KIT | KIT-Bibliothek | Impressum | Datenschutz

Post‐Processing Strengthened 3D Artificial Fingertip with Multi‐Intensity Pain Perception

Li, Huijing 1; Thasan, Felix 1; Cui, Tongtong 1; Alfaridzi, Raihan; Stihl, Andreas; Schacher, Felix H.; Théato, Patrick ORCID iD icon 1,2
1 Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruher Institut für Technologie (KIT)
2 Institut für Biologische Grenzflächen (IBG), Karlsruher Institut für Technologie (KIT)

Abstract:

Artificial electric skin with multi-intensity pain-evaluating capabilities offers promising opportunities for the construction of friendly human-robot interaction. However, realizing a stepwise sensing system generally requires lateral integration of diverse materials, which is prone to delamination and thus operation failure. Here, a fully soft, monolithic hydrogel-based artificial fingertip (HBAF), fabricated via digital light processing (DLP) 3D printing, enabling robotic fingertips to distinguish objects in varying sizes is proposed. To enhance the mechanical and conductive properties of a printed hydrogel, a two-step post-processing method is developed to introduce a secondary functional network into a high-resolution soft model. This modification can increase stretchability by three-fold and conductivity by 1.78-fold compared to the original printed hydrogel. Notably, the integration challenge between the hydrogel-based sensor and the robotic body part is addressed by growing a polydopamine gel layer at the interface of the 3D model's base to enhance contact. Furthermore, the HBAF's size parameters can be programmed to achieve distinct pain thresholds, demonstrating its potential for personalized bionic sensors in artificial limbs and enhancing safety in collaborative robotics.


Verlagsausgabe §
DOI: 10.5445/IR/1000186233
Veröffentlicht am 29.10.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biologische Grenzflächen (IBG)
Institut für Technische Chemie und Polymerchemie (ITCP)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2365-709X
KITopen-ID: 1000186233
Erschienen in Advanced Materials Technologies
Verlag John Wiley and Sons
Seiten Art.-Nr.: e01896
Bemerkung zur Veröffentlichung This article also appears in: Hot Topic: Robotics
Vorab online veröffentlicht am 15.10.2025
Nachgewiesen in Dimensions
Web of Science
OpenAlex
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page