KIT | KIT-Bibliothek | Impressum | Datenschutz

Symmetry-Aware Bayesian Flow Networks for Crystal Generation

Ruple, Laura; Torresi, Luca; Schopmans, Henrik; Friederich, Pascal ORCID iD icon 1
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The discovery of new crystalline materials is essential to scientific and technological progress. However, traditional trial-and-error approaches are inefficient due to the vast search space. Recent advancements in machine learning have enabled generative models to predict new stable materials by incorporating structural symmetries and to condition the generation on desired properties. In this work, we introduce SymmBFN, a novel symmetry-aware Bayesian Flow Network (BFN) for crystalline material generation that accurately reproduces the distribution of space groups found in experimentally observed crystals. SymmBFN substantially improves efficiency, generating stable structures at least 50 times faster than the next-best method. Furthermore, we demonstrate its capability for property-conditioned generation, enabling the design of materials with tailored properties. Our findings establish BFNs as an effective tool for accelerating the discovery of crystalline materials.


Volltext §
DOI: 10.5445/IR/1000186173
Veröffentlicht am 28.10.2025
Originalveröffentlichung
DOI: 10.48550/arXiv.2502.03146
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 05.02.2025
Sprache Englisch
Identifikator KITopen-ID: 1000186173
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Verlag arxiv
Schlagwörter Machine Learning (cs.LG), Materials Science (cond-mat.mtrl-sci)
Nachgewiesen in Dimensions
arXiv
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page