KIT | KIT-Bibliothek | Impressum | Datenschutz

High‐Rate FA‐Based Co‐Evaporated Perovskites: Understanding Rate Limitations and Practical Considerations to Overcome Their Impact

Feeney, Thomas ORCID iD icon 1; Miaskiewicz, Aleksandra; Petry, Julian ORCID iD icon 2; Laufer, Felix ORCID iD icon 1; Singh, Roja ORCID iD icon 1,2; Severin, Stefanie; Škorjanc, Viktor; Diercks, Alexander 1; Maniyarasu, Suresh; Korte, Lars; Albrecht, Steve ; Paetzold, Ulrich W. ORCID iD icon 1,2; Roß, Marcel ; Fassl, Paul ORCID iD icon 1,2
1 Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)
2 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Vapor phase deposition methods are readily able to achieve uniform coverage of large-area substrates and are widely considered promising for industrial-scale perovskite solar cell fabrication. However, as perovskite-silicon tandem solar cells approach commercialization, practical considerations of manufacturing throughput come into play. Here, it is shown that the inherent sublimation characteristics of the organic precursor formamidinium iodide (FAI) make increasing the deposition rate of FA-based co-evaporated perovskites negatively impact replicability and lead to a substantial decrease in power conversion efficiency (PCE). These losses are linked to reduced film homogeneity and the emergence of carbon-rich regions within the perovskite layer. To mitigate these rate-induced effects, two approaches are explored: source layout optimization and material preconditioning. Utilizing dual FAI sources rather than a single FAI source reduces the relative PCE drop from ≈23%rel to ≈9%rel at a deposition rate of ≈18 nm min−1 (14.8% PCE @ maximum power point (MPP)) compared to the baseline rate of 5 nm min−1 (16.2% PCE @MPP). Alternatively, preconditioning a single FAI source reduces the performance losses from ≈31%rel to ≈26%rel at a deposition rate of ≈21 nm min−1. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000186293/pub
Veröffentlicht am 10.11.2025
Postprint §
DOI: 10.5445/IR/1000186293
Frei zugänglich ab 21.10.2026
Originalveröffentlichung
DOI: 10.1002/adfm.202517873
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Lichttechnisches Institut (LTI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 1616-301X, 1616-3028
KITopen-ID: 1000186293
HGF-Programm 38.01.03 (POF IV, LK 01) Cell Design and Development
Erschienen in Advanced Functional Materials
Verlag Wiley-VCH Verlag
Seiten Art.-NR:. e17873
Projektinformation SHAPE (BMWE, 03EE1123A)
NEXUS (EU, EU 9. RP, 101075330)
Vorab online veröffentlicht am 20.10.2025
Nachgewiesen in Dimensions
OpenAlex
Web of Science
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page