developed using 1st derivative spectra with full 
wavenumber range (a) and selected wavenumber (b). The peaks in the X-loading plot highlight molecular 
bond vibrations, where high positive and high negative peaks indicate the vibration of the wavenumber is 
significantly high influence the latent variable score values.
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Using the Global Warming Potential (GWP) values recommended by IPCC (2021) 6th Assessment Reports 
(AR6)7, 1 by CO2, 29.8 by CH4, and 273 by N2O, the total GWP was computed for 100 year based as:

Substitute the constant numbers and solely the HHV is variable which multiplied with constant number 
provided simple linear equation and the constant number is slope of the equation

	

GWP for CO2, or CH4, or N2O Emissions = (1 × CO2 Emission)
or (29.8 × CH4 Emission) or (273 × N2O Emission)
= (1 × 112 HHV) for CO2Emissionor(29.8 × 30 HHV)
for CH4 Emissionor(273 × 4 HHV) for N2O Emission
= 112.0 × HHV for CO2 Emissionor 894.0 × HHV
for CH4 Emissionor 1092.0 × HHV for N2O Emission

and GWP total = 2098.0
(
HHV, TJkg−1)

= 0.000002098 kJ kg−1 = 0.000002098 Jg−1

� (8)

(a)

(b)

-6000

-3000

0

3000

6000

9000

400050006000700080009000100001100012000

tneiciffeo
C

noisserge
R

Wavenumber (cm-1)

-12,000

-9,000

-6,000

-3,000

0

3,000

6,000

9,000

400050006000700080009000100001100012000

tneiciffeo
C

noisserge
R

Wavenumber (cm-1)

41114520

6063

5369

7220

46445307
5978

7020

6672

4397
5168

5947

7506
5330 4960

Fig. 7.  Regression coefficient of HHV calibration model using 1st derivative spectra with full wavenumbers (a) 
and selected wavenumber (b). The peaks in the regression coefficient plot highlight molecular bond vibrations, 
where high positive and high negative peaks indicate the vibration of the wavenumber is significantly high 
influence the prediction values.
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Category Name of Species CO2 Emission (kg) GWP mean value (± SD) HHV (J g-1)

fast-growing tree

Alnus nepalensis 2.05 × 10–3 0.0364 ± 0.0010 17,932

Pinus roxiburghii 2.00 × 10–3 0.0416 ± 0.0009 18,349

Bombusa vulagris 1.93 × 10–3 0.0367 ± 0.0012 17,310

Ecucalyptus Camaldulensis 1.91 × 10–3 0.0372 ± 0.0009 17,105

Bombax Ceiba 1.91 × 10–3 0.0375 ± 0.0007 17,077

agricultural residue

Zea mays(cob) 1.93 × 10–3 0.0379 ± 0.0007 17,297

Zea mays(shell) 1.90 × 10–3 0.0375 ± 0.0011 16,409

Zea mays (stover) 1.87 × 10–3 0.0367 ± 0.0003 16,753

Oryza sativa 1.83 × 10–3 0.0347 ± 0.0006 15,417

Saccharum officinarum 1.72 × 10–3 0.0376 ± 0.0004 17,029

Table 6.  Average of reference value of GWP and HHV (J g-1) of fast-growing trees and agricultural residues.

 

(a)

(b)

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

400050006000700080009000100001100012000

X
-lo

ad
in

g 

Wavenumber (cm-1)

4520
5037

6595

4165
7112

-0.30

-0.20

-0.10

0.00

0.10

0.20

400050006000700080009000100001100012000

X
-lo

ad
in

g

Wavenumber (cm-1)

44355292

4134

5230

4983

7081

4034

4443
5361

5963
7274

Fig. 8.  X-loading plot of HHV model developed by using 2nd derivative spectra with full wavenumbers (a) 
and selected wavenumber (b). The peaks in the regression coefficient plot highlight molecular bond vibrations, 
where high positive and high negative peaks indicate the vibration of the wavenumber is significantly high 
influence the prediction values.
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Discussion
The prediction of GWP of biomass using FT-NIR spectroscopy presents an innovative approach to evaluating 
the environmental impact of biomass energy sources. Biomass is increasingly considered a vital renewable 
energy resource, but its sustainability is contingent upon a comprehensive understanding of its environmental 
implications, particularly its GWP, which reflects its contribution to climate change.

Correlation between HHV and GWP
The results exhibit a correlation between the chemical composition of biomass within its FT-NIR spectrum, and 
its GWP. The FT-NIR technique scanned the vibrational signatures of molecular bonds in the biomass, which 
reveal its composition, particularly in terms of cellulose, hemicellulose, lignin, and moisture content45. These 
compositional factors directly influence the biomass's HHV and, consequently, its GWP. The positive correlation 
examined in the study between HHV and GWP suggests that biomass with a higher energy content tends to 
have a higher GWP, likely due to the increased carbon content, which results in greater CO2 emissions upon 
combustion. NIR spectroscopy can be used to assess biomass's carbon content, which is directly connected to 
the amount of CO2 it emits when burned46. Building on this, our work incorporates emissions of CH4 and N2O 
in addition to CO2 and establishes a direct correlation between GWP and the NIR spectral data.

Wavenumber (cm−1)
Wavenumber (cm−1) 
indicated in38 Bond vibration Structure Model

4011 4019 C-H (1ν) + C-C (1ν) Cellulose GWP Regression Coefficient Fullwave

4065 4068 CH3 (3δ) Hydrocarbons GWP X-loading of 1st latent variable Selected wavenumber

4111, 4134, 4142, 4165, 
4196 4190-4090 C-H (1ν) + C-H (1δ) C-H Aryl

GWP Regression Coefficient Fullwave

GWP Regression Coefficient Selected wavenumber

GWP X-loading of 1st latent variable Fullwave

HHV Regression Coefficient Selected wavenumber

HHV X-loading of 1st latent variable Fullwave

HHV X-loading of 1st latent variable Selected wavenumber

4304 4307 C-H (1ν) + CH2 (1δ) Glucose GWP X-loading of 1st latent variable Selected wavenumber

4389 4386 C-H (1ν) + CH2 (1δ) Polysaccharides GWP Regression Coefficient Selected wavenumber

4397 4400 O-H (1ν) + C-O (1ν) Glucose
GWP X-loading of 1st latent variable Selected wavenumber

HHV Regression Coefficient Fullwave model

4520, 4528 4525 N-H (3ν) Ammonia in water

GWP X-loading of 1st latent variable Fullwave

HHV Regression Coefficient Selected wavenumber

HHV X-loading of 1st latent variable Fullwave

4605 4600 CONH2 Proteins GWP Regression Coefficient Selected wavenumber

4644, 4651 4644 C-H (1ν) + C-C (1ν) C-H Aryl
GWP Regression Coefficient Fullwave

HHV Regression Coefficient Selected wavenumber

4867 4866 N-H (1ν) + C = O (1ν) (amide I) Amides/proteins GWP Regression Coefficient Selected wavenumber

4960 4960 O-H (1ν) + O-H (1δ) Methanol O-H HHV Regression Coefficient Fullwave

5060 5049 N-H (1ν) + N-H (1δ) Aromatic amine GWP X-loading of 1st latent variable Fullwave

5168 5160 O-H — ν2 + ν3 water HHV Regression Coefficient Fullwave

5214 5200 O-H (1ν) + O-H (1δ) water GWP Regression Coefficient Fullwave

5230 5241 P-OH — O-H (2ν) Phosphate
GWP X-loading of 1st latent variable Selected wavenumber

HHV X-loading of 1st latent variable Selected wavenumber

5947, 5963 5952 C-H (2ν) Hydrocarbons
HHV Regression Coefficient Fullwave

HHV X-loading of 1st latent variable Selected wavenumber

5978 5985 C-H (1ν) + C-H (1ν) C-H Aryl HHV Regression Coefficient Selected wavenumber

6441 6450 O-H water GWP Regression Coefficient Fullwave

7112 7100 O-H (2ν) O-H (Methanol) HHV X-loading of 1st latent variable Fullwave

7151 7163 CH3 (2ν) + CH3 (1δ) Hydrocarbons GWP Regression Coefficient Fullwave

7189 7194 CH3 (2ν) + CH3 (1δ) Hydrocarbons GWP Regression Coefficient Selected wavenumber

Table 7.  The function groups corresponding to wavenumber shown in regression coefficient plot and 
x-loading plot of models for GWP and HHV. *1ν, fundamental stretching vibration; 2ν, 1st overtone of 
fundamental stretching vibration; 3ν, 2nd overtone of fundamental stretching vibration; 5ν, 4th overtone of 
fundamental stretching vibration; 1δ, fundamental bending (deformation) vibration; 3δ, 2nd overtone of 
fundamental bending (deformation) vibration; 1, symmetric stretching vibration; 2, bending vibration; 3, 
asymmetric stretching vibration; and + is combination.
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Prediction model and its accuracy
The predictive models shown in Fig.  3 used FT-NIR data and modeling technique of PLSR exhibit for the 
acceptable accuracy in estimating the GWP of various biomass types. The R2

P values of 0.85 indicated optimized 
325 wavenumber found by COVM with 1st derivative spectra in our study provided the model with a substantial 
proportion of the variance in GWP can be explained by the spectral data, affirming the effectiveness of FT-NIR 
as a non-destructive, rapid, and cost-effective method for GWP estimation. The prediction of GWP in real-time 
can substantially enhance the decision-making process in biomass selection for energy production, ensuring 
sustainability goals. This is the innovative and unique model to find out the GWP using FT-NIR spectroscopy. 
The model performance of HHV is shown in Fig. 4, where the R2

P values is 0.86 by 2nd derivative spectra of 
optimized 365 wavenumbers found by COVM.

Fig. 9.  Scatter plots of GWP value with different HHV of every sample of fast-growing trees (a), every sample 
of agriculture residues (b) and every sample of fast-growing trees and agriculture residue (c). The scatter plot 
with a trend line, illustrating the relationship between Higher Heating Value (HHV) and Global Warming 
Potential (GWP) for fast-growing trees and agricultural residue biomass. The plot shows a positive correlation, 
indicating that biomass with higher HHV tends to contribute more to GWP. Data points are color-coded by 
biomass type and mostly fall within the mid-range of HHV (15,800–18,000 J g⁻1) and GWP (0.0320–0.0380). 
This suggests that higher energy content in biomass is associated with greater environmental impact due to 
increased emissions.
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Williams et al.37 have developed a guideline for model performance interpretation based on R2
P value and 

RPD value, where, our case, R2
P of 0.85 for GWP and 0.86 for HHV is in the range of 0.83–0.90 is usable with 

caution for most applications including research and RPD of 2.6 for GWP and 2.7 for HHV are in the range of 
2.5–2.9 for functionality parameter such as GWP and HHV indicating the models are fair and can be used for 
screening. We therefore, interpret our GWP and HHV optimized models can be usable with caution for most 
applications including research based on its R2

P.
The developed PLSR model is built on a mixture of five fast-growing tree species and five types of agricultural 

residues, which is same biomass data set as Shrestha et al.18 who reported the effect of diffent species to model 
performance for prediction of C, H, N, and O content in biomass. The result shows for C model to be better the 
pine and corn stover should not be include in modeling, for N model, pine, and bagasse should not be included, 
for H, pine, Alnus, corn shell, and bagasse should not be included; and for O, pine should not be included for 
better performance of the models18. This indicated pine was not be included in any model of these groups of 
biomass with the rational by Williams principle37 to be explained.

Williams et al.37 explained that the rate of change of Y (measured value) is a function of the rate of change 
of X (NIR predicted value) can be indicated by slope of the trend line ploted between Y and X18,37, when the R 
approached 1 and the slope approached 1 and the intercept approached zero, the model approached excellence37. 
This is the dictation principal to remove or keep the species which have negative and positive effect, respectively, 
on the model performance. The combined different species of biomass, for example, in our case, the fast-growing 
trees and agricultural residue, Shrestha et al.18 indicated the inclusion of different species in a model, the species 
have to be not only in the different values of the constituents to make a wider range for a robust model, but every 
specie also must provide the characteristic of the same rate of change of NIR predicted values with the measured 
values (same slope and slope should approach 1, and intercept is same (no gap) and approached zero), for high 
performance of prediction. Some species whose characteristics were similar, the trends were common supported 
the each other but might positively or negatively to the prediction performace of the model18. By scatter plot 
(trend line) analysis, which of the species affecting the model negatively were identified and dictated how to 
improve the model performance18.

The H content contributed more on HHV compared to C content47,48. Higher concentrations of O and 
moisture (H2O), in turn, lower the HHV, resulting in incomplete combustion48. High C and H but low in N, 
S, and H2O is the besttype of biomass maximizing the amount of energy i.e. HHV48. These element in biomass 
highly related to GHG emissions48, therefore, GWP. The further study and investigation of these relations can 
bring some conclusions of Global warming management effectively.

Analysis of traditional method and FT-NIR spectroscopy
The traditional methods of GWP estimation, which often involve complex chemical analyses and life cycle 
assessment (LCA) models whereas FT-NIR spectroscopy approaches a more streamlined. Traditional methods, 
while comprehensive, can be time-consuming and resource intensive. FT-NIR, by contrast, provides rapid 
results, making it an attractive tool for routine analysis and large-scale biomass screening39.

Though, FT-NIR offers rapid, non-destructive, and cost-effective GWP prediction, it has certain limitations. 
For instance, the developed model's accuracy will be affected by other variability in biomass composition, such 

Fig. 9.  (continued)
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as differences in moisture content, lignin, or cellulose levels, if were not included in the model. The updating 
model can be optimized by include more varieties and species of biomass to obtain more robust prediction 
performance. However, it is essential to note that while FT-NIR can predict GWP based on biomass composition, 
it does not account for the entire lifecycle emissions, such as those from cultivation, harvesting, transportation 
or processing. While FT-NIR is highly effective for rapid screening, it should be used in conjunction with other 
LCA tools for a holistic assessment.

Sustainable approach to implications for biomass energy sector
The ability to predict GWP using FT-NIR spectroscopy has significant implications for the biomass energy 
sector. By enabling more precise selection of biomass feedstocks with lower GWP, this approach supports 
the development of more sustainable bioenergy systems. This could lead to a reduction in the overall carbon 
footprint of bioenergy production, making it a more competitive alternative to fossil fuels in the context of global 
climate change mitigation49.

Future research and way forward
Future research should focus on expanding the database of biomass types analyzed using FT-NIR to improve 
the robustness and generalizability of the predictive models. Additionally, integrating FT-NIR data with 
thermogravimetric analysis (TGA) where the simulation of different type thermal conversion of biomass 
degrading in which the different emission gases are generated and with gas chromatography-mass spectrometry 
(GC–MS) for evaluation of concentration of the generated emission gases could further refine GWP predictions 
by providing more comprehensive insights and exact content of emission gases effect global warming to support 
the IPCC. Moreover, exploring the use of FT-NIR in conjunction with different machine learning algorithms 
could enhance the predictive power of the models, allowing for more accurate GWP estimation across a broader 
range of biomass types.

Conclusion
In this research, PLSR-based model developed and compared using FT-NIR spectroscopy to analyze the global 
warming potential (GWP) of fast-growing trees and agricultural residue biomass. All chip biomass samples 
were scanned within 3600–12,500  cm-1 on the diffuse reflectance with macro sphere sample rotating mode, 
with a particular emphasis on their suitability for energy applications. The prediction model was developed 
using the full standard normal variate (SNV) or featured wavenumbers obtained by Correlation Matrix (CM), 
Variance Matrix (VM), Covariance Matrix (COVM) and Variable Importance of Projection (VIP) coupled with 
four pretreatment methods including raw spectra, 1st Derivative, 2nd Derivative, and standard normal variate 
(SNV). The model with the optimum performance was selected based on trade-off parameters of R2

C, RMSEC, 
R2

P, RMSEP, RPD and bias.
This research lays a foundation in NIRS, showing that preprocessing on the full wavenumber range spectra 

with various techniques can enhance model accuracy. The recommended PLSR models for rapid assessing GWP 
by biomass combustion developed by 1st derivative pretreated spectra with selected wavenumber obtained by 
COVM can serve as a reliable and nondestructive alternative method without of using the measured higher 
heating value (HHV) value when employing NIRS which only the NIR spectrum of the biomass is needed. It 
is nondestructive protocol developed for the first time for climate change which usable with caution for most 
applications including research interpreted followed Williams Guidelines37. Therefore, it is necessary to expand 
sample size from various samples to enhance the model robustness and validate it with unknown samples for 
proving. We employed the GWP calculation method indicated by IPCC combined with PLSR (Partial Least 
Squares Regression) modeling achieving a prediction model performance with R2C = 0.92 and R2P = 0.85 
which demonstrates an optimized model could be used with caution for most application including research. 
In upcoming paper modeling, we plan to further enhance the model performance by other machine learning 
techniques such as Random Forest and Support Vector Regression and deep learning such as CNN which may 
or may not be more accurate in GWP predictions than PLSR in this manuscript.

GWP varies significantly with changes in both HHV and the Emission Factor. This analysis indicates that 
while both parameters directly influence GWP, the magnitude of their impact can differ depending on specific 
conditions. For instance, a 10% increase in the Emission Factor could result in a significant rise in GWP, whereas 
a similar 10% increase in HHV might have a less impact on GWP. This explains that focusing on reducing 
emissions (e.g. through cleaner combustion technologies or better fuel treatment) could be more effective in 
reducing overall GWP than merely increasing fuel efficiency.

Furthermore, the research finding could assist academic and research institutions, policymaking think tanks, 
and energy companies in effective planning, managing, and utilization of bio-resources to meet future energy 
demands and mitigating the global warming. Additionally, this research outcomes open opportunities for NIR-
based research to implement similar approaches.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to reasons of no 
permission of research grant resource but are available from the corresponding author on reasonable request.
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