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Abstract
Accurate knowledge of wake functions is crucial in accel-

erator physics, serving as the cornerstone for understanding
intra-bunch interactions and for controlling or mitigating
instabilities that limit accelerator performance. Haïssinski
distributions, which describe the steady-state longitudinal
bunch density, are intrinsically determined by the wake func-
tion experienced by the bunch. While these distributions
are typically computed from a given wake function, we in-
vestigate the inverse problem: extracting the wake function
directly from measured Haïssinski distributions.

In this theoretical work, we introduce a novel method to
reconstruct wake functions by utilizing Haïssinski distribu-
tions obtained at multiple bunch charges. By combining
these profiles into an overdetermined system, we address
challenges posed by the inverse problem, which is sensitive
to noise and discretization errors. Here, our preliminary
results suggest that the use of regularization techniques may
help achieve more stable reconstructions of the wake func-
tion.

INTRODUCTION
Wake functions represent a fundamental quantity in accel-

erator physics, governing the self-interactions within elec-
tron bunches and thereby influencing their dynamical behav-
ior in storage rings. They play a crucial role, particularly
concerning the longitudinal microbunching instabilities that
emerge at high bunch charges [1, 2]. These instabilities
define operational thresholds, separating accelerator perfor-
mance into distinct regimes [3]. On one side of these thresh-
olds lies classical stable operation, whereas on the other side,
accelerators enter a non-equilibrium regime characterized
by intense bursts of coherent synchrotron radiation, mainly
in the THz region [4]. In this nonlinear regime, accelerator
dynamics become complex but not chaotic, revealing distinct
and reproducible emission patterns which can be visualized
with spectrograms [5]. Recently, we have demonstrated
how corrugated structures impact these fingerprint patterns,
highlighting the crucial role of the wake function [6]. The
longitudinal dynamics in these scenarios is fundamentally
described by the Vlasov-Fokker-Planck equation, in which
the wake function acts as a key parameter governing intra-
bunch interactions and consequently shaping the bunch’s
equilibrium distribution and spectral fingerprints.

Precise knowledge of the wake function is therefore highly
desirable. However, its direct experimental determination
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represents a challenging inverse problem, which can be ap-
proached via Fourier-based deconvolution methods applied
to individually measured Haïssinski distributions. Such an
approach is inherently ill-posed and noise-sensitive.

Building upon recent work by Zhou et al. [7], where
impedance reconstruction from Haïssinski solutions was ex-
plored, this contribution extends the reconstruction method-
ology. We propose and analyze an approach that leverages
multiple Haïssinski distributions obtained at different bunch
charges to improve the inverse reconstruction of wake func-
tions. By combining these distributions into an overdeter-
mined system, we utilize advanced mathematical techniques
— namely the Moore-Penrose pseudoinverse coupled with
regularization methods — to achieve a stable and consistent
reconstruction of wake functions.

In this paper, we first present our theoretical framework
and numerical methods. We then apply these methods to
synthetic data derived from an impedance model of the
SuperKEKB low energy ring, as introduced in [7], to re-
construct the wake function from computed Haissinski dis-
tributions. The corresponding impedance spectrum is ob-
tained via Fourier transform and compared with the reference
impedance from the same study. This comparison illustrates
the feasibility of the reconstruction and suggests the potential
for future experimental validation.

METHODS
Haïssinki distributions describe delicate equilibrium

states in storage rings where the self-interaction of the elec-
tron bunch balances the phase space rotation of the phase
focusing effect. From the Vlasov–Fokker–Planck equation,
one can derive that the Haïssinski distribution 𝜆(𝑞) of the
normalized bunch profile satisfies the following relation [8]:

𝑑𝜆
𝑑𝑞

+ [𝑞 − 𝐹 (𝑞, 𝜆(⋅))] 𝜆 = 0 (1a)

with

𝐹 (𝑞, 𝜆(⋅)) = 𝐼 ∫
∞

−∞
𝑊 (𝑞 − 𝑞′)𝜆(𝑞′)𝑑𝑞′ (1b)

and

∫
∞

−∞
𝜆(𝑞)𝑑𝑞 = 1. (1c)

Here, 𝑞 = 𝑧/𝜎𝑧 = (𝑠 − 𝑠0)/𝜎𝑧0 denotes a normalized lon-
gitudinal coordinate, where 𝑧 is the longitudinal position
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Figure 1: Comparison of reconstructed wake functions and impedance spectra for the SuperKEKB low energy ring, with
reference data from Zhou et al. [7]. Left: Target wake function (red), extracted from the theoretical impedance provided by
Zhou et al., compared with our reconstructed wake function (blue), obtained from multiple simulated Haïssinski distributions
at various bunch charges. Right: Comparison of theoretical impedance from Zhou et al. (yellow), single-current reference
impedance (red), re-derived by Zhou from one Haïssinski profile in the range up to 𝑘 = 1 mm−1 =̂ 48 GHz with the scaling
parameter 𝑁 = 1.65 × 1011 ∼ 𝐼 via their Eq. (26); and our impedance (blue) reconstructed with the proposed multi-current
inverse method.

(or arc length 𝑠 along the reference orbit) of a particle rela-
tive to the synchronous particle, and 𝜎𝑧0 is the zero-current
bunch length. The parameter 𝐼 denotes the normalized cur-
rent [7, 8].

To reconstruct the wake function 𝑊 (𝑞) from discrete
Haïssinski profiles, we first compute 𝐹 (𝑞) numerically using
the identity (see e.g. Eq. (24) in reference [7]):

𝐹 (𝑞) =
𝑑 ln 𝜆(𝑞)

𝑑𝑞
+ 𝑞, (2)

which can be derived from Eq. (1).
Given a Haïssinski distribution sampled at discrete posi-

tions 𝜆𝑖 = 𝜆(𝑞𝑖) for 𝑖 = −ℎ, ..., 𝑗, we can evaluate 𝐹𝑠 = 𝐹 (𝑞𝑠)
at a subset of indices 𝑠 = 𝑙, ..., 𝑚. To compute the vec-
tor 𝐹 = (𝐹𝑙, ...𝐹𝑚)𝑇 , we discretize the convolution inte-
gral in expression (1b) using a fixed step size Δ𝑞, yielding
𝐹𝑠 ≈ 𝐼 ∑𝑗

𝑘′=−ℎ 𝑊 (𝑞𝑠 − 𝑞𝑘′)𝜆(𝑞𝑘′)Δ𝑞. Collecting terms
across multiple 𝐹𝑠, we can express the relationship as a
matrix-vector multiplication:

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝐹𝑙
𝐹𝑙+1

...
𝐹𝑚−1
𝐹𝑚

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= 𝐼 ⋅ Δ𝑞

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝜆𝑗 … 𝜆−ℎ 0 0 … 0
0 𝜆𝑗 … 𝜆−ℎ 0 … 0
... ⋱ ⋱ ⋱ ⋱ ⋱

...
0 … 0 𝜆𝑗 … 𝜆−ℎ 0
0 … 0 0 𝜆𝑗 … 𝜆−ℎ

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⋅ (𝑊𝑙−𝑗, 𝑊𝑙−𝑗+1, 𝑊𝑙−𝑗+2, … , 𝑊𝑚+ℎ)𝑇 (3)

In this formulation, we assume negligible contributions from
𝜆(𝑞) outside the sampled interval 𝑞 ∈ [𝑞−ℎ, ..., 𝑞𝑗], using

zero-padding where necessary. Equation (3) contains 𝑚 −
𝑙 + 1 known values of 𝐹, but more unknown values 𝑚 + ℎ −
𝑙 + 𝑗 + 1 > 𝑚 − 𝑙 + 1 on the right-hand side.

To obtain an overdetermined system, we combine Haïssin-
ski distributions obtained at different currents 𝐼 (𝑘) into a
stacked system of equations:

⎛
⎜
⎜
⎜
⎜
⎝

𝐅(1)

𝐅(2)

...
𝐅(𝑛)

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

𝚲(1)

𝚲(2)

...
𝚲(𝑛)

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

𝑊𝑙−𝑗
𝑊𝑙−𝑗+1

...
𝑊𝑚+ℎ

⎞
⎟
⎟
⎟
⎟
⎠

, (4)

Here, each 𝚲(𝑘) is a matrix similar to the one in Eq. (3),
scaled by 𝐼 (𝑘)Δ𝑞, and 𝐅(𝑘) represents the corresponding 𝐹-
vector. The unknown vector 𝐖 = (𝑊𝑙−𝑗, ..., 𝑊𝑚+ℎ) remains
constant for all currents.

To construct the system of equations in (4), one may
choose a broad Haïssinski distribution (𝜆−ℎ … 𝜆𝑗) as a start-
ing point to define the first set of equations. We then include
only those rows in the stacked system for which all non-
negligible values of 𝜆(𝑘)(𝑞) required on the right-hand side
are available. Rows corresponding to truncated distributions
due to finite matrix size are excluded to avoid artifacts.

Since Eq. (4) stems from an ill-posed inverse problem, we
apply Tikhonov regularization to stabilize the solution [9].
Instead of solving the system 𝐅 = 𝚲𝐖 directly, we compute
the regularized estimate

𝐖reg = (𝚲𝑇𝚲 + 𝛼𝐼)−1𝚲𝑇𝐅, (5)
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where 𝛼 > 0 is the regularization parameter, 𝐼 is the iden-
tity matrix, and 𝐖reg is the regularized solution, which is
our final estimate for the wake function. In Eq. (5), the op-
erator (𝚲𝑇𝚲 + 𝛼𝐼)−1𝚲𝑇 serves as a Tikhonov-regularized
approximation to the Moore–Penrose pseudoinverse.

RESULTS AND DISCUSSION
To test our method, we implemented the procedure de-

scribed above using high-resolution Haïssinski distributions
generated for four different bunch charges. These distribu-
tions were computed from theoretical wake function data
of the SuperKEKB low energy ring as published in [7], em-
ploying the algorithm developed by Warnock and Bane [8].
For the final calculation, we used 6001 sampling points for
each of the four currents considered in [7]. The Haïssinski
distributions were evaluated over the interval 𝑞 ∈ [−10, 10].

The reconstructed wake function employing our proce-
dure was then transformed into its frequency-domain rep-
resentation via the Fourier transform, allowing direct com-
parison with the impedance spectrum provided by Zhou et
al. [7] as a quality measure for our reconstruction.

Figure 1 displays two primary comparisons: Left panel
– wake function: The red curve is the target wake function
obtained from Zhou et al., while the blue curve is our recon-
struction based on multiple simulated Haïssinski profiles at
different bunch charges. The use of Tikhonov regularization
suppresses high-frequency content and therefore slightly
broadens sharp features of the reconstructed wake. This
broadening can be mitigated by choosing a smaller regular-
ization parameter 𝛼; however, doing so reduces numerical
damping and makes the inversion more susceptible to noise
amplification and instability.

Right panel – impedance: A detailed comparison of
impedance spectra separated into real and imaginary compo-
nents is displayed. Here we include three curves: the theoret-
ical impedance spectrum computed by Zhou et al. (yellow),
a single-current Haïssinski-inversion impedance provided by
Zhou (red) at 𝑁 = 1.65×1011, and the impedance spectrum
reconstructed from our method using multiple Haïssinski
profiles (blue). Our reconstruction shows good to excel-
lent agreement with the original impedance over a broad
frequency range.

At higher frequencies (𝑘 ≳ 2 mm−1), the reconstructed
impedance begins to deviate significantly from the reference
spectrum. This behavior can be attributed to the rapid decay
of the bunch spectrum ̃𝜆(𝑘), which follows a Gaussian tail
and limits the observation of high-frequency components.
As discussed by Zhou et al. [7], the inversion process in
this regime becomes increasingly sensitive to noise. While
the Tikhonov regularization mitigates this issue, it starts to
suppress spectral content at higher 𝑘, contributing to the
observed discrepancy. A related consequence is the appear-
ance of oscillatory ringing features in the reconstructed wake
function.

For this reconstruction, we used an empirical value of
10−12 for the regularization parameter. Additional tests

using different sampling rates for the Haïssinski distribu-
tion suggest that a finer resolution can significantly enhance
the reconstruction of high-frequency components of the
impedance. A precise estimate of the impact of sampling on
frequency resolution and a method for optimal 𝛼 selection
such as L-curve analysis [10] could be explored in future
work.

Our method assumes that Haïssinski distributions are pre-
cisely measured. In practice, a key challenge will be to
determine the correct origin of the normalized coordinate
𝑞/𝜎𝑧0. One possible approach is to analyze the mean position
of the Haïssinski distributions, which should converge to
𝑞 = 0 as 𝐼 → 0 [7]. In future studies, it would be valuable
to investigate the influence of both systematic and statisti-
cal errors in the 𝑞 coordinate that may arise in real-world
measurements.

SUMMARY
Using theoretical calculations, we demonstrated that pre-

cise measurements of the Haïssinski distribution in storage
rings may enable the reconstruction of longitudinal wake
functions. By combining data from multiple bunch currents
and applying a suitable regularization scheme, we addressed
the inherent ill-posedness of the inverse problem.

Future work may explore whether experimental tech-
niques — such as streak camera diagnostics or electro-
optical sampling [11] — can provide Haïssinski profiles
with sufficient resolution and signal-to-noise ratio to support
this reconstruction method. In this context, accurate deter-
mination of the coordinate origin 𝑞 = 0 and fine sampling
in the normalized 𝑞 coordinate are likely to be crucial.

The reconstruction of wake functions using Haïssinski
distributions is particularly promising for scenarios where di-
rect measurements of wakefields are impractical. Moreover,
it offers a complementary approach that can yield insights
even when full-scale simulations of complex accelerator
structures are computationally prohibitive.
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