— ;’ v”;:E, \ s sl
s I—' 3
= e

- (e() :"

Towards Machine-actionable

FAIR Digital Objects

with a Typing Model that Enables Operations

e e e

PRI E A R

\“\
A v
R

A\
]

k. - A
. _
- #
/ ;
%
/ 3
‘. .
> "
—E - —
7 ‘=

3
\ _7{4.‘\
{

E | =

&g |
’ o
R
- -

- ‘f-f. 4 ;‘ m’:).(,'l“_}.(

Maximilian Inckmann, Nicolas Blumenrohr, Rossella Aversa

Scientific Computing Center — Karlsruhe Institute of Technology

AT

How research data looks today

® A O

System A

Many systems A lot of (meta)data formats

September 17,

2025 Inckmann, Blumenrohr, Aversa — Towards Machine-actionable FAIR Digital Objects ﬂ(IT

1

How research data looks today

Research question
(data access)

? ¢ 2

September 17,
2025

2 Inckmann, Blumenrohr, Aversa — Towards Machine-actionable FAIR Digital Objects ﬂ(IT

What is a FAIR Digital Object?

ll

harmonized representation well-defined information
uniform access machine-actionability

September 17,
2025

Inckmann, Blumenrohr, Aversa — Towards Machine-actionable FAIR Digital Objects ﬂ(IT

What is a FAIR Digital Object?

FAIR DO:21.T11981/c821a675-99¢c4-40d4-942f-8c74e1c3f78f

= Persistent identification & storage by using

KernelInformationProfile

Handle PIDS and Handle records 21.T11148/b9b76f887845e32d29f7
- 1 digitalObjectLocation https://example.com/
Values are typed and Valldated 21.T11148/b8457812905b83046284
= No fixed content schema (aka. profiles) dateCreated —
. 21.T11148/aafd5fb4c7222e2d950a e
= Harmonization achieved by reusing existing e
: Sk ® 0005-0005.5800- 9433
data types and profiles 21.T11148/1a73af9e72600182733b
. . . isMetadataFor 21.T11981/6ab464ed-
= Refers to (meta)data in existing systems SUTTO—————
sampleldentifier . 10.21384/AU1234
21.T11148/72520abdf950492f5491 -
FAIR-DOs are machine-interpretable! license https://spdx.org/

21.T11148/2f314c8fe5fb6a0063a8 licenses/CC-BY-1.0

Next step: Use this for highly automated data
processing based on a type system

AT

FAIR-DO Type System

Currently: Cordra Data Type Registries

= PID-BasiclnfoTypes, PID-InfoTypes, Kernel Information Profiles
= JSON schema capabilities = only syntactic validation

= No inheritance/reuse possible

= 3 instances — 3 slightly different schemas

Kernel
Information PID-BasiclnfoType

Profile 1..*

ses
atttributes .

AT

FAIR-DO Type System

Our approach

= Data Type: abstract superclass

Atomic Data Type: syntax of a value

Type Profile: combination of other data types
Attributes: semantics and cardinality
Includes inheritance relationships

has a

*

Type Profile &" Atomic Data Type 42"1
A I

inherits from inherits from

has
multiple

co;ﬁ';')'iié'é: W|th

AT

Goal: How can we achieve machine-actionability?

> g E

Our approach: type-associated Operations System A

= QOperations may use arbitrary existing
technologies (e.g., languages, protocols, ...)

= QOperations may be executed in various
environments (e.g., Edge, Cloud, HPC)

= Automatic discovery of available Operations for a
given FAIR-DO

— Associate data types with Operations

— Describe technologies and how they are
executed

- Reuse technologies in multiple Operations

Example for a type-associated FAIR-DO Operation

(" Operation: Get the primary e-mail address)
from ORCID via the API

executable on:

Operation Step: Extract ORCiD
https://orcid.org/0009-0005-2800-4833 mesh [IEN I ——| © rumber for URL

extracted ORCIiD

returns. Operation Step: Get ORCiD
maximilian.inckmann@kit.edu _ profile and extract e-mail address
N\ J
Attribute Operation

AT

Attribute Mapping Technology Interface

Example for a type-associated FAIR-DO Operation

executable on:

(" Operation: Get the primary e-mail address

from ORCID via the API

~

Operation Step: Extract ORCIiD
—) m__' number from URL

returns:

—TTy

g

-

extracted ORCIiD

Operation Step: Get ORCID

profile and extract e-mail address]|

J

Technology Interface:)
Regular expression

Input

Pattern

Technology Interface:)
Python

runCmd
sourceCode
setupCmd
%
Attribute Operation

Attribute Mapping

Technology Interface

AT

Example for a type-associated FAIR-DO Operation

executable on:

(" Operation: Get the primary e-mail address
from ORCID via the API

~

e N ——

Operation Step: Extract ORCIiD
number from URL

-

extracted ORCIiD

l

returns:

—ETTy

Operation Step: Get ORCID

profile and extract e-mail address

-

J

Technology Interface:)
Regular expression ::

Input =

Pattern

Adapter FAIR-DO

Adapter FAIR-DO

Il

Adapter FAIR-DO

Technology Interface:)
Python o—

[

profile | JSAdapter
name Regex in JS
npm @demo/regexwrap

Adapter FAIR-DO

runCmd Adapter FAIR-DO
sourceCode profile | DockerAdapter
name Python in Docker
setupCmd :
image python
version | 3.9.23-trixie
Attribute Operation

Attribute Mapping

AT

Technology Interface

Example for a type-associated FAIR-DO Operation

f Operation: Get the primary e-mail address \
from ORCID via the API

executable on:

aand conect pumm

Operation Step: Extract ORCIiD l

Technology Interface:)
Regular expression :

Adapter FAIR-DO

Adapter FAIR-DO

number from URL

String[] > ORCID

Il

—
Adapter FAIR-DO
profile | JSAdapter
name Regex in JS
) npm @demo/regexwrap

extracted

returns:

L] c-mail address

ORCID

Operation Step: Get ORCID
profile and extract e-mail address

String-Template d

index: O

.

™/ Technology Interface: \

Adapter FAIR-DO

Python — _
C==
Adapter FAIR-DO
~ ~ profile | DockerAdapter
0 00
name Python in Docker
etup 0
image python
) version | 3.9.23-trixie
~ _— Y
Attribute Operation

Attribute Mapping

AT

Technology Interface

Our FAIR-DO Type System that Enables Operations

input
Technology
Interface Sutput

4

Available information

0..1

executable on =

0.1]
steps

executes 0.*

input

returns

Operation Step

. output >
"~ To.. 0.+

substeps

o

Attribute » Data Type

multiple

input Type Profile 4—| Atomic Data Type 4—|

. : | |
Attribute : inherits from inherits from

Mapping

Actions on information Representation of information

AT

Prototypical Implementation

Integrated Data Type and Operation Registry with Inheritance System (IDORIS)
= Technologies used: Java, Spring, Neo4j

= Realizes inheritance mechanisms

= Automatically determines association between operations and attributes/data types

= Rule-based logic for validating entities not only syntactically, but also in their context
—> acyclicity; conflict-free inheritance hierarchy

executableOn returns
(Gt 50" (Gt prmary - om ORCID v AP (S -

ﬂwOpcmnoNOpcmncm

Extract ORCID from URL | — (Get ORCID profile & extract e-mail
inputMappings ," mput inputMappings \mpl.ltMappings inputMappings
7 “a
input (ttps?://orcid.org/ ({4} \I{4}\I{4}\I{3}X?)) /" (python main py orcid {finpuy}) | (hitpsi/github.com/foorbargit) (pip install requests butput
inputMappings utputMappmgs output output outputMappings
. Soutput ™ atuibutes__,.»"’fﬂ;tums “_input attributes
\‘ ‘4" ------ - ‘\‘ 'a' e "\‘ e
(oontast — regexInputj - [regexOutputs[l] — extracted ORC]DJ """"""" (retumValues[O] — ¢-mail address]

AT

Conclusions and Future Work

= Type-associated FAIR-DO Operations abstract the complexity of finding and executing Operations
from users

— Agnostic to the concrete environment they are executed in (e.g., Docker, bare-metal)
— Able to describe and use various technologies (languages, libraries, APIs, etc.)

— Enable reuse of technologies across multiple operations

— Association mechanism between Operations and Data Types

— Inheritance mechanisms that enable reuse of Data Types

= |[DORIS realizes robust validation that ensures correct syntax, acyclicity, and other rules
- Fundamental typing infrastructure for machine-actionable FAIR-DOs and reproducible Operations

Next step: Execute technology-agnostic FAIR-DO Operations

AT

SKIT

Maximilian Inckmann — maximilian.inckmann@kit.edu

	Towards Machine-actionable FAIR Digital Objects with a Typing Model that Enables Operations
	Slide 0: Towards Machine-actionable FAIR Digital Objects with a Typing Model that Enables Operations
	Slide 1: How research data looks today
	Slide 2: How research data looks today

	What is a FAIR-DO?
	Slide 3: What is a FAIR Digital Object?
	Slide 4: What is a FAIR Digital Object?
	Slide 5: FAIR-DO Type System
	Slide 6: FAIR-DO Type System

	Machine-actionability
	Slide 7: Goal: How can we achieve machine-actionability?
	Slide 8: Example for a type-associated FAIR-DO Operation
	Slide 9: Example for a type-associated FAIR-DO Operation
	Slide 10: Example for a type-associated FAIR-DO Operation
	Slide 11: Example for a type-associated FAIR-DO Operation
	Slide 12: Our FAIR-DO Type System that Enables Operations
	Slide 13: Prototypical Implementation
	Slide 14: Conclusions and Future Work
	Slide 15

