KIT | KIT-Bibliothek | Impressum | Datenschutz

MatBind: Probing the multimodality of materials science with contrastive learning

Mirza, Adrian; Yang, Le; Chandran, Anoop K.; Östreicher, Jona; Bompas, Sebastien; Kazimi, Bashir; Kesselheim, Stefan; Friederich, Pascal ORCID iD icon 1; Sandfeld, Stefan; Jablonka, Kevin Maik
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Materials discovery depends critically on integrating information from multiple experimental and computational techniques, yet most tools today analyze these different data types in isolation. Here, we present MatBind, a model based on the ImageBind architecture that creates a unified embedding space across four key materials science modalities: density of states (DOS), crystal structures, text descriptions, and powder X-ray diffraction (pXRD) patterns. Using a hub-and-spoke architecture with crystal structure as the central modality, MatBind achieves cross-modal recall@1 performance of up to 98% between directly aligned modalities and up to 73% for pairs of modalities not explicitly trained together. ... mehr

Abstract (englisch):

Materials discovery depends critically on integrating information from multiple experimental and computational techniques, yet most tools today analyze these different data types in isolation. Here, we present MatBind, a model based on the ImageBind architecture that creates a unified embedding space across four key materials science modalities: density of states (DOS), crystal structures, text descriptions, and powder X-ray diffraction (pXRD) patterns. Using a hub-and-spoke architecture with crystal structure as the central modality, MatBind achieves cross-modal recall@1 performance of up to 98% between directly aligned modalities and up to 73% for pairs of modalities not explicitly trained together. ... mehr


Volltext §
DOI: 10.5445/IR/1000186183
Veröffentlicht am 28.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 25.03.2025
Sprache Englisch
Identifikator ISBN: 9798331320850
KITopen-ID: 1000186183
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Verlag International Conference on Learning Representations (ICLR)
Bemerkung zur Veröffentlichung Submission Number: 28
Vorab online veröffentlicht am 03.03.2025
Externe Relationen Siehe auch
Nachgewiesen in OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 4 – Hochwertige BildungZiel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page