KIT | KIT-Bibliothek | Impressum | Datenschutz

Learning Potential Energy Surfaces of Hydrogen Atom Transfer Reactions in Peptides

Neubert, Marlen; Reiser, Patrick; Gräter, Frauke; Friederich, Pascal ORCID iD icon 1
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Hydrogen atom transfer (HAT) reactions are essential in many biological processes, such as radical migration in damaged proteins, but their mechanistic pathways remain incompletely understood. Simulating HAT is challenging due to the need for quantum chemical accuracy at biologically relevant scales; thus, neither classical force fields nor DFT-based molecular dynamics are applicable. Machine-learned potentials offer an alternative, able to learn potential energy surfaces (PESs) with near-quantum accuracy. However, training these models to generalize across diverse HAT configurations, especially at radical positions in proteins, requires tailored data generation and careful model selection. Here, we systematically generate HAT configurations in peptides to build large datasets using semiempirical methods and DFT. We benchmark three graph neural network architectures (SchNet, Allegro, and MACE) on their ability to learn HAT PESs and indirectly predict reaction barriers from energy predictions. MACE consistently outperforms the others in energy, force, and barrier prediction, achieving a mean absolute error of 1.13 kcal/mol on out-of-distribution DFT barrier predictions. ... mehr


Volltext §
DOI: 10.5445/IR/1000186175
Veröffentlicht am 28.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 01.08.2025
Sprache Englisch
Identifikator KITopen-ID: 1000186175
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Verlag arxiv
Schlagwörter Machine Learning (cs.LG), Materials Science (cond-mat.mtrl-sci), Chemical Physics (physics.chem-ph), Computational Physics (physics.comp-ph), Biomolecules (q-bio.BM)
Nachgewiesen in OpenAlex
Dimensions
arXiv
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page