KIT | KIT-Bibliothek | Impressum | Datenschutz

Unveiling the limits of deep learning models in hydrological extrapolation tasks

Baste, Sanika 1; Klotz, Daniel; Acuña Espinoza, Eduardo ORCID iD icon 2; Bardossy, Andras; Loritz, Ralf 3
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Wasser und Umwelt (IWU), Karlsruher Institut für Technologie (KIT)
3 Institut für Wasser und Gewässerentwicklung (IWG), Karlsruher Institut für Technologie (KIT)

Abstract:

Long short-term memory (LSTM) networks have shown strong performance in rainfall–runoff modeling, often surpassing conventional hydrological models in benchmark studies. However, recent studies raise questions about their ability to extrapolate, particularly under extreme conditions that exceed the range of their training data. This study examines the performance of a stand-alone LSTM trained on 196 catchments in Switzerland when subjected to synthetic design precipitation events of increasing intensity and varying duration. The model's response is compared to that of a hybrid model – a model that combines conceptual hydrological approaches with the LSTM – and evaluated against hydrological process understanding. Our study reiterates that the stand-alone LSTM is not capable of predicting discharge values above a theoretical limit (which we have calculated for this study to be 73 mm d−1), and we show that this limit is below the maximum value of 183 mm d−1 in the training data. Furthermore, the LSTM exhibits a concave runoff response under extreme precipitation, indicating that event runoff coefficients decrease with increasing design precipitation – a phenomenon not observed in the hybrid model used as a benchmark. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000186406
Veröffentlicht am 03.11.2025
Originalveröffentlichung
DOI: 10.5194/hess-29-5871-2025
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Wasser und Gewässerentwicklung (IWG)
Institut für Wasser und Umwelt (IWU)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 1607-7938
KITopen-ID: 1000186406
Erschienen in Hydrology and Earth System Sciences
Verlag Copernicus Publications
Band 29
Heft 21
Seiten 5871–5891
Vorab online veröffentlicht am 03.11.2025
Nachgewiesen in Dimensions
Scopus
Web of Science
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page