KIT | KIT-Bibliothek | Impressum | Datenschutz

Grey-box modelling for tool wear prediction in milling: Fusion of finite element insights, time-resolved cutting signals and metaheuristic feature selection

Jamali, Amirmohammad 1; Kashyap, Amod 2; Schneider, Johannes ORCID iD icon 2; Stueber, Michael 3; Schulze, Volker 1
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Materialien – Zuverlässigkeit und Mikrostruktur (IAM-ZM), Karlsruher Institut für Technologie (KIT)
3 Institut für Angewandte Materialien – Angewandte Werkstoffphysik (IAM-AWP), Karlsruher Institut für Technologie (KIT)

Abstract:

Reliable prediction of tool wear is essential for ensuring productivity, quality, and cost-efficiency in modern machining operations. This study presents a hybrid Grey-Box machine learning framework that combines White-Box finite element simulation outputs (interface temperature, relative sliding velocity), process parameters (feed speed, cutting velocity, depth of cut), dynamic time-series features from cutting force measurements, with a Black-Box machine learning model to predict tool wear in high-speed milling. The experimental campaign involved TiN-coated and uncoated carbide tools under dry machining conditions, with flank and rake wear measured after each cutting pass. Finite element simulations were conducted to extract localized thermomechanical features, such as interface temperature and relative sliding velocity, which were used as physically meaningful inputs. A two-step feature selection method—based on analysis of variance (ANOVA) and the whale optimization algorithm (WOA)—was employed to identify the most relevant input features. Among the machine learning models tested, the gradient boosting regressor (GBR) showed the highest accuracy, achieving coefficient of determination (R2) scores of 0.953 for rake wear and 0.920 for flank wear. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000186271
Veröffentlicht am 31.10.2025
Originalveröffentlichung
DOI: 10.1016/j.wear.2025.206292
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Angewandte Werkstoffphysik (IAM-AWP)
Institut für Produktionstechnik (WBK)
Institut für Angewandte Materialien – Zuverlässigkeit und Mikrostruktur (IAM-ZM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2025
Sprache Englisch
Identifikator ISSN: 0043-1648, 1873-2577
KITopen-ID: 1000186271
HGF-Programm 38.04.01 (POF IV, LK 01) Gas turbines
Erschienen in Wear
Verlag Elsevier
Band 580-581
Seiten 206292
Nachgewiesen in OpenAlex
Dimensions
Web of Science
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page