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Abstract

Reinforcement learning (RL) is a promising approach for
the online control of complex, real-world systems, with re-
cent success demonstrated in applications such as particle
accelerator control. However, model-free RL algorithms
often suffer from sample inefficiency, making training infea-
sible without access to high-fidelity simulations or extensive
measurement data. This limitation poses a significant chal-
lenge for efficient real-world deployment. In this work, we
explore data-driven model-predictive control (MPC) as a
solution. Specifically, we employ Gaussian processes (GPs)
to model the unknown transition functions in the real-world
system, enabling safe exploration in the training process. We
apply the GP-MPC framework to the transverse beam tuning
task at the ARES accelerator, demonstrating its potential for
efficient online training. This study showcases the feasibility
of data-driven control strategies for accelerator applications,
paving the way for more efficient and effective solutions in
real-world scenarios.

INTRODUCTION

Modern particle accelerators are complex, high-
dimensional systems that require precise, continuous
tuning to maintain optimal performance. Traditional tuning
approaches often rely on expert knowledge and manual
adjustments, which can be time-consuming and suboptimal.
As accelerators become increasingly sophisticated, there
is a growing demand for intelligent control and tuning
algorithms that can automate this process efliciently.

Reinforcement learning (RL) has emerged as a promising
tool in this context, offering the ability to learn effective con-
trol strategies directly from data. Recent studies show that
RL optimizers, once pre-trained in simulation models, can
efficiently control the accelerator tasks [1]. However, a key
limitation of standard RL methods is their poor sample effi-
ciency. Typically, thousands to millions of interactions with
the system are required, posing a significant challenge in ac-
celerator applications, where experiment is costly and time
is limited. Model-based reinforcement learning (MBRL)
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addresses this issue by learning a predictive model of the
system dynamics and using it to simulate future outcomes,
thus reducing the need for direct interaction [2]. One suc-
cessful modeling approach within MBRL is the use of Gaus-
sian processs (GPs) [3], which not only provide accurate
predictions but also uncertainty estimates. In recent years,
Bayesian optimization (BO) algorithms based on GP models
have already demonstrated considerable success in accel-
erator tuning tasks due to their ability to make informed
decisions under uncertainty [4]. Building on this founda-
tion, the GP-model predictive control (MPC) [5, 6] offers
a powerful new approach that combines GP for the system
modeling and MPC for action selection. By explicitly incor-
porating model uncertainty into a predictive control scheme,
GP-MPC enables sample-efficient, robust decision-making
tailored to the nonlinear and unknown dynamics of particle
accelerators.

This paper presents the application of GP-MPC in the
context of accelerator control, illustrating its potential to
significantly advance the state of automated tuning and con-
trol in accelerator operations. The GP-MPC algorithm has
previously been successfully applied at the AWAKE acceler-
ator for beam trajectory tuning with corrector magnets [7],
as well as at SIS-18 for a beam injection task [8]. In this
contribution, we extend the GP-MPC method to a nonlinear
transverse beam tuning task at the ARES accelerator. We
demonstrate that this method can be deployed turn-key and
allows sample-efficient online tuning. Here, we adopt the for-
mulation as described in Ref. [6] and outline the algorithm in
Algorithm 1. It is worth noting that although GP model train-
ing and action planning are performed sequentially in our
implementation, these steps can be executed asynchronously
to accommodate the demands of real-time control systems.
A more comprehensive overview of the GP-MPC algorithms
can be found in the review articles [9, 10].

THE ARES EXPERIMENTAL AREA
TUNING TASK

The Accelerator Research Experiment at SINBAD
(ARES) accelerator [11] at DESY is a test facility for sub-
femtosecond electron bunches studies and accelerator com-
ponent research. This paper focuses on the lattice section
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Algorithm 1 GP-MPC control loop

1: Define the prior for the GP models.

2: Interact with the environment on ny initial points to get
initial data set of transitions Dy = {((s,a) X (s"));,i =
1, ey no}.

3: forr=1,2,...do > Control loop

: Build GP models GP : (s,a) — s’ using available

data D;_;.

5: Optimize the GP models hyperparameters.

Predict the system dynamics with GP-models

7: Find the action sequence that minimizes the cost
between predicted and the target states (sT2€°t)
8: Apply the first action a,, observe new transition

(sesar) = (Sr+1)-
9: Augment the dataset.
10: end for

known as the Experimental Area (EA), which is respon-
sible for tuning the beam parameters to meet the specific
requirements of the downstream experimental chamber.
The EA section consists of three quadrupole mag-
nets 01,3, one vertical C,, and one horizontal steering
magnet C,. The magnets are arranged in the order of
[01,02,C,, Q3,Cj]. The section has a diagnostic screen
downstream of the magnets, where the electron beam can
be imaged. From the screen image, the statistical parame-
ters of the beam b = (uy, oy, fty, o7y) can be determined,
where u denotes the beam size, o denotes the one stan-
dard deviation beam size, and (x, y) denote the horizontal
and vertical plane respectively. The actuators u, i.e. the
input parameters controlled by the algorithm, are the nor-
malized quadrupole strengths and the angles of the steerers
u = (kg,, ko,, @c,, ko, @c, ). The ARES-EA tuning task
is visualized in Fig. 1. The goal is to achieve a desired target
beam b’ by iteratively adjusting the magnet settings u.
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Figure 1: Overview of the EA section beam tuning task.
The EA section consists of three quadrupoles, one vertical,
and one horizontal steering magnet. Figure adapted from
Ref. [1].

The tuning task can be rephrased as minimizing a given
objective function

minO (u | M,I) =minD (b (u | M,1),b"), (1)
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i.e., minimizing the distance metric D between the target
beam b’ and the observed beam b. The task is only partially
observable, as the measured beam b not only depends on
the actuator settings u, but also on variables that can not
be easily determined in operation, including the quadrupole
misalignments M and the beam parameters I upstream of
the EA section. Therefore, the simulation model cannot be
directly used in operation to perform model-based optimiza-
tion or control. The GP-MPC is a promising candidate for
such problem as it can efficiently learn the model using data
gathered online during operation.

Problem Formulation for GP-MPC

To apply the GP-MPC algorithm, we formulate the EA
beam tuning task as follows. The states s are chosen to be
the measured beam parameters b and the actions are the
direct magnet settings u. The transition (b;,u;) — b;41 is
modeled by independent GPs. To improve the GP modeling
stability, the beam parameters are rescaled so that the beam
positions between +2 mm lie within [0, 1], and the magnet
settings are normalized to [0, 1] respectively. We use the
quadratic cost for the MPC part,

D((b,u),(d",u’)) = (b-b) WP (b-b)

+(u—u )W u—-u), @
with W) and W®) containing the weighting factors in the
diagonal entries. For the the ARES EA task, we only care
about the beam parameters and do not weight the actuators
W) = 0. While here an equal weighting is used W®) = j,
it is possible to further fine-tune the controller’s behavior
by focusing on specific beam parameters. In the action op-
timization, we used a horizon i = 5, meaning that at each
step t, the GP-MPC predicts five steps ahead and minimizes
the average of costs throughout the trajectory

= .
min gZ;D((bm,um),(b’,”/))’ 3)

Urslse-sUtt5

where the future states b,,; are estimated using the GP mod-
els. The action changes are limited to 10% of the entire
range at each step.

RESULTS

We evaluated the GP-MPC algorithm on a simulated
ARES EA model using the Cheetah [12] library, averag-
ing over 50 different trials. Each trial is defined by a tuple
(I,M,b’), i.e., randomized incoming beam, magnet mis-
alignments, and target beam. The GP-MPC was started
from scratch, with first three interactions being randomly
selected to construct the initial GP models. In addition, the
standard BO with a upper confidence bound (UCB) acquisi-
tion function and the Nelder-Mead simplex algorithms were
evaluated as benchmarks. The actions selected by the BO
are also limited to 10% of the total range. Both methods
were implemented using the Xopt [13] library.
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The obtained results from each algorithm are quantified
using the mean absolute error (MAE) between the observed
and the target beam parameters. Figure 2 shows the MAE
values averaged over the 50 trials. Both GP-MPC and BO
successfully converged within 100 steps, achieving compa-
rable final MAE values. In contrast, the simplex method
failed to reach satisfactory settings.

— GP-MPC Nelder-Mead simplex
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Figure 2: Convergence plot for different algorithms on the
beam tuning task. The MAE between the observed and target
beam parameters are shown. Each algorithm is evaluated on
50 trials in simulation with different configurations of target
beam, incoming beam, and magnet misalignment settings,
representing the realistic scenario at the ARES accelerator.

The progress of one sample trial is shown in Fig. 3. The
upper plot shows the evolution of the normalized beam pa-
rameters, corresponding to a centered and focused beam.
Overall, GP-MPC demonstrated a very smooth convergence
behavior, thanks to its ability to look ahead and plan the
action.

The final evaluation results are listed in Table 1. The
beam differences are the median values of the best achieved
MAE over the 50 test trials. GP-MPC reached 24 um, better
than BO with 33 um. Both GP-based methods are clearly
outperforming the Nelder-Mead simplex with 276 um. As
GP-MPC is deployed entirely from scratch like BO, the per-
formance is expected to not degrade when transferred to
real-world operation [1]. Additionally, we report the cumu-
lative magnet changes, normalized over the allowed action
range. Ideally, this value should be low to minimize unnec-
essary adjustments and reduce stress on real-world power
supplies. GP-MPC achieved a total normalized change of 8,
representing an 82% reduction compared to BO, and 93%
reduction compared to the simplex method. The similar final
beam parameters achieved by GP-MPC and BO are expected,
as both approaches rely on the same underlying GP model-
ing technique and the beam tuning task is inherently static.
However, the significantly smaller magnet adjustments ob-
served with GP-MPC can be attributed to its ability to plan
over a finite horizon. In contrast, BO relies on exploration
of the parameter space to locate a global optimum, which
often results in more frequent and larger parameter changes.
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Figure 3: Progress of the GP-MPC algorithm on one example
tuning task. The beam parameters and magnet settings are
normalized to [0, 1].

Table 1: Results of the beam tuning task. Each algorithm was
tested on 50 simulated trials, and the median values of the
respective metrics were reported. The beam differences are
calculated using MAE. The magnet changes are normalized
over the allowed action range.

Algorithm Best beam Sum of magnet
g differences (um) changes
GP-MPC 24 8
BO 33 46
Nelder-Mead 276 122
CONCLUSION

This paper presented the application of GP-MPC to a
transverse beam tuning task at the ARES experimental area
section. The method demonstrates high sample efficiency,
making it suitable for direct online deployment in accelera-
tor operations without requiring prior offline training. On
this static tuning problem, GP-MPC achieves performance
comparable to that of BO. Future work will focus on ex-
tending the approach to incorporate safety constraints and
prior knowledge of the accelerator lattice, leveraging the fast
executing and differentiable Cheetah simulation model. We
believe that integrating GP-MPC into accelerator control
workflows offers a promising step toward more autonomous
and intelligent tuning algorithms.
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