KIT | KIT-Bibliothek | Impressum | Datenschutz

Mitigating Molecular Aggregation in Drug Discovery With Predictive Insights From Explainable AI

Sturm, Hunter; Teufel, Jonas ORCID iD icon 1; Isfeld, Kaitlin A.; Friederich, Pascal ORCID iD icon 1; Davis, Rebecca L.
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Herein, we present the application of multi-channel graph attention network (MEGAN), our explainable AI (xAI) model, for the identification of small colloidally aggregating molecules (SCAMs). This work offers solutions to the long-standing problem of false positives caused by SCAMs in high-throughput screening for drug discovery and demonstrates the power of xAI in the classification of molecular properties that are not chemically intuitive based on our current understanding. We leverage xAI insights and molecular counterfactuals to design alternatives to problematic compounds in drug screening libraries. Additionally, we experimentally validate the MEGAN prediction classification for one of the counterfactuals and demonstrate the utility of counterfactuals for altering the aggregation properties of a compound through minor structural modifications. The integration of this method in high-throughput screening approaches will help combat and circumvent false positives, providing better lead molecules more rapidly and thus accelerating drug discovery cycles.


Verlagsausgabe §
DOI: 10.5445/IR/1000186184
Veröffentlicht am 28.10.2025
Originalveröffentlichung
DOI: 10.1002/ange.202503259
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 14.07.2025
Sprache Englisch
Identifikator ISSN: 0044-8249, 1521-3757
KITopen-ID: 1000186184
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Angewandte Chemie
Verlag John Wiley and Sons
Band 64
Heft 29
Seiten Art.-Nr. e202503259
Vorab online veröffentlicht am 19.05.2025
Nachgewiesen in Dimensions
OpenAlex
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page