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Abstract—Deep modeling, the potency-based approach to
multi-level modeling, so far has not featured a powertype mecha-
nism similar to those that can be found in alternative multi-level
modeling approaches. While this does not represent a functional
limitation, certain modeling scenarios favor the pragmatics of
powertype-structures. We propose deep specialization as a means
to achieve the effects of a powertype construct in deep modeling
languages such as LML and DLM. Since deep specialization can
be regarded as emerging from existing deep modeling concepts,
we can avoid the introduction of a dedicated powertype construct.
Beyond that, due to its generality, our mechanism even supports
the specification of subordination and related relationships. We
discuss design variants for realizing powertype structures and
compare our approach to alternatives.

Index Terms—multi-level modeling, deep modeling, power-
types, subordination, LML, DLM

I. INTRODUCTION

One of the resultant features of using multiple classification
levels for modeling is the possibility to prescribe element
properties across more than one level boundary, i.e., the option
of using deep characterization [5]. Deep characterization can
increase the level of control in a model [18] and potency-
based deep characterization in particular, supports ensuring
consistency and element capabilities in a manner that com-
pares favorably in terms of conciseness to alternatives [17].

One of the reasons for the conciseness of potency-based
deep characterization, as used in languages like LML [3] or
DLM [16], [23], is the fact that type facets of elements such
as Collie and Poodle can be prescribed without the use of
a supertype. Compare Figure 1 (a), where an age field is
conferred to both Collie & Poodle via a common supertype
Dog, to Figure 1 (b) where Collie & Poodle receive the same
age1 field via a potency-two age2 field in Breed.

The end effect, that any instance of Breed is guaranteed to
have an age field, is the same in both scenarios. In case of the
potency-based approach (Figure 1 (b)) directly so, and in case
of the powertype-based approach (Figure 1 (a)), due to the fact
that the “powertype” stereotype on the dependency between
Dog and Breed is meant to invoke powertype semantics,
i.e., at least the implication that an instance of Breed must
specialize Dog (cf. equations D4 and/or D5 of [12]). In other
words, the “powertype” relationship establishes a constraint
that forces the type facet (here field age) of the supertype,
which in this context is also known as the “basetype” (here
Dog), upon instances of the type (here Breed). Note that we

refrain from referring to Breed as a “metatype” because doing
so would only be justified when using absolute terminology.
Using relative terminology, Breed is simply Collie’s type, i.e.,
not its “metatype”.

Although the powertype mechanism was not originally
conceived as a means to achieve deep characterization (see
Section II), languages like Deep Telos [14] or MLT [12],
[13], can afford their users with deep characterization without
having to introduce any deep field concepts (cf. [22]), due to
the fact that powertypes can be used to impose type facets on
their instances by employing supertypes.

In the following, we shall use a technology independent
term to refer to what may be referred to as “powertype
instances” or “deep characterizer instances”, depending on
the deep characterization approach used. Since these elements
(here Collie & Poodle) are forced, in one way or another, to
partially share a particular type facet, we will refer to them as
constrained types.

While deep modeling languages do not impose the use of
a basetype (like Dog) on their users (cf. [9, section 3.5]),
since they can represent the type facet to be shared among
the constrained types via a deep type facet (cf. age2 in Fig-
ure 1 (b)), in some cases it is useful to nevertheless introduce
a generalization of the constrained types. For example, while a
relationship between a dog and its owner could be introduced
at the level of Breed via a deep connector [4], it can be more
straightforward to model it as an association between Dog and,
say Person. Such an association

1) explicitly represents the relationship at its natural level.
2) allows Breed to cover dog and cat breeds while support-

ing dog ownership and acknowledging that cat owner-
ship is a delusional concept, without having to introduce
DogBreed and CatBreed to model the difference.

3) implies a basetype (here Dog) that can naturally host
shallow fields (here age).

4) implies that the generalization of all constrained types
is made explicit and has a concrete name (cf. [9,
Fig. 1(c)]). In Figure 1 (b), for example, there is no
information about what Collie and Poodle are meant to
generalize to, if the Dog generalization is omitted.

The last aspect may be a downside in some cases, when
maximum flexibility is desired and there are, of course, other
good reasons to prefer the deep characterizer style in some
scenarios [9, Section 3.5]. However, there are also scenarios
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in which an explicit generalization is welcome. For example,
it is common to group constrained types into so-called “gener-
alization sets” [30], which depend on an explicit basetype. In
such cases, an explicit generalization (e.g. Dog) then usefully
restricts additions, e.g., by clarifying that in our example the
constrained types should not be extended by a cat breed.

Indeed, even modelers who have access to the deep char-
acterizer style, sometimes forgo the latter and choose a
powertype-like structure instead, in order to

• increase clarity,
• achieve alignment to requirement specifications, and/or
• avoid saddling a deep characterizer with a multitude of

deep attributes/connections [10], [19], [20], [25].
The modelers, who produced the models in the cited work,
considered the aforementioned advantages worth paying the
price for, not only in the form of having to introduce a
basetype, but also in the form of establishing powertype
semantics through textual constraints (cf. Section V). This
suggests that, to support some modeling scenarios, powertype
structures should have first-class support in deep modeling
languages, even though they are never actually necessary.

In this paper, we first further explore the powertype concept
(Section II), then present a proposal on how to support
powertypes in deep modeling languages (Section IV), compare
the proposal to alternative solutions (Section V), and finally
conclude after discussing related work.

II. BACKGROUND

Powertypes were originally not introduced as a means
to achieve deep characterization. Odell, for instance, was
driven by integrity considerations [29]. He observed that
some elements, e.g., Collie, Corgi, and Poodle (cf. Figure 2),
are regarded as instances of Breed in some contexts and
in entirely separate contexts as subtypes of Dog. He fig-
ured that instead of having to maintain consistency between
these separate occurrences, i.e., between the constrained types

(powertype instances) and the basetype subtypes—e.g., with
respect to expanding or reducing the respective element sets—
these separate occurrences could be understood as selecting
different aspects of the very same elements, i.e., that the
constrained types and the basetype subtypes “. . . are the same
objects.” [28]. Figure 2 (b) depicts this featuring Odell-inspired
notation [28], i.e., by using cones to connect the powertype
instances (Collie, Corgi, and Poodle), which are members of
Breed’s extension, with the subsets within the Dog superset,
that are extensions of the basetype subtypes.

The “cone” notation is not optimal, as far as we are
concerned, since it could be misinterpreted as merely depicting
a 1:1 mapping between different entities. To avoid the issue of
showing one and the same entity (e.g., Collie) twice, we created
Figure 3 using a 3D notation [7]. In this extension-oriented
notation, instantiation occurs along the z-axis (upwards). The
dual nature of the constrained types (Collie, Poodle, and Corgi)
is visualized by them being instances of Breed but sharing their
top surfaces with the Dog superset. Note how the superset Dog
is not a subset of Breed but hovers one level higher up. It is flat,
i.e., not shown to be an instance of anything, because it does
not have an ontological type in the model (cf. Figure 2 (a)).
Dog has the powertype Breed, but is not an instance of Breed.

By viewing the subtypes Collie, Corgi, and Poodle as in-
stances of Breed (as opposed to maintaining that powertype
instances are related to the basetype subtypes but are distinct
from the latter), Odell implied two properties:

1) An element like Collie can be an instance (of Breed)
and a type (for collies, such as lassie) at the same time
(see Figure 2 (a)). This is obviously at the heart of the
“clabject” notion [2].

2) A powertype is a higher-order type; it must be at least a
second-order type, given that its instances, the subtypes,
are at least first-order types.

Hence, an Odell powertype structure can be justifiably be
regarded as an ontological multi-level modeling fragment.
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Note that
• the qualification “ontological” is justified by the fact

that a type like Breed (or TreeSpecies as in [29]) does
not linguistically classify its instances, as “metamodel
elements” typical for that time had done, but rather
represents a second-order domain concept [6], [15].

• powertypes can hence not be cleanly supported by two-
level technologies.

Numerous modeling languages support powertypes in one
way or another. For the purposes of this paper, we focus
on UML powertypes as an alternative to Odell powertypes
due to their particular characteristics. First, the UML supports
powertypes even though it technically only properly supports
two levels (objects and their classes) [30]. Similar to UML
stereotypes, UML powertypes are supported without being
explicitly recognized as higher-order entities. As such, they
are not used to define the instance facets of constrained
types. Second, they offer another mechanism to modelers that
goes beyond what Odell described: a powertype is used as a
discriminator for a generalization set in order to contribute to
the latter’s properties. A generalization set comprises a subset
of basetype subtypes that are delineated by the powertype, for
instance BlueCollarWorker and WhiteCollarWorker as subtypes
of Worker, with a WorkerType discriminator/powertype. While
the subtypes are technically still instances of the powertype,
the emphasis is on

• bundling subtypes into coherent subgroups, and
• determining whether such a subgroup is covering and/or

disjoint [30, Section 7.3.21].
A generalization set with the properties “covering” and “dis-
joint” can be referred to as a partition (of the basetype). In
Figure 2, this would imply that every dog must be exactly
of one of the three listed breeds, i.e., the extension of Dog

would have no member outside any of the three subsets shown
in Figure 2 (b), and the subsets would be prevented from
overlapping.

A UML powertype is therefore probably best understood as
a derived concept, i.e., by starting with the subsets implied by
basetype subtypes, making a selection among those subsets
based on whether the instances within the subsets can be
separated by the same discrimination principle (here, dog
breed)—in other words, determining the generalization set
constituents—and finally naming the discrimination principle
accordingly (here, DogBreed or Breed), meaning that the
subsets in Figure 2 (b) come first with Breed being a derived
classifier.

This is in contrast to powertype structures being used in
multi-level modeling languages to achieve deep characteri-
zation, as in this application the powertype exists first, an
instance (say Collie) is created, and the latter is then forced to
specialize the basetype (here Dog). Moreover, in many multi-
level modeling languages/formalisms, the question of whether
or not the constrained types are covering and/or disjoint is not
of concern (with MLT being one of the exceptions [12]).

Finally, in a deep characterization scenario the primary
objective is not to group certain subtypes and/or let them
share a common type facet, rather the objective is to ensure
that all instances of the constrained types are guaranteed to
have certain properties (which are stipulated by the basetype).
This is the reason why Figure 1 (b) is captioned “Deep
Characterizer”, since the ultimate objective is not to endow
both Collie and Poodle with a potency-one field, but rather to
ensure that all collies and all poodles have an “age” property.

Given the aforementioned properties of powertype structures
when used for deep characterization, the question arises which
powertype semantics should be adopted.
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III. SUITABLE SEMANTICS

In the following, we use “ei : et” to represent that “ei
is a direct instance of et” and “esub ≺ esuper” to represent
that “esub specializes esuper”. Carvalho et al. [12] define their
“isPowertypeOf” relation as follows1:

∀ eb, ep powertypeOf(ep, eb) ≡
∀ es es : ep ↔ es≺ eb

(PMLT )

This may be read as

Constrained types (es) specialize a basetype (eb) that
is associated with a powertype (ep), if and only if
they are instances of said powertype.

This means that all subtypes of the basetype must be instances
of the powertype, i.e., in the example of Figure 2, one would
not be able to add a subtype Mongrel as a specialization of
Dog, since such a subtype would not satisfy the requirements
for being a dog breed. For the purposes of achieving deep
characterization, this powertype variant would therefore be
unnecessarily strict, since one is only interested in constraining
instances of the powertype (Breed) to be subtypes of the
basetype (Dog). In other words, one is not concerned with
elements that are not instances of the powertype and it should
not be an issue to have subtype Mongrel specializing Dog.

The UML clearly supports the latter requirement with its
powertype approach, which can be expressed as follows:

All constrained types (es) that are members of a
generalization set (gs), must be instances of the
generalization set’s powertype (ep), and must fur-
thermore specialize the associated basetype (eb).

Formally:

∀ eb, ep powertypeOf(ep, eb) ≡
∃ gs ∀ es
es ∈ gs → (es : ep ∧ es≺ eb)

(PUML)

1We slightly renamed it to “powertypeOf” and, for clarity, omitted a term
whose only purpose is to prevent the relation from being vacuously true, in
case the set of constrained types is empty.

Given that a generalization set has an associated powertype—

es ∈ gs ↔ es : ep,

—the condition boils down to

es : ep → es≺ eb,

which in turn means that a UML powertype is like an MLT
powertype (see Equation PMLT ), with the difference being that
the implication only goes one way, i.e., there is no need for
all subtypes of the basetype to be an instance of a powertype.

As a result, a UML powertype is clearly suited to sup-
port deep characterization without imposing unnecessary con-
straints on basetype subtypes. However, as mentioned in
Section II, if one is not concerned with anything else but deep
characterization, it is not necessary to introduce the notion of
a generalization set. Rather, Odell’s initial take is sufficient:

“A power type is a type whose instances are subtypes
of another type” [28, p. 252]).

—provided that a reasonable interpretation is applied: Odell’s
description technically allows more than one basetype, since
“another type” is not guaranteed to be the same (base-)type for
every subtype. This would make the definition unfit for deep
characterization applications. However, based on the examples
presented by Odell, he most likely meant “of one shared type”
rather than “of another type”. With that interpretation, Odell’s
powertype can be formalized as:

∀ eb, ep powertypeOf(ep, eb) ≡
∀ es es : ep → es≺ eb

(POdell)

This definition shares the same spirit with an UML
powertype, without having to resort to a generalization
set concept. Carvalho et al. label this powertype variant
“categorizes” [12].

Note that the “≡” in Equation POdell means that if two
types P and B are declared to be participants of a powertype
relationship (see the dependency between Dog and Breed in
Figure 2 (a), with the “powertype” stereotype), then the right-
hand side “≡” establishes the desired constraint on powertype
(P) instances to be required to specialize the basetype (B).
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IV. DESIGN ALTERNATIVES

In the following, we look at ways of supporting the seman-
tics of Odell-powertypes / MLT-categorization without having
to introduce a dedicated powertype construct (see Section V-B
for a respective trade-off analysis).

To this end, we leverage already existing language mech-
anisms in LML and DLM. The key idea is to regard the
specialization relationship between two types as a potency-
zero connection (aka “link”) between those types. If one then
allows such potency-zero connections to be classified, i.e., in-
troduces the notion of higher-order specializations, and allows
the latter to use mandatory multiplicities, it becomes possible
to stipulate the presence of (direct or indirect) specialization
relationships between types, just like associations may be used
to enforce the presence of links between objects.

Since the purpose of a powertype relationship, at least when
used for deep characterization, ultimately is to enforce, for all
constrained types, the presence of a (direct or indirect) special-
ization relationship to a shared basetype, using specialization
types with mandatory multiplicities is a viable alternative.
Below, we consider two variations of the same idea and then
look beyond supporting powertypes only.

A. Iso-Level Relationship

The variant that is most straightforward to explain uses
a higher-order specialization between two elements that are
located on the same level. Figure 4 (a) depicts the idea, using
a subset of the model from Figure 1 as an example. Ignoring
multiplicities for the time being, we labeled the specialization
relationships between the constrained types and the basetype

(here Dog) as potency-zero links (see the bottom part of
Figure 4 (a)).

All these specialization relationships are instances of the
single potency-one specialization between Breed and {Dog}
at one level higher up. Here, {Dog} denotes a singleton type
whose only instance is Dog. The use of such a singleton type
is necessary to ensure that all instances of Breed entertain
potency-zero specialization relationships to the same basetype.

Figure 4 (b) shows the same scenario as Figure 4 (a),
just using conventional notation. Note that Breed2 does not
specialize {Dog}. Only if the relationship between those two
elements were a potency-zero specialization, a specialization
relationship would be established between them. The actual
potency-one specialization is akin to a specialization associa-
tion. It is debatable whether different concrete syntax should
be used for higher-order specializations to avoid potential
confusion, but for now we trust that users will be able to
manage. After all, UML associations and links share the same
concrete syntax as well.

The following trade-offs apply to the above described iso-
level deep (i.e., higher-order) specialization approach:
+ existing language features (cf. [4]) are leveraged to forgo

the introduction of a further language construct.
+ choice over multiplicities suggests that more than just

powertype relationships may be captured.
+ compatible with the “strict metamodeling” doctrine.
– in comparison to a regular powertype structure, an addi-

tional singleton type is required, and some language support
for defining a singleton type in terms of the one instance it
allows is required.
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B. Cross-Level Relationship

In order to address the downside of the iso-level variant,
it is necessary for the powertype (Breed) to refer to basetype
(Dog) itself, rather than to a de facto proxy ({Dog}). Fig-
ure 5 (a) shows a cross-level variant of the scenario shown
in Figure 4 (b), which uses the dual potency mechanism by
Neumayr et al. [27]. The dual potency specification “1–0”
for the deep specialization between Breed and Dog denotes
that upon instantiation, the Breed-end of the relationship (with
potency “1”) will be connected to a breed instance (e.g.
Collie), while the generalization-end (here the Dog-end) of
the specialization (with potency “0”) will be retained. Note
that at the Breed-end, the deep specialization prescribes, via
a multiplicity specification, that at least one constrained type
must specialize Dog. The “mandatory”-multiplicity (“1”) at
the generalization end (here, the Dog-end) specifies that a
constrained type must specialize exactly one supertype.

The two instantiated specializations between the constrained
types and Dog do not feature multiplicity specifications be-
cause they are not types for any lower-order specializations.
Although we show a zero potency value for these specializa-
tions here for the sake of explaining the scenario, we suggest
to normally not show zero potency values for specializations.

Figure 5 (b) shows the same cross-level design, but focuses
on the deep specialization’s generalization end (Dog-end),
replacing the dual potency approach of Figure 5 (a) by a spec-
ification of the “mutability” and “durability” values (cf. [3])
of the generalization end. This variant highlights the fact that
the generalization end’s (type) value can be understood as a
regularity attribute [1]. A regularity attribute is characterized
by instances (here the generalization-ends of the potency-zero
specialization relationships between the constrained types and
Dog) sharing the same value (here “Dog”) for a property which
is specified at one level higher up (here the Dog-end of the
deep specialization between Breed and Dog).

The variant shown in Figure 5 (c) effectively establishes the
same specification but employs the notion of value potency [8].
The standard notion uses a potency on the value itself—e.g.,
as in “taxRate1 = 19%1”—but since that could be confused
with a clabject potency if applied to Dog, we chose a less
ambiguous notation. We are not suggesting that this notation is
optimal; we are merely communicating the various alternatives
available for restraining the generalization end value of the
potency-zero specialization relationship to a specific element.

Although the approaches shown in Figures 5 (b) & (c)
already communicate that the relationship end value Dog (to
be used for all potency-zero specializations) is prescribed at
the type level via type-level constraints, perhaps Figure 5 (d)
most directly depicts that the relationship end value (here Dog)
to be used for all potency-zero specializations at the level
below, is prescribed at the type level (here via {Dog}). The
“{. . .}” set notation is meant to denote a restriction of the
values that may be chosen for that specialization end upon
instantiation of the deep specialization (remotely related, but
distinct from the “redefines” approach for association ends in
the UML). This means that upon instantiation of the potency-
one specialization between Breed and Dog, only Dog can be
used as a participant at the right-hand side. This variant shares
with the approach shown in Figures 5 (b) & (c) that the deep
specialization end has (durability) potency one, but it replaces
the specification of an immutable value (Dog), that is supposed
to be transferred upon instantiation of the deep specialization,
with a type-level value ({Dog}) which only makes one value
available for instantiation.
The following trade-offs apply to the above described cross-
level deep specialization approaches:
+ all positive aspects of the iso-level approach apply, with

the exception of strict metamodeling compatibility.
+ no need to explicitly introduce a singleton type.
– requires one of the supporting mechanisms used in Fig-

ures 5 (a)–(d).
– no “strict metamodeling” compatibility.
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Fig. 6. Subordination

Since the cross-level variant is a bit more parsimonious, the
question which of the above two alternatives is preferable is
hence most likely dictated by whether or not strict metamod-
eling needs to be adhered to.

Interestingly, however, deep specialization has more to offer
than just providing a way to stipulate powertype structures.

C. Generalization

Given that specifying powertype structures using deep spe-
cialization relies on specific restrictions—regarding which and
how many values are allowed at the generalization end of a
specialization relationship—it is obvious that deep specializa-
tion should support other modeling requirements.

Consider Carvalho et al.’s definition of the “subordination”
relationship (slightly simplified, analogous to the footnote on
Equation PMLT ) [12, (D3)]:

∀ t1, t2 subordinateTo(t1, t2) ≡
∀ e1 e1 : t1 → (∃ e2 e2 : t2 ∧ e1≺ e2)

(Sub)

This may be read as

A metatype (t1) is subordinate to another metatype
(t2), if and only if every instance of the former
specializes an instance of the latter.

For example, one could require that every dog breed like
Collie & Poodle, i.e., an instance of Breed, must specialize
an instance of DomesticatedSpecies, e.g., Dog, by making
Breed subordinate to DomesticatedSpecies. Other breeds, such
as the cat breeds Siamese & Manx, then would also have
to specialize an instance of DomesticatedSpecies, e.g., Cat,
see Figure 6. For simplicity, we leave the multiplicity at the
Breed-end unspecified and do not explicitly show that the
potency-zero specialization relationships at the lower level
are instances of the deep specialization between Breed and
DomesticatedSpecies. Note the multiplicity of “1” though,
at the generalization end of that deep specialization, which
ensures a single basetype per subordination incarnation.

Note that in the example, subordination

1) does not imply specialization between Breed and Do-
mesticatedSpecies. Subordination only constrains in-
stances of the subordinated type to specialize instances
from the subordinating type.

2) can be regarded as a generalization of “powertyping”.
Instead of specifying one concrete basetype (e.g. Dog),
one only specifies the type of such a basetype (here
DomesticatedSpecies), and leaves open the possibility
of multiple basetypes (cf. Dog & Cat in Figure 6).

This means “powertyping” is subsumed by subordination
since one may express powertyping as a constrained form of
subordination, using a singleton type in the “subordinating”
role:

∀ ep, eb powertypeOf(ep, eb) ≡
subordinateTo(ep, {eb})

(Gen)

Compare Figures 6 & 4 (a) noting the difference between
DomesticatedSpecies and {Dog}, analogue to Equation Gen.

Note that placing a multiplicity constraint like “2..3” at
the Breed-end of the deep specialization and removing the
“1” multiplicity at the other end, would allow one to specify
that whenever a domesticated species is introduced that it
must have two to three subtypes. By declaring the potency of
DomesticatedSpecies to be “1”, one could even force subtypes
to be covering with respect to their basetype since then
DomesticatedSpecies instances are forced to have potency
zero, i.e., lack the ability to have any direct instances of their
own. A type representing a duality, such as “chirality” could
thus be forced to have exactly two subtypes that cover both
cases. Entirely capturing the notion of an exclusive duality,
however, would require ruling out cases in which an instance
is classified by more than one subtype; which is a kind of
constraint that we do not aim to cover in this work. See the
discussion of Carvalho et al.’s “≪instantiation≫” stereotype
in Section VI for an outlook as to how such a constraint could
be established.
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V. COMPARISON

Since our main objective in this paper is to use deep
specialization as a means to realize powertype structures, in the
following, we are discussing its merit compared to respective
alternatives, i.e., using constraints or a dedicated powertype
construct. We do not discuss characteristics that are common
to all these approaches but rather focus on the differences.

A. Constraint

In [19], both solutions feature DOCL constraints in order to
enforce powertype structures [24]. Listing 1, taken from the
Melanee solution, shows how instances of HuaweiMPModel
are required to specialize HuaweiMPDevice. The constraint,
therefore, effectively connects HuaweiMPDevice in a basetype
role to HuaweiMPModel in a powertype role.
c o n t e x t HuaweiMPModel (1 1 )
inv : s e l f . # g e t S u p e r T y p e s ( ) # −> c o l l e c t (# name #)

−> i n c l u d e s ( ” HuaweiMPDevice ” )

Listing 1. Powertype constraint example

The trade-offs of this powertype realization alternative are:
+ no mechanism/concepts beyond constraints are required.

Since constraints have many other valuable applications, it is
likely that constraint support is available anyhow.
+ the constraint is straightforward to write/read for those

familiar with constraint languages, and its structure is not
domain-specific.
– model users unfamiliar with constraints in general, or just

the particular constraint language used, may find it difficult to
understand what the constraint is about.
– a textual constraint is typically not integrated with the

diagram containing the main model content and may thus be
somewhat hidden from view. Even visual representations of
such a constraint [31], if available at all, are unlikely to be
part of regular model diagrams.
– without advanced tool support that links the names of

model elements in a constraint (here “HuaweiMPModel” &
“HuaweiMPDevice”) to model elements in a diagram, model
maintenance becomes an issue. Any changes to the model,
e.g., a simple renaming of involved elements, would have to
be followed by updates to any affected constraints.

B. Dedicated Construct

Languages like UML [30], MLT [12], and DeepTelos [14]
use relationships specifically designed to express a powertype
relationship, i.e., they are custom-tailored to establish no more
and no less than powertype structures. While implementation
details differ, it is fair to say that all the above named and other
similar approaches effectively amount to having a dedicated
language construct, or at least specific library vocabulary,
available. The trade-offs of this approach are:
+ direct communication regarding the purpose of the con-

struct/relationship.
+ no need to pay attention to parameters, or similar details,

to figure out the exact meaning.
+ given the affinity to the instanceOf relationship (elements

with an order difference of one are connected) a powertype

relationship would be compatible with languages like LML
that embrace the “strict metamodeling” paradigm [2], even
though it crosses a metalevel boundary.
– modelers need to be familiar with the semantics of the

dedicated support. Since the latter is not notated using com-
mon notions such as classification or specialization, modelers
need to be cognizant of the powertype concept. While many
modelers can be expected to be familiar with powertypes,
modeling beginners should receive consideration as well.
– a powertype construct serves exactly one purpose; it is not

clear how related structures such as partitions, subordinations,
etc. could be subsumed by it, meaning that the latter probably
require their own dedicated support.
– indiscriminate addition of dedicated language constructs

may result in undue language complexity growth.

C. Deep Specialization

As alluded to earlier already, the notion of deep special-
ization is automatically supported by a language that supports
deep connections [4], as long as specialization relationships are
regarded as potency-zero links that can be classified. However,
even just two-level support with respect to specialization
relationships would suffice to cover the applications touched
upon in this paper, including support for subordination (cf.
Section IV-C).
The trade-offs of deep specialization, therefore, are:
+ no extra language construct required.
+ modelers do not need to know the semantics of powertype

constructs. Instead, the semantics are explicitly spelled out in
the form of higher-order specialization. Anyone familiar with
the semantics of associations can figure out what the intended
constraints are.
+ applicable in both strict and non-strict frameworks (cf.

Figure 4 vs Figure 5).
+ applicability exceeds pure powertyping. A range of other

constraints on model structures can be easily established via
respective multiplicity specifications and/or relationship end
value restrictions.
+ deeply specifying the presence of powertype structures

across more than one level boundary, or as a matter of fact,
other structures such as subordination, is naturally supported
via multiplicity specifications with potencies other than “1”
(cf. [4]).
– semantically different constraints are expressed using the

same main syntax and are merely distinguished by multiplicity
choices. Modelers, hence, need to pay attention to detail but
potentially may develop respective pattern recognition, similar
to that in effect when certain association multiplicities are
effortlessly categorized as “’optional”, “mandatory”, etc.
– depending on concrete syntax choices, deep specializations

may be confusing for those unfamiliar with the notion. Re-
taining the notation of potency-zero specializations for higher
levels, as we did in this paper, may result in misinterpretations.
An alternative notation or some means of emphasizing the
difference between regular potency-zero specialization and
higher-order specialization may be advantageous in practice.
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One may add that diagrams simultaneously involving deep
classification and deep specialization present layout chal-
lenges, however, the same applies to the use of visual rep-
resentations of dedicated powertype relationships.

There are various trade-offs that depend on which of the
deep specialization flavors in Section IV are chosen, i.e.,
which particular kind of deep specialization end specification
mechanism is chosen (see Figures 5 (a)–(d)). Due to space
constraints, we cannot cover them here.

VI. RELATED WORK

Cardelli was one of the earliest authors to discuss the notion
of powertypes [11]. However, his powertype notion is based
on the mathematical notion of a powerset and is therefore
not well-suited in constructive modeling approaches featuring
nominal types. The latter feature powertypes whose instances
correspond to a very small subset of a powerset.

Deep characterization and powertype structures ultimately
achieve identical object specifications and since any basetype
properties can be lifted to the powertype—provided deep
field and/or deep connection support is available—converting
between these two alternatives should be a refactoring [26].
However, this is only the case for the asymmetric powertype
definition we chose (see EquationPOdell), since a deep charac-
terization approach would not imply the symmetric definition
of Equation PMLT .

Carvalho et al. recommend using an “≪instantiation≫”
stereotype to mark an association between the basetype and
the powertype as being distinguished “. . . from other domain
relations that do not have an instantiation semantics” [13,
p. 7]. Using various multiplicity combinations on that as-
sociation allows them to specify whether generalization sets
are complete and/or disjoint [13, Table 2]. This is analogous
to the expressiveness afforded by using various multiplicity
combinations on deep specializations. However, note that
the “≪instantiation≫” association targets potency-zero in-
stanceOf links whereas deep specialization targets potency-
zero specialization links, which makes them complementary
control mechanisms.

Note that the “complete”/“covering” aspect of MLT’s
control—i.e., specifying that the basetype may not have any
instances which are not also instances of at least one of
the constrained types—is naturally supported in our approach
by forcing the basetype’s potency to be zero from the level
above. However, control over whether the constrained types
are “overlapping” or not, would require treating instanceOf
relationships as links whose outdegrees can be controlled via
higher-order instantiation relationships that are part of the user
model, similar to Carvalho et al.’s approach. The question of
whether or not such control should be added to deep modeling
languages is out of scope for this paper.

Carvalho et al. demonstrate MLT’s support for
“partitions” and “isSubordinateTo” relationships
using a biological taxonomy [12, Fig. 12]. With
our approach, those relationships—plus the reflexive
association “isSubordinateTo”, which is distinct from proper

“isSubordinateTo” relationships—could to a large extent
be expressed with respective deep specializations. It should
be noted that we currently do not fully support modeling
“complete categorizations” (“covering constrained types” in
our terminology) and “partitions” with respect to a particular
powertype. Furthermore, at this point in time we do not
support MLT’s cross-level relationships “isPowertypeOf”
and “disjointlyCategorizes” either [12, Table 2].

DEEPJAVA considered the Java extends relationship to have
potency zero and used potency-one “extends1” to effectively
establish a powertype relationship [21, Listing 8]. This work
did not touch upon using potencies or multiplicities at extends
relationship ends though.

VII. CONCLUSION

Deep characterization is an important aspect of multi-level
modeling and while deep instantiation may realize it in the
most parsimonious manner, its extreme efficiency is not always
desirable. Powertype structures are therefore not only useful
when languages do not support other means of achieving deep
characterization, but can also improve modeling pragmatics
when using deep modeling languages such as LML and DLM.

After having analyzed various variants of powertype con-
cepts, we considered two main variants—strict iso-level deep
specialization vs cross-level deep specialization—to support
the enforcement of powertype structures without requiring
anything else but shallow classification support for special-
ization relationships. Viewing the latter as potency-zero links
allowed us to leverage the known modeling notions of special-
ization and multiplicities to realize powertype support without
introducing an additional language construct.

The fact that we could identify four alternative ways to
support cross-level deep associations appears to give credence
to the notion that the restrictions necessary to establish pow-
ertype structures on the basis of higher-order specializations
are rather natural. If the need to restrict the number of, and
type of, values available to choose from for a relationship end
in the form necessary for specifying a powertype relationship
had been obscure, we would not have been able to identify
so many already existing solutions for it. Furthermore, the
number of alternatives available makes it likely that one of
them is already supported in a host language.

We maintain that avoiding language construct bloat and
the self-evident semantics of deep specializations are aspects
very much worth considering when designing languages. Our
notational choices for higher-order specialization surely would
benefit from validation, but the fact that they can visually
convey powertype semantics, without requiring modelers to
reference formal definitions, seems very promising to us.

Even the generalization of “powertyping” to subordination
does not require an external definition, it can rather easily be
captured via an appropriate use of a multiplicity specification
at the generalization end of a higher-order specialization.
Embracing higher-order specification in the form of deep spe-
cialization thus not only makes it possible to explain advanced
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relationships like subordination in terms of known multi-
level modeling concepts, but also provides a means for the
aforementioned use of notation with self-evident semantics.

Obviously, there is much left to explore with respect to
useful combinations of multiplicity specifications and, in par-
ticular, deep specializations with potencies higher than “1”,
featuring several multiplicity specifications per relationship
end, each with a different potency value.

In this paper, we did not aspire to completely cover the
range of associated specification options regarding disjoint
generalization sets, as supported by the UML and MLT, for
instance. This would be important if one wanted to compre-
hensively specify generalization sets, however, in this paper,
we purely focused on the deep characterization aspect of
powertypes.

Although we believe that our deep specialization proposal
to capture powertype structures stands on its own and should
be able to provide practical value to deep modeling users,
perhaps a wider reaching contribution is the observation that
“powertyping” is a special case of subordination (where the
subordinating type is restricted to an anonymous singleton
type) and that both these important relationships can be
captured via higher-order specializations.
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