

Journal Pre-proof

Time-Restricted Eating in Alzheimer's Disease: TREAD Pilot Trial Design

Susan B. Racette, Jordan A. Gunning, Danielle E. Eagan, Isabella Zaniletti, Tracy L. Smith, Candice J. DeCuna, Yehansa S. Hettihawatte, Migbare T. Demeke, Nevine A. Khan, Emily L. Aliskevich, Janina Krell-Roesch, Yonas E. Geda

PII: S2451-8654(25)00138-3

DOI: <https://doi.org/10.1016/j.conctc.2025.101564>

Reference: CONCTC 101564

To appear in: *Contemporary Clinical Trials Communications*

Received Date: 16 August 2025

Revised Date: 9 October 2025

Accepted Date: 25 October 2025

Please cite this article as: S.B. Racette, J.A. Gunning, D.E. Eagan, I. Zaniletti, T.L. Smith, C.J. DeCuna, Y.S. Hettihawatte, M.T. Demeke, N.A. Khan, E.L. Aliskevich, J. Krell-Roesch, Y.E. Geda, Time-Restricted Eating in Alzheimer's Disease: TREAD Pilot Trial Design, *Contemporary Clinical Trials Communications*, <https://doi.org/10.1016/j.conctc.2025.101564>.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier Inc.

Title: Time-Restricted Eating in Alzheimer's Disease: TREAD Pilot Trial Design

Authors: Susan B. Racette, PhD¹, Jordan A. Gunning, PhD¹, Danielle E. Eagan, PhD², Isabella Zaniletti, PhD, MA³, Tracy L. Smith, RD², Candice J. DeCuna, BS¹, Yehansa S. Hettiwatte¹, Migbare T. Demeke, MD², Nevine A. Khan, MS², Emily L. Alishevich, BA², Janina Krell-Roesch, PhD⁴, Yonas E. Geda, MD, MSc²

Author Affiliations: ¹College of Health Solutions, Arizona State University, Phoenix, AZ, USA.

²Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA. ³IZ Statistics LLC, Tampa, FL, USA, ⁴Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany.

Corresponding Author: Susan B. Racette, PhD
Arizona State University
850 N 5th Street
Phoenix, AZ 85004
Office Phone: 602-543-1563
E-Mail: Susan.Racette@asu.edu

Clinical Trials Registration: NCT06429124

Abstract Word Count: 195

Manuscript Word Count: 1475

Figures: 2

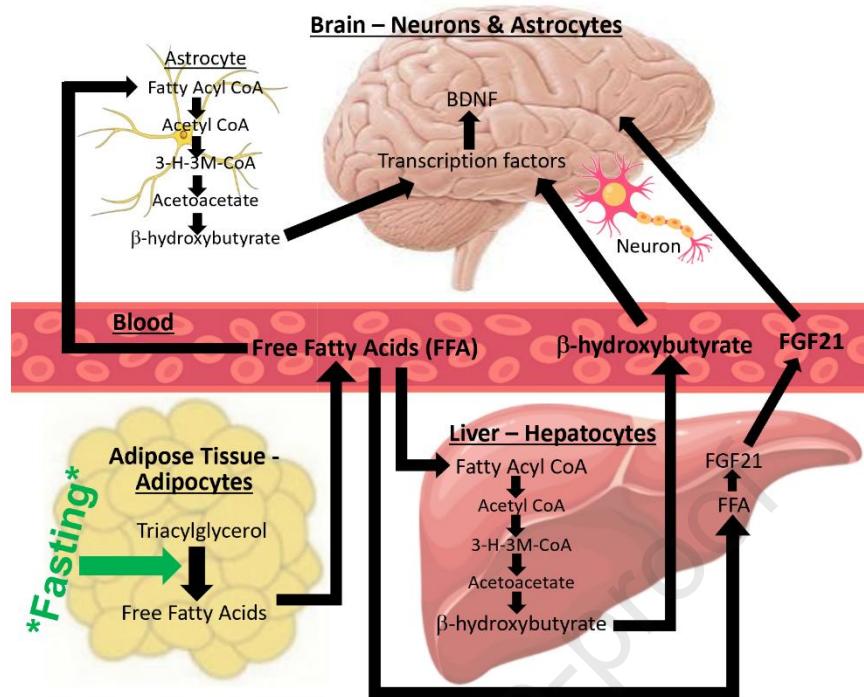
Tables: 0

References: 47

Key Words: Time-restricted eating, Alzheimer's disease, mild cognitive impairment

1 **Abstract**

2 *Background and objective:* Time-restricted eating (TRE) may slow neurodegeneration and
3 cognitive decline by stimulating metabolic processes that are neuroprotective. The primary aim
4 of the TRE in Alzheimer's Disease (TREAD) pilot trial is to evaluate the feasibility of
5 implementing a TRE intervention among individuals with mild cognitive impairment (MCI) and
6 to obtain preliminary data on cognitive domains and blood biomarkers that are responsive to
7 TRE.


8 *Methods:* TREAD is an intervention trial for 30 adults aged 55-89 years with MCI. A pre/post
9 design is used, with neuropsychological assessments, surveys, and blood biomarkers of
10 cardiometabolic health and AD obtained before and after the intervention. The TRE intervention
11 involves 16h of continuous fasting and an 8h eating window on 5 or more days per week for 12
12 weeks. Feasibility measures include participant enrollment, retention, adherence, acceptability of
13 the intervention, and safety. Cognitive measures include executive function, working memory,
14 processing speed, auditory attention, auditory verbal learning, visuospatial memory, category
15 fluency, and phonemic fluency.

16 *Summary:* TREAD is exploring an innovative approach to address cognitive decline and will
17 provide critical preliminary data to inform and power a larger, longer-term, randomized
18 controlled trial of TRE on cognitive trajectory among adults with cognitive impairment.

19 **1. Introduction**

20 Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and is
21 characterized by cognitive impairment and adverse effects on social function, physical function,
22 quality of life, and mortality. AD and AD-related dementias affect an estimated 6.9 million
23 Americans [1] and more than 55 million people worldwide [2]. Mild cognitive impairment
24 (MCI) represents the earliest clinical diagnosis of cognitive decline [3] and a potential window of
25 opportunity for preventive therapies that may slow the progression to dementia.

26 Time-restricted eating (TRE) is a promising non-pharmacological, dietary approach for
27 which there is compelling mechanistic rationale for its benefits on metabolic pathways that
28 influence AD pathology and cognitive decline [4]. TRE is a form of intermittent fasting
29 characterized by an extended fasting period (~12-16h) and a restricted eating window (~8-12h).
30 TRE promotes ketone production and a cascade of metabolic effects (**Fig. 1**) that may stimulate
31 autophagy and reduce neuroinflammation, tauopathy, and amyloid-beta plaque deposition [5, 6].
32 Additionally, TRE may improve neuronal stress resistance by enhancing antioxidant defenses
33 and DNA repair [7-9]. Observational studies of TRE in people with MCI [10-12], single-arm
34 pilot trials of TRE in people with subjective cognitive decline [13] and AD [14], and TRE
35 intervention trials in people without MCI [15-19] provide strong scientific rationale for pursuing
36 this line of investigation. This pilot trial is an innovative approach that builds on a strong
37 scientific foundation to address a critical clinical need and advance AD research.

38

39 **Fig. 1.** Time-restricted eating (TRE) is characterized by extended fasting periods, which
 40 cause lipolysis in adipose tissue. Triacylglycerols are broken down into free fatty acids
 41 (FFA) and glycerol. FFA travel to the blood, liver, and astrocytes in the brain; FFA are
 42 metabolized to the ketone beta-hydroxybutyrate (β -OHB). β -OHB produced in the liver
 43 travels to the blood and to neurons in the brain, stimulating production of brain-derived
 44 neurotrophic factor (BDNF) and other metabolites that may contribute to neurogenesis in
 45 the hippocampus. Ketogenesis in astrocytes also produces β -OHB for neurons. FFA in the
 46 liver may lead to the production of fibroblast growth factor 21 (FGF21).

47 **2. Design and Methods**48 **2.1. Design**

49 TREAD uses a pre/post design (**Fig. 2**) in which all participants receive the TRE
 50 intervention. TREAD is registered in ClinicalTrials.gov (NCT06429124) and is approved by the
 51 Institutional Review Board of Barrow Neurological Institute / St. Joseph's Hospital and Medical
 52 Center in Phoenix, AZ.

53

54 **Fig. 2.** TREAD pilot trial design

55

56 **2.2. Specific Aims**

57 Aim 1 of TREAD is to determine the feasibility of implementing a TRE intervention among
 58 individuals with MCI. Aim 2 is to obtain preliminary data on cognitive domains and biomarkers
 59 of metabolic health and AD that may be responsive to TRE in this population.

60

61 **2.3. Participants**

62 Eligible participants are men and women aged 55-89 years who have MCI based on the
 63 Mayo Clinic criteria [20], a body mass index (BMI) of 18.5 to <40.0 kg/m², are not current
 64 smokers or shift workers, do not have a medical condition for which TRE is contraindicated, and
 65 have a family member or friend who will serve as their study partner. Capacity to consent is

66 assessed prior to enrollment to ensure that participants understand the study aims and procedures.
67 Medical history information is obtained from participants and the electronic medical record.
68 Recruitment is performed by physicians in the Alzheimer's & Memory Disorders Program at
69 Barrow Neurological Institute in Phoenix, AZ. The enrollment goal is 30 participants.

70

71 2.4 TREAD intervention

72 The intervention is a 16/8 TRE regimen characterized by 16h of continuous fasting and an 8h
73 eating window on 5 or more days per week for 12 weeks (**Fig. 2**). Participants can follow an 8h
74 eating window that fits their lifestyle, whether early TRE (8 am-4 pm), late TRE (12-8 pm), or a
75 window in between. The intervention is delivered by a registered dietitian (RD) with expertise in
76 neurological conditions. The RD meets with participants and their study partners weekly by
77 phone to provide support, encouragement, and guidance, while obtaining updates and addressing
78 any challenges. Calorie restriction is not a component of the intervention, although some
79 participants may consume fewer calories as a result of the TRE regimen.

80 Promoting adherence and tracking participants' eating windows are facilitated by the ASU
81 Meal Monitoring smartphone app that was custom designed for TREAD (Ingenious Agency,
82 Denver, CO). The app was designed to be very simple for older adults, with only a couple of
83 clicks to log the time that they eat their first and last calorie each day. Once the time of the first
84 calorie is entered, the app displays the time by which to consume the last calorie to meet the 8h
85 goal. The app displays congratulatory messages with confetti when the TRE goal is met or thank-
86 you messages with encouraging phrases when time is logged but the goal is not met. The data are
87 available to study personnel immediately on a password-protected website.

88

89 2.5 Outcome Measures

90 Aim 1 outcome measures include participant enrollment, retention, adherence, acceptability
91 of the TRE intervention, and safety. Enrollment success is defined by enrollment of 30 eligible
92 participants. Retention is computed as the % of enrolled participants who complete the 12-week
93 intervention and pre- and post-assessments. Daily TRE adherence is defined as an eating window
94 ≤ 8 h and overall adherence as achieving the 8h TRE goal on 5 or more days weekly throughout
95 the 12-week intervention (i.e., ≥ 60 days out of 84 potential days). Adherence is based on data
96 obtained from the Meal Monitoring app. Frequencies are determined for the proportion of days
97 on which the eating window is within 8h, 9h, and 10h, as it is not well-established whether a 16h
98 fasting period has significantly greater benefits than 15h or 14h. Additionally, more flexible
99 eating windows of 9h and 10h may be more feasible and acceptable in a longer-term
100 intervention.

101 The clock times of the eating windows are analyzed as well, as there is evidence that early
102 vs. late TRE may influence its metabolic effects [21]. Objective estimates of the eating windows
103 and fasting periods each day are obtained in a subsample of participants using a wrist-worn smart
104 band (HEALBE GoBe3) that monitors changes in glucose levels and reveals glucose excursions
105 that occur when calories are consumed [22, 23]. Acceptability of the intervention is based on
106 weekly check-ins throughout the 12 weeks, a semi-structured exit interview of participants, and
107 an exit survey of study partners. Safety is based on adverse event reporting.

108 Aim 2 measures are obtained before and after the 12-week intervention and include cognitive
109 measures, questionnaires regarding quality of life and lifestyle patterns, cardiometabolic health
110 indices, and blood-based AD biomarkers. Pilot results from this trial will be used to streamline
111 the assessment battery and select the most meaningful measures for future randomized controlled

112 trials.

113 Neuropsychological tests are administered by an experienced psychometrist in the clinic to
114 assess executive function, working memory, processing speed, auditory attention, auditory verbal
115 memory, visuospatial memory, category fluency, and phonemic fluency. Tests include: Mini
116 Mental State Examination (MMSE) [24], Comprehensive Trail Making Test (CTMT) [25],
117 Wechsler Adult Intelligence Scale - Fourth Edition (WAIS-IV) Digit Span Forward and
118 Backward tests [26], Auditory Verbal Learning Test (AVLT) [27], Brief Visuospatial Memory
119 Test-Revised (BVMT-R) [28, 29], and category and phonemic fluency tests [30]. Scoring of each
120 test is based on manualized scoring criteria (i.e., age-matched and, in some cases, education-
121 matched norms). Practice effects are mitigated by using alternate forms for memory tests (AVLT
122 and BVMT-R). Composite scores that average performance across cognitive domains will be
123 used to improve statistical power in a subsample.

124 Questionnaires that are used to obtain information on quality of life, psychological well-
125 being, stress, resilience, sleep, dietary patterns, and physical activity include: World Health
126 Organization Quality of Life instrument (WHOQOL-BREF) [31], Valued Living Questionnaire
127 (VLQ) [32], Bull's Eye Values Survey (BEVS) [33], Cognitive Fusion Questionnaire (CFQ)
128 [34], Depression, Anxiety and Stress Scales (DASS-42) [35], Perceived Stress Scale (PSS) [36],
129 Brief Resilience Scale (BRS) [37], Believability of Anxious Feelings and Thoughts
130 Questionnaire (BAFT) [38], Comprehensive Assessment of Acceptance and Commitment
131 Therapy Process (CompACT) [39], Pittsburgh Sleep Quality Index (PSQI) [40], Mediterranean
132 Diet Score [41], Modified Leisure Time Physical Activity Questionnaire [42], and Physical
133 Activity and Sedentary Behaviour Questionnaire (PASB-Q) [43]. Physical activity is estimated
134 objectively in a subsample using the HEALBE GoBe3 smart band [22].

135 Cardiometabolic health indices include resting heart rate, blood pressure, BMI, waist
136 circumference, waist-to-hip ratio, hemoglobin A1c, insulin resistance estimated by the
137 homeostasis model assessment of insulin resistance (HOMA-IR) [44, 45], and inflammatory
138 cytokines. Blood-based AD biomarkers include A β 42, A β 40, A β 42/A β 40 ratio, phosphorylated
139 tau proteins p-tau217 and p-tau181, and total tau (T-tau).

140 Study data are collected and managed using Research Electronic Data Capture (REDCap)
141 [46, 47] tools hosted at Barrow Neurological Institute. Data will be summarized using counts and
142 percentage for categorical variables and mean and standard deviation or median with
143 interquartile range for continuous distributions. Statistical analysis will include Chi-Square tests,
144 student t-tests, or non-parametric tests, as appropriate. The outcomes will be modeled using
145 generalized linear mixed models for repeated measures, controlling for baseline values and
146 covariates (e.g., sex, age) when appropriate.

147

148 **3. Summary**

149 The TREAD pilot trial will provide critical preliminary data to inform and power a larger,
150 longer-term, randomized controlled trial of TRE on cognitive trajectory among adults with
151 cognitive impairment. We will use the strategies that we identify as effective for intervention
152 adherence to optimize a future trial that will explore mechanisms and specific pathways through
153 which TRE may impact cognitive domains. The long-term goal is to provide evidenced-based
154 nutritional strategies to prevent or delay cognitive decline and the progression of normal
155 cognition to MCI and to dementia.

156 **Disclosures**

157 Dr. Racette receives research funding from the National Institutes of Health (grants
158 R01AG071717, R33AG070455, R61HL155858, and R25HL105400) and Barrow Neurological
159 Foundation; she serves on the Scientific Advisory Board for Pritikin Intensive Cardiac Rehab.
160 Dr. Geda receives funding from the National Institutes of Health (R01AG069453), Barrow
161 Neurological Foundation, and Roche. The other authors have nothing to disclose.

162

163 **Funding**

164 This research is supported by funding from Barrow Neurological Foundation.

165

166 **CRediT authorship contribution statement**

167 **Susan Racette:** Conceptualization, Methodology, Writing – original draft, review & editing.
168 **Jordan Gunning:** Methodology, Writing – review & editing. **Danielle Eagan:** Methodology,
169 Writing – review & editing. **Isabella Zaniletti:** Methodology, Writing – review & editing. **Tracy**
170 **Smith:** Methodology, Writing – review & editing. **Candice DeCuna:** Methodology, Writing –
171 review & editing. **Yehansa Hettiaratte:** Writing – review & editing. **Migbare Demeke:** Writing
172 – review & editing, **Nevine Khan:** Writing – review & editing, **Emily Alishevich:** Writing –
173 review. **Janina Krell-Roesch:** Writing – review & editing. **Yonas Geda:** Conceptualization,
174 Methodology, Writing- review & editing.

175

176 **Declaration of competing interest**

177 The authors declare that they do not have competing interests.

178

179 **Data availability**

180 Data are not reported in this article.

References

1. 2024 Alzheimer's disease facts and figures. *Alzheimers Dement.* 2024;20(5):3708–3821. doi: 10.1002/alz.13809.
2. *World Health Organization. Dementia* [Internet]. 2023; Available from: <https://www.who.int/news-room/fact-sheets/detail/dementia#:~:text=Key%20facts,injuries%20that%20affect%20the%20brain>.
3. R.C. Petersen. Mild cognitive impairment as a diagnostic entity. *J Intern Med.* 2004;256(3):183–194. doi: 10.1111/j.1365-2796.2004.01388.x.
4. F. Lobo, J. Haase, S. Brandhorst. The Effects of Dietary Interventions on Brain Aging and Neurological Diseases. *Nutrients.* 2022;14(23). doi: 10.3390/nu14235086.
5. M. Gasmi, N. Silvia Hardiany, M. van der Merwe, et al. The influence of time-restricted eating/feeding on Alzheimer's biomarkers and gut microbiota. *Nutr Neurosci.* 2024:1–15. doi: 10.1080/1028415x.2024.2359868.
6. A. Ezzati, V.M. Pak. The effects of time-restricted eating on sleep, cognitive decline, and Alzheimer's disease. *Exp Gerontol.* 2023;171:112033. doi: 10.1016/j.exger.2022.112033.
7. R. de Cabo, D. Carmona-Gutierrez, M. Bernier, et al. The search for antiaging interventions: from elixirs to fasting regimens. *Cell.* 2014;157(7):1515–1526. doi: 10.1016/j.cell.2014.05.031.
8. M.P. Mattson, V.D. Longo, M. Harvie. Impact of intermittent fasting on health and disease processes. *Ageing Research Reviews.* 2017;39:46–58. doi: <https://doi.org/10.1016/j.arr.2016.10.005>.
9. R. de Cabo, M.P. Mattson. Effects of Intermittent Fasting on Health, Aging, and Disease. *N Engl J Med.* 2019;381(26):2541–2551. doi: 10.1056/NEJMra1905136.
10. T.C. Ooi, A. Meramat, N.F. Rajab, et al. Intermittent Fasting Enhanced the Cognitive Function in Older Adults with Mild Cognitive Impairment by Inducing Biochemical and Metabolic changes: A 3-Year Progressive Study. *Nutrients.* 2020;12(9). doi: 10.3390/nu12092644.
11. T.C. Ooi, A. Meramat, N.F. Rajab, et al. Antioxidant Potential, DNA Damage, Inflammation, Glycemic Control and Lipid Metabolism Alteration: A Mediation Analysis of Islamic Sunnah Intermittent Fasting on Cognitive Function among Older Adults with

Mild Cognitive Impairment. *J Nutr Health Aging.* 2022;26(3):272–281. doi: 10.1007/s12603-022-1757-0.

- 12. W. Currenti, J. Godos, S. Castellano, et al. Association between Time Restricted Feeding and Cognitive Status in Older Italian Adults. *Nutrients.* 2021;13(1). doi: 10.3390/nu13010191.
- 13. D.L. James, L.K. Larkey, M. Maxfield, et al. Prolonged nightly fasting in older adults with memory decline: A single-group pilot study exploring changes in cognitive function and cardiometabolic risk factors. *J Clin Transl Sci.* 2025;9(1):e1. doi: 10.1017/cts.2024.676.
- 14. Y. Zhao, M. Jia, C. Ding, et al. Time-restricted feeding mitigates Alzheimer's disease-associated cognitive impairments via a *B. pseudolongum*-propionic acid-FFAR3 axis. *Imeta.* 2025;4(2):e70006. doi: 10.1002/imt2.70006.
- 15. F. Rahmani, L. Ghezzi, V. Tosti, et al. Twelve Weeks of Intermittent Caloric Restriction Diet Mitigates Neuroinflammation in Midlife Individuals with Multiple Sclerosis: A Pilot Study with Implications for Prevention of Alzheimer's Disease. *J Alzheimers Dis.* 2023;93(1):263–273. doi: 10.3233/jad-221007.
- 16. H. Irani, B. Abiri, B. Khodami, et al. Effect of time restricted feeding on anthropometric measures, eating behavior, stress, serum levels of BDNF and LBP in overweight/obese women with food addiction: a randomized clinical trial. *Nutr Neurosci.* 2024;27(6):577–589. doi: 10.1080/1028415x.2023.2234704.
- 17. Z. Xie, Y. Sun, Y. Ye, et al. Randomized controlled trial for time-restricted eating in healthy volunteers without obesity. *Nat Commun.* 2022;13(1):1003. doi: 10.1038/s41467-022-28662-5.
- 18. H. Jamshed, R.A. Beyl, D.L. Della Manna, et al. Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. *Nutrients.* 2019;11(6). doi: 10.3390/nu11061234.
- 19. J. Traba, M. Kwarteng-Siaw, T.C. Okoli, et al. Fasting and refeeding differentially regulate NLRP3 inflammasome activation in human subjects. *J Clin Invest.* 2015;125(12):4592–4600. doi: 10.1172/jci83260.
- 20. R.C. Petersen, G.E. Smith, S.C. Waring, et al. Mild cognitive impairment: clinical characterization and outcome. *Arch Neurol.* 1999;56(3):303–308. doi: 10.1001/archneur.56.3.303.

21. J. Liu, P. Yi, F. Liu. The Effect of Early Time-Restricted Eating vs Later Time-Restricted Eating on Weight Loss and Metabolic Health. *J Clin Endocrinol Metab.* 2023;108(7):1824–1834. doi: 10.1210/clinem/dgad036.
22. *HEALBE Corporation* [Internet]. Available from: <https://healbe.com/>.
23. S.M. Dimitratos, J.B. German, S.E. Schaefer. Wearable Technology to Quantify the Nutritional Intake of Adults: Validation Study. *JMIR Mhealth Uhealth.* 2020;8(7):e16405. doi: 10.2196/16405.
24. M.F. Folstein, S.E. Folstein, P.R. McHugh. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. *J Psychiatr Res.* 1975;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6.
25. J.A. Moses, Jr. Comprehensive Trail Making Test (CTMT). *Archives of Clinical Neuropsychology.* 2004;19(5):703–708. doi: 10.1016/j.acn.2004.02.004.
26. D. Wechsler. Wechsler Adult Intelligence Scale--Fourth Edition (WAIS-IV),2008. APA PsycTests 2020. accessed Date Accessed)].
27. A. Rey. L'examen clinique en psychologie. Paris, France: Presses Universitaires de France, 1958.
28. R. Benedict. Brief visuospatial memory test - revised: Professional manual. In: Psychological Assessment Resources I, ed. Lutz, FL, 1997.
29. R.H.B. Benedict, Schretlen, D., Groninger, L., Dobraski, M., Shpritz, B. Revision of the Brief Visuospatial Memory Test: Studies of normal performance, reliability, and validity. *Psychological Assessment.* 1996;8(2):145–153. doi: <https://doi.org/10.1037/1040-3590.8.2.145>.
30. A. Barr, J. Brandt. Word-list generation deficits in dementia. *J Clin Exp Neuropsychol.* 1996;18(6):810–822. doi: 10.1080/01688639608408304.
31. WHO. Development of the World Health Organization WHOQOL-BREF quality of life assessment. *Psychol Med.* 1998;28(3):551–558.
32. K.G. Wilson, E.K. Sandoz, J. Kitchens, et al. The Valued Living Questionnaire: Defining and measuring valued action within a behavioral framework. *The Psychological Record.* 2010;60(2):249–272. doi: 10.1007/BF03395706.

33. T. Lundgren, J.B. Luoma, J. Dahl, et al. The Bull's-Eye Values Survey: A Psychometric Evaluation. *Cognitive and Behavioral Practice*. 2012;19(4):518–526. doi: <https://doi.org/10.1016/j.cbpra.2012.01.004>.
34. D.T. Gillanders, H. Bolderston, F.W. Bond, et al. The development and initial validation of the cognitive fusion questionnaire. *Behav Ther*. 2014;45(1):83–101. doi: 10.1016/j.beth.2013.09.001.
35. P.F. Lovibond, S.H. Lovibond. The structure of negative emotional states: comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. *Behav Res Ther*. 1995;33(3):335–343. doi: 10.1016/0005-7967(94)00075-u.
36. S. Cohen, T. Kamarck, R. Mermelstein. A global measure of perceived stress. *J Health Soc Behav*. 1983;24(4):385–396.
37. B.W. Smith, J. Dalen, K. Wiggins, et al. The brief resilience scale: assessing the ability to bounce back. *Int J Behav Med*. 2008;15(3):194–200. doi: 10.1080/10705500802222972.
38. K.N. Herzberg, S.C. Sheppard, J.P. Forsyth, et al. The Believability of Anxious Feelings and Thoughts Questionnaire (BAFT): a psychometric evaluation of cognitive fusion in a nonclinical and highly anxious community sample. *Psychol Assess*. 2012;24(4):877–891. doi: 10.1037/a0027782.
39. A.W. Francis, D.L. Dawson, N. Golijani-Moghaddam. The development and validation of the Comprehensive assessment of Acceptance and Commitment Therapy processes (CompACT). *Journal of Contextual Behavioral Science*. 2016;5(3):134–145. doi: 10.1016/j.jcbs.2016.05.003.
40. D.J. Buysse, C.F. Reynolds, T.H. Monk, et al. The Pittsburgh Sleep Quality Index - a New Instrument for Psychiatric Practice and Research. *Psychiatr Res*. 1989;28(2):193–213. doi: Doi 10.1016/0165-1781(89)90047-4.
41. D.B. Panagiotakos, C. Pitsavos, C. Stefanadis. Dietary patterns: a Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. *Nutr Metab Cardiovasc Dis*. 2006;16(8):559–568. doi: 10.1016/j.numecd.2005.08.006.
42. J.R. Fowles, M.W. O'Brien, W.R. Wojcik, et al. A pilot study: Validity and reliability of the CSEP-PATH PASB-Q and a new leisure time physical activity questionnaire to assess physical activity and sedentary behaviours. *Appl Physiol Nutr Metab*. 2017;42(6):677–680. doi: 10.1139/apnm-2016-0412.

43. M.C. Sattler, J. Jaunig, C. Tosch, et al. Current Evidence of Measurement Properties of Physical Activity Questionnaires for Older Adults: An Updated Systematic Review. *Sports Med.* 2020;50(7):1271–1315. doi: 10.1007/s40279-020-01268-x.
44. D.R. Matthews, J.P. Hosker, A.S. Rudenski, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. *Diabetologia.* 1985;28(7):412–419. doi: 10.1007/bf00280883.
45. T.M. Wallace, J.C. Levy, D.R. Matthews. Use and Abuse of HOMA Modeling. *Diabetes Care.* 2004;27(6):1487–1495. doi: 10.2337/diacare.27.6.1487.
46. P.A. Harris, R. Taylor, R. Thielke, et al. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. *J Biomed Inform.* 2009;42(2):377–381. doi: 10.1016/j.jbi.2008.08.010.
47. P.A. Harris, R. Taylor, B.L. Minor, et al. The REDCap consortium: Building an international community of software platform partners. *J Biomed Inform.* 2019;95:103208. doi: 10.1016/j.jbi.2019.103208.

Declaration of Interest Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The author is an Editorial Board Member/Editor-in-Chief/Associate Editor/Guest Editor for this journal and was not involved in the editorial review or the decision to publish this article.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

A large, empty rectangular box with a thin black border, positioned below the declaration of interest statement. It is intended for authors to list any potential competing interests.