KIT | KIT-Bibliothek | Impressum | Datenschutz

Improving Counterfactual Truthfulness for Molecular Property Prediction through Uncertainty Quantification

Teufel, Jonas ORCID iD icon 1; Leinweber, Annika; Friederich, Pascal ORCID iD icon 1
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Explainable AI (xAI) interventions aim to improve interpretability for complex black-box models, not only to improve user trust but also as a means to extract scientific insights from high-performing predictive systems. In molecular property prediction, counterfactual explanations offer a way to understand predictive behavior by highlighting which minimal perturbations in the input molecular structure cause the greatest deviation in the predicted property. However, such explanations only allow for meaningful scientific insights if they reflect the distribution of the true underlying property -- a feature we define as counterfactual truthfulness. To increase this truthfulness, we propose the integration of uncertainty estimation techniques to filter counterfactual candidates with high predicted uncertainty. Through computational experiments with synthetic and real-world datasets, we demonstrate that traditional uncertainty estimation methods, such as ensembles and mean-variance estimation, can already substantially reduce the average prediction error and increase counterfactual truthfulness, especially for out-of-distribution settings. ... mehr


Volltext §
DOI: 10.5445/IR/1000186172
Veröffentlicht am 28.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 03.04.2025
Sprache Englisch
Identifikator KITopen-ID: 1000186172
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Verlag arxiv
Umfang 24 S.
Schlagwörter Machine Learning (cs.LG), Artificial Intelligence (cs.AI)
Nachgewiesen in Dimensions
OpenAlex
arXiv
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page