
A non-iterative domain decomposition time
integrator combined with discontinuous
Galerkin space discretizations for acoustic
wave equations

Tim Buchholz, Marlis Hochbruck

CRC Preprint 2025/51, October 2025

KARLSRUHE INSTITUTE OF TECHNOLOGY

KIT – The Research University in the Helmholtz Association www.kit.edu



Participating universities

Funded by

ISSN 2365-662X

2



A non-iterative domain decomposition time
integrator combined with discontinuous
Galerkin space discretizations for acoustic wave
equations

Tim Buchholz[0009−0000−0389−0983] and
Marlis Hochbruck[0000−0002−5968−0480]

Abstract We propose a novel non-iterative domain decomposition time integrator
for acoustic wave equations using a discontinuous Galerkin discretization in space.
It is based on a local Crank-Nicolson approximation combined with a suitable
local prediction step in time. In contrast to earlier work using linear continuous
finite elements with mass lumping, the proposed approach enables higher-order
approximations and also heterogeneous material parameters in a natural way.

1 Introduction

We construct a novel non-iterative domain decomposition time integrator for acoustic
wave equations which uses a discontinuous Galerkin (DG) space discretization.
Employing a DG discretization offers two key advantages. First, it easily allows us to
use higher-order polynomials on the mesh elements and second, it works very well for
spatially varying material parameters, e.g., piecewise constant material coefficients
modeling composite materials. The construction is inspired by the work of [?, ?] for
parabolic problems and [?], where we proposed and analyzed this method for linear
acoustic wave equations using a space discretization based on linear finite elements
combined with mass lumping.

The linear acoustic wave equation is posed on an open, bounded, and polyhedral
domain Ω ⊂ R𝑑 with a non-empty Dirichlet boundary Γ𝐷 ⊆ 𝜕Ω and Neumann
boundary Γ𝑁 = 𝜕Ω\Γ𝐷 . The material coefficient 𝜅 ∈ 𝐿∞ (Ω) satisfies 𝛼 < 𝜅(𝑥) < 𝛽
almost everywhere for some constants 𝛼, 𝛽 > 0, and may in particular be piecewise

Tim Buchholz
Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology, Englerstr. 2,
76131 Karlsruhe, Germany, e-mail: tim.buchholz@kit.edu

Marlis Hochbruck
Institute for Applied and Numerical Mathematics, Karlsruhe Institute of Technology, Englerstr. 2,
76131 Karlsruhe, Germany e-mail: marlis.hochbruck@kit.edu

1

tim.buchholz@kit.edu
marlis.hochbruck@kit.edu


2 Tim Buchholz and Marlis Hochbruck

constant. Let 𝐿𝑢 = ∇ · (𝜅∇𝑢) be the differential operator applied to a function 𝑢
in the domain 𝐷 (𝐿) = 𝐻1 (Ω) ∩ { 𝑢 ∈ 𝐿2 (Ω) | 𝐿𝑢 ∈ 𝐿2 (Ω) }. Given initial data
𝑢0 ∈ 𝐷 (𝐿) and 𝑣0 ∈ 𝐻1 (Ω), the linear acoustic wave equation is given by

𝜕𝑡𝑢 = 𝑣, 𝜕𝑡 𝑣 = 𝐿𝑢 + 𝑓 , in Ω × (0, 𝑇] (1a)
𝑢(𝑥, 0) = 𝑢0 (𝑥), 𝑣(𝑥, 0) = 𝑣0 (𝑥), in Ω (1b)

𝑢 = 𝑔, on Γ𝐷 × (0, 𝑇] (1c)
𝜕𝑛𝑢 = 0, on Γ𝑁 × (0, 𝑇] (1d)

where 𝑇 > 0 denotes the final time. For the inhomogeneity 𝑓 we assume
𝑓 ∈ 𝐶 ( [0, 𝑇], 𝐻1 (Ω)). However, the precise necessary conditions on 𝑔 to get well-
posedness of the problem are quite delicate, and lie outside the scope of this work. We
just demand 𝑔 ∈ 𝐶2 ( [0, 𝑇], 𝐶2 (Γ𝐷)), which is sufficient to lift the problem into one
with homogeneous mixed boundary conditions. Moreover, we assume compatibility
of 𝑔 at the transition between Γ𝐷 and Γ𝑁 , as well as 𝑢0

��
Γ𝐷

= 𝑔
��
𝑡=0.

The remainder of the paper is structured as follows. In Section 2, we review
relevant preliminaries, including the space discretization, global time integrators,
and cell extensions within a mesh. Section 3 presents the construction and details of
the proposed domain splitting method. In Section 4, we highlight some key aspects to
be considered for an efficient implementation. Finally, Section 5 presents numerical
experiments that demonstrate the method’s performance.

2 Preliminaries

2.1 Discretization in space

For the spatial discretization, we consider a shape- and contact-regular, matching
simplicial mesh Tℎ = Tℎ (Ω) of the domain Ω, cf. [?, Definition 8.11]. We denote by
Fℎ = Fℎ (Ω) the set of all mesh faces, decomposed into the set of boundary faces
F bnd
ℎ = F bnd

ℎ (Ω) and the set of interior faces F int
ℎ = F int

ℎ (Ω). Further, we assume that
𝜕Ω is the distinct union of the Dirichlet boundary Γ𝐷 and the Neumann boundary
Γ𝑁 and that all faces are contained either in Γ𝐷 or in Γ𝑁 . The wave propagation
speed 𝜅 is piecewise constant, and the mesh Tℎ is matched to 𝜅, i.e., 𝜅

��
𝐾

is constant
for every element 𝐾 ∈ Tℎ. For each element 𝐾 ∈ Tℎ, let ℎ𝐾 denote its diameter and
ℎ the maximal element diameter in the mesh.

For any subset T̂ℎ ⊂ Tℎ of the mesh, we define the corresponding spatial domain
as

Ω̂ = dom(T̂ℎ) := int
⋃
𝐾∈ T̂ℎ

𝐾 ⊂ Ω. (2)

If a domain Ω̂ is defined in this way as a union of cells, then the set of mesh elements
belonging to Ω̂ is denoted by



Discontinuous Galerkin domain splitting for acoustic wave equations 3

Tℎ (Ω̂) = {𝐾 ∈ Tℎ | 𝐾 ⊂ Ω̂}.

We further denote by Fℎ (Ω̂) the set of all faces in Tℎ (Ω̂), which we split into the
interior faces F int

ℎ (Ω̂) and boundary faces F bnd
ℎ (Ω̂). The Dirichlet and Neumann

parts of the boundary of Ω̂ are denoted by Γ̂𝐷 and Γ̂𝑁 , respectively. Analogously,
for a generic interface Γ̂ we denote its associated set of faces by Fℎ (Γ̂) ⊂ Fℎ.

Next, we introduce the discrete function spaces. For each element 𝐾 ∈ Tℎ, let
P𝑘 (𝐾) denote the set of all polynomials in 𝑑 variables of total degree at most 𝑘 . The
associated broken polynomial space on a domain Ω̂ is then defined as

P𝑏𝑘 (Tℎ (Ω̂)) := { 𝜓ℎ ∈ 𝐿1 (Ω̂;R) | 𝜓ℎ
��
𝐾
∈ P𝑘 (𝐾), ∀𝐾 ∈ Tℎ (Ω̂) }.

This broken space serves as the approximation space in the discontinuous Galerkin
method, allowing discontinuities of the functions across element interfaces. We
denote the standard 𝐿2 inner product on Ω̂ by(·, ·)Ω̂ =

(·, ·)𝐿2 (Ω̂) .

The corresponding 𝐿2 projection ΠΩ̂ : 𝐿2 (Ω̂) → P𝑏𝑘 (Tℎ (Ω̂)) is defined for any
𝜙 ∈ 𝐿2 (Ω̂) by (

ΠΩ̂𝜙 − 𝜙, 𝜓ℎ
)
Ω̂ = 0, ∀𝜓ℎ ∈ P𝑏𝑘 (Tℎ (Ω̂)). (3)

We follow the symmetric weighted interior penalty (SWIP) approach as described in
[?, Section 4.5.2.3], where jumps are denoted by ⟦·⟧ and weighted averages by {{·}}𝜔
with weights defined as in [?, Definition 4.46]. The corresponding SWIP bilinear
form on Ω̂ is denoted by 𝑎Ω̂

(·, ·) and induces the associated SWIP norm ∥·∥2
𝑎,Ω̂

, see
[?, eq. (4.69)]. In this context, we also recall the definition of the local length scale
ℎ𝐹 , cf. [?, Definition 4.5], the 𝜅-dependent penalty parameter 𝛾𝜅,𝐹 introduced in [?,
below eq. (4.64)], and the penalty parameter 𝜂 > 0.

We now introduce the linear operator Lℎ,Ω̂ : P𝑏𝑘 (Tℎ (Ω̂)) → P𝑏𝑘 (Tℎ (Ω̂)) associ-
ated with the SWIP bilinear form. It is defined by(Lℎ,Ω̂𝜙ℎ, 𝜓ℎ)Ω̂ = 𝑎Ω̂

(
𝜙ℎ, 𝜓ℎ

)
, ∀𝜙ℎ, 𝜓ℎ ∈ P𝑏𝑘 (Tℎ (Ω̂)). (4)

For the case Ω̂ = Ω, we write simply Lℎ = Lℎ,Ω. For the treatment of inhomoge-
neous Dirichlet boundary conditions we refer to [?, Section 4.2.2]. Specifically, the
boundary data 𝑔 on a set of faces Γ̂ is weakly enforced by an additional term on the
right-hand side of the discrete problem: We thus define(GΓ̂ (𝑔), 𝜓ℎ

)
Ω̂ =

∑︁
𝐹∈Fℎ (Γ̂)

𝜂
𝛾𝜅,𝐹

ℎ𝐹

∫
𝐹
𝑔𝜓ℎ d𝜎 −

∫
𝐹
𝑔𝜅∇ℎ𝜓ℎ · 𝑛 d𝜎, (5)

for all 𝜓ℎ ∈ P𝑏𝑘 (Tℎ (Ω̂)). We abbreviate GΓ̂ (𝑔𝑛) := GΓ̂ (𝑔(𝑡𝑛)) for a given 𝑡𝑛 ∈ [0, 𝑇].
The initial values and the right-hand side are approximated using the 𝐿2 projection

onto the broken polynomial space. Specifically, on a domain Ω̂ we set



4 Tim Buchholz and Marlis Hochbruck

𝑢0
ℎ,Ω̂

= ΠΩ̂𝑢
0, 𝑣0

ℎ,Ω̂
= ΠΩ̂𝑣

0, 𝑓ℎ,Ω̂ (𝑡) = ΠΩ̂ 𝑓 (𝑡). (6)

Whenever the domain is clear from the context, we omit the subscript Ω̂, and we
also abbreviate 𝑓 𝑛ℎ = 𝑓ℎ,Ω̂ (𝑡𝑛) for a given 𝑡𝑛 ∈ [0, 𝑇]. With these definitions, the
semi-discrete problem in P𝑏𝑘 (Tℎ (Ω̂)) × P𝑏𝑘 (Tℎ (Ω̂)) reads

𝜕𝑡

(
𝑢ℎ
𝑣ℎ

)
=

(
0 𝐼

−Lℎ,Ω̂ 0

) (
𝑢ℎ
𝑣ℎ

)
+
(

0
𝑓ℎ,Ω̂ (𝑡)

)
+
(

0
GΓ̂𝐷

(𝑔(𝑡))
)
. (7)

2.2 Time integrators on ̂𝛀

We consider a generic subdomain Ω̂ and a given time-step size 𝜏 > 0 with

𝑡𝑛 = 𝑛𝜏, 𝑛 = 0, . . . , 𝑁𝑇 , 𝑇 = 𝑁𝑇𝜏.

Starting from the semi-discrete problem (7), we present two standard second-order
accurate time integration methods to obtain full-discretizations on Ω̂ × [0, 𝑇]. As
described in Section 2 the boundary data 𝑔(𝑡𝑛) is incorporated weakly through the
operator GΓ̂𝐷

defined in (5). The Crank-Nicolson discretization of (7) is given by

𝑢𝑛+1
ℎ = 𝑢𝑛ℎ +

𝜏

2
(
𝑣𝑛+1
ℎ + 𝑣𝑛ℎ

)
, (8a)

𝑣𝑛+1
ℎ = 𝑣𝑛ℎ −

𝜏

2
Lℎ,Ω̂

(
𝑢𝑛+1
ℎ + 𝑢𝑛ℎ

) + 𝜏
2
(
𝑓 𝑛+1
ℎ + 𝑓 𝑛ℎ

)
(8b)

+ 𝜏
2
(GΓ̂𝐷

(𝑔𝑛+1) + GΓ̂𝐷
(𝑔𝑛)) .

Moreover, we also consider the leapfrog method, which reads

𝑣
𝑛+1/2
ℎ = 𝑣𝑛ℎ −

𝜏

2
Lℎ,Ω̂𝑢𝑛ℎ +

𝜏

2
𝑓 𝑛ℎ + 𝜏

2
GΓ̂𝐷

(𝑔𝑛) (9a)

𝑢𝑛+1
ℎ = 𝑢𝑛ℎ + 𝜏𝑣𝑛+1/2

ℎ (9b)

𝑣𝑛+1
ℎ = 𝑣𝑛+1/2

ℎ − 𝜏

2
Lℎ,Ω̂𝑢𝑛+1

ℎ + 𝜏
2
𝑓 𝑛+1
ℎ + 𝜏

2
GΓ̂𝐷

(𝑔𝑛+1). (9c)

In the discontinuous Galerkin setting, the leapfrog method has the advantage that
the resulting mass matrix is block-diagonal. There, each block in the mass matrix
corresponds to the degrees of freedom in a single cell 𝐾 ∈ Tℎ.



Discontinuous Galerkin domain splitting for acoustic wave equations 5

Fig. 1 Extension N2 (Ω̂) by
ℓ = 2 layers of a subdomain
Ω̂ ⊂ Ω colored in dark blue.

Ω̂

N2 (Ω̂)

2.3 Cell extensions

To define overlapping subdomains and cell neighborhoods, we introduce the concept
of cell extensions. For a given subdomain Ω̂ ⊂ Ω and a fixed integer ℓ ≥ 1, we define
its extension by ℓ layers of neighboring cells recursively as

N0 (Ω̂) := Tℎ (Ω̂),
N𝑗 (Ω̂) := { 𝐾 ∈ Tℎ (Ω) | ∃𝐾★ ∈ N𝑗−1 (Ω̂) : 𝐾 ∩ 𝐾★ ≠ ∅ },

(10)

for 𝑗 = 1, . . . , ℓ, see also Figure 1. Similarly, for a generic interface Γ̂, we define the
interface cell extension as

N(Γ̂) := { 𝐾 ∈ Tℎ (Ω̂) | ∃𝐹★ ∈ Fℎ (Γ̂) : 𝐾 ∩ 𝐹★ ≠ ∅ }, (11)

which contains all elements which share a face or a corner with Γ̂.

3 Domain splitting method

To construct our new method, we first decompose the spatial domain Ω into I
distinct, non-overlapping subdomains Ω𝑖 , i.e.

Ω =
I⋃
𝑖=1

Ω𝑖 , Ω𝑖 ∩Ω 𝑗 = ∅ for 𝑖 ≠ 𝑗 . (12)

Based on the definitions (2) and (10), we then introduce overlapping subdomains Ωℓ𝑖
by extending each Ω𝑖 with ℓ layers of elements

Ωℓ𝑖 := domNℓ (Ω𝑖), 𝑖 = 1, . . .I. (13)

Similarly, using (11), we define domains based on the cells around the interface
Γℓ𝑖 = 𝜕Ω

ℓ
𝑖 ∩Ω

ΩℓΓ,𝑖 := domN(Γℓ𝑖 ), 𝑖 = 1, . . .I, (14)

which we will refer to as prediction domain for the interface Γℓ𝑖 of Ωℓ𝑖 . An overview
of this subdomain notation is given in Figure 2. Let 𝛿 be the minimal physical width



6 Tim Buchholz and Marlis Hochbruck

Ω𝑖

Ωℓ
𝑖Γℓ

𝑖 Γℓ
𝑖

Fig. 2 Overlapping subdomain Ωℓ
𝑖 (left, dark and light red area) and prediction domain Ωℓ

Γ,𝑖 (right,
yellow area). The interface Γℓ

𝑖 is shown in dark red in both pictures.

of the overlap Ωℓ𝑖 \ Ω𝑖 , which satisfies 𝛿 ∼ ℓℎ, given the underlying mesh Tℎ is
shape- and contact-regular. We denote by Γℓ𝑖,𝐷 the portion of the boundary of Ωℓ𝑖
that coincides with the Dirichlet boundary of Ω, i.e.,

Γℓ𝑖,𝐷 = Γ𝐷 ∩Ω
ℓ

𝑖 .

Next, we describe the construction of the domain-splitting approximations

𝑥𝑛DS =

(
𝑢𝑛DS
𝑣𝑛DS

)
, for 𝑛 = 0, . . . , 𝑁𝑇 . (15)

For the initial values we use 𝐿2 projections

𝑢0
DS = 𝑢0

ℎ = ΠΩ𝑢
0, 𝑣0

DS = 𝑣0
ℎ = ΠΩ𝑣

0. (16)

Note, that we can also replace this by local 𝐿2 projections on the subdomains

𝑢0
DS
��
Ω
ℓ
𝑖
=
(
ΠΩ𝑢

0) ��
Ω
ℓ
𝑖
= ΠΩℓ

𝑖
𝑢0 ,

since we are using a discontinuous Galerkin discretization. Given an approximation
𝑥𝑛DS at time 𝑡𝑛, the method advances to the next time step as described below:

First, we loop over 𝑖 = 1, . . . ,I and perform for each subdomain:

Prediction on strip ΩℓΓ,𝑖 of the interface Γℓ𝑖

A leapfrog step is carried out on ΩℓΓ,𝑖 to compute an approximation 𝑢𝑛+1
★ :

𝑣
𝑛+1/2
★ = 𝑣𝑛DS

��
Ω
ℓ
Γ,𝑖

− 𝜏

2
Lℎ,Ωℓ

Γ,𝑖
𝑢𝑛DS

��
Ω
ℓ
Γ,𝑖

+ 𝜏
2
𝑓 𝑛ℎ

��
Ω
ℓ
Γ,𝑖

+ 𝜏
2
G
Γ𝐷∩Ωℓ

Γ,𝑖
(𝑔𝑛) (17a)

𝑢𝑛+1
★ = 𝑢𝑛DS

��
Ω
ℓ
Γ,𝑖

+ 𝜏𝑣𝑛+1/2
★ (17b)

Using 𝑢𝑛+1
★ we define a boundary term GΓℓ

𝑖
({{𝑢𝑛+1

★ }}𝜔) on the interface Γℓ𝑖 .



Discontinuous Galerkin domain splitting for acoustic wave equations 7

Local calculation on Ωℓ𝑖

On Ωℓ𝑖 , we perform a Crank-Nicolson step in which the interface and boundary data
are weakly imposed. This results in a boundary term of the form

G𝑛+1,𝑛
Ωℓ
𝑖

:=
𝜏

2

(
GΓℓ

𝑖
({{𝑢𝑛+1

★ }}𝜔) + GΓℓ
𝑖,𝐷

(𝑔𝑛+1) + GΓℓ
𝑖
({{𝑢𝑛DS}}𝜔) + GΓℓ

𝑖,𝐷
(𝑔𝑛)

)
. (18a)

The resulting subdomain approximations 𝑥𝑛+1
𝑖 on Ω

ℓ

𝑖 are then given by

𝑢𝑛+1
𝑖 = 𝑢𝑛DS

��
Ω
ℓ
𝑖
+ 𝜏

2
(
𝑣𝑛+1
𝑖 + 𝑣𝑛DS

��
Ω
ℓ
𝑖

)
, (18b)

𝑣𝑛+1
𝑖 = 𝑣𝑛DS

��
Ω
ℓ
𝑖
− 𝜏

2
Lℎ,Ωℓ

𝑖

(
𝑢𝑛+1
𝑖 + 𝑢𝑛DS

��
Ω
ℓ
𝑖

) + 𝜏
2
(
𝑓 𝑛+1
ℎ + 𝑓 𝑛ℎ

) ��
Ω
ℓ
𝑖
+ G𝑛+1,𝑛

Ωℓ
𝑖

. (18c)

The two steps (17) and (18) are independent for each 𝑖 = 1, . . . ,I and can thus
be performed in parallel across all subdomains. Then, after completion of the loop
over all subdomains we exchange data among neighboring subdomains:

Exchange approximations in overlap regions

If two subdomains Ω𝑖 , Ω 𝑗 are adjacent, i.e., 𝑆𝑖 𝑗 = Ωℓ𝑖 ∩ Ωℓ𝑗 ≠ ∅, then the local
approximations are exchanged across the overlap. For the efficiency, it is important
that this does not require global communication. Specifically, we replace

𝑥𝑛+1
𝑖

��
𝑆𝑖 𝑗∩Ω 𝑗

by 𝑥𝑛+1
𝑗

���
𝑆𝑖 𝑗∩Ω 𝑗

and 𝑥𝑛+1
𝑗

���
𝑆𝑖 𝑗∩Ω𝑖

by 𝑥𝑛+1
𝑖

��
𝑆𝑖 𝑗∩Ω𝑖

.

We store these updated values in

𝑥𝑛+1
DS

��
Ω
ℓ
𝑖

and 𝑥𝑛+1
DS

��
Ω
ℓ
Γ,𝑖

locally on each subdomain for 𝑖 = 1, . . . ,I for the next time step.

These local updates are equivalent to assembling the global approximation via

𝑥𝑛+1
DS :=

I∑︁
𝑖=1

𝑥𝑛+1
𝑖

��
Ω𝑖
, (19)

but it is not necessary to act globally here. Moreover, unlike in the mass-lumped finite
element setting (cf. [?]), no averaging at the non-overlapping interfaces is required.
We summarize the method in Algorithm 3.1.



8 Tim Buchholz and Marlis Hochbruck

Algorithm 3.1 Domain splitting for DG discretizations (one time step)
{given 𝑥𝑛DS

��
Ω
ℓ
𝑖

and 𝑥𝑛DS
��
Ω
ℓ
Γ ,𝑖
}

for 𝑖 = 1 : I do
{on each subdomain}
calculate prediction 𝑢𝑛+1

★ by leapfrog step (17) on Ωℓ
Γ,𝑖

calculate 𝑥𝑛+1
𝑖 by Crank-Nicolson step (18) on Ωℓ

𝑖 with boundary term G𝑛+1,𝑛
Ωℓ
𝑖

(18a)
end for
update overlap regions with values from 𝑥𝑛+1

𝑖

��
Ω𝑖

, 𝑖 = 1, . . . , I
→ prepare 𝑥𝑛+1

DS
��
Ω
ℓ
𝑖

and 𝑥𝑛+1
DS

��
Ω
ℓ
Γ ,𝑖

for the next step

{only if desired build a global approximation 𝑥𝑛+1
DS on Ω by (19)}

4 Implementation

The method is implemented within the FEniCSx framework [?], using its PETSc
interface via petsc4py [?]. The global mesh is generated with Gmsh [?], which is
subsequently partitioned into non-overlapping subdomains using PT-Scotch [?], cf.
Figure 6. For each subdomain, we construct the corresponding local meshes of the
overlapping subdomain Ωℓ𝑖 and the leapfrog prediction domain ΩℓΓ,𝑖 , as illustrated in
Figure 2. The implementation is consistently based on these local meshes Tℎ (Ωℓ𝑖 ) and
N(Γℓ𝑖 ), while direct access to the global mesh Tℎ (Ω) is avoided whenever possible.

Communication between subdomains is performed using point-to-point MPI rou-
tines. Since a subdomain can only communicate with one neighbor at a time, the
exchanges must be organized into rounds in order to avoid deadlocks. To structure
these rounds, we construct a weighted undirected graph whose nodes correspond
to subdomains and whose edges represent the messages (value exchanges) between
neighboring subdomains; the weights encode the number of values to be transmitted,
see Figure 3.

Fig. 3 Example for a weighted
undirected communication
graph for I = 6 subdomains.
Weights correspond to the
number of values, which need
to get exchanged between two
subdomains.

2010
110

85

130

100

90

100

120

10 15
1

2

3

4

5

6

The sequence of communication rounds is determined by a greedy algorithm with
two objectives: minimizing the total number of rounds and balancing the message
sizes within each round. To this end, the edges are first sorted by message size and
then by the maximal node degree (i.e., the largest number of edges incident to either
endpoint). Rounds are then built by selecting edges from the front of the sorted list,



Discontinuous Galerkin domain splitting for acoustic wave equations 9

ensuring that no node appears more than once per round. This procedure yields a
communication schedule that is both efficient and well-balanced.

For the example graph in Figure 3, the algorithm produces the following sequence
of communication rounds:

1 : (3, 5, 130), (2, 4, 90)
2 : (1, 3, 120), (4, 6, 85)
3 : (3, 4, 100), (5, 6, 110), (1, 2, 100)
4 : (4, 5, 20), (2, 3, 15)
5 : (1, 4, 10), (3, 6, 10)

Here, a tuple (𝑖, 𝑗 ,𝑀) denotes an exchange of 𝑀 values between subdomains 𝑖 and 𝑗 .
The exchange of values in the overlap regions requires particular care in the

implementation. To organize this process, we construct a dofmap that associates
local DoFs with their corresponding global DoFs in Tℎ (Ω), see Figure 4. This

Fig. 4 For each local mesh
we build a ’dofmap’, which
maps the local DoFs to the
global DoFs in Tℎ (Ω) . Here
the index denotes the local
DoF, while the value stores
the global DoF. Note, that the
size of the map is only related
to the local mesh.

· · ·121 128 122 125 124

0 1 2 3 4index

value

local-sized array

mapping allows us to identify exactly which DoFs in a subdomain require updated
values from which neighbor. Moreover, it enables us to directly relate the DoFs of
one subdomain to the DoFs of another subdomain, so that the communication can
be set up locally and efficiently between neighboring subdomains.

These preparatory steps — global meshing, partitioning, dofmap setup, and
scheduling — are carried out once in a preprocessing phase. During the actual sim-
ulation, communication then proceeds directly between neighboring subdomains,
without any further global operations on Tℎ (Ω), except when a global reconstruction
as in (19) is explicitly required.

5 Numerical experiments

We simulate the propagation of a linear wave crossing a triangular inclusion, rep-
resenting the cross-section of a prism, in two dimensions. The example features a
spatially varying coefficient 𝜅(𝑥) and mixed inhomogeneous boundary conditions.
The computational domain is Ω = [0, 8] × [0, 4] ⊂ R2, with a piecewise constant
coefficient 𝜅 taking values 𝜅𝑖 = 1.0 inside of the prism and 𝜅𝑜 = 1.5 outside, corre-



10 Tim Buchholz and Marlis Hochbruck

sponding to a refractive index of 1.5 which is typical for glass. An inhomogeneous
Dirichlet condition is imposed on the inflow boundary Γ𝐷 = 𝜕Ω

��
𝑥=0 to generate an

incoming wave of frequency 𝜔 = 0.0125,

𝑔(𝑥, 𝑦, 𝑡) = sin
( 𝑡
𝜔

)
𝑊 (𝑦),

where 𝑊 ∈ 𝐶2 (R) satisfies 𝑊 (𝑦) = 1 for 𝑦 ∈ [1, 3] and 𝑊 (𝑦) = 0 for 𝑦 ∈
[0, 0.5] ∪ [3.5, 4.0]. Homogeneous Neumann conditions 𝜕𝑛𝑢 = 0 are applied on
Γ𝑁 = 𝜕Ω \ Γ𝐷 .

The mesh Tℎ (Ω) is generated in Gmsh [?] with a local refinement (factor 2)
around the prism and partitioned into eight subdomains using PT-Scotch [?], cf.
Figures 5 and 6. The simulation runs over [0, 𝑇] with 𝑇 = 3.0.

Fig. 5 Example grid on
[0.8] × [0, 4] for the prism
example with quite coarse ℎ.
Red area 𝜅 (𝑥 ) = 𝜅𝑖 , white
area 𝜅 = 𝜅𝑜. Dirichlet bound-
ary Γ𝐷 (green) and Neumann
boundary Γ𝑁 (blue). For sim-
ulations much finer ℎ were
used.

Fig. 6 Mesh from Figure 5
partitioned into 8 non-
overlapping subdomains using
the PT-Scotch partitioner [?].
The red area depicts the prism,
where 𝜅 (𝑥 ) = 𝜅𝑖 .

To evaluate the accuracy of the domain splitting method, we compare its results
with a reference solution obtained from a leapfrog simulation on a refined mesh
with 1,163,020 cells. A DG discretization with polynomial degree 𝑝 = 2 yields
6,978,120 DoFs per component for the reference mesh. The domain splitting method
is applied on a coarser mesh with 812,298 cells (4,873,788 DoFs per component,
ℎmin = 0.00446) using 8 subdomains. We consider different overlap parameters
ℓ ∈ {2, 4, 8}, denoted by DS2, DS4, and DS8, respectively. For comparison, a global
Crank-Nicolson (CN) simulation is performed on the same mesh. The relative 𝐿2-
error of the 𝑢-component, ∥𝑢DS − 𝑢lf∥𝐿2 (Ω) /∥𝑢lf∥𝐿2 (Ω) measured at 𝑇 = 3.0, is
shown in Figure 7.

Next, we compare the domain splitting approximation directly to the global Crank-
Nicolson (CN) solution. Both methods are run on the same mesh with 4,873,788
DoFs and ℎmin = 0.00446. For the CN reference, we employ a Cholesky decomposi-
tion (chol), while the domain splitting systems are solved iteratively using a conjugate



Discontinuous Galerkin domain splitting for acoustic wave equations 11

10−4 10−3 10−2

10−2

10−1

100

101

𝜏

re
la

tiv
e
𝐿

2
er

ro
ri

n
𝑢

CN
DS8
DS4
DS2

O(𝜏2 )

Fig. 7 Relative 𝐿2-error of 𝑢 at final time 𝑇 = 3.0 for the domain splitting method (DSℓ ) with
different overlap parameter ℓ, compared to a reference leapfrog solution on a refined mesh. The
Crank-Nicolson method (CN) is shown for comparison.

gradient (cg) method preconditioned with an incomplete Cholesky (icc) factoriza-
tion. For this problem size, no speedup was observed when solving the global CN
system iteratively. The relative difference between both solutions is measured in the
combined ∥·∥𝑎,Ω × ∥·∥𝐿2 (Ω) norm; see Figure 8.

Fig. 8 Difference of domain
splitting approximation to
Crank-Nicolson approxima-
tion at the end time 𝑇 = 3.0.
We measure the first compo-
nent in ∥ · ∥𝑎,Ω and the second
component in ∥ · ∥𝐿2 (Ω) .

10−4 10−3 10−2
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100

𝜏

re
la

tiv
e

di
ffe

re
nc

e
to

CN

DS8 DS4 DS2 O(𝜏2 )

Finally, Table 1 reports run times and solver performance for DS4 and the global
Crank-Nicolson (CN) method, parallelized via the MPI interfaces of FEniCSx and
petsc4py. All simulations were carried out on the same workstation using 8 cores, a
time step 𝜏 = 0.001, and the mesh from Figure 8. A visualization of both solutions at
𝑇 = 3.0 is given in Figure 9. The results indicate that the proposed domain splitting
method attains accuracy comparable to global time integration while providing
structural benefits for parallelization.

DS4 (chol) DS4 (cg + icc) CN (chol)
rel. 𝐿2 error in 𝑢 against ref 7.545e-2 7.545e-2 7.547e-2
rel. difference to CN (chol) 3.639e-5 3.639e-5 –
time for meshing 94.9 s 94.9 s 70.8 s
setup time for solvers 112.2 s 0.17 s 47.9 s
wall time per time step 0.94 s 1.21 s 1.52 s
total simulation time 3021 s 3739 s 4669 s

Table 1 Detailed comparison between the domain splitting method with different solver configu-
rations and the global (parallelized) Crank-Nicolson method for a simulation with 3000 time steps.



12 Tim Buchholz and Marlis Hochbruck

Fig. 9 Snapshots of the do-
main splitting approximation
DS4 (chol, left) and Crank-
Nicolson approximation (chol,
right) at the end time 𝑇 = 3.0
on the subarea [0, 4] × [0, 4].

A more detailed theoretical study and large-scale experiments are planned as part
of future work. The code corresponding to this section is made publicly available at
https://gitlab.kit.edu/tim.buchholz/dsdg-acoustic-wave.git.

Acknowledgements This work was funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) — Project-ID 258734477 — CRC 1173. The authors acknowledge
support by the state of Baden-Württemberg through bwHPC.

Competing Interests The authors have no conflicts of interest to declare that are relevant to the
content of this chapter.

References

1. Baratta, I.A., Dean, J.P., Dokken, J.S., Habera, M., Hale, J.S., Richardson, C.N., Rognes, M.E.,
Scroggs, M.W., Sime, N., Wells, G.N.: DOLFINx: the next generation FEniCS problem solving
environment. preprint (2023). DOI 10.5281/zenodo.10447666

2. Blum, H., Lisky, S., Rannacher, R.: A domain splitting algorithm for parabolic problems.
Computing 49(1), 11–23 (1992). DOI 10.1007/BF02238647. URL https://doi.org/10.
1007/BF02238647

3. Buchholz, T., Hochbruck, M.: A non-iterative domain decomposition time integrator for linear
wave equations (2025). URL https://arxiv.org/abs/2507.19379

4. Chevalier, C., Pellegrini, F.: PT-Scotch: a tool for efficient parallel graph ordering. Parallel
Comput. 34(6-8), 318–331 (2008). DOI 10.1016/j.parco.2007.12.001. URL https://doi.
org/10.1016/j.parco.2007.12.001

5. Dalcin, L.D., Paz, R.R., Kler, P.A., Cosimo, A.: Parallel distributed computing using python.
Advances in Water Resources 34(9), 1124 – 1139 (2011). DOI 10.1016/j.advwatres.2011.04.
013. New Computational Methods and Software Tools

6. Dawson, C.N., Dupont, T.F.: Explicit/implicit conservative Galerkin domain decomposition
procedures for parabolic problems. Math. Comp. 58(197), 21–34 (1992). DOI 10.2307/2153018.
URL https://doi.org/10.2307/2153018

7. Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods,
Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69. Springer,
Heidelberg (2012). DOI 10.1007/978-3-642-22980-0. URL https://doi.org/10.1007/
978-3-642-22980-0

8. Ern, A., Guermond, J.L.: Finite elements I—Approximation and interpolation, Texts in Applied
Mathematics, vol. 72. Springer, Cham ([2021] ©2021). DOI 10.1007/978-3-030-56341-7.
URL https://doi.org/10.1007/978-3-030-56341-7

9. Geuzaine, C., Remacle, J.F.c.: Gmsh: A 3-D finite element mesh generator with built-in pre-
and post-processing facilities. Internat. J. Numer. Methods Engrg. 79(11), 1309–1331 (2009).
DOI 10.1002/nme.2579. URL https://doi.org/10.1002/nme.2579

https://gitlab.kit.edu/tim.buchholz/dsdg-acoustic-wave.git
https://doi.org/10.1007/BF02238647
https://doi.org/10.1007/BF02238647
https://arxiv.org/abs/2507.19379
https://doi.org/10.1016/j.parco.2007.12.001
https://doi.org/10.1016/j.parco.2007.12.001
https://doi.org/10.2307/2153018
https://doi.org/10.1007/978-3-642-22980-0
https://doi.org/10.1007/978-3-642-22980-0
https://doi.org/10.1007/978-3-030-56341-7
https://doi.org/10.1002/nme.2579

	A non-iterative domain decomposition time integrator combined with discontinuous Galerkin space discretizations for acoustic wave equations
	Tim Buchholz[0009-0000-0389-0983] and Marlis Hochbruck[0000-0002-5968-0480]
	Introduction
	Preliminaries
	Discretization in space
	Time integrators on "0362
	Cell extensions

	Domain splitting method
	Implementation
	Numerical experiments



