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Abstract— The success of automation initiatives in the rail sector
hinges on selecting the appropriate tools for development, testing
and authorization processes. Automated systems should be proven
to be trustworthy and safe in every possible situation before they
are brought to market. This manuscript uses a railway shunting
yard as an example to illustrate how digital twin techniques can
overcome challenges. It demonstrates localization-data-based
environment virtualization for realistic and coherent perception
data emulation across navigation systems, optical cameras, laser
ranging systems and vehicle velocity. This progress reduces the
reliance on real data recordings for the development of automated
driving stacks.

This article presents a comprehensive, domain-specific approach
to developing and independently testing automated driving
functions against functional requirements. Within a fully virtual,
closed-loop laboratory setup, it highlights the advantages of
flexible scenario design for effective and efficient development. In
addition, a test run observer module is introduced, enabling
successive test sequences while automatically detecting collisions
and incorrect driving decisions. The study also provides an outlook
on integrating Al-based algorithms and on transferring validated
functions back to real-world operations.

I. INTRODUCTION

AUTOMATION is increasingly viewed as an innovative path
for overcoming the challenges of manifold railway services [1]
but progress is slow. Enhanced by staff shortages and demand
for optimal processes, vehicle automation through driver
assistance and driverless operation is pursued as a solution
approach, such as demonstrated for metros [2], shunting [3] and
also branch lines and trams [4]. The motivation for automation
is strengthened by advantages seen in flexibility, faster and
optimal operations, lower costs, higher safety level, better
energy efficiency [2] and enrichment of the work of the staff.
This study presents a development approach for on-sight
operation (OSO) of rail transportation systems, specifically the
automation of shunting locomotives in a shunting yard because
this is the most labor-intensive but not value-adding process in
rail freight transport. The concept itself can be transferred to use
cases with higher degrees of freedom such as tram lines and
other guided vehicles.

Compared to more complex systems, such as those used for
road vehicles, aircraft, or spacecraft, the automation of
locomotive movements in a shunting yard may seem trivial, but
it poses challenges, particularly in terms of terrain accessibility
and safety criticality for execution of certification tests.

Furthermore, suitable test areas are unavailable as most driving
path observation methods rely on digital maps, meaning
operation is only possible on certain sections of track.

Recent investigations in railway OSO automation culminate in
the “digital shunting yard” in Munich, Germany, which also
considers the roll out of a GoA4 locomotive in future [5].
Currently, neither standards nor empirical values exist for
hardware selection or software architecture design, i.e. the
automated driving stack (ADS). Related research mainly
focusses on the sub modules for obstacle detection and
classification [6], [7], [8] but an end-to-end signal pipeline
(sense-plan-act) and the according test bench are not presented
yet. Furthermore, there are no generally applicable licensing
guidelines in either the railway or road transport sectors,
particularly since it appears to be difficult or impossible to
provide proof.

This paper presents system virtualizations in a co-simulation
setup for a methodical approach to address these existing gaps.
Starting with a basic description of the tasks to be automated
and the challenges inherent in the example system, the
requirements and scope of a tool framework for the entire
development and early-stage test process of the automation is
presented.

II. MOTIVATION OF SYSTEM VIRTUALIZATION

Single wagonload rail freight transport is currently facing major
economic challenges, particularly in Germany [9]. Let the
example topology be designed as a hump shunting yard, in
which shunting locomotives approach groups of parked
wagons. Once detected and slowly attached to them, the wagons
can be pushed over the hump, rolling by gravitation and sorted
into new train directions in the classification tracks. The
locomotive returns to the dead-end track, where the process
starts over for the next wagons. [10]

The objective of different interest groups is to automate these
movements [11] which are performed without any train
protection system, thus called as on-sight operation.

One vision of initiated, automated OSO envisages a land-based
component from which a driving order is to be sent to the
vehicle. An appropriate on-board driving decision can then be
made based on perception systems for observing the
surroundings, geo-localization systems for estimating position
and real-time data on vehicle parameters. Sophisticated ADS
rely on sensor data fusion algorithms for redundant and stable
decisions, especially under uncertain conditions. A geolocation
system accompanied by a digital map of the area is used to
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determine the vehicle's trajectory. [12]

Similar to other shielded areas, e.g. space exploration, here the
economic necessity of continuous operation prevents regular
access to the real physical test site. In addition to a functioning
locomotive and its operating costs, there are other factors in the
field, such as closed test tracks, test managers, shunting
attendants and train drivers, who are not only financially
unavailable, but also lack capacity noting that the number of
tests is a multiple of thousands of possible critical situations.
Moreover, for regulatory reasons, difficulties arise when the
first sensor data is recorded, both to verify the sensor selection
and to develop the initial algorithms and system architectures
on which the automated system will later be based.
Furthermore, the recording of scenes that harbor high risks of
property damage and personal injury is strictly prohibited.
However, in order to troubleshoot the algorithms and identify
edge cases, it is essential to use sensor data whose
georeferencing matches the digital map. To ensure sufficient
diversity of testing and accessibility at an early stage, the
physical test site should be replaced with a simulation.
Computer science entered the field of simulation engineering in
the second half of the 20th century [13], evolving to encompass
virtual representations of complex systems and architectures,
including those in the railway sector [14]. Today, research into
system virtualization is widespread in the automation of robotic
applications, with the aim of providing a detailed representation
of characteristics. Following the argumentation of Kritzinger et
al. [15], a Digital Model (DM) of a physical test site, here the
shunting yard, can be recreated by a physically and visually
realistic environment rendering. This approach based on
physics engines (PE) is demonstrated for instance in the
automotive [16] [17], aerial vehicle [18] and the railway
domain [10], [19]. Virtual end-of-line testing of automated
systems has been established in recent years, as part of the
PEGASUS project [20], and has also been suggested for the
railway sector by Greiner-Fuchs et al. [21]. According to
Aheleroff et al., the overall virtualization of the closed loop
setup [19] turns the DM into a ‘Digital Twin Predictive’ (DTp),
a virtual replication of all systems involved without any linkage
to a physical property, but real time communication in the co-
simulated cyber space [22].

Compared to systems with higher manoeuvrability, rail vehicles
are laterally guided which simplifies control but also prevents
them from swerving in front of obstacles. Hence, precise
obstacle localization is mandatory. Therefore, automated
driving systems can rely on geographic and topologic
information, to map their position and thus observe their driving
gauge for collision course with any obstacles [12]. This
introduces a new, yet fundamental, requirement for system
virtualization. The DM of the shunting yard must stick to the
exact GNSS coordinates and rail topology of the physical field
and accordingly provide an interface for localization sensor
modelling, to make the automated system think to be in the
physical yard.

Summarized, virtual simulation enables the accessibility of
coherent data within the test and development process of
automated and autonomous systems. For this purpose, the

approach demonstrated in [10] is modified and rolled out to the
entire arrival track section of an example shunting yard in
Germany using publicly accessible geo-information.

III. SETUP OF THE CO-SIMULATED CYBER SPACE

To exploit the advantages of virtualization throughout the entire
process chain, each subsystem involved is modelled to a DM.
The distribution of the single models to stand alone computing
instances is chosen in terms of flexibility in coworking and
transparent fault allocation. According to an architecture
proposed in [10], the DTp is set up in a closed loop as follows
in Fig. 1. Instance (a) defines the operational design domain
(ODD) [23] — corresponding test scenario description. This
description refers to the expertise and knowledge of people,
involved in the daily processes that are to be automated.
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The scenario description reaches from regular daily situations
to highly complex edge cases, with a high potential of risk and
danger. [24]

For this explicit use case, the scenario variation is methodically
structured along the 6-Layer model of situation design [10],
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Fig. 2. 6-Layer Scenario design model [10]

In order to create a virtual model of the example shunting yard,
layer 1 (rail topology) as well as layer 2 (steady objects and
infrastructural components) are related to the actual layout of
the physical property. Therefore, pictures and geoinformation
of the arrival tracks is gathered from public platforms. The
height and inclination data are provided by the state
administration [25] and are used to draft the topology of the area
within the PE. The rail track geometry is obtained from BRouter
[26] together with additional open map data, exported as CSV
files. These data are transformed into splines in the PE and
combined with the corresponding height map to generate the
digital terrain model. The Universal Transverse Mercator
(UTM) zone is represented as a three-dimensional rectangular
coordinate system, which defines the virtual dimensions of the
environment. This setup enables a virtual positioning sensor to
emulate the real-world GNSS data as it moves through the
simulation. Depending on the required fidelity of landmarks
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such as poles or buildings, other scenario elements from the real
yard should be included within this mapping process.

The layers three to six can be designed flexibly. The final
scenario description is defined in the form of a standardized
JavaScript Object Notation (JSON) file, which is based on a
proposed open standard [27]. The description file is forwarded
to the PE (b). Following this procedure, a scenario can be stored
and reproduced for comparative test runs.

The fleet management system (c) is modelled on a real control
centre (CC). It is designed as a graphical user interface
providing an abstract overview of the existing tracks in the
drivable area. The interface enables the definition of a switch
setting to adjust the route for the locomotive.

The CC handles the communication protocols with the mobile
component, i.e. the vehicle. It prompts the shunting order
described in the scenario description (i.e. attach, drive,
emergency stop, etc., as well as the actual position plus the
targeted track, layer six) to the Autonomous Driving Stack
(ADS) (d or e) and thus initiates a virtual test run.

Together with the DM of the shunting yard (b), the CC
simulates the land-based component (locally stationary) of the
automated system. This DM is a precise representation of the
entire arrival track harp of the example shunting yard, as shown
in Fig. 3. The linkage to the CC allows the virtual point setting
and communicates the starting position of the simulation
according to the scenario description, i.e. activating a certain
track spline.

Fig. 3. DM of the example shunting yard arrival tracks in PE showing
an explicit situation

The layer 3 to 5 elements of the scenario description JSON file
are then successively spawned as actors along the selected
driving path on that map.

The vehicle itself is spawned as the main playable character.
Similar to a real locomotive moving along a track, the virtual
vehicle is guided along the activated spline. Digital perception
sensor models are integrated to the PE and virtually mounted at
the front of the vehicle. The simulated GNSS sensor is variably
attached to the centre of the vehicle and continuously emulates
its position. The sensor models emulate the physical sensor data
streams, for each sensor required on the real-world system. The
data, visualized for Light Detection and Ranging (LiDAR), Red-
Green-Blue (RGB) camera, odometry and UTM positioning in
Fig. 4, is then forwarded via User Datagram Protocols (UDP)
to the ADS.

For independent safety argumentation the ADS can be
integrated and treated as a black box system under test.

Thereby, the ADS can either run on laboratory computing units
(software in the loop, SiL) or the final in-field hardware
(hardware in the loop, HiL). However, the driving decision of
the ADS is forwarded to a vehicle kinematics model (g,
MATLAB Simulink), which in turn controls the velocity of the
vehicle through the simulated environment (b) and hence turns
this DM composition into a DTp.

Fig; 4.PE Emulated sensor data of liGB camera (top), LIDAR (mid),
GNSS (red dot, bottom), visualized using foxglove studio and Open
Street Maps.

IV. TESTING THE AUTOMATED DRIVING STACK

Although end-of-line testing would require a large test
catalogue, even simple function developments can consider
multiple test cases in the early stages. Minor changes to the
ADS software may necessitate retesting all passed test cases to
ensure that the changes do not affect other subsystems and
earlier developments. To this end, the closed-loop setup enables
automated testing of any pre-defined cases.

Each test case definition implies an expected system behaviour.
The corresponding evaluation criteria must be derived
specifically for each use case. Whether a test case passes or fails

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Engineering Management Review. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/EMR.2025.3625857

depends on several aspects, as shown in Fig. § [28]. Thereby,
the influence of each object within the domain-specific scenario
description (6-Layer Model) expands the test case diversity.
The applicable legislation and risk assessments define the
boundary conditions against the background of safety, while the
technical requirements define the minimum quality of service.
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Fig. 5. Methodical approach of defining pass fail criteria in order to
contribute a safety argumentation, leaned on [28]

These attributes are developed to the evaluation criteria for
scenario-based testing of highly automated railway driving-
decision systems [29]. Their mathematical description is
modelled in the PE as a collision observer model (COM),
running parallelly to the postulated test runs as described [28].
During simulation, the COM model detects failed test runs. This
automated test observation allows unsupervised testing for a
sequence of test cases. The output of the COM serves as driving
test report and thus can contribute a safety argumentation.

V. RESULTS AND DISCUSSION

Addressing the central research questions of this study, two key
objectives were achieved. An independently developed
rudimental ADS (automated driving and control unit, ADCU
[12]) was integrated into the presented test bench. Thereby, the
closed loop was set up and put into operation successfully. The
ADS received GNSS and LiDAR point clouds and returned the
target velocity to the vehicle model. The ADCU's main focus
was obstacle detection from LiDAR point clouds. The
clustering algorithm was tested in a scenario involving an
approach to a container wagon. This experiment demonstrated
that virtual closed-loop testing can be used for railway
applications.

The second achievement is the development of an experimental
but full ADS. To the authors' knowledge, it is the first software
stack with a complex raw sensor data processing for OSO in the
railway domain [30]. The software stack was tested for about
100 hours real operation time (locomotive moving). The
maximum velocity of the simulated vehicle was limited to 15
km/h. The test scenario description was chosen to the
randomized localization of different wagons on 14 tracks, as

pictured in Fig. 3., no further disturbances, only the regular
service including the original signalling at good weather
conditions during summertime afternoon.

The test runs showed confident detection of freight container
wagons, appropriate driving decision prompting and a correct
scenario handling in most cases. A two-storey car transporter
was repeatedly not recognised in time with the selected sensor
settings, which led to collisions. This is a critical test scenario,
since the front face of these and other so called flat wagons
without any load is very small, but still must be detected on time
to prevent collisions. This test case is reminiscent of a fatal
accident that occurred in 1999/2000, when a radar-based
automation system was tested and failed.

The automatic setup of scenarios and the initiation of test cases
was tested alongside the COM. The test capacity resulting from
the time savings enabled rapid improvements in the
development of the system under test. An optimized object
clustering for instance stabilized the detection of critical wagon
types.

Despite the breakthrough in developing a full ADS for railway
application, there is still a lack of transfer from virtual testing
and development back to the real world. This domain gap is
widely discussed and not limited to the railway sector [31]. The
quality of the sensor models was evaluated using pre-trained
computer vision models and further standard methods adapted
from the automotive domain. The results showed a promising
analogy to analyses on real world data. [32], [33], [34].

The full ADS has not yet been applied to real-world
applications. Thus, the influence of the domain gap on the
quality of the driving stack development cannot yet be assessed.

VI. IMPLICATED STRATEGY FOR AUTOMATION MANAGEMENT

Depending on the specific use case and data accessibility,
subsystems of varying scope may be required for simulation. It
is therefore important to identify all the subsystems involved in
the automation process during the initial project stages and
analyse the need for their virtualisation or their integrability at
a later stage. Although competencies in standards, service, ADS
development and simulation are mostly distributed among
different groups, effective progress requires close collaboration
between them. Many development teams have to work on the
project simultaneously. Therefore, the interfaces, variables and
protocols between the subsystems must be defined precisely.
The simulations are extremely computationally intensive and
may need to be run on distributed systems. Maintaining the
server infrastructure and providing workplaces for software
engineers is not something that should be underestimated.

It is helpful to check whether any of the individual simulation
modules are already available and can be integrated into the
closed-loop setup. One example is a vehicle kinematics model,
for which extensive measurement runs would otherwise be
required. The same applies to sensor models, which are already
available for certain devices.

The test scenario design can be processed using various models
and taxonomies. However, it is important to identify a relevant
and efficient sequence of tests so that a measure for safe
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operation can be determined within a finite test scope. This also
means that the test developers must be independent of the ADS
development team. They provide appropriate test cases for each
stage of development, so they must be closely involved in the
process.

Once the system has been declared functional in the virtual
closed-loop setup, it is advisable to transfer the development
process to reality submodule by submodule. For instance,
sensor models can be replaced by real word data while keeping
other subsystems simulated. The final step is to correct the
uncertainties in vehicle kinematics modelling within a vehicle
in the loop and metaverse test. To this end, all systems operate
on the target hardware within the target vehicle in the target
field. Metaverse testing means, obstacles such as humans are
augmented in real-time into the real data stream before
involving real humans.

This approach also highlights the need for new competencies in
simulation engineering, data management and scenario design,
indicating a potential shift in workforce qualifications and
training requirements.

Although the concept was demonstrated for a shunting yard, it
can be transferred to other guided transport systems, such as
trams and branch lines.

VII. OUTLOOK —DMS AS A VIRTUAL SCHOOL BENCH FOR
AUTOMATED SYSTEMS

The ADS development process involves a wide range of
stakeholders, including authorities, licensing agencies,
operators, investors, manufacturers and others. First, standards
must be created in broad-based consortia that make the approval
process for automated OSO systems transparent and accessible.
The results presented demonstrate how virtual models can
speed up and reduce the cost and risk of developing automated
driving functions by replacing scarce and expensive field tests
with reproducible, closed-loop simulations. This accelerates
development cycles, makes more efficient use of resources and
enables the systematic testing of edge cases and safety-critical
scenarios before deployment in the field. As described here, the
virtualization of the rail environment is a strategic first step in
virtual engineering supporting the automation strategy of
railway vehicles. Using the example of a shunting yard, the
approach demonstrated that sensor data for GNSS, LiDAR,
cameras, and odometry can be emulated consistently within a
physics-based simulation, thereby reducing dependence on
costly and limited field trials. The integration of automated
scenario generation and a collision observer enabled systematic
testing of functional requirements and edge cases, contributing
to faster development cycles and stronger safety arguments.

In addition to the sensors described methods for emulating
synthetic sensor data for ultrasonic and radar systems as well as
infrared cameras can become relevant in future, to fulfil
redundant specifications such as multi-sensor perceptions.
Complex algorithms such as convolutional neural networks
diffuse more and more into systems of everyday life and hold a
huge potential, for instance in object detection and
classification [35]. Yet there is neither a common approach of
understanding the decisions of such a system nor a methodical
description of a minimum variety of training data required.

Using the presented virtual environment, the authors are
researching on different techniques of training and explaining
artificial intelligences (XAI) to monitor the decisions
(classifications) of neural networks. The overall aim is to find
an argumentative basis to integrate complex algorithms into
authority proven devices. These investigations are considered
within the postulated testing process as formulated in Fig. 6.
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Fig. 6. Safety argumentation of deep learning-based object
classification in the railway domain using XAl techniques and ODD
specific test cases

Trained Computer vision models (CV-Systems) are embedded
into the ADS under test. There are some domain specific
training data sets available, the data base for the railway sector
is low, the “Open Sensor Data for Rail 2023 [36] is a
beginning, but the recording and preparation time beforehand is
cumbersome and error-prone [37]. Programmes such as
RailSim [6] offer virtual training data in an attempt to provide
a replacement strategy, but they may be too generic for specific
use cases. In order to create an ODD specific training data set,
an additional module was integrated into the PE to rapidly
create appropriate virtual ground truth data [34]. Having the
scenario describing JSON file and the rendered sensor data, use
case specific labelled virtual training data can be created. That
turns the DTp into a playground where machine learning
models can learn from. The COM of the test cases downstream
are extended by the XAl techniques to measure which training
data is useful, and which not.

With an increased fidelity of the virtual environment, the
overall aim is to train the ADS within a virtual laboratory
environment for in-field service. This approach is already
demonstrated for RGB-image based signal detection [38] and
RGB-image based reinforcement learning for driving decision
making [39]. In a next step multimodal CV-Systems will be
investigated.
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