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Preface

Over the last decade, Explainable Artificial Intelligence (XAI) has developed into an
ever-growing research field dedicated to approaches that make Al systems—especially
those based on machine-learned black box models—more transparent, interpretable,
and comprehensible to humans. The demand for XAI methods rises with the growing
number of application areas for AI methods, from image-based medical diagnostics
to personalised recommenders to scientific discovery. In the context of the European
Al Act, requirements for trustworthy Al systems have been defined, including human
agency and oversight, robustness, fairness, and transparency. Trustworthiness is crucial
for critical application domains, such as healthcare, industrial production, and finance.
XAI methods can help meet these requirements.

A growing variety of XAI methods has emerged over the last decade. Initially, a
strong focus has been placed on feature relevance methods for classification models
applied to images and tabular data. These methods are beneficial for model developers
to assess the quality of learned models, particularly in addressing issues such as overfit-
ting to training data or unwanted biases. Soon, the importance of non-expert users of Al
systems was recognised, especially professionals in the respective application domain
of an Al system and end-users who interact with Al systems in a private context. Con-
sequently, the need for XAI methods that consider the specific information needs of
these user groups has been recognised. This has resulted in a rich set of XAI methods,
including counterfactual or contrastive explanations, prototype-based explanations, and
concept-based explanations. Furthermore, it has been recognised that XAI must be an
interdisciplinary endeavour to consider the cognitive demands of the explainees and
design helpful human-AlI interfaces.

While most XAl research has focused on local, post-hoc explanations for classifiers,
XAI methods have expanded to unsupervised learning and generative Al approaches.
Additionally, methods for explaining inherently interpretable AI models and provid-
ing global explanations are investigated. Methods of explanatory interactive learning
broaden the scope of XAI research, shifting from explanation to understanding and
revision. Over recent years, the need to systematically evaluate XAI methods has been
recognised. To support understanding the output of a model, an explanation needs to be
faithful concerning its inferential mechanisms.

To bring together the growing number of researchers dedicated to developing and
evaluating XAI methods, the World Conference of Explainable Artificial Intelligence
(xAl) was established in 2023. This conference aims to connect researchers from Al,
computer science, cognitive science, human-computer interaction, social sciences, law,
philosophy, and practitioners from all continents to share and discuss knowledge, new
perspectives, experiences, and innovations in XAI. The Third World Conference on
Explainable Artificial Intelligence (xAI 2025) took place in Istanbul, Turkey, from July
9to 11, 2025. It attracted 224 submissions worldwide for the main track, as well as over
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60 submissions for the late-breaking work and demo tracks. The conference also had a
doctoral consortium, and 14 doctoral proposals were accepted.

Split over five volumes, the proceedings aggregate the best contributions received
and presented at XAl 2025, describing recent approaches, methods, and techniques for
explainability. The acceptance rate has been roughly 40 per cent, with 96 accepted papers
for the main track. The accepted contributions were selected through a rigorous, single-
blind peer-review process. Each article received at least three reviews, with an average
of four reviews per paper, from more than 300 scholars in academia and industry. All
accepted research contributions are included in these proceedings and their authors were
invited to give oral presentations.

Several thematic sessions were organised, each proposed and chaired by various
researchers. A parallel track was organised for work in progress, specifically preliminary
novel research studies relevant to xAl, which were presented as posters during the event.
A demo track was held, where researchers from academia and industry presented their
software prototypes, focusing on explainability or real-world applications of explainable
Al-based systems. A doctoral consortium was organised, with lecturers for PhD scholars
who submitted their doctoral proposals on future research in XAl. Finally, two panel
discussions were organised with renowned scholars in XAl, offering multidisciplinary
views while inspiring the attendees with tangible recommendations to tackle challenges
toward designing responsible, trustworthy Al-based technologies through explainable
AL

We would like to thank the volunteers who helped in the xAI 2025 organising com-
mittee, our local chair, Berrin Yanikoglu, and Pinar Karaday1 Atas. Thank you to the
doctoral consortium chairs, Przemystaw Biecek and Slawomir Nowarczyk, and the late-
breaking work and demo chair Gitta Kutyniok. Also, a special thank you goes to Wojciech
Samek, the keynote speaker for xAI 2025. A word of appreciation goes to the proposers
of the special tracks and those who chaired them during the conference, and to all the
senior chairs, including Charlie Abela, Christopher Anders, Omran Ayoub, Pietro Bar-
biero, Przemystaw Biecek, Enrico Ferrari, Pascal Friederich, Francesco Giannini, Paolo
Giudici, Julia Herbinger, Verena Klos, Tuwe Lofstrom, Gianmarco Mengaldo, Mau-
rizio Mongelli, Anna Monreale, Grégoire Montavon, Francesca Naretto, Ann Nowe,
Ruairi O’Reilly, Roberto Pellungrini, Alan Perotti, Salvatore Rinzivillo, Christin Seifert,
Francesco Sovrano, Lenka Tétkovd, Giulia Vilone, Philipp Wintersberger, and Bartosz
Zielinski. A word of appreciation goes to all the moderators and panellists of the two
engaging sessions “Integrating XAl in industry processes challenges for responsible AI”
and “From Explanations to Impact®. Special thanks go to the researchers and practition-
ers who submitted their work, the various program committee members who provided
valuable feedback during the peer-review process, and all who attended the event, mak-
ing it a fantastic networking opportunity to share findings and learn from one another as
a community.

July 2025 Riccardo Guidotti
Ute Schmid
Luca Longo
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Abstract. We propose a large language model explainability technique
for obtaining faithful natural language explanations by grounding the
explanations in a reasoning process. When converted to a sequence of
tokens, the outputs of the reasoning process can become part of the model
context and later be decoded to natural language as the model produces
either the final answer or the explanation. To improve the faithfulness
of the explanations, we propose to use a joint predict-explain approach,
in which the answers and explanations are inferred directly from the
reasoning sequence, without the explanations being dependent on the
answers and vice versa. We demonstrate the plausibility of the proposed
technique by achieving a high alignment between answers and explana-
tions in several problem domains, observing that language models often
simply copy the partial decisions from the reasoning sequence into the
final answers or explanations. Furthermore, we show that the proposed
use of reasoning can also improve the quality of the answers.

Keywords: Explainable Al - Large Language Models - Natural
Language Explanations - Reasoning

1 Introduction

Today’s prevalent large language model (LLM) explainability techniques lack
the expressivity of natural language, as the explanations are limited in detail
and hard to interpret for an untrained user [1]. On the other hand, natural
language explanations [2] can potentially be easy to follow and unlimited in
expressivity, but their faithfulness is typically questionable, such as with the
simple answer-then-explain setting which tends to lead models into fabulating
their explanations. Moreover, it is even questionable whether LLMs produce
their outputs in a thought process that is anyhow related to human reasoning,
as they are in essence mere enhancements of traditional n-gram models [3,4].
Chain-of-thought reasoning is one notable improvement of the decision process
as the answers tend to follow from the preceding natural language reasoning
sequences, but it is too computationally intensive for ubiquitous use.

We propose to ground natural language explanations, as well as the answers,
in a suitable resource-efficient LLM reasoning process. When converted to a
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sequence of tokens, the result of the reasoning process can then become part of
the context observed by the model when producing its final answer or explana-
tion. The reasoning sequence does not have to be directly human-readable, as
it merely has to encode the explanation together with the answer. This infor-
mation can then be simply decoded from the reasoning sequence to natural
language when the model generates the final answer or explanation. In order
for the explanations to be credible, a joint predict-explain setting can be used,
in which the answer and explanation are inferred independently of each other.
To demonstrate the plausibility of this approach, we experiment with compact
reasoning sequences that we refer to as compressed chain-of-thought reasoning.
We present the high-level overview of our methodology in Fig. 1.

Step 1: Step 2: Step 3:
Dataset : Fine-tuning : Inference

Common part

Cr— ' :

/Example of |  Example of an Example of ah : : Age: 34

( \ : Income: 80000
: . —_

reasoning answer explanation
Age: 34 Age: 34 Age: 34 :
Income: 80000 Income: 80000 Income: 80000 : :
: | Conversational | :
( . ] ) ( ) H GPT model _—
‘Reasonlng: 011 ‘ ‘Reasomng:oll ‘ ‘Reasonlng: o1 ‘ : — : Py
— ¥ = N, : ataset from | :
\.C X \C : stepl ) : & independent %
Command: Command: : : parts
IANSWER EXPLAIN : : P —
H : Answer " Explanation
The mortgage is Age is [ower than : q | |command: Command:
allowed. 45. Income is B Explainable GPT : IANSWER [EXPLAIN
S————_ | higher than 50000. : model :

Therefore, the

‘Reasoning: 011 ‘

mortgage is : | |The mortgage is Age is lower than|
allowed. : : ‘a”uwed_ e 45. Income is
\ ) \{ : C ) higher than
\ J & ) : N 50000.
: : Therefore, the
Mix of reasoning, answer, and explanation examples : : mortgage is

T : . allowed.

Fig. 1. Overview of our methodology. As a first step, we gather a conversational dataset
in which for each user input, the triplet of reasoning-answer-explanation ground truths
is present. In the second step, we fine-tune a conversational GPT model on the dataset
from step 1. As a last step, we perform inference using the fine-tuned model by first
computing a reasoning sequence and then including it in the conversation to produce
the final answer or explanation, which are obtained independently of each other.

We evaluate our explainability framework in an “LLM-as-a-classifier” setting,
in which we train LLMs to mimic the behavior of simple machine learning classi-
fiers such as decision trees. This setting is convenient for our approach as it can
be framed so that the final model outputs are affected by multiple intermediate
decisions, and also allows for simple and deterministic evaluation of results. Our
paper makes the following contributions to the field of LLM explainability:

1. We propose an LLM explainability technique for producing faithful natural
language explanations grounded in reasoning.
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2. We observe that when a suitable reasoning process is included in LLM train-
ing, and the outputs of the reasoning process are placed in the LLM input con-
texts, LLMs will often copy the partial decisions from the reasoning sequence
into their answers or explanations.

3. We demonstrate the plausibility of our proposed explainability technique by
achieving a high alignment between answers and explanations in several prob-
lem domains.

4. We show that besides enabling faithful natural language explanations, the
inclusion of the reasoning process can also improve the quality of answers.

2 Related Work
2.1 LLM Explanations

LLMs are by default complex black boxes, and without proper explainability,
it is difficult to understand their capabilities, limitations, and potential failures
[1,5]. Explainability techniques in general are commonly categorized based on
whether explainability is incorporated into the model’s architecture and thus
the explanation is part of the model’s prediction (ante-hoc or intrinsic explana-
tions), or if explanations are calculated after the model has been trained and a
prediction has been obtained (post-hoc explanations). Explainability techniques
can be further classified based on whether they are related to a single prediction
(local explanations) or to the general behavior of the model across all predictions
(global explanations).

Zhao et al. [1] categorize local LLM explainability techniques into 4 main
approaches: feature attribution-based explanations, attention-based explana-
tions, example-based explanations, and natural language explanations.

Feature Attribution-Based Explanations. These explanations measure the
importance of each input feature (such as an input token) in relation to outputs.
Perturbation-based techniques perturb the inputs using removal or masking [6,7],
which may however generate out-of-distribution data. Gradient-based techniques
measure partial derivatives of outputs with respect to the input features, using
well-established explainability techniques such as gradient x input or integrated
gradients [8—11] which address some of the difficulties that occur when using
gradients naively [12]. Surrogate model methods employ simpler white-box mod-
els to explain individual predictions, notably using the SHAP technique, which
utilizes Shapley values and has also been adapted to Transformer models [13].

Attention-Based Explanations. Attention-based explanations analyze the
parameters or behavior of attention heads. Numerous studies have focused on
explaining attention heads using visualizations, such as with token-level bipar-
tite graphs and heatmaps or neuron-level heatmaps [14,15]. Other works have
adopted gradient-based methods using various definitions of gradient in attention
heads [11,16]. However, there is ongoing debate on the reliability of attention-
based explainability techniques [1].
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Example-Based Explanations. These explanations analyze how changes in
model inputs affect the outputs. A popular approach is to generate counterfac-
tual examples that cause important changes in the outputs by adding, altering,
masking, removing, or shuffling words in the input text [17]. On the other hand,
adversarial examples aim to substantially alter the model outputs with barely
noticeable changes to the input text [18,19]. These examples can be added to
the training data to improve the robustness of the final model. Another family of
methods aims to analyze the impact of the individual training examples on the
behavior of the trained model, remarkably without the need for multiple rounds
of training [20,21].

Natural Language Explanations. Natural language explanations refer to
explanations that take the form of text in natural language, thus making them
suitable even for a lay audience [1,2]. The quality of natural language explana-
tions is commonly assessed according to plausibility, which checks if the explana-
tions are logically sound, faithfulness, which assesses whether the explanations
describe the true decision process of the model, and readability [22]. Although
being a relatively large field, most natural language explanation studies focus
on other types of models than LLMs. The approaches for LLMs include using
simple explain-then-predict and predict-then-answer methods [23], training the
models using datasets of synthetic [24] or human-written explanations [25,26],
and translation of natural language to symbolic solver domains [27].

2.2 LLM Reasoning

The field of LLM reasoning covers a wide range of methods aimed at improving
the model outputs or answers. Chain-of-Thought [28] is perhaps the most well-
known technique, in which the LLM is simply tasked to reason first before stating
the final answer. Extensions of this approach include self-consistency [29], in
which multiple reasoning paths are sampled, and Tree of Thoughts [30], where
the reasoning trajectories form a tree which is explored using search strategies
such as BFS and DFS. Other notable reasoning methods include multi-agent
collaboration [31], knowledge distillation [32], process-based reward models [33],
Monte Carlo Tree Search [34], and reinforcement learning [35].

3 Methods
3.1 Reasoning-Grounded Natural Language Explanations

To achieve faithful natural language explainability, we propose to ground LLM
explanations as well as answers in a reasoning process. In order to decrease com-
putational complexity, we suggest that the output of the reasoning process does
not have to be inherently human-readable, but that it should merely contain the
information necessary to be later decoded by the LLM into the final answer or
natural language explanation. Such reasoning can be used in a two-step conver-
sational framework, where as the first step, the reasoning sequence is generated,
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and as the second step, the user (or the chat interface) sends a command mes-
sage indicating whether the model should answer the question or explain the
answer, and the model responds accordingly. In case the user chooses to obtain
both the answer as well as the explanation, it is crucial that both are obtained
independently by the chat interface to prevent the model from fabulating the
explanation or the answer being affected by the explanation.

For a clearer definition of the conversational inference process, we can define
the conversation history H,, as a sequence of user question messages U; and
model answer messages A;:

HnZUl-Al~U2~A2-...~Un_1-An_1-Un (1)

With this notation, the message with reasoning output R,, can be defined by
the formula

R,, = ReasoningModel(H,,), (2)

and the model’s answer message A, and explanation message FE, can be
defined by the formulas

An = LLM(Hn ° Rn ° Canswer) (3)

and

En = LLM(H,, - Ry, - Coxplain), (4)

where Canswer and Cexplain are the “ANSWER” and “EXPLAIN” command
messages.

As a proof of concept, we experiment with using the LLM to generate com-
pact reasoning sequences in an approach that we refer to as compressed chain-
of-thought reasoning. With the use of the previous notation, we therefore set
ReasoningModel = LLM. We suggest to put three requirements on such reason-
ing sequences:

1. The reasoning sequences should encode all the partial decisions necessary for
the model to produce the right answers.

2. The reasoning sequences should encode all the partial decisions necessary for
the model to produce the natural language explanations in the desired level
of detail.

3. The encoding of the partial decisions in the reasoning sequences should follow
a chain-of-thought ordering to allow accurate token-by-token generation by
the LLM.

Similarly to regular chain-of-thought reasoning, compressed chain-of-thought
reasoning can also potentially improve the quality of LLM answers, as more
circuit layer operations can be performed by the LLM before the final answer is
produced.
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3.2 LLM as a Classifier

In our experiments, we adopt an “LLM-as-a-classifier” approach in which the
LLM is tasked with mimicking the behavior of a machine learning classifier.
This approach is convenient for our study as reasoning and explanation sequences
can be formulated so that they involve chains of various decisions, and we can
calculate evaluation metrics deterministically without using methods such as
LLM-as-a-judge. We experiment with three problem domains: Logistic regres-
sion, decision tree classification, and a natural language dataset generated using
decision tree logic. For each problem domain, we design the ground-truth answers
to simply state the classification result. For explanations, we use detailed chain-
of-thought sequences that describe the intermediate decisions necessary to reach
correct classification, and for reasoning, we extract or encode the most important
values from the explanation sequence to form minimal, “compressed” chain-of-
thought sequences. For each of the datasets, an example of an input, reasoning,
answer, and explanation text for a single instance is shown in Table 1.

Table 1. Examples of instances from our experimental datasets. For each instance,
the sections corresponding to values included in the reasoning sequence are highlighted
with bold text, and the occurrences of the ground truth class are underlined.

Dataset
Logistic regressor Decision tree Natural language decision
tree
Input X: [—0.4408, 0.7812, —0.3482, X: [0.923, 0.252] Loan amount: $115000.0
0.9094, 0.869, —0.0214, —0.0555, Loan-to-value ratio: 92.266
—0.8395] Debt-to-income ratio: <20%
Applicant’s age: 25-34 Loan term:
120.0 Income: $83000.0 Property
value: $475000.0 Total loan costs:
$0.0
Reasoning |—1.2465 —1.2465; —2.9536 0,0,0,1,1,1, 0,0 1,0,0,0,1
—4.2001; —2.3885 —6.5886;
7.2595 0.6709; —4.5762
—3.9053; 0.2138 —3.6915;
—0.5065 —4.198; 6.8913
2.6933; 1
Answer 1 [0} The mortgage is issued.
Explanation|[[0, “w[0] * x[0] = —1.2465”, “y — |[[‘0.923 < 0.3562”, false|, [“0.252 |The loan-to-value ratio is higher
1.2465 = —1.24657, [1, “w[1] * |> 0.6825”, false], [0.923 < than 79%. The income is lower
x[1] = —2.9536", “y — 2.9536 = |0.5613”, false], [“0.252 < 0.2597”, |than $110000. The applicant’s
—4.20017, (2, “w[2] * x[2] = true|, [‘0.923 > 0.8087”, true|, |age is lower or equal to 34
—2.3885", “y — 2.3885 = [¢0.252 > 0.0709”, true], [‘0.923 <|years. The debt-to-income ratio is
—6.5886"], [3, “w[3] * x[3] = 0.8676”, false|, [‘OUTPUT”, 0]] |lower or equal to 40%.
7.2595”, “y + 7.2595 = 0.6709"], Therefore, the mortgage is
[4, “w[4] * x[4] = —4.5762", “y — issued.
4.5762 = —3.90537, [5, “w[5] *
x[5] = 0.2138”, “y + 0.2138 =
—3.69157], [6, “w[6] * x[6] =
—0.5065”, “y — 0.5065 —
—4.198", [7, “w|[7] * x[7] =
6.8913", “y + 6.8913 = 2.6933"],
[“OUTPUT”, 1]|
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Logistic Regression. In this setting, we randomly generate a parameter vector
w of a logistic regression model without a bias parameter and train the LLM to
classify random 8-dimensional input vectors x according to the following formula:

y(x) = (5)

1 ifwlx>0
0 otherwise.
Decision Tree. In this setting, we randomly generate a binary decision tree of

depth 7 with the following node selection logic at each non-leaf node:

left(N) if SN X Tindex(N) > Sy Xtn
right(N) otherwise,

next(N) = { (6)
where next(N) is the next node to be evaluated after the current node N,
left(N) and right(N) are the left and right child nodes of node N, ty is a
random threshold, index(N) is a function that selects the index of x (defined
so that two consecutive nodes can not use the same index), and sy is a random
sign of -1 or 1 that can effectively flip the comparison operator.
Leaf nodes are assigned a class of 0 or 1.

Decision Tree Encoded in Natural Language. In the last setting, we exper-
iment with a decision tree that represents a mortgage application review process
encoded in natural language. We take a subset of randomly selected mortgage
applications from the 2022 version of the HMDA National Loan Level Dataset
[36] as input data and using a manually designed decision tree that represents a
fictional mortgage application review process, we generate paragraphs in which
each sentence describes a decision branch comparison for one of the input fea-
tures. Decisions are evaluated for each dataset instance from the top of the
decision tree to the leaf with the final class of issued or not issued.

4 Experiments

4.1 Categorization of Experiments

Separate Fine-Tuning for Answers and Explanations. In this setting,
the training dataset is split into two separate datasets, each composed of either
input-command-answer or input-command-explanation instances. The LLM is
then fine-tuned on each of the two datasets independently, resulting in two fine-
tuned models. The inference for answers and explanations is then performed
separately using the corresponding model.

Joint Fine-Tuning. This setting is similar to the previous one, but the answer
and explanation instances are not separated into two training datasets. Instead,
fine-tuning is performed jointly on the mix of input-command-answer and input-
command-explanation examples. Inference is performed in the joint predict-
explain approach, with the answers generated independently of the explanations
and vice versa, according to the command “ANSWER” or “EXPLAIN”.
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Joint Fine-Tuning with Reasoning. In this setting, the training dataset is
composed of a mix of input-reasoning, input-reasoning-command-answer, and
input-reasoning-command-explanation instances. Inference is performed in two
steps, where in the first step, the model generates a reasoning sequence, and
in the second step, the answer and explanation are generated independently
according to the “ANSWER” or “EXPLAIN” command.

In-Context Learning. To understand how strongly the performance of LLMs
is affected by fine-tuning to the specific problem domain, we include results for
in-context learning [37] as an informative baseline. In this setting, the LLMs
are not fine-tuned to the specific classification model, but instead obtain their
problem domain knowledge only from classification input-output example pairs
included in their input prompt. For each few-shot example, both the answer
and explanation target is included. In order to prevent the influence of human
prompt engineering, we pre-train the LLMs on a training dataset where each
training instance belongs to a different problem domain, corresponding to a
randomly generated classifier from the same model family but with different
values of model parameters than those used in the test dataset. The input of
each few-shot example is randomly generated to achieve greater diversity. We
omit the in-context learning setting in the experiments with natural language
decision trees due to the complexity of random generation of meaningful decision
processes in this problem domain.

4.2 Experimental Setup

All experiments were performed using a similar methodology.! For each of the
five LLMs tested, the model’s instruction-tuned variant was used. LLMs were
trained using low-rank adaptation [39] and Adam optimizer [40] for a single epoch
on a train dataset created using 2000 classification inputs. During training, the
test loss was periodically measured on a test dataset created using 200 inputs,
and at the end of training, the best model checkpoint was kept. In the in-context
learning experiments, the number of few-shot examples was 5 for logistic regres-
sion and 20 for decision trees. The same training hyperparameters were used in
all experiments, namely a batch size of 4 and a learning rate of 5 x 107° with a
linear schedule and 100 warmup steps.

4.3 Evaluation Metrics

In our experiments, we separately measure the classification accuracy of answers
and explanations on test datasets created using 200 classification inputs. For
explanations, determining the resulting classification is possible as we have
designed the explanations as chain-of-thought sequences in which the output

! The source code, together with our datasets, is available under the CCO license at
https://github.com /vcahlik /reasoning-grounded-explanations and at Zenodo [38].
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class is always stated at the end. Furthermore, we measure the rate of align-
ment between the answer and explanation classifications. The predicted classes
are determined using automated rules such as regular expressions; outputs that
could not be reliably parsed are counted as errors.

5 Results
5.1 Logistic Regression Results

The results for the logistic regression dataset are shown in Table 2. In-context
learning has near-perfect classification accuracy for explanations, as the param-
eters of the logistic regressor are stated in the few-shot examples and therefore it
is simple for the model to generate correct chain-of-thought explanations. How-
ever, for answers, classification accuracy is equivalent to random guessing due
to the difficulty of the task when a chain-of-thought process is not used. The
gap between the classification accuracy for answers and explanations is also wide
for most of the fine-tuning experiments without reasoning. However, when rea-
soning is used, the classification accuracies of answers increase to the level of
classification accuracies for explanations, indicating that the reasoning process
helps the LLMs achieve correct answers.

Table 2. Results on the logistic regression dataset. The experimental setup differs in
whether training was performed separately or jointly for answers and explanations,
whether in-context learning (ICL) was used, and whether reasoning was used. Outputs
that could not be parsed into a valid class are counted towards errors and their rate is
additionally shown in parentheses.

Ans./exp.training|ICL Reas. Metric Llama 3 8BMistral NeMo|Mistral 7B|Zephyr SFT|Phi-4
Separately Yes No |Answer acc./0.455 0.515 0.470 0.495 0.470
Expl. acc. |0.990 1.000 0.995 1.000 0.990
Align. rate |0.455 0.515 0.475 0.495 0.460
Separately No |[No |Answer acc.[0.610 0.890 0.830 0.555 0.620
Expl. acc. |0.615(0.140) |0.990(0.005) |0.995 0.995 0.990
Align. rate |0.455(0.140) |0.880(0.005) 0.835 0.560 0.620
Jointly No No |Answer acc./0.640 0.530 0.555 0.470 0.470
Expl. acc. |0.990 1.000 1.000 0.995 1.000
Align. rate |0.630 0.530 0.555 0.475 0.470
Jointly No |Yes |Answer acc./0.890(0.020) |0.995 1.000 1.000 0.945
Expl. acc. |0.875(0.030) |0.995 1.000 1.000 0.940(0.005)
Align. rate |0.965(0.035) |1.000 1.000 1.000 0.995(0.005)

5.2 Decision Tree Results

The results for the decision tree dataset, belonging to a tree of depth 7, are shown
in Table 3. Even though 4 times as many few-shot examples were used than in the
logistic regression experiments, the classification accuracy of in-context learning
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is low even for explanations, as the number of few-shot examples is still lower
than the number of decision tree leaves. The results for fine-tuning without
reasoning are similar to those with the logistic regression dataset. Results for
reasoning show higher error rates than in the logistic regression experiments,
presumably due to the less detailed reasoning process. However, answers and
explanations now remarkably contain the same classification errors in almost all
cases, as can be seen from the near-perfect alignment rates. We visualize this
phenomenon by plotting the classifications for one of the experiments in Fig. 2.
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(b) Results with reasoning

Fig. 2. Experiments with joint training of answers and explanations on a decision tree
dataset. The colored regions correspond to ground-truth classes. When reasoning is
used, answer and explanation classification errors are typically near-perfectly aligned.

Figure 3 shows the results for the Mistral 7B model on datasets of varying
decision tree depths, indicating that classification accuracy tends to decrease as



Reasoning-Grounded Natural Language Explanations for Language Models 13

the complexity of the trees increases. With reasoning, answer and explanation
classifications are near-perfectly aligned for all of the depths, in contrast to the
alignment rates for experiments without reasoning. However, explanations with-
out reasoning tend to have the highest classification accuracy in these experi-
ments, supposedly due to the chain-of-thought explanation sequences being more
thorough than the compressed chain-of-thought reasoning sequences.

Table 3. Results on the decision tree dataset, with the same semantics as in Table 2

Ans. /exp.training ICL Reas. Metric Llama 3 8B|Mistral NeMo/Mistral 7B |Zephyr SFT |Phi-4
Separately Yes |No  |Answer acc.|0.535 0.510 0.490 0.490 0.535
Expl. acc. |0.670 0.685 0.695 0.695 0.700
Align. rate |0.565 0.565 0.495 0.485 0.505
Separately No |No |Answer acc.|0.475 0.525 0.530 0.565 0.565
Expl. acc. |0.975 0.985 0.985 1.000 0.955
Align. rate |0.480 0.540 0.515 0.565 0.580
Jointly No No |Answer acc.|0.475 0.450 0.500 0.475 0.520
Expl. acc. |0.985 0.985 0.995 0.975 0.985
Align. rate |0.480 0.435 0.505 0.460 0.505
Jointly No |Yes |Answer acc.|0.745 0.835 0.845 0.875 0.715
Expl. acc. |0.745 0.835 0.840(0.005)|0.875 0.715
Align. rate |1.000 1.000 0.995(0.005)[1.000 1.000
1.01 ® - Decisions
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Fig. 3. Classification accuracies for experiments with decision trees of various depths

5.3 Natural Language Decision Tree Results

The results for the natural language decision tree dataset, shown in Table4,
are similar to those for the decision tree dataset. However, in this case, the
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use of reasoning is associated with near-perfect classification accuracies for both
answers and explanations and with perfect alignment of classification errors.

Table 4. Results on the natural language decision tree dataset, with the same semantics
as in Table 2

Ans./exp.training ICL|Reas. Metric Llama 3 8B|Mistral NeMoMistral 7B|Zephyr SFT Phi-4
Separately No |[No |Answer acc./0.810 0.825 0.850 0.850 0.815
Expl. acc. [0.950 0.975 0.950 0.995 0.970
Align. rate |0.860 0.840 0.850 0.855 0.835
Jointly No |[No |Answer acc.|0.840 0.840 0.810 0.865 0.845
Expl acc. ]0.935 0.975 0.980 0.990 0.975
Align. rate |0.825 0.855 0.820 0.875 0.830
Jointly No |Yes |Answer acc./0.985 0.970 0.985 1.000 1.000
Expl acc. |0.985 0.970 0.985 1.000 1.000
Align. rate |[1.000 1.000 1.000 1.000 1.000

5.4 Analysis of Errors

As a further analysis, we study the partial decisions present in the reasoning and
explanation sequences generated on the decision tree dataset by the Llama 3 8B
model. As shown in Table 5, the final classification errors in both the reasoning
and explanation sequences are caused by the accumulation of mistakes in partial
decisions. It is noteworthy that all of the decisions are perfectly aligned between
the reasoning and explanation sequences. Although not shown in the table, we
also observed perfect alignment between the answer classifications and reasoning
classifications, meaning that all partial decisions as well as the final classifications
are aligned between the generated answers, explanations, and reasoning in this
case.

Table 5. Analysis of the correctness of the reasoning and explanation chain-of-thought
sequences generated by Llama 3 8B on the decision tree dataset

Partial decision Final classification
1 2 3 4 5 6 7
Reasoning accuracy |0.995/1.000/0.990/0.960/0.895/0.830/0.745/0.745
Explanation accuracy|0.995/1.000/0.990/0.960/0.895/0.830|0.745/0.745
Alignment rate 1.000/1.000/1.000/1.000(1.000/1.000/1.000/1.000
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6 Discussion

It may not be immediately clear why the inclusion of reasoning sequences in LLM
input contexts leads to alignment between answers and explanations. It seems
that during training, the LLM must learn the relatively simple task of repro-
ducing the compressed chain-of-thought reasoning sequence to succeed at the
more difficult task of producing the one-step answer classifications. We hypoth-
esize that once the model learns to produce accurate reasoning sequences, the
internal mechanism by which the LLM produces its explanations also degrades
to the copying of the partial decisions from the reasoning sequence. To gain
supporting evidence for this hypothesis, we further experimented with randomly
flipping the partial decisions as well as the final classification decisions present in
the reasoning sequences produced by fine-tuned Llama 3 8B. As was suspected,
we observed that almost all of the changes were propagated into the produced
explanations as well as to the answers.

Our approach presented in this paper can be extended in numerous possible
ways, which we leave for future work. Primarily, the reasoning process that we
chose for our proof-of-concept experiments could be extended to wider problem
domains or even to general-purpose assistant datasets, for example by straight-
forwardly using chain-of-thought reasoning or similar approaches, such as the
reasoning process used by DeepSeek-rl [35]. It would also seem beneficial to
introduce a training loss that directly penalizes the mismatch between answers,
explanations, and reasoning. Furthermore, we believe that LLM applications
could benefit from other output modes besides answering and explaining. We
envision a multitask setting with additional implemented commands, such as
those for obtaining explanations of varying detail, classification of user intent,
content filtering analysis, metadata generation, and so on.

7 Conclusion

In this paper, we have proposed an LLM explainability technique for obtaining
faithful natural language explanations by grounding the LLM answers and expla-
nations in a reasoning process. We have shown that LLMs often simply copy the
partial decisions from the reasoning sequence into their answers or explanations,
and we utilized this phenomenon to achieve high alignment between answers
and explanations in several problem domains. Furthermore, we have shown that
besides enabling faithful explanations, the use of a reasoning process can also
lead to improvements in the quality of answers. We hope that our study inspires
further research or real-world use-cases that advance the current state of explain-
ability in LLMs.
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Abstract. Evaluating synthetic tabular data is challenging, since they
can differ from the real data in so many ways. There exist numerous met-
rics of synthetic data quality, ranging from statistical distances to pre-
dictive performance, often providing conflicting results. Moreover, they
fail to explain or pinpoint the specific weaknesses in the synthetic data.
To address this, we apply explainable AI (XAI) techniques to a binary
detection classifier trained to distinguish real from synthetic data. While
the classifier identifies distributional differences, XAI concepts such as
feature importance and feature effects, analyzed through methods like
permutation feature importance, partial dependence plots, Shapley val-
ues and counterfactual explanations, reveal why synthetic data are distin-
guishable, highlighting inconsistencies, unrealistic dependencies, or miss-
ing patterns. This interpretability increases transparency in synthetic
data evaluation and provides deeper insights beyond conventional met-
rics, helping diagnose and improve synthetic data quality. We apply our
approach to two tabular datasets and generative models, showing that
it uncovers issues overlooked by standard evaluation techniques.

Keywords: Synthetic data quality - Generative artificial intelligence -
Explainable artificial intelligence - Interpretable machine learning -
Interpretable evaluation - Synthetic data detection - Tabular data

1 Introduction

The rapid development of generative modeling, also known as generative arti-
ficial intelligence (GenAl), is driving profound changes in business, science,
education, creative processes, and our everyday lives. While the maturation of
transformer-based architectures [62] and diffusion models [33,59] has led to pre-
viously unimaginable possibilities and quality leaps in text, image, audio, and
video generation, the advances in tabular data synthesis lag behind. However,
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generative modeling has great potential for tabular data: A large amount of
data in organizations, research and medicine is organized in a tabular format,
and there is a wide range of useful applications, such as privacy-preserving data
sharing, data augmentation and balancing, missing data imputation and what-if
analyses [35].

What is it that makes tabular data synthesis so difficult for methods which
excel in image and text domains? How can we examine which exact parts of a syn-
thetic dataset contain implausible values or patterns? Answering these questions
is not trivial, as already measuring the quality of synthetic data is not straight-
forward: As opposed to supervised learning, there are no direct performance
measures for generative modeling as a mainly unsupervised discipline through
the absence of labels. Moreover, even in relatively low dimensions, dependencies
between features — of numerical or categorical nature — are hard to comprehend
for humans. This makes the evaluation of tabular data synthesis quality even
more challenging compared to image or text data where human experts can
assess the results more easily. There are many different concepts for evaluating
the performance of generative models, and not all of them are available for every
model and data type. New measures are also frequently proposed to address the
shortcomings of the previous ones. However, transparency regarding the under-
lying reasons for poorer synthesis quality, reflected in lower performance scores,
is rarely available. Furthermore, while some of the measures allow for evaluation
at individual observation level [5,39], it often remains unclear which specific
feature values or combinations are responsible for the poor quality of a spe-
cific synthetic observation. (See Sect. 3.1 for more background about generative
models and their evaluation.)

Explainable artificial intelligence (XAI), also referred to as interpretable
machine learning (IML), tries to explain the outputs and decision-making of
machine learning models. This is an emerging machine learning discipline, as
high performing machine learning models are often black boxes due to their
complexity, and there is an urgent demand for methods to make them more
transparent and easier to trust. Some XAI methods are able to attribute to
each feature - or even feature interaction - its contribution to a model’s output.
However, the majority of these XAI methods is designed for supervised learn-
ing and not directly applicable to generative modeling. (See Sect.3.2 for more
background about XAI)

Contributions. We propose to leverage a synthetic data detection model to eval-
uate the performance of a generative model and to use it as a supervised proxy
model in order to obtain more detailed insights about the strengths and weak-
nesses of the synthetic data via common XAI methods. While the detection
model itself can give an indication of the overall and individual discernibility of
real and synthetic data and about the fidelity and diversity of the synthetic data
(Sect. 4.1), we go one step further: As our main contribution, we provide a set of
suitable global and local XAI tools which can be used to unlock more detailed
insights by answering the following questions (Sect. 4.2):
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Q1. Which features and feature dependencies were most challenging for the gen-
erative model?

Q2. How do the generative models behave in low and high density areas of fea-
ture distributions? Which areas are under- or overrepresented in the syn-
thetic data?

Q3. Which features and feature dependencies/interactions contributed most to
the detection of an individual real or synthetic observation?

Q4. Which minimal changes to a correctly classified synthetic observation could
be performed to make it look realistic?

We demonstrate the utility of this approach by answering these questions for
real data examples (Sect.5). This work is primarily aimed at practitioners and
researchers in the field of generative modeling, who want to gain deeper insights
about the quality of their synthetic data or about the strengths and limitations
of their generative models. Secondarily, within the XAI community, we want to
raise awareness of the specific challenges in explainability for generative models
that have not yet been adequately addressed.

2 Related Work

The intersection of XAl and generative modeling has not yet been sufficiently
researched. Schneider [55] underscores the demand for interpretability meth-
ods for generative models and gives a road map for this research direction but
does not refer to explaining synthetic data quality explicitly. Several works have
focused on finding meaningful representations of the latent space of generative
models [20,22,32] to better understand and control the data generation pro-
cess or have specifically examined the explainability of the attention mechanism
and transformers [3,63]. XATI has successfully been incorporated in the training
process of generative models to increase their performance [45,71], but these
approaches are specifically aimed at image data generation.

In the opposite direction, generative modeling has supported XAI meth-
ods to explain the inner workings of neural networks [47], create more human-
understandable interpretations of model decisions [23], calculate conditional fea-
ture importances [4,13], and produce more plausible counterfactuals [21,46,52].

The following works are most closely related to our approach, though they
emphasize different aspects and do not extend as far in our primary focus area
of explaining synthetic data quality: Lopez-Paz et al. [39] suggest to train a
detection model to evaluate if two samples derive from the same distribution
and analyze the statistical properties of such classifier two-sample tests. Zein et
al. [67] follow this strategy to demonstrate that machine learning utility as an
evaluation measure may not be a reliable indicator for synthetic data quality.
Both underline the interpretability of such classifier models and even perform
a limited analysis using XAI, but do not focus on this aspect: Lopez-Paz et al.
[39] briefly mention several feature importance methods and show an example
on image data, Zein et al. [67] use impurity-based and permutation-based fea-
ture importances for synthetic tabular data detection. Neither of these works go
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beyond feature importance techniques which represent only an initial analysis
step in the set of XAl tools presented in this work.

On image data, a wide range of existing studies use binary classifiers and
their image-specific interpretation techniques for deep fake detection [2,8,11].

3 Background

Since this work lies at the intersection of generative modeling and XAI and is
intended for researchers and practitioners who do not necessarily have expertise
in both disciplines, we provide a high-level overview of both fields.

3.1 Generative Modeling of Tabular Data

Generative modeling or generative artificial intelligence is a machine learn-
ing sub-discipline concerned with generating realistic synthetic data: Let Dyeq)
denote a dataset with instances from a feature space X, each of which is a realiza-
tion of a random variable X. Given D,¢,), generative modeling tries to generate
synthetic data Dsy,, which follow the same joint distribution px. As this original
data distribution is unknown in real-world settings, generative modeling explic-
itly or implicitly approximates px in order to generate realistic instances and
is therefore related to the discipline of joint density estimation [35,42]: Explicit
generative models G : X — RSL directly model the underlying joint distribution
(G = px) and provide a sampling routine to generate new instances. On the
other hand, implicit generative models G : £L — X are trained to generate real-
istic samples given random noise z from a latent-space £ without being able to
compute density likelihoods (G(z) ~ px).

Early deep learning approaches such as variational autoencoders (VAEs) [37],
generative adversarial networks (GANSs) [29], and normalizing flows (NFs) [53]
have set the ground for the success of generative Al within the past decade.
Modern transformer-based architectures [62], denoising diffusion probabilistic
models (DDPMs) [33,59], often combined with autoregressive models (ARs) [10],
are responsible for the recent hype about generative Al for realistic text, image,
audio, and video synthesis [14].

While numerous adaptions of these methods for tabular data synthesis have
been proposed [38,66,69], these often struggle to achieve the same overwhelm-
ing results as on image or text data. Tree-based generative methods [48,64] have
demonstrated competitive or superior performance while being significantly less
computationally demanding than deep learning approaches [26,49], which aligns
to well-known findings from discriminative modeling [15,30,57]: This type of
models showed the capacity to effectively deal with the challenges specific to
tabular data, such as different feature types (e.g., continuous, discrete, categor-
ical), odd-shaped feature distributions (e.g., multimodality, skew, truncation),
complex feature dependencies, and lack of a natural positional or syntactical
feature order as for image or text data. However, recent advances in deep learn-
ing for both discriminative and generative modeling seem to be promising steps
towards closing the gap to tree-based methods [34,68].
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Another inherent challenge in tabular data synthesis is the assessment of its
quality. Generative models in general lack direct evaluation methods, since they
are usually trained in an unsupervised manner. An evaluation via test likeli-
hoods as in density estimation is only available for explicit generative models
and does not necessarily allow for implications about the synthetic data qual-
ity [61]. On top of that, tabular data quality cannot innately be evaluated like
data modalities such as images and text, which humans are able to process and
judge naturally. Various evaluation concepts exist which try to cover different
aspects of the complexity of tabular data: Fidelity or precision metrics mea-
sure the resemblance of a synthetic dataset to the original data, and coverage
or recall its diversity [5,54]. This is often measured by assessing how much of
the synthetic data is covered by the original data distribution and vice versa.
As a trivial synthesizer returning an exact copy of the original dataset would
receive perfect scores in both previous metrics, a third dimension is often added:
Authenticity, overfitting or — closely related — privacy metrics measure the gen-
eralization or privacy preservation ability of the generative model [5,35]. The so-
called detection score or classifier two-sample test gives a measure of how well
binary machine learning classifiers can distinguish between original and syn-
thetic data [39,49]. Alternatively, the distance between original and synthetic
data distributions can be assessed using statistical tests and distance measures
such as Kullback-Leibler divergence, Wasserstein distance, and maximum mean
discrepancy [12,42]. Utility-based evaluations assess how well predictive machine
learning tasks or statistical analyses can be repeated on synthetic data, using
measures of machine learning utility or statistical utility [26,35,66]. So far, no
gold standard has been established in measuring the quality of synthetic data.
Good performance in one of the previous approaches does not imply the same for
a different one [35,61,67]. Moreover, none of these possibilities to measure syn-
thetic data quality provides a data-based explanation of their scores or insights
into why the quality of some synthetic dataset has been evaluated to be good or
bad.

3.2 Explainable Artificial Intelligence

Due to their high performance, machine learning models are increasingly imple-
mented in high-stake decision-making. However, the gain in performance often
comes at the cost of reduced interpretability. XAI methods aim to enhance trans-
parency and trustworthiness by developing inherently interpretable models or
creating post-hoc methods that provide insights into the behavior of complex
black box models.

Post-hoc XAI methods can be categorized along several dimensions, which
should be taken into account when selecting the most suitable approach in a given
context [43,44]: Model-agnostic methods can be applied to any model, whereas
model-specific methods are tailored to particular model classes, making them
often more computationally efficient. For instance, Shapley additive explanation
values (SHAP) [41] are not limited to any specific model class, DeepSHAP [41]
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and TreeSHAP [40] can only be used for deep learning architectures and tree-
based learners, respectively. Another central axis of differentiation is the scope
of interpretability: Global methods provide explanations for the overall model
behavior across all data points, local ones for single instances. Partial dependence
plots (PDP) [27], as an example, provide a global assessment of feature influence,
while individual conditional expectation (ICE) [6] curves refine this perspective
by depicting variation at a local level. A further distinction arises regarding the
perspective of explanations: Prediction-based methods, such as SHAP, concen-
trate on how the model’s predictions change in response to different inputs, while
loss-based methods, such as permutation feature importance (PFI) [25], focus on
how the model learns and generalizes rather than how it predicts. Explanation
methods differ in how they account for relationships between features: Marginal
explanations evaluate the effect of a feature ignoring dependencies with other
features while conditional explanations account for feature relationships based
on the data distribution [1,13,17]. Marginal methods are said to be “true to the
model” because they reflect how the model internally processes features, even if
the resulting explanations are unrealistic given the data due to ignored correla-
tions. In contrast, conditional methods are said to be “true to the data”, ensuring
that explanations align with real-world feature dependencies [18].

The reliability of any interpretability method highly depends on the model’s
capacity to generalize. If a model underfits, explanations may reflect oversim-
plified patterns, whereas an overfitting model may yield explanations that are
driven by noise rather than meaningful structure.

4 Methods

To not only assess the quality of synthetic data but also gain more granular
insights into their limitations, we propose applying XAI methods to a synthetic
data detection model. Specifically, we introduce methods capable of addressing
questions Q1.—Q4. from Sect. 1, which represent increasing levels of explanatory
detail.

In the following, D := { Dy e, Dsyn} denotes a dataset of size n and dimen-
sionality p consisting of original data D,..1 and equally-sized synthetic data Dgy,,
from an arbitrary (explicit or implicit) generative model G. Furthermore, let x;
denote the j-th feature of D, x_; the subset of features excluding j, and x() the
i-th instance.

4.1 Synthetic Data Detection Model

A synthetic data detection model is a binary classifier C' : X — [0, 1] trained on
Xirain C D with corresponding binary labels yi.,in marking if an observation is
real or synthetic. It outputs a probability C'(x) for a given data point to be real.
Its performance on unseen test data Xies; and yiest can be evaluated by metrics
such as accuracy and the area under the ROC curve (AUC), and serves as a
measure for the quality of the synthetic data: Intuitively, high quality synthetic
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data should almost be indistinguishable from real data for C. False positive
rates and false negative rates can be used to assess fidelity and diversity of
the synthetic data [58]. If additionally a train-test-split is introduced before
generative model training so that C' gets trained on different real data than G,
the performance of C' also reflects the generalization ability of G.

Different types of binary classifiers can be used as a synthetic data detection
model. In order to obtain reliable evaluation scores and explanations, it is vital
to select a highly capable model and ensure it does not overfit substantially. For
tabular data, well-tuned gradient-boosted tree ensembles such as XGBoost [19]
are a robust choice [67].

4.2 Explaining Synthetic Data Detection with XAI Methods

Given a synthetic data classifier C' and a dataset of original and synthetic
instances D, we present suitable XAI methods addressing questions Q1. — Q4.
and discuss their properties, advantages and shortcomings. For a more holistic
and detailed discussion of XAI methods, we refer to Molnar [43].

Q1.: Feature Importance Measures. To determine which features or feature
combinations were not reproduced realistically in synthetic data, feature impor-
tance measures can be leveraged. High feature importance values can point to
the features or dependencies most responsible for low synthetic data quality.
Permutation feature importance (PFI) is a global loss-based method for
assessing feature importance. It quantifies the impact of a feature x; by the
drop in model performance, measured by the model loss L, averaged over all
instances when this feature is replaced by a permuted version X; of itself:

PRI = 137 (1 (Cix).0) — L (Clx).0) ).
i=1

As an effect of the permutation across the whole dataset, the associations
between x; and y, as well as all other features, are removed. The more the model’s
performance declines, the more important the feature is considered. Since the
model’s performance is involved in the computation of PFI, it is preferable to
calculate it on test data [43]. PFI can yield inaccurate results in the presence of
highly correlated features as the permutation procedure leads to the generation
of off-manifold data. This can be tackled by replacing the marginal permutation
routine by conditional sampling techniques [13,65].

Alternatively, Shapley values [56] can be leveraged to obtain feature impor-
tances: The Shapley feature importance [40] is calculated as the mean absolute

Shapley value
I~
¢ = > o1l
i=1

where ¢§» denotes the Shapley value for instance i and feature j. For an intro-
duction to Shapley values, see Sect. 4.2 Q3.
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Q2.: Feature Effect Plots. The marginal effect of a feature on the detection
model’s prediction can be graphically represented by feature effect plots. This
allows for the identification of unrealistic feature value regions in the synthetic
data, as well as areas of the original data distribution that are not covered or
underrepresented by the synthetic data. To facilitate understanding of feature
effect plots in the context of synthetic data detection, Fig. 3 and its interpreta-
tion in Section 5.2 Q2. can already be considered alongside their methodological
discussion in this section.

At a single-instance level, this can be visualized using individual conditional
expectation (ICE) curves, represented by the graph of the function

ICE! (z;) = C(z;5x"),

where model predictions are evaluated for different values of the j-th feature
while keeping all other features constant. Non-parallel ICE curves of different
individuals indicate the presence of an interaction effect with other features on
the prediction, suggesting that some feature dependencies present in the original
data were not consistently retained in the synthetic data.

By averaging over each feature value, a global partial dependence plot (PDP)
can be derived from local ICE curves:

1< ;
PDP;(z;) = — > ICEj(x;).
1=1

This provides a comprehensive view of the feature’s marginal effect on the pre-
diction. Regions where the PDP drops significantly below 0.5 indicate unrealistic
feature values in the synthetic data, making them easily identifiable for the clas-
sifier. Conversely, regions where the PDP rises well above 0.5 highlight feature
value areas that are absent or underrepresented in the synthetic data. Often,
PDP and ICE curves are presented together in a joint plot.

Both ICE and PDP assume independent features, which can lead to mis-
leading interpretations when features are correlated. Accumulated local effects
(ALE) [7] plots are an alternative to PDP for this case, as they compute local-
ized instead of marginal effects by measuring changes in model predictions within
small conditional neighborhoods.

Q3.: Shapley Values. Rooted in cooperative game theory, Shapley values [56]
were originally designed to fairly distribute a total payoff among players in a
game. In the context of machine learning, the most common approach treats
features as players, and distributes a single observation’s prediction among them
based on their contribution. This is done in an inclusion-removal manner con-
sidering all possible feature coalitions S

1S (p — 1S = 1)!
p!

¢ = (0" (SU{7}) —v'(9)) . (1)

SC{1,....p\{5}

The function v* returns the model’s expected output when only a given subset
of features of an instance i is considered. In the classical marginal approach
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[41], the remaining features are marginalized out using their marginal expecta-
tions, implicitly assuming independence between observed and unobserved fea-
tures. In the conditional approach [1], the remaining features are integrated out
based on their conditional expectations given the considered features, preserving
dependencies in the data. This results in conditional Shapley values, which are
often more realistic when estimated accurately. However, their estimation can be
challenging and entails higher computational costs [1,17]. Equation (1) can be
slightly modified to compute contributions of feature interactions [60]. For large
datasets and high-dimensional feature spaces, computing exact Shapley values
can be computationally expensive or even infeasible. Often, only a subset of all
possible coalitions is considered to make computations feasible, for instance with
the model-agnostic KernelSHAP method [1,41]. Also model-specific adaptions
such as DeepSHAP and TreeSHAP can speed up calculations significantly.

In the setting of synthetic data detection, Shapley values decompose the pre-
dictions of individual synthetic observations to reveal which features (or feature
interactions, in the case of Shapley interaction values) make instances appear
unrealistic to the detection model. Conversely, they also help identify which val-
ues and feature combinations of a real instance are insufficiently represented in
the synthetic data distribution. Thus, Shapley values quantify the relevance of
the presence of each feature value (or feature combination) in determining how
realistic this observation appears to the detection model: For real observations
with C(x) > 0.5, the features with the largest Shapley values indicate that the
feature values they correspond to are the main reasons the detection model is
able to separate them from the synthetic data. This suggests that these fea-
ture values may be underrepresented in the synthetic data. The same applies to
synthetic observations with C(x) < 0.5.

Q4.: Counterfactuals. Counterfactual explanations (CE) present examples of
minimal feature changes that would alter the model’s prediction to a different
outcome. For our binary classification setting, a different outcome will correspond
to crossing the threshold of 0.5. We will leverage this method to study how we
can most easily modify the feature values of a correctly detected synthetic sam-
ple so that it looks realistic to the detection model (i.e., has C(x) > 0.5). The
best counterfactual examples possess several quality properties [31], where spar-
sity /proximity (changes are as few and small as possible), plausibility (changes
are realistic and align with the feature distribution), validity (actually resulting
in a changed outcome) are the most relevant in our case.

As discussed in Sect. 2, many methods for counterfactual generation rely on
generative models themselves in order to produce realistic counterfactuals. The
Monte Carlo sampling of realistic counterfactual explanations (MCCE) method
[52], used in Sect. 5.2 Q4., directly aims to achieve the aforementioned quality
properties and leverages an autoregressive tree-based synthesizer to generate
on-manifold counterfactuals, making it particularly well-suited for tabular data.
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5 Real Data Examples

We demonstrate our approach on real world data. First, we examine the perfor-
mance of different synthetic data detection models (Sect. 5.1) on various datasets
and generative models. After that, we answer questions Q1.—Q4. with the XAI
methods presented in Sect. 4.2 for synthetic adult data [9] generated with Tab-
Syn [68] (Sect.5.2). In Appendix A, we do a similar, but simplified exercise
for synthetic nursery data [50] generated with CTGAN [66]. Generic scripts for
detection model tuning and training, for applying the XAI methods discussed
in this paper, as well as for reproducing our presented tables and figures can
be found in the repository accompanying this paper.! Additionally, it includes
an overview and descriptive statistics of all datasets and further context for our
experiments with all synthesizers considered.

5.1 Performance of Different Synthetic Data Detection Models

In order to obtain reliable explanations, we need to ensure that we use a high
performing classifier as our synthetic data detection model. For this purpose,
we performed hyperparameter tuning for XGBoost via Bayesian optimization,
e.g., for the tree depth, learning rate and regularization parameters. As already
stated in 4.1, a well-tuned XGBoost model is typically a robust choice for clas-
sification tasks on tabular data. Figure la supports this statement: Across six
different state-of-the-art or frequently used generative models [48,64,66,68,70]
and eleven standard machine learning datasets from publicly available sources
[24,36], tuned XGBoost models consistently show the strongest classification
performance against logistic regression and random forest as baseline models.
Figure 1b shows the performance of the tuned XGBoost models for the two
datasets (adult and nursery) we use in the following to illustrate our approach.

5.2 Answering Q1.—Q4. for Synthetic Adult Data

Before synthesis, we removed all rows with missing values from the adult dataset
as well as the categorical feature education, since its information value is iden-
tical to education_num, resulting in a dataset with 47876 instances and 14
columns (6 numeric and 8 categorical). We generated ten synthetic datasets
using TabSyn, a state-of-the-art DDPM for tabular data. On each of these gen-
erated datasets, we trained an XGBoost model for synthetic data detection using
Bayesian optimization for hyperparameter tuning and a train-test split of 30%,
while keeping the real data points the same across all ten synthetic datasets.

Q1. To address our first research question on identifying the most challeng-
ing features and feature dependencies for TabSyn, we analyze feature impor-
tances using both loss-based and prediction-based XAl methods. Figure 2a shows
results for PFI and global TreeSHAP (mean absolute Shapley values estimated

! https://github.com/bips-hb/XAI syn data_detection.
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Fig. 1. (a) Synthetic data detection performance of logistic regression, random forest
[16] and XGBoost models with six generative models generating five synthetic datasets
for eleven original datasets each. CTAB-GAN+ did not converge for all runs. (b) Syn-
thetic data detection performance for XGBoost on train and test data for adult and
nursery data with ten replications.
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Fig. 2. Feature importance values for synthetic data detection with XGBoost for ten
TabSyn-generated synthetic adult datasets. Higher importance values indicate poorer
synthesis quality. (a) PFI and global TreeSHAP values. (b) Global TreeSHAP interac-
tion values of degree 1 and 2 (top 20 most important).

by TreeSHAP), while Fig.2b provides a finer examination of the interaction
effects inherently obtained using TreeSHAP. In general, if a feature has a high
importance, it indicates patterns in the synthetic data that make a differenti-
ation on a global level easier for the detection model, whereas low importance
suggests more realistic feature values.

At a broad level, both methods in Fig.2a identify similar key features for
the XGBoost detection model, such as age, hours_per_week, fnlwgt, and
education_num, highlighting these features as weak spots in the synthetic data
where marginal distributions or dependencies to other features are not repli-
cated accurately. Moreover, the relatively low variance (except for occupation)
in the boxplots suggests that the detection models rely on the same features
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across all ten synthesized dataset versions, indicating a consistent decision basis.
The high variance for occupation may be due to its strong dependencies with
multiple important features (see Fig.2b), which seem challenging to retain for
TabSyn. Comparing PFI and global TreeSHAP, both yield similar feature rank-
ings and relative differences. However, their importance values differ in scale: As
mentioned in Sect. 4.2, TreeSHAP sums absolute contributions across instances,
leading to larger values, while PFI measures the average performance drop of
a feature removal. An exception is the feature fnlwgt, which is ranked consid-
erably higher in PFI than in TreeSHAP. This is likely due to its strong inter-
actions with other important features, such as age and hours_per_week (see
Fig.2b). Since PFI disrupts feature dependencies through permutation, it fully
attributes interaction effects to each involved feature once, not multiple times,
whereas TreeSHAP distributes them fairly among the interacting features [28].

Figure 2b shows that, alongside strong main effects, many interaction effects
contribute substantially to the model’s predictions, which are inherently calcu-
lated with TreeSHAP for XGBoost models (interaction TreeSHAP). The features
hours_per_week, education_num, and age remain the most important individ-
ually, but interactions, such as education_num with occupation and age with
fnlwgt and education_num, also show a strong influential effect. Their appear-
ance within the most important features (main and interactions) indicates that
TabSyn struggles to fully recreate this complex dependence structure. An inter-
esting case is occupation, which, as previously noted, appears in numerous
interactions (with education_num, hours_per_week and workclass). The vari-
ability in this interaction across all ten dataset versions further confirms that
the dependencies involving occupation are difficult for the synthesizer to cap-
ture consistently. Another notable observation is that the importance ranking
of occupation in Fig. 2b including the interactions is much higher than in both
PFI and TreeSHAP in Fig.2a. One possible explanation is that occupation’s
interactions partially cancel out or reduce the main effect due to different contri-
bution signs in the standard TreeSHAP decomposition, whereas for interaction
TreeSHAP, the separation of interactions prevents this effect. This may happen
if the marginal distribution of occupation deviates from the real distribution
(i.e., making it easier to distinguish), but the dependencies for influential classes
of occupation to other features are realistically generated.

Q2. Using feature effect plots, we now take a closer look at the numerical fea-
ture education_num and the categorical feature occupation which were among
the top-ranked features and appeared in several interactions in Fig.2b. From
now on, we base our explanations on one synthetic dataset only and do not
further examine the variation across different TabSyn-generated datasets. ICE
curves and PDP for education_num are shown in Fig. 3a with indicated marginal
distributions for real and synthetic data on the x-axis. We observe that espe-
cially in the low-density region of the real data for feature values below 4, the
PDP is located considerably below 0.5, implying that TabSyn learned unreal-
istic patterns in this area which make the identification of synthetic data easy
for XGBoost. Furthermore, the PDP and the plotted data distributions reveal
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Fig. 3. ICE/PDP for synthetic data detection with XGBoost for TabSyn-generated
synthetic adult data. (a) Numeric feature education_num, distribution for original and
synthetic data on x-axis. (b) Categorical feature occupation, PDP in red, frequencies
for real and synthetic data on y-axis.

unrealistic synthetic feature values: While in the real data only integer values
occur for education_num, TabSyn also generates non-integer values, resulting
in a periodical PDP drop between integers. Looking at the ICE curves, we see
that not all curves run in parallel and that some cross each other. This indicates
the presence of interactions with education_num which alter the course of the
curves individually on top of the marginal effects, which aligns to the findings
presented in Fig.2b. Another observation is that the share of real data ICE
curves markedly falling under 0.5 is higher than the share of synthetic data ICE
curves over 0.5. This means that it is harder for the model to correctly classify
real data than synthetic data based on this feature, indicating low fidelity but
high diversity of the synthetic data for this feature.

Figure 3b shows results for the categorical variable occupation. For each
class, the variation of ICE values across instances is displayed by box plots, the
PDP values are represented by red lines. On the y-axis, the class frequencies are
shown for real and synthetic data. We observe that the classes Protective-serv,
Armed-Forces and unknown with most deviation from 0.5 have a low number
of occurrences, while the most frequent classes such as Prof-specialty and
Exec-managerial tend to have values close to 0.5. This implies that data gener-
ation quality is low for rare classes and improves for more frequent ones. Looking
at Protective-serv and the corresponding class frequencies for real and syn-
thetic data, we notice that this class is substantially underrepresented in the syn-
thetic data, which can be an explanation for its PDP value close to 1 (prediction
as real). On the contrary, the class Handlers-cleaners seems to be moderately
overrepresented in the synthetic data, which can be the reason why its PDP and
ICE values are consistently smaller than 0.5 (prediction as synthetic). The class
unknown appears to be equally represented in real and synthetic data. However,
its PDP value is close to 0, indicating that synthetic instances with this class are
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Fig. 4. Force plots for conditional and marginal Shapley values decomposing the
XGBoost prediction for an exemplary instance of TabSyn-generated synthetic adult
data.

often unrealistic. A reason for this can be that combinations of this class with
other feature values are not retained realistically in the synthetic data. This
aligns to the presence of important interactions with occupation in 2b.

Q3. While the first two questions focused mainly on the detection model’s global
behavior, we now examine how features and feature interactions contribute to
the classification of specific individual predictions. To explore this, we analyze
two correctly classified samples — one synthetic and one real. Note that these
two examples illustrate key aspects that should be considered when interpreting
predictions of the detection model. However, for a comprehensive assessment of
local behavior, a structured analysis across many more observations is required.

We first explore a specific synthetic observation corresponding to a young
(age = 17), white female with low education (education_num = 4, indicating
education up to the 7th or 8th grade) based in the United States with marginal
and conditional Shapley values. Note that potential issues with the region around
education_num = 4 were already visible in Fig. 3a. The feature distributions in
the conditional approach are estimated with conditional inference trees [51] and
both approaches use the KernelSHAP method with 2000 coalitions to approx-
imate the Shapley values. The force plots in Fig.4 visualize how differently
marginal and conditional Shapley values drive the prediction from the base-
line value of 0.5 down to a very low predicted probability of C'(x) = 0.0364: The
marginal approach attributes the majority of the contribution to this prediction
to the young age, whereas the conditional approach distributes the contribution
almost evenly between education_num and age. As noted already in Sect. 4.2,
the marginal and conditional approaches differ in the presence of (local) feature
dependence. Upon closer inspection of these two features, we find that the com-
bination present in our synthetic example is highly unlikely in the real data: Only
0.7% of 17-years-old real individuals have a value of 4 for education_num, the
average value is 6.69 for this age. Moreover, the mean age for education_num
= 4 is the oldest across all education levels with 49.12 years. An explanation
for these numbers can be the fact that it was common for older generations to
quit school after the 8th grade to start working, as younger generations typically
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attend school for longer than that. Moreover, their global correlation in the real
data is small (0.03), but larger for the younger (0.54 for age< 20). The stronger
feature dependence among younger individuals is natural, as many are still in
education and have yet to attain higher degrees. With this in mind, we consider
the conditional approach the more appropriate, and argue that this synthetic
sample is weak not only in terms of age, but also in education_num.
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Logodds prediction

Fig. 5. Waterfall plots for Shapley interaction values decomposing the XGBoost pre-
diction for an exemplary instance of TabSyn-generated synthetic adult data. Note that
TreeSHAP decomposes the prediction on the log-odds/logistic scale rather than on the
probability scale.

Figure5 confirms this line of reasoning: It displays a waterfall plot with
the largest (in absolute value) Shapley interaction values for the same syn-
thetic female as above, computed with the (path dependent) TreeSHAP algo-
rithm [40], which partially accounts for feature dependencies, placing it between
the conditional and marginal approaches: The interaction between age and
education_num is identified as a key factor for correctly classifying the sam-
ple. Interestingly, when adjusting for interactions, education_num alone actually
makes the sample look more similar to the real observations. This suggests that
locally around this sample, education_num itself aligns well with real observa-
tions, but its combination with the specific age is causing the discrepancy.

For the majority of the features, the overall average dependence in this
dataset is relatively small, such that the conditional and marginal Shapley values
more or less agree for most of the samples. However, as seen above, the features
may be highly dependent locally. Going forward, we therefore stick to the condi-
tional approach. Figure 6 displays both conditional Shapley values and Shapley
interaction values for a 47-year-old, self-employed, male in the real dataset, which
was easily correctly classified by the detection model C(x) = 0.94. The main
contributor to that was the capital_gain feature, while the interactions also
reveal that the dependencies between education_num and occupation play a
role. As seen from Fig. 2, capital_gain was not very important globally, which
exemplifies that there may be local areas in the feature space which are not
adequately represented in the synthetic data even if the feature is globally well
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represented. The education_num-occupation interaction, on the other hand, is
already highlighted as a potential issue globally.

(a)
E . . education_num = 15 ) .
o marital_status = Divorced 10 other feature capital_gain = 27828 fnlwgt = 79627
% o +0.0456, +0.0487 ;
g £ : . C(x)=0.941
o [C(x)]=0.5
0.6 0.8 1.0
Prediction
(b)
logistic(C(x))=1.57
| +1.4 :
education_num = 15, occupation = Prof-specialty
! ors
capital_gain = 27828, relationship = Not-in—family wsz
capital_gain = 27828, marital_status = Divorced
capital_gain = 27828, income = >50K .
logistic(E[C(x)])=-0.000119
0.0 0.5 1.0 1.5

Logodds prediction

Fig. 6. Force and waterfall plots for, respectively, (a) conditional Shapley values and
(b) Shapley interaction values decomposing the XGBoost prediction for an exemplary
real instance of the adult data. Note that TreeSHAP decomposes the prediction on the
log-odds/logistic scale rather than on the probability scale.

Q4. Finally, we investigate how minimal changes to synthetic observations can
be performed to make them look realistic. We proceed to exemplify this with the
same synthetic sample as in Sect. 5.2 Q3. , the young female with low education.
Figure 7 provides four counterfactual examples which modify a few of the feature
values in different ways to change the classification to real. The counterfactual
examples are generated with the MCCE method of [52] with all features mutable
and 5 x 10° Monte Carlo samples.

First, observe that fnlwgt is changed in all counterfactuals. This feature
reflects the number of people each observation represents in the population,
making it natural that it must be adjusted when other features change to main-
tain consistency. Moreover, Fig.2b indicated issues in the synthetic data for
its dependencies with other features on a global level, so that its value might
not have aligned to other features. Apart from fnlwgt, the first counterfactual
(CF1) changes only education_num, while CF2 and CF3 perform slightly smaller
changes in education_num while also increasing respectively age by 1year and
occupation. Finally, CF4 illustrates that education_num does not need to be
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Original CF1 CF2 CF3 CF4
age 17 17 18 t 17 22 1
workclass Private Private Private Private Private
education_num 4 8 1 71 7t 4
marital_status Never-married Never-married  Never-married Never-married Never-married
occupation Other-service Other-service Other-service Adm-clerical < Other-service
relationship Own-child Own-child Own-child Own-child Own-child
race White White White White White
sex Female Female Female Female Female
capital_gain 0 0 0 0 0
capital_loss 0 0 0 0 0
hours_per_week 10 10 10 10 25 1+
native_country United-States United-States United-States United-States United-States
income <=50K <=50K <=50K <=50K <=50K

Fig.7. Four counterfactual explanations for an exemplary instance of TabSyn-
generated synthetic adult data. Highlighted features are changed.

changed for the synthetic observation to appear real — increasing age by five
years and hours_per_week by 15h also changes the classification to real.

6 Discussion

In this paper, we demonstrate that the application of XAI methods on a syn-
thetic data detection model can generate valuable insights about synthetic data
quality. We provide a set of suitable global and local XAl tools, such as feature
importance measures, feature effect plots, Shapley values and counterfactuals.
These XAI tools can be used to identify the most challenging features and depen-
dencies in the original data for successful data synthesis and to detect unrealistic
patterns in the synthetic data on dataset- and single-instance level. The exper-
iments in Sect.5 illustrate this on real world data and underline the gain in
explanatory depth in comparison to traditional synthetic data quality metrics
and visual approaches such as histograms and correlation plots. The insights gen-
erated from our suggested XAl-driven analysis can be used for synthetic data
auditing to explain overall utility, synthesis quality in low density areas of the
real data, and to determine low fidelity instances. It could also be leveraged to
analyze and compare the strengths and weaknesses of different generative models
on different datasets and to debug or further improve generative models.

One limitation of this approach is that it is not directly applicable to a
generative model itself but depends on the performance of a binary classifier
used for synthetic data detection. Special care has to be taken during the tuning
and training process of this classifier as low detection accuracy values can both be
caused by insufficient classification performance and by high quality synthetic
data. For some purposes, the detection model can even be too sensitive and
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might detect deviations such as different numeric precision which might not
be relevant to assess the practical utility of the synthetic data. Moreover, it is
critical to choose an appropriate XAI method considering data dependencies
and explanation goal in order to obtain reliable explanations. As is generally
true for all applications of XAI methods, there is no one-fits-all solution and it is
important to know the strength and limitations of different tools. For instance,
it is important to be aware of the differences of loss-based and prediction-based
methods as well as marginal and conditional approaches [44]. Some of the XAI
methods, especially conditional approaches and counterfactuals generators, are
even based on generative modeling themselves. As stated in Sect. 3.1, one should
keep in mind that generative models for tabular data synthesis are not yet as
mature as for image and text data generation, which could lower the quality of
explanations created with these methods.

We restricted this work to the explanation of synthetic data fidelity and
diversity and did not consider the generalization and privacy dimension of data
quality. Following a different routine for generative model training as described
in Sect. 4.1, our approach could be extended to cover these aspects as well. We
leave this for future work.

Especially in the light of the current worldwide rise of generative models and
the increasing use of synthetic data in all relevant areas of daily life, we strongly
believe that the identification and explainability of synthetic data quality as well
as the intersection of XAI and generative Al in general is of highest importance.
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A Answering Q1.—Q4. for Synthetic Nursery Data

We provide another exemplary application of our approach using the nursery
dataset and the generative model CTGAN [66]. The nursery dataset has 12958
instances and 9 columns (all categorical). CTGAN is a widely used GAN-based
generative model for tabular data. Again, on each of these generated datasets,
we trained an XGBoost model for synthetic data detection using Bayesian opti-
mization for hyperparameter tuning and a train-test split of 30%, while keeping
the real data points the same across all ten synthetic datasets. The mean accu-
racy and its variation on both train and test data are shown in Fig.1b: The
accuracy is consistently around 70%, with slightly lower values on test data.
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Fig. 8. Feature importance values for synthetic data detection with XGBoost for
ten CTGAN-generated synthetic nursery datasets. Higher importance values indicate
poorer synthesis quality. (a) PFI and global TreeSHAP values. (b) Global TreeSHAP
interaction values of degree 1 and 2 (top 20 most important).
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Fig.9. ICE/PDP for synthetic data detection with XGBoost for CTGAN-generated
synthetic nursery data. (a) Feature form, (b) feature class. PDP in red, frequencies
for real and synthetic data on y-axis.

Figure 8 shows that CTGAN struggled to accurately reproduce multiple fea-
tures. On top of that, especially the dependency between health and class
appears to be insufficiently retained. In alignment with Fig.8b, the ICE and
PDP values for the feature form in Fig.9a indicate a poor reconstruction of
the marginal distribution with over- and underrepresented classes. The situa-
tion differs for the feature class, as shown in Fig.9: Except for the rare class
very_recom, the classes appear to be equally represented in real and synthetic
data. The low ICE and PDP values for the three frequent classes are therefore
likely due to inadequately captured dependencies with other features, consistent
with the presence of multiple relevant interactions for class in Fig. 8b.

Finally, we consider a specific correctly classified (C(x) = 0.07) synthetic
observation with pretentious parents, one child and non-problematic social con-
ditions, to mention some key features. The Shapley interaction values of this
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logistic(C(x))=-2.51
015
a
social = nonprob, health = recommended -

»
logistic(E[C(x)])=0.0104

-2.5 -2.0 -1.5 -1.0 -0.5 0.0
Logodds prediction

Fig. 10. Waterfall plots for Shapley interaction values decomposing the XGBoost pre-
diction for an exemplary instance of CTGAN-generated synthetic nursery data. Note
that TreeSHAP decomposes the prediction on the log-odds/logistic scale rather than
on the probability scale.

Original CF1 CF2 CF3 CF4
parents pretentious great_pret < great_pret usual < pretentious
has_nurs  critical critical critical critical critical
form complete complete complete complete complete
children 1 3 & 1 3 & 3 &
housing less_conv less_conv less_conv less_conv less_conv
finance convenient convenient convenient convenient convenient
social nonprob nonprob nonprob problematic < slightly_prob <
health recommended  recommended recommended recommended priority <
class spec_prior spec_prior priority < spec_prior spec_prior

Fig.11. Four counterfactual explanations for an exemplary instance of CTGAN-
generated synthetic nursery data. Highlighted features are changed.

prediction, displayed in Fig. 10, indicate that correct classification is mainly
driven by single features as opposed to feature interactions. The feature val-
ues children = 1 and parents = pretentious contribute the most, but nearly
all other features also have a substantial impact, implying that the majority
of the features values are unrealistic or overrepresented. Figure 11 shows four
counterfactual examples for the same individual. Modifying the parents feature
and changing the children feature to 3 are commonalities in three of the exam-
ples. However, like in Sect. 5.2, the synthetic observation can be altered in quite
different ways to appear realistic to the detection model.
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Abstract. Progress in operations research allowed for the widespread
use of mathematical optimization in supply chain planning. Despite its
numerous practical and economic benefits, human planners often doubt
the solutions provided by automated optimizers, which limits their poten-
tial effectiveness. Although Explainable Artificial Intelligence (XAI)
offers innovative methods to improve the transparency of various models,
the tools available to explain optimization algorithms remain underde-
veloped. Existing solutions tend to present explanations in numerical for-
mats difficult to interpret. This study explores the application of Large
Language Models (LLMs) to enhance the interpretability and persua-
siveness of these explanations. Specifically, it investigates whether LLMs
can convert numerical explanations into clear, context-aware narratives,
thereby fostering greater trust among planners in the optimizer outputs.

We worked on top of a supply chain planning optimizer with a LIME-
inspired algorithm to generate explanations for typical supply chain sce-
narios. Explanations generated by LLMs were evaluated using various
metrics and compared to the expectations of experienced experts in the
field. Our results show that LLMs can substantially improve the clarity
and persuasiveness of XAl explanations, increasing human planners’ con-
fidence in the optimizer’s outputs. We also identify future improvements
needed to fully meet the ideal standards set by expert planners.

Keywords: Explainable Optimization - Explainable Al - Large
Language Models

1 Introduction

Advances in Operations Research (OR) have led to a broad industrial adop-
tion of mathematical optimization technology to solve supply chain planning
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problems [24]. Despite that progress, seamless deployment and adoption of the
technology remains a challenge in business reality. The common business practice
is that solutions to a supply chain planning problem proposed by optimization
technology must be reviewed and confirmed by a human planner before they are
executed. Human planners often have many years of experience with the plan-
ning tasks at hand, during which they acquired a lot of knowledge about what
constitutes feasible high-quality solutions and how to obtain them. Solutions
generated by optimization technology that do not satisfy the expectations of
human planners tend to face distrust, leading to their feasibility and/or quality
being challenged [33].

Such distrust towards generated solutions hinders the benefits obtainable
from mathematical optimization technology. While the technology is being
deployed, gaining trust consumes time and introduces costs [17]. In practice,
concerns about the quality of the technology delay its introduction into the
daily planning process, thus also postpone realization of the benefits. After the
deployment project is over, planners who do not trust the technology tend to
manually modify the solutions more often [33]. The manual modifications made
for trust reasons take time and potentially reduce the quality of the plan and
thus hinder the benefits of the automated optimization.

In recent years, research has increasingly focused on enhancing the inter-
pretability of black box models. Explainable Artificial Intelligence (XAI) has
become a central area of investigation, with efforts aimed at developing tech-
niques to increase the transparency of complex machine learning and deep learn-
ing models. XAI methods strive to deconstruct model predictions, providing
insights into how specific input features impact outcomes. This growing emphasis
on interpretability is crucial for fostering trust, improving model robustness, and
ensuring the ethical and legal deployment of Al systems. However, less attention
has been given to explaining OR-based optimization models [6]. While existing
XAI techniques can clarify some optimizer decisions, the explanations provided
are often too complex for human planners without technical background, pre-
venting them from full understanding.

This study introduces a methodology to utilize Large Language Models
(LLMs) to generate human-centered explanations for the outcomes produced
by a tactical supply chain planning optimizer. The primary aim is to evalu-
ate the capacity of LLMs to interpret and understand the numerical outputs of
XATI techniques, which are currently employed to elucidate the complex decision-
making processes of the optimization system. Furthermore, the research seeks
to determine whether LLMs can effectively convey these XAl-generated insights
in a manner that is context-aware, clear, coherent, and easily interpretable by
human users. The ultimate goal is to enhance the quality of information pro-
vided to human planners, thereby fostering greater trust in the optimization sys-
tem. By comparing LLM-generated explanations with authoritative explanations
provided by domain experts, we investigate whether LLMs, given specific input
contexts, can approach or match the quality of expert-derived explanations. The
contribution of our work is to develop and validate a methodology capable of
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providing human-readable explanations for questions related to a complex and
highly interdependent optimization problem, thereby advancing research in the
developing field of explainable optimization.

2 Literature Review
2.1 Explainable AI

The challenge of building user trust in machine learning predictions has become
a widely explored area of research. As black-box predictive models are increas-
ingly deployed across various domains, the demand for transparency and inter-
pretability in their decision-making processes has intensified [26,30]. Certainly in
high-stakes fields such as finance, healthcare, and criminal justice, where model
decisions directly affect people’s lives, but also in any domain where people
collaborate closely with models, it is essential that models not only deliver accu-
rate predictions, but also offer interpretable and understandable explanations.
In addressing this need, a research domain, termed eXplainable Artificial Intelli-
gence (XAI), has emerged, with the primary goal of fostering trust and confidence
in AT models when applied in real-world settings [10].

In recent years, various XAI methods have been introduced [23], focusing on
both local explanations for individual predictions and global explanations that
capture overall model behavior. Local explanation techniques include counter-
factual and contrastive explanations, while global explanations are often derived
from transparent surrogate models or feature attribution aggregations. Among
the widely-used state-of-the-art methods are LIME [25] and SHAP values [19].
However, outcomes of these methods demand a technical background to be
understood, presenting challenges for non-expert users to fully comprehend [21].

Within the research field of human-centric XAl, considerable attention is
devoted to addressing this challenge. One potential solution involves the graphi-
cal representation of explanations, where visualizations are used to enhance the
comprehensibility of technical XAT outputs [3]. By leveraging (interactive) visual
tools, complex information can be conveyed more intuitively, making it easier
for users without a technical background to understand the underlying model
behaviors [11]. An additional method for improving the interpretability of XAI
outputs involves translation into natural language. A dedicated section will later
provide a more in-depth discussion of this aspect.

2.2 Explainability in Optimization

While XAI provides methods for interpreting proposed decisions of machine
learning models, explainability in optimization specifically addresses the chal-
lenge of clarifying the reasoning behind proposed decisions within complex sys-
tems. This subsection explores the techniques and approaches developed to
enhance the interpretability of optimization models, bridging the gap between
opaque mathematical formulations and user-friendly explanations.
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In XAI, counterfactual and contrastive explanations are foundational meth-
ods for providing clear and human-friendly interpretations of model predictions.
Counterfactual explanations operate by illustrating the smallest change in fea-
ture values that would alter the prediction to a desired outcome, a method
that resonates with how people naturally describe causal situations—e.g., “If
your income had been $10,000 higher, your loan application would have been
approved” [23]. These explanations are effective because they are both con-
trastive, as they highlight differences between the actual prediction and a spec-
ified alternative, and selective, as they focus on the most relevant features or
changes. To generate counterfactuals in optimization contexts, Korikov & Beck
[14] introduced the concept of Inverse Optimization. In a standard (or forward)
optimization problem (c, f, X), the goal is to determine the decision vector
z € X C R” that optimizes an objective function f, given a parameter vec-
tor ¢ € C' C R™. However, in some cases, a user may wish to understand why
the optimal solution z* does not align with an expected or desired outcome
x4, typically characterized by additional constraints. These constraints define a
refined feasible set X, = X N . Inverse optimization addresses this challenge
by identifying the minimal adjustments to the initial parameter vector ¢, giving
¢, required to make x¢ optimal for the forward problem (¢/, f, X'). The proposed
solution, however, is currently limited to cases involving a specific structure
of partial assignment constraints and imposes restrictions on the explanation
parameters. More complex problems remain outside the scope of this approach
for now.

Contrastive explanations, another approach within X AT, address the question
“Why was A chosen instead of B?"—a common mode of human reasoning [22].
Instead of identifying inputs that would lead to an expected or desired outcome,
contrastive explanations highlight differences between the actual and expected
outcomes, often by emphasizing distinctions in objective values. This provides
insights into why a specific decision was made over alternatives. The Explainable
Planning (XAIP) framework [7] is built around contrastive explanations. It rec-
ognizes that contrastive questions arise when a planning algorithm suggests an
action that diverges from user expectations. Like counterfactual explanations,
these expected plans can be conceptualized in various ways, making it crucial to
identify the most suitable alternative from the set of possible explanations.

The methods discussed earlier require generating alternative solutions for
comparison with the optimal solution, which can be computationally expensive
and even prohibitive for optimization models. Additionally, users often prefer
immediate explanations and are unwilling to wait for these alternatives to be
generated [28]. An alternative approach involves employing surrogate models,
which serve as simplified approximations of the original optimization model by
learning the underlying relationships between inputs and outputs in the sys-
tem. By adopting a simpler, ante-hoc (white-box) model for this purpose, sur-
rogate models offer transparency in their internal workings, allowing users to
understand and interpret the decision-making process while providing a compu-
tationally efficient solution [29]. In cases where data is limited due to the high
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computational cost of generating candidate solutions, gray-box models can pro-
vide an effective approach. These models combine the accuracy of black-box
models with the interpretability of white-box models by generating additional
labeled instances to train a more interpretable model, aiming to closely approxi-
mate the original model [8]. Although gray-box models are not typically designed
for optimization problems, their effectiveness in addressing the challenge of gen-
erating alternatives within machine learning highlights their potential to inform
innovative approaches to similar challenges in optimization.

2.3 LLMs and XAI

Recent advancements in LLMs have greatly enhanced their applicability across
various tasks. Due to their extensive parameterization and pre-training, LLMs
excel in pattern recognition and understanding long-term dependencies, making
them effective tools for natural language processing tasks, such as text gener-
ation, translation, summarization, and conversational AI. Additionally, LLMs
can be further optimized for specific tasks using techniques such as Retrieval-
Augmented Generation, Prompt Engineering, and Fine-Tuning.

LLMs typically store factual knowledge within their parameters [12], which
are learned during pre-training, without direct access to external information.
This architecture can result in limitations such as difficulties in updating knowl-
edge over time, as well as potential inaccuracies or hallucinations if the model
lacks access to relevant or up-to-date information. One approach to mitigate this
issue is Retrieval-Augmented Generation (RAG), which integrates a pre-trained
LLM with an external, non-parametric memory system, such as specialized doc-
uments or databases [16]. This allows the model to retrieve relevant information
during generation, reducing hallucinations and improving performance in spe-
cialized or evolving contexts [9,31].

Additionally, Prompt Engineering plays a crucial role in optimizing LLM
performance for specific tasks. This technique involves strategically designing
prompts to guide LLMs toward generating accurate and contextually relevant
responses. It is an iterative process that refines prompts to achieve the desired
output [27]. A key strategy within prompt engineering is in-context learning,
which uses a limited set of examples and/or instructions within the prompt to
teach LLMs new skills, often referred to as one-shot or few-shot learning. By
carefully structuring prompts, prompt engineering enhances the effectiveness of
in-context learning, enabling LLMs to adapt to specific tasks more efficiently.

Kroeger et al. [15] explore the potential of leveraging LLMs to enhance the
interpretability of black-box machine learning models by instructing the LLM to
identify the most important features influencing a model’s predictions. The effec-
tiveness of this approach depends largely on prompt engineering, with prompts
structured to include contextual introductions, dataset examples (features and
outcomes), queries, and specific instructions. The LLM’s feature rankings are
compared to traditional XAI techniques such as SHAP and LIME using four
metrics: Feature Agreement (FA), Rank Agreement (RA), Prediction Gap on
Important feature perturbation (PGI), and Prediction Gap on Unimportant
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feature perturbation (PGU). Results showed that the LLM outperformed SHAP
and performed comparably to LIME in most cases. However, the experiment was
conducted on relatively small datasets with limited features, potentially leading
to an optimistic bias in the outcomes. As dataset size increases, challenges in
prompt design may become more pronounced, given the token constraints of
LLMs, which limit the number of dataset examples that can be processed simul-
taneously. More fundamentally, LLMs are not inherently designed for feature
attribution tasks, raising concerns about their suitability for such applications.

The rapid advancement of LLMs presents significant opportunities for gener-
ating clear and readable explanations. Building on this foundation, this research
aims to determine whether LLMs can effectively produce human-readable expla-
nations by transforming specialized XAl explanations related to optimization
problems into accessible text, thereby establishing a so-called LLM-XAI tan-
dem.

The concept of an XAI-LLM tandem, where an LLM interprets and conveys
XAT outputs in accessible language, is relatively new and still in early develop-
ment. However, it holds significant potential for enhancing user understanding
of complex model behaviors. Yu et al. [34] presented the first framework that
combines XAI techniques with natural language processing to generate human-
readable explanations. This integration enables the provision of explanations in
accessible, everyday language, a critical aspect for facilitating user engagement
and fostering critical evaluation of Al systems, which may contribute to greater
trust and understanding. Mavrepis et al. [21] developed a model that generates
summaries of various XAI methods, tailoring the explanations to the knowl-
edge and expertise level of the target audience. Use-case studies demonstrated
that the model effectively delivers easy-to-understand, audience-specific explana-
tions, regardless of the XAI method employed. The primary limitation identified
in this paper is that the LLM tends to create lengthy, long-winded explanations,
where users often want quick, direct information without excessive detail that
can obscure the main points. In the realm of cybersecurity, Ali & Kostakos [2]
introduced HuntGPT, a dashboard designed to clarify the results of a predictive
model for identifying cyber attacks. This dashboard presents initial explanations
of XAI outcomes, followed by further insights provided by an LLM. Additionally,
it offers the opportunity for discussion with a chat assistant.

Martens et al. [20] demonstrate the effectiveness of integrating LLMs with
XAI through their introduction of the XAlIstories technique. This method
employs counterfactual explanations for image classification and SHAP expla-
nations for tabular data classification, presenting them as coherent narratives.
Their findings underscore the value that data scientists attribute to this app-
roach, particularly in enhancing decision-making across diverse applications.
Building on this framework, Cedro & Martens [5] utilize it to improve the
comprehensibility of numeric, XAlI-generated explanations for individual predic-
tions in graph neural networks. Similarly, Zytek et al. [35] explore the potential
of LLMs in transforming XAI explanations into human-readable narratives, a
focus that aligns closely with our research objectives. However, our study dif-
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ferentiates itself by specifically examining the capability of LLMs to generate
human-readable explanations in the context of optimization problems, with a
particular emphasis on supply chain optimization. Our work uniquely considers
the importance of incorporating supply chain context within these explanations.

3 Methodology

The methodology proposed in this study works within a framework of three key
components for generating narrative explanations: (1) formulation of the opti-
mization problem and its solver, (2) application of an XAI technique, inspired
by LIME, to produce numerical explanations of the optimizer, and (3) utiliza-
tion of language models to craft prompts and generate narrative explanations.
The first two components are established techniques, while the third represents
the novel contribution of this work. These components are designed to work
in tandem to address the challenge of producing human-readable explanations.
Figure 1 provides a schematic representation of the methodology, highlighting
its structure and flow. The subsequent sections provide a detailed discussion of
each component.

3.1 Optimization Problem and Optimizer

The problem addressed in this experiment is the Master Production Scheduling
Problem (MPSP) as described in [32]. This problem involves balancing demand

ts tg t; Feature importance

32% 16%
n = = s
i 1% | [100% Lime-inspired
— 15

XAl model

fs
fs

0% 21%

S
A | —
 E—

 —

=

/ Prompt \

You are a chat assistant specializing in explaining the output of XAl methods. The current use case involves
optimizing a master production schedule.

You will be provided with:
- Context: A detailed description of the relevant parts of the supply chain.
- XAl Outcome Table: A table listing the features (KPI scores) most negatively impacted by
increasing the utilization of this resource, according to LIME.

\_ Y,

Fig. 1. Schematic overview of the methodology. The current approach utilizes an opti-
mizer to produce an optimized schedule, which is then explained using a LIME-inspired
technique to generate feature importances. Our approach integrates both information
about the optimized schedule and the feature importances into a prompt provided to
the LLM.
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and supply across supply chains while simultaneously scheduling supply orders
and managing resource capacities. Unlike detailed scheduling, where specific
operations are allocated to resources in sequence with exact starting and ending
times, the MPSP emphasizes allocation of bucketed capacity in longer horizon.
The focus is therefore on coarse-grained resource capacity utilization rather than
fine-grained scheduling.

Feasible solutions need to respect constraints on individual multi-level sup-
ply chains of various complex structures from diverse industries, aggregate con-
straints on variable resource capacity in presence of wandering bottlenecks, or
stocking limits. The objective is a complex combination of factors measur-
ing, among others, delivery performance, adherence to inventory targets, or
minimization of inventory and work-in-progress. To address these complexities
throughout a multi-month horizon, a specifically tailored optimizer is used. Rely-
ing on large-scale neighborhood search [1| and mathematical programming, it
delivers high-quality solutions virtually impossible to improve by humans. While
further details of the proprietary optimizer remain undisclosed, they do not influ-
ence the further study, since the explanation method is independent of the actual
optimization algorithm as long as provided solutions are of high quality.

3.2 LIME-Inspired XAI Model

Local Interpretable Model-agnostic Explanations (LIME) [25] is a widely used
model-agnostic framework for interpreting the predictions of complex machine
learning models. By generating locally faithful explanations, LIME approximates
the behavior of any given model in the vicinity of a specific prediction using
interpretable surrogate models, typically linear models. It operates by perturbing
the input data to observe how changes affect the model’s predictions, allowing
for an analysis of feature importance and contribution to the decision-making
process.

This paper builds on the work of Tullemans [32], which presents a method
for identifying explanations for underutilized resource periods. Such phenomenon
occurs even in optimal solutions to the MPSP, and often raises concern among
human planners occurring. To address the explanation task, a generic LIME-
inspired method was designed and then implemented specifically for the resource
utilization use case in the MPSP. The original plan generated by the optimizer
is perturbed by systematically increasing utilization of the resource in question.
For each perturbed plan, the difference in each partial objective metric (further
called KPI score) is compared to that of the original plan. Repeating this process
multiple times yields a value that quantifies the impact of the perturbations on
each individual KPT score.

3.3 Prompt Engineering

Our experiment follows the prompt design methodology established by Zytek et
al. [35], which provides a structured approach to creating and evaluating prompt
templates across multiple LLMs. Using this methodology, we constructed a series
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of prompt templates with recurring components, each adjusted to enhance the
prompt’s overall effectiveness. Table 1 details all prompt components utilized in
our study, along with explanations of their functions and intended effects. The
process involves methodical combination, reordering, and rephrasing of these
components to achieve an effective design, which is a crucial aspect of prompt
engineering [27]. The resulting templates are presented in Table 2. This prompt
engineering methodology allows us to systematically explore and refine the inter-
actions between different prompt components, ultimately leading to more effec-
tive and nuanced model outputs. The methodology for evaluating and identify-
ing the most effective combination of prompt template and model is detailed in
Sect. 4.3.

Table 1. Overview of the key components in the prompt engineering process, along
with their explanations.

Component Description

[A] Role The role component specifies the assumed perspective that
the LLM is expected to adopt during the interaction.

|B] Data Examples Raw data examples of alternative plans that include KPI
scores and Resource Utilization Scores. This data is utilized
by LIME to determine which features are most significant.
The raw data serves as a component to assess whether the
LLM can extract specific information independently.

[C] LIME Examples The actual LIME outcomes, describing the most important
features related to the XAl question.

[D] XAI Context Context about the XAI itself, including the specific question
or challenge we want to address. This ensures the LLM

understands the context in which it should provide
explanations or insights.

[E] Supply Chain Context related to the specific supply chain dynamics and
Context operations. This information helps the LLM connect LIME
outcomes with real-world scenarios, enhancing the relevance
and applicability of the insights generated.

[F] Task Define a step-by-step plan to achieve the primary objective
that the LLM is intended to fulfill. This involves breaking
down the objective into manageable actions or milestones,
ensuring clarity and focus in the model’s execution.

|G| Instructions Guide the model towards the desired output by providing
clear and concise directives that outline the expected format,
tone, and content of the response. This ensures that the
model aligns with user expectations and requirements
effectively.
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Table 2. Overview of the constructed prompt templates (T1-T5) and their corre-
sponding component composition and order, as defined in Table 1.

Template/Component Sequence
T1 ACF

T2 ABCF

T3 ADCEF

T4 ADECF

T5 ADCEFG

4 Experiments
4.1 Data

The experimental dataset consists of three test instances, each representing a dis-
tinct use case: two from a bulk production supply chain (denoted Metals-A and
Metals-B) and one from an automotive assembly supply chain (further called
Assembly). Each case study focuses on a specific resource within the respective
supply chain that is planned as not fully utilized at some period within the
horizon of the problem instance. Test instances were based on data of actual
real-world supply chain planning challenges.

The dataset incorporates the results of the LIME explanations derived from
the method proposed by Tullemans [32]. Furthermore, it is supplemented with
raw input data of the optimization problems, like resources and production pro-
cesses, and solution data like inventory levels of all production stages throughout
the planning horizon.

4.2 LLMs

We tested several LLMs to evaluate their performance in transforming XAI
explanations into human-readable form. The models tested include OpenAl’s
ChatGPT-3.5, Meta’s Llama-3-8B-Instruct and Llama-3-70B-Instruct, as well
as Mistral Al’s Mixtral-8x7B-Instruct-v0.1 and Mistral-7B-Instruct-v0.2. These
models represent a diverse set of architectures and parameter sizes, allowing for
a comprehensive comparison of their capabilities in this context. All LLMs were
accessed via APIs on a remote server, ensuring consistent interaction protocols
and enabling automated evaluation across different model types. Local simula-
tions were executed on a system with a 2100 Mhz Intel Core i7 processor and
32 GB RAM.

4.3 Evaluation

Three distinct evaluation protocols were considered. The first protocol assesses
the quality of LLM-generated responses across different prompt templates and
models to identify the best combination. The second protocol evaluates whether
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LLM-generated narrative explanations enhance the numerical explanations from
the LIME-inspired approach. The third protocol compares LLM-generated expla-
nations to expert explanation, to assess if the use of large language models sup-
ports the goal of providing high-quality explanations.

Evaluation of LLM Response Quality. To evaluate the LLMs’ responses
across the different combinations of prompt templates and models, we used
the same four metrics as employed by Zytek et al. in [35], i.e., completeness,
soundness, fluency, and context-awareness, and added consistency next to the
set. Completeness refers to the extent to which the response covers all relevant
aspects of the question or topic. Soundness evaluates validity of the response,
ensuring that it is based on accurate information and reasoning. Fluency mea-
sures the clarity and readability of the language used in the response. Context-
awareness refers to the extent to which contextual information is integrated
into the explanation. This aspect serves as a crucial metric for evaluating and
achieving impactful outcomes in the transition from LIME to our proposed
method. Additionally, we introduced the evaluation of answer consistency, which
assesses the stability of the LLM responses across different iterations and con-
texts, extending the analysis beyond the scope of the study of Zytek et al.
[35]. An authoritative expert knowledgeable in the optimization problem and
its explanations evaluated all LLM responses.

Comparison of Numerical and Narrative Explanations. To assess
whether integrating LLM-generated narrative explanations enhances numerical
explanations from the LIME-inspired approach for human planners, a question-
naire was developed to collect qualitative feedback from five domain experts who
were not part of the previous evaluation. The questionnaire aims to explore the
clarity, utility, and completeness of the generated explanations. Additionally, it
seeks to determine whether narrative explanations provide added value to the
current numerical explanations. It is conducted in an interview format, allow-
ing for a conversational approach where experts can elaborate on their responses
and provide detailed insights. This interactive method facilitates a deeper under-
standing of their perspectives and experiences. The collected responses are subse-
quently analyzed using thematic analysis, a systematic approach to identify and
interpret recurring patterns and themes, providing a comprehensive evaluation
of the proposed methodology’s effectiveness [4].

Alignment with Expert Explanations. To establish a benchmark for model
response quality, experts were initially asked to provide their explanations in
natural language, as they would to a customer. They did this without prior expo-
sure to the model-generated explanations, thereby minimizing potential biases.
These explanations are gathered during an interview in which the expert had
to think out loud about their approach, providing insights into their reasoning
and decision-making process. Besides establishing a benchmark, this also pro-
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vides an opportunity to understand the aspects experts focus on when creating
explanations, which could be valuable for future research.

Since optimization problems can be explained from multiple angles, experts’
responses naturally differ depending on the aspects they emphasize or omit. To
create a standardized reference, the same authoritative expert, who evaluated
the LLMSs earlier, later reviewed all explanations provided for the same use case.
Gaining insight into different perspectives, they formulated the collective under-
standing into a single, aggregated explanation. This explanation is considered to
be the Authoritative explanation, designed to be the most complete, sound, and
high-level representation of the given scenario.

Ultimately, the experts’ explanations, as well as the Authoritative explana-
tion, were compared with the LLM-generated explanations using the proposed
Human Similarity metric from Ichmoukhamedov et al. [13]. Specifically, both the
expert-generated explanations and LLM-generated explanations were encoded as
high-dimensional embeddings, represented by vectors a and b, with an angular
relationship defined by the angle 6,;,. Following the methodology in [13], we
used voyage-large-2-instruct as the embedding model, which converts a narra-
tive into a 1024-dimensional vector. The similarity between the explanations
was quantified using the distance metric d = 1 — cos(f,p). This quantitative
measure provides an interpretable indication of the degree of alignment between
the LLM-generated and the expert-generated explanations.

5 Results and Discussion

This section presents the results and discussion of the experimental evaluations
outlined in Sect.4.3. Additionally, examples of LLM-generated explanations,
along with an authoritative explanation, are provided in Sect. 5.4.

5.1 LLM Response Quality

An evaluation of responses generated by different LLMs, combined with vari-
ous prompt templates, reveals that models with a higher number of parame-
ters, such as OpenAls GPT-3.5 and Meta’s Llama-3-70B-Instruct, consistently
perform better across the metrics of completeness, soundness, fluency, consis-
tency, and context-awareness, as shown in Table 3. Larger models demonstrate
a stronger ability to capture contextual information and produce fact-based
responses, receiving higher evaluations from the authoritative expert in both
completeness and soundness. In contrast, smaller models are more likely to gen-
erate incomplete or inaccurate responses, often displaying "hallucinations’ that
negatively impact their consistency and factual reliability. While fluency remains
robust across all models, larger models provide outputs that are more coherent
and contextually relevant.

The prompt template, structured as Role — XAI Context — Supply Chain
Context — LIME Examples — Tasks, was evaluated as the most effective by the
expert based on five key metrics and will be used in further experiments requiring
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prompt outputs. This approach ensures that the LLM is initially assigned a clear
role and provided with a well-defined XAI use case. The absence of this step led
to unsound responses, as the LLM lacked guidance on how to approach the task.
Following this, the provision of specific contextual details proved critical, with
the order of presentation—starting with the supply chain context—significantly
influencing the model’s ability to accurately interpret the information. This find-
ing aligns with the conclusions of [18]. By enforcing strict task definitions, addi-
tional instructions became redundant, thus reducing unnecessary complexity in
the prompt. Furthermore, the inclusion of data points as in-context examples
was found to have no significant effect on response quality and was therefore
excluded.

Table 3. Binary evaluation scores indicating compliance with authoritative expert
expectations for LLMs across different prompt templates (see Table 2), assessing Com-
pleteness (C), Soundness (S), Fluency (F), Consistency (O), and Context-Awareness
(A).

T1 T2 T3 T4 T5

CIS|[F/OA|CISF|O/AICIS [FIO/AIC|S [F|IOAICS [F|OA
ChatGPT-3.5 VXXXV XX XVXVIVVIVV W
Llama-3-8B-Instruct XXVIXXXX/ X XXXV XXV XXV
Llama-3-70B-Instruct VXXXV XXXV XV VIV
Mixtral-8x7B-Instruct-v0.1 X X[V |X (X X X|V/|X (X X X |V/|X XXX/ XXXXV/XX
Mistral-7B-Instruct-v0.2 X XV X X X X/ X X X V|V X X XV VX XXVV/XX

5.2 Comparison of Numerical and Narrative Explanations

Thematic analysis revealed five central themes regarding the use of numerical
and narrative explanations: added value of narrative explanations, limitations
of narrative explanations, user role in interpretation, completeness of expla-
nations, and suggestions for improvement. These themes underscore the rela-
tionship between different explanation styles and their effects on expert trust,
usability, and decision-making.

Added Value of Narrative Explanations. A prominent theme identified
in the analysis was the positive impact of narrative explanations compared to
numerical ones. Experts emphasized that narrative explanations provided addi-
tional context, which not only helped in understanding the optimization process
but also saved time. Moreover, they played a crucial role in fostering trust in the
optimizer’s decision-making. Notably, four out of five experts explicitly high-
lighted the importance of the “in-context” placement of explanations. As one
expert noted:
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“That really is an added value: having the information placed into context.
I think that’s particularly useful when you’re just starting out. And indeed, having
examples and that extra level of detail—like which resource is involved—qgoes
beyond what the numerical explanation can show, and I find that to be a real
advantage.”

This ability to embed the explanation in context was contrasted with the
abstract nature of numerical explanations, which were often seen as detached
and difficult to interpret. Experts consistently noted that the narrative format
made the optimizer’s decision-making process more relatable. Another expert
mentioned:

“Numbers are fine, but they don’t tell a story. Narratives give me the reasoning
and examples. That’s what builds trust.”

Limitations of Narrative Explanations. While narrative explanations were
well-received, their limitations were also acknowledged. The length of the expla-
nations emerged as a challenge, particularly for experienced users who may not
require a too detailed contextualization. As one expert observed:

“The explanations were sometimes overly verbose. I don’t need a full story
every time—I just need the key insights.”

Additionally, the potential for bias in narrative explanations was highlighted.
Experts noted that the framing and wording of these explanations could subtly
influence decision-making, raising concerns about objectivity. One expert cau-
tioned:

“Narratives are helpful, but they can steer you in a direction without you
realizing it. There’s a fine line between explaining and persuading, where you
might start believing one option is the only valid choice, even if other possibilities
exist.”

One final limitation of the narrative explanation noted by some experts was
the lack of clarity regarding the magnitude of a feature’s importance, which is
conveyed in the numerical explanation. Numerical explanations provide insight
into the relative importance of features, allowing users to discern whether one fea-
ture is significantly more important than others, or if multiple features contribute
equally. In contrast, this level of detail is absent in the narrative explanation,
which focuses more on providing context and reasoning without emphasizing
the relative significance of each feature. At the same time, it should be also
taken into account that the relative values of feature importance as delivered
by the LIME-inspired algorithm are hard to interpret, especially for users who
lack expertise in XAI. And their imprecise interpretation based on insufficiently
grounded assumptions could be actually misleading.

User Role in Interpretation. The analysis also revealed that the effectiveness
of narrative explanations varied depending on expert experience levels. Experi-
enced experts often required less detailed explanations, relying more on their
domain knowledge to interpret outcomes. This aligns with findings discussed in
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the previous theme, where it was noted that experienced users tend to prioritize
efficiency over elaboration. One expert summarized this sentiment:

“As an experienced user, I value narrative explanations but prefer concise
ones that highlight key points. Newer users might need longer narratives.”

This suggests a need for customization in the presentation of explanations,
tailoring the level of detail to the user’s expertise. In line with this, another
expert emphasized the practicality of narrative explanations, highlighting the
differences between experienced and less experienced users when it comes to
sharing insights and making decisions with other stakeholders:

“A planner with extensive experience, such as someone who’s worked in sup-
ply chain for years, can likely interpret the numerical data or might just need
a narrative explanation highlighting key points. However, they can’t present the
numerical explanation directly to their manager. In contrast, the narrative expla-
nation is more suitable for sharing with managers.”

Completeness of Explanations. The narratives were frequently endorsed for
addressing the inherent limitations of numerical methods. Experts appreciated
how narrative explanations filled gaps left by numerical outputs, which often
lack nuance.

“The mnarrative explanation was clarifying; it provides context, such as
explaining what the KPI means and highlighting key areas to focus on. It [allows
me to skip] a step, because when I look at the numerical data, I have to deduce
things myself to figure out what happened based on the numbers. But with the
narrative, it’s already pointed out for me.”

However, this strength also underscored a key limitation: the risk of oversim-
plification. One expert commented:

“Narratives provide the bigger picture, but sometimes they simplify too much.
It’s important to balance completeness with clarity.”

This ties back to the concern about bias, as oversimplification or selective
framing in narratives could lead to incomplete or skewed interpretations of the
data.

The overall conclusion from most experts regarding the completeness of both
numerical and narrative explanations is that neither tells the full story. This
limitation stems from the inherent nature of the numerical method, which relies
exclusively on KPI values to explain a specific use case. While this can be effec-
tive in many machine learning applications, optimization problems often involve
greater complexity. Experts highlighted factors such as constraints and param-
eter input values, which they routinely consider in their own explanations but
are absent from the numerical method’s approach. One expert noted:

“The issue with the method, even before converting graphs into text, is that
it focuses on KPIs but misses underlying reasons, like hard constraints. For
instance, if a [resource is unavailable], it won’t recognize that as the root cause—
it will point to a KPI [measuring inventory holding] instead. However, the real
issue might be the [unavailable resource] or a long lead time. This limitation
seems inherent to the method itself, not just the textual explanation.”
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Since narrative explanations are derived from these numerical methods, they
inherit the same shortcomings. This lack of depth becomes particularly appar-
ent in supply chain contexts, where constraints and parameter interactions are
integral to understanding the decision-making process.

Additionally, the LIME-inspired numerical approach focuses only on local
perturbations, making it difficult to capture the broader system-level dynam-
ics of the supply chain. This local perspective can sometimes obscure the true
underlying explanations of complex optimization problems. As one expert sum-
marized:

“The limitation of LIME is that it focuses solely on the immediate impact
on the KPI without considering the broader consequences. For example, it might
suggest increased utilization of a resource, but this could exacerbate the situation
by causing delays elsewhere in the supply chain. Since LIMFE is designed to ana-
lyze local perturbations, it often overlooks cascading effects, such as unnecessary
[inventory] holding. Consequently, it may fail to identify the true root cause of
an issue.”

These limitations underscore the need for complementary approaches that go
beyond local KPI-based methods, integrating a more holistic view of the system
to enhance explanation completeness.

Suggestions for Improvement. Several experts proposed improvements to
enhance the utility of narrative explanations. Key suggestions included:

— Adjusting explanation length: Offering tiered or collapsible explanations to
suit diverse user preferences.

— Addressing bias: Ensuring that suggestions provided by the explanations are
either entirely accurate or accompanied by a clear warning for users to verify
the information.

— Enhancing interactivity: Introducing features like hyperlinks that allow users
to quickly access key points within the explanation for immediate clarity.

One expert suggested:

“If I could toggle between a short summary and a detailed explanation, it
would make the tool more versatile.”

These recommendations align with the broader themes of customization and
user-centric design, emphasizing the need for explanations that are both acces-
sible and adaptable.

The analysis highlights the significant advantages of narrative explanations
over numerical ones, with experts praising their ability to provide valuable con-
text, foster trust, and enhance interpretability. These benefits represent a major
improvement, particularly in addressing the abstract and often detached nature
of numerical explanations. While narratives do have some limitations, such as
verbosity, potential bias, and oversimplification, their strengths in facilitating
understanding and collaboration were widely recognized. The primary short-
coming of narrative explanations—completeness—largely stems from the LIME-
inspired numerical approach that underpins them, which focuses on local per-
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turbations and KPI values while overlooking broader contextual factors. Nev-
ertheless, narrative explanations effectively bridge important gaps by embed-
ding numerical insights into a meaningful context. This directly supports the
objective of this paper: making explanations for optimization problems more
human-friendly.

Looking ahead, experts proposed several improvements, including customiz-
able explanation length, enhanced interactivity, and clearer communication of
uncertainties. These suggestions underscore the value of narrative explanations
as a critical enhancement to traditional methods, paving the way for even more
user-friendly and adaptable explanatory approaches.

5.3 Alignment with Expert Explanations

As outlined in Sect. 4.3, experts were tasked with generating their own explana-
tions for the given use cases. It became apparent that each expert employed a
unique approach to both constructing and conveying their explanations. To fur-
ther analyze these variations, the experts’ explanations were compared quantita-
tively using the cosine distance metric, including comparisons with the Author-
itative explanation. The results of these comparisons for the different use cases
are presented in Tables4, 5, and 6. The cosine distance values between each
expert’ explanation and the Authoritative explanation highlight the variation in
how experts interpret and convey the reasoning behind the optimization deci-
sions. Lower cosine distance values indicate greater similarity, while higher values
reflect more divergence. These comparisons offer insight into the consistency and
variability of expert interpretations, as well as the potential for alignment with
the Authoritative explanation.

Table 4. Cosine distance values between expert-generated explanations and the
Authoritative explanation for the Metals-A use case.

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5/Authoritative
Expert 1 X 0.237  0.179 0.215 0.194 0.173
Expert 2 0.237 X 0.114 0.201 0.185 0.089
Expert 3 0.179 0.114 X 0.229 0.22 0.067
Expert 4 0.215 0.201 0.229 |X 0.213 0.234
Expert 5 0.194 0.185 0.22 0.213 X 0.195
Authoritative|0.173 0.089 0.067 ]0.234  |0.195 X

The comparison of expert-generated explanations using cosine distance values
reveals notable variation in how different experts approach the same use cases,
highlighting the subjectivity inherent in expert reasoning. Across all use cases,
expert explanations exhibit a wide range of cosine distances, both in relation to
one another and to the Authoritative explanation. This variability confirms that
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Table 5. Cosine distance values between expert-generated explanations and the
Authoritative explanation for the Metals-B use case.

Expert 1 Expert 2 Expert 3 Expert 4Expert 5/Authoritative
Expert 1 X 0.307  0.187  0.265 0.191 0.127
Expert 2 0.307 X 0.369 0.197  ]0.207 |0.311
Expert 3 0.187  |0.369 X 0.286 0.222 0.038
Expert 4 0.265 0.197 ]0.286 | X 0.157  ]0.22
Expert 5 0.191 0.207  ]0.222 0.157 X 0.153
Authoritative|0.127  |0.311 0.038 0.22 0.153 |X

Table 6. Cosine distance values between expert-generated explanations and the
Authoritative explanation for the Assembly use case.

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5/Authoritative
Expert 1 X 0.236 0.179 0.132 0.164 0.141
Expert 2 0.236 X 0.314 0.283 0.217  ]0.27
Expert 3 0.179 0.314 X 0.174  ]0.211 0.106
Expert 4 0.132 0.283 0.174 |X 0.171 0.081
Expert 5 0.164 0.217  ]0.211 0.171 X 0.163
Authoritative|0.141 0.27 0.106 0.081 0.163 |X

experts construct explanations in distinct ways, suggesting they rely on different
strategies, domain knowledge, and interpretations.

The differences in expert explanations can also be attributed to the multi-
faceted nature of supply chain optimization problems, which involve intercon-
nected variables such as resource capacities, inventory levels, and constraints.
Experts emphasize different aspects based on their experience and knowledge,
leading to diverse yet valid interpretations. While each expert may focus on dif-
ferent elements, their explanations remain generally correct and offer meaningful
perspectives. Therefore, a high cosine distance does not necessarily indicate an
error. Instead, this variability underscores the complexity of optimization prob-
lems, where multiple valid viewpoints can coexist without one being inherently
more accurate than another.

Similarly, differences between expert explanations and the Authoritative
explanation stem from their distinct approaches. Experts tend to focus on spe-
cific aspects of a use case based on their expertise, whereas the Authoritative
explanation aims to provide a comprehensive, neutral overview by incorporat-
ing multiple perspectives and factors. Some experts align more closely with the
Authoritative explanation, as indicated by a smaller cosine distance, suggesting
that their focus and reasoning reflect its broader, all-encompassing nature.

Table 7 presents the cosine distances between the LLM-generated narrative
explanation and the explanations produced by individual experts, as well as the
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Authoritative explanation, for all three use cases. These distances offer insights
into how closely the LLM-generated explanations align with those produced by
human experts and the aggregated Authoritative explanation.

Table 7. Cosine distance values between expert-generated explanations or the Author-
itative explanation and the LLM-generated explanation for the Metals-A, Metals-B and
Assembly use cases.

Metals- A Metals-B|/Assembly
Expert 1 0.284 0.197 0.293
Expert 2 0.192 0.322 0.371
Expert 3 0.161 |0.178 0.245
Expert 4 0.281 0.248 0.258
Expert 5 0.243 0.201 0.271
Authoritative|0.182 0.151 |0.239

A key observation is that for two of the three use cases (Metals-B and
Assembly), the Authoritative explanation shows the closest alignment to the
LLM-generated explanation, as indicated by the lowest cosine distance values of
0.151 and 0.239 respectively. This suggests that the LLM is capable of produc-
ing explanations that are broadly consistent with the Authoritative explanation,
which is considered the best and most comprehensive representation for these
use cases. However, it is worth noting that even in these cases, a noticeable gap
remains between the Authoritative explanation and the LLM-generated output.
To provide context, [13] conducted a similar analysis for machine learning pur-
poses and reported significantly lower cosine distances (ranging from 0.01 to
0.08). This contrast might indicate a potential for improvement in the LLM’s
approach to explainability in optimization, but could also stem from a differ-
ent nature of optimization problems compared to Al, or even properties of this
particular problem.

For the Metals-A use case, however, the Authoritative explanation is not
the closest match. Instead, Expert 3’s explanation has the smallest cosine dis-
tance (0.161) to the LLM-generated explanation. As shown in Table 4, Expert
3’s explanation aligns most closely with the Authoritative explanation. Yet, the
LLM-generated explanation remains closer to Expert 3’s formulation than to the
Authoritative. This suggests that the LLM’s reliance on predefined features and
patterns may, in this case, align more with individual expert styles rather than
a consensus-driven authoritative perspective.

Discrepancies between LLM-generated explanations and both Authoritative
and individual expert explanations may stem from a fundamental limitation in
the LLM’s methodology, which focuses primarily on numerical features derived
from the LIME-inspired approach and restricts its ability to account for broader
contextual factors. As described earlier, experts tend to incorporate additional
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context, such as operational constraints or domain-specific nuances, into their
explanations. These contextual elements, while critical for a holistic understand-
ing, are not always directly reflected in the feature set used by the LLM. This
reliance on feature-based reasoning could explain why the LLM struggles to
fully replicate the depth and complexity of expert explanations. While it cap-
tures key patterns and relationships within the data, it may overlook subtleties
that experts intuitively factor into their reasoning, such as interdependencies
between features, constraints, or prior knowledge.

To address this gap, future research should explore alternative methods that
go beyond local perturbations and incorporate richer data representations from
the supply chain. For instance, developing machine learning models that directly
learn explanations from raw data of the optimization model could enable a
more comprehensive understanding of the system. These models would ana-
lyze complete datasets, including historical trends, constraints, and parameter
interactions, to produce explanations that better mirror the depth and complex-
ity of expert reasoning. By replacing or augmenting the current LIME-inspired
methodology with more holistic approaches, future work can aim to bridge the
gap between machine-generated and expert-level explanations. This progres-
sion holds promise for creating more human-friendly, accurate, and actionable
insights, ultimately advancing the utility of AI in optimization problem-solving.

5.4 Examples of Explanation

This section presents examples of LLM-generated and Authoritative explana-
tions for the Metals-B use case. The LLM-generated explanation interprets the
top three features from the numerical explanation, which had importance mag-
nitudes of 0.129, 0.113, and 0.109.

LLM-Generated Explanation. Hello! I'd be happy to help you understand
the output of the LIME method, which explains why the [resource| is underuti-
lized during a particular time period. Let’s dive into the LIME outcome table,
which highlights the features most negatively impacted by increasing the utiliza-
tion of the [resource]. The top three features are:

1. KPI [work-in-progress on resource]|: This feature indicates that increas-
ing the utilization of [resource] would lead to a higher KPI [work-in-progress].
In the context of our supply chain, this means that more products would be
held in the [resource] operation, waiting to be processed. This could be due
to upstream constraints, such as delays in the [upstream operations| or inven-
tory shortages of the [required input materials] in the [stocking area]. As a
result, increasing the utilization of [resource| would exacerbate these holding
times, leading to a less optimal schedule.

2. KPI [inventory adherence of upstream product X]: This feature sug-
gests that increasing the utilization of [resource] would negatively impact the
KPI [measuring inventory adherence] of [input material] in [stocking area].
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This implies that there might be inventory shortages or constraints in [stock-
ing area], which would be further strained if more products were pushed
through the [resource| operation. This could be due to delays in the sup-
ply of [upstream materials| from the [supplier| or inefficiencies in the [two
upstream| operations. By increasing the utilization of [resource], we would be
exacerbating these inventory shortages, leading to a less optimal schedule.

3. KPI [inventory adherence of upstream product Y]: Similar to the
previous feature, this suggests that increasing the utilization of [resource]
would negatively impact the KPI [inventory adherence]| of [input material] in
[stocking area]. This reinforces the idea that there are inventory constraints
in [stocking area], which would be worsened by increasing the utilization of
[resource]. This could be due to similar upstream constraints, such as delays
in the supply of [upstream materials| or inefliciencies in the [two upstream]|
operations.

In general, these features suggest that increasing the utilization of [resource]
would lead to a less optimal schedule due to upstream constraints and inventory
shortages in [stocking areal. This highlights the importance of considering the
entire supply chain when optimizing the master production schedule.

Authoritative Explanation. The input materials for the [resource] consist
of [input materials], which are stored at [stocking area]. During the specified
period, the inventory levels of [input materials| are at or below their minimum
target levels. Any increase in the utilization of this resource will further deplete
these inventories, resulting in a higher KPI [inventory adherence].

Replenishments of these input materials cannot be planned earlier, as lead
times would not allow that so early in the planning horizon. While some
[resource] supply orders could be moved earlier, advancing them would increase
stock levels, i.e., reduce the [inventory holding costs| before [resource] but
increase the [work-in-progress cost| between [resource| and [next resource|, lead-
ing to a higher [total objective] overall.

Downstream of the [resource], the [next bottleneck resource] is at full capac-
ity, preventing earlier scheduling. Advancing processes would lead to inven-
tory holding costs between operations, negatively affecting the KPI [work-in-
progress.

Most of the [resource| tasks are scheduled on time or early, so pushing them
earlier offers no tangible benefit. The resource shows minimal lateness, with only
minor delays that are not significant enough to warrant rescheduling. Underuti-
lization of specific resources can be influenced by KPI configurations, but the
current setup does not prioritize unused periods as a cost.

6 Conclusion

In conclusion, this study presents two key findings. First, qualitative research
through expert interviews illustrates the potential of LLMs to bridge the gap
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between advanced optimization technologies and human planners. By transform-
ing complex, technical explanations from XAI models into more accessible and
persuasive narratives, LLMs significantly enhance the interpretability of opti-
mization outputs. The findings suggest that incorporating LLMs into the supply
chain planning process can increase trust and acceptance among experts, thereby
improving the overall effectiveness of optimization models in practical applica-
tions, in line with the objectives of this paper. While promising, there remain
limitations in narrative explanations that can be refined to further improve their
clarity and applicability.

Second, a quantitative comparison between LLM-generated and expert expla-
nations reveals a gap regarding the contextual richness. In particular, the experts
mentioned factors missing in explanations coming from the underlying LIME
method. We hypothesize that expanding the underlying explanations would also
improve the narrative ones. The comparison further highlights the variability in
expert explanations, reflecting the difficulty of generating a comprehensive expla-
nation for supply chain optimization problems due to their multifaceted nature.
Future research should focus on integrating LLMs with other models, utilizing
more specific and granular data within optimization frameworks. This will refine
the applicability of LLM-generated explanations, ensuring better alignment with
expert expectations and practical requirements, and ultimately enhancing the
overall utility of these technologies in optimization contexts.
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Abstract. Large Language Models (LLMs) have demonstrated remark-
able performance across diverse domains. However, effectively leveraging
their vast knowledge for training smaller downstream models remains an
open challenge, especially in domains like tabular data learning, where
simpler models are often preferred due to interpretability and efficiency.

In this paper, we introduce a novel yet straightforward method
for incorporating LLM-generated global task feature attributions into
the training process of smaller networks. Specifically, we propose an
attribution-matching regularization term that aligns the training dynam-
ics of the smaller model with the insights provided by the LLM. By doing
so, our approach yields superior performance in few-shot learning scenar-
ios. Notably, our method requires only black-box APT access to the LLM,
making it easy to integrate into existing training pipelines with minimal
computational overhead.

Furthermore, we demonstrate how this method can be used to address
common issues in real-world datasets, such as skewness and bias. By inte-
grating high-level knowledge from LLMs, our approach improves gener-
alization, even when training data is limited or imbalanced. We validate
its effectiveness through extensive experiments across multiple tasks,
demonstrating improved learning efficiency and model robustness.

Keywords: Large Language Models - Attribution Regularization -
Data-Efficient Learning

1 Introduction

The recent expansion in model parameters and training data for large language
models (LLMs) has driven a significant breakthrough in natural language pro-
cessing (NLP) [9,13,25,54]. These models exhibit remarkable performance across
various evaluation paradigms, such as zero-shot [33] and few-shot inference, lever-
aging in-context learning [39,56]. This capability stems from the extensive text
corpora used for training, which embed rich prior knowledge into LLMs, allow-
ing them to approximate expert knowledge across diverse domains. Although
their strong performance and generalization capabilities have been successfully
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extended to other modalities, such as images [37] and speech [59], their applica-
tion in tabular learning settings remains limited.

Several challenges hinder the adoption of LLMs for tabular data tasks. Firstly,
their large parameter counts demand substantial computational resources, typi-
cally reliant on GPUs, which significantly increases operational costs. Secondly,
tabular learning is often employed in domains where transparency and inter-
pretability are critical, such as healthcare and finance. In these fields, simpler and
more interpretable models, such as logistic regression or decision trees, are often
preferred. Although techniques exist to enhance LLM interpretability [3,34], they
currently fall short compared to the inherent explainability of simpler models.

Inthis paper, weinvestigate the potential of utilizing LLMs as training regulariz-
erstoenhancefew-shot learning performance and improve generalization, especially
in scenarios with skewed or biased training data. Specifically, we propose a method
called Large Language Model Attribution Aligned Training (LA AT), which intro-
duces an attribution-matching regularization term that aligns the local, feature-
wise explanations of smaller models with the global, task-specific explanations gen-
erated by LLMs. This approach harnesses the strong generalization capabilities of
LLMs while preserving the efficiency and transparency of smaller models. We share
our code at: https://github.com/davor10105/laat.

2 Related Work

2.1 Standard Machine Learning Approaches

Inspired by the success of deep learning in other domains, numerous efforts
have sought to apply self-supervised learning to tabular data to develop trans-
fer learning-ready models. These approaches include masked feature prediction
[4,38], feature corruption correction [6,58], and contrastive pre-training [52].
However, comparative studies indicate that gradient-boosted tree ensembles still
outperform these methods [21,49]. More recently, Nam et al. [41] introduced Self-
generated Tasks from UNlabeled Tables (STUNT), leveraging self-generated few-
shot tasks for tabular learning, though its reliance on large unlabeled datasets
may limit practical applicability. Additionally, Hollmann et al. [26] proposed
the Tabular Prior-data Fitted Network (TabPFN), a tabular foundation model
pre-trained on millions of synthetic datasets.

2.2 Large Language Models in Tabular Learning

Most approaches integrating large language models (LLMs) into tabular learning
rely on encoding task and feature descriptions in natural language, serializing
the data, and leveraging LLMs for inference—either through in-context learning
[50] or additional fine-tuning [14,24,55]. However, these methods face significant
drawbacks, including the high cost of LLM inference for individual samples and
the computational demands of fine-tuning.

In sensitive domains such as medicine or finance [48], where transparency is
critical, the opaque decision-making of LLMs is less desirable than traditional,
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smaller models. Alternative approaches involve using LLMs to generate syn-
thetic examples to augment existing datasets, employing both in-context learn-
ing and fine-tuning [46,51,60]. However, these methods inherit the same scal-
ability issues, particularly when dealing with high-dimensional datasets, where
generating sufficiently large datasets becomes computationally expensive.

Recently, Han et al. [22] introduced FeatLLM, a novel approach that utilizes
LLMs as feature engineers. Instead of directly performing inference, FeatLLM
employs code-generating LLMs to create preprocessing functions that transform
the original dataset into a more suitable representation for few-shot classification.
This method implements an ensemble classifier to combine insights from mul-
tiple feature transformations, improving robustness and classification accuracy.
FeatLLM significantly reduces resource requirements by relying solely on pre-
trained LLMs with API-level access. Moreover, FeatLLM outperforms existing
fine-tuned and in-context learning approaches while maintaining lower compu-
tational costs. However, even though FeatLLM achieves state-of-the-art perfor-
mance on few-shot tabular classification problems, its many iterations of rule and
preprocessing function generation incur significant costs. Furthermore, during
preprocessing, FeatLLM produces only binary features, which may limit expres-
siveness compared to the original data.

2.3 Explanation Guided Learning

A growing line of research explores enhancing model behavior through additional
supervision derived from explainable artificial intelligence (XAI) techniques. This
field can be broadly categorized into local explanation-guided learning and global
explanation-guided learning [18].

Local explanation guidance applies supervision signals or regularization
terms to individual model explanations, steering learning at the sample level.
This approach is more prevalent due to the extensive development of local expla-
nation techniques, particularly in the image domain, such as Grad-CAM [47],
Layer-wise Relevance Propagation (LRP) [5], and attention-based attributions
[2]. Ross et al. [45] propose regularizing differentiable models by penalizing input
gradients, aligning them with expert-defined attribution maps. Dharma et al. [30]
use object bounding boxes as explanation supervision signals. In text classifica-
tion, several studies leverage per-sample human-annotated rationales [12,29,61].
Gao et al. [19] demonstrate the effectiveness of local explanation supervision
under limited training data. However, a key limitation of this approach is its
reliance on per-sample attribution annotations, which are often difficult and
costly to obtain, particularly in expert-driven fields like medicine.

Global explanation guidance, in contrast, does not require instance-level
attributions, instead offering a broader, more scalable approach to shaping model
behavior. Liu et al. [36] reduce undesired biases by penalizing nonzero attri-
butions on sensitive tokens. Erion et al. [17] aggregate local feature attribu-
tions via expected gradients to improve interpretability. Weinberger et al. [57]
extract prior knowledge from multiple gene expression datasets to construct
meta-features, training a deep global attribution model alongside a predictive
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model with a regularization loss. However, this method assumes the availability
of additional datasets related to the problem, which may not always be feasible.

3 Method

In contrast to other methods that utilize LLMs for tabular data prediction, we
seek to minimize both the computational and price overhead of their use, while
simultaneously still effectively using their generalization abilities and providing
small, interpretable models that can be readily used in existing pipelines.

3.1 Formulation

Given a trained binary classification model mg : RN — [0, 1] parametrized by 6,
an attribution produced by an attribution method a for an input x is a vector
a(x) = (81,...,8,), where s; is the attribution score of the input feature x;. We
are interested in the expected value of the attribution scores over the entire
dataset, given by sg = Ex~pla(x)], where D represents the data distribution.

For certain datasets where the expected attribution follows an intuitive pat-
tern that humans can interpret, we hypothesize that this expected value can be
approximated using a large language model and thus serve as a valuable local
attribution guide during training.

Taking a step back, given an untrained model along with a task description
and feature descriptions, we query an LLM to generate importance scores for
each feature, producing a vector sy . During model training, we then regularize
the local attribution scores of the model to align with these LL.M-derived scores.
This regularization acts as a guiding signal, helping the model maintain behavior
that aligns with intuitive, human-understandable reasoning.

The final model’s loss function consists of two components: the standard
binary cross-entropy loss and an attribution regularization term. The regular-
ization term is the mean squared error between the normalized attribution scores
and the normalized LLM-derived scores, weighted by «. The overall loss is given
as a weighted sum of these terms:

1 & a(x; s
*Z (Ber(me (%), yi) +7€MSE(¥, LM (1)

3

la(xa) [l [IsLLml

Following Ross et al. [45], we employ the input gradient as our chosen attri-
bution method.

3.2 LLM Prompting and Score Parsing

To enable Large Language Models (LLMs) to generate meaningful feature attri-
bution scores for guiding downstream models, we developed a structured prompt-
ing methodology. This approach ensures score accuracy and relevance through
three key components.
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Task and Dataset Contextualization. We embed task and dataset details
within the prompt. Task descriptions succinctly define classification objectives
and outcomes, e.g., “Predict whether this patient’s breast cancer will reoccur.
Yes or no?”, following established methodologies [22,24]. Feature descriptions
clarify dataset attributes, e.g., “Age: The age of the patient at diagnosis.”. Cate-
gorical features are one-hot encoded with explicit descriptions for each category,
enabling the LLM to assign distinct attribution scores per category rather than
per feature. Unlike prior approaches that use LLMs for tabular data classifica-
tion, our method avoids serializing dataset examples into the prompt, thereby
reducing prompt length and computational cost.

Score Generation Protocol. We instruct the LLM to assign integer scores
between —10 and 10, establishing a standardized feature importance scale. Using
chain-of-thought prompting [56], we ensure explicit reasoning before score assign-
ment, enhancing interpretability. The full prompt template is provided in Prompt
1.1 in the Appendix.

Score Extraction and Aggregation. A secondary LLM instance extracts
numerical scores from the primary LLM’s textual output via function calling,
converting semi-structured responses into a standardized list format. To enhance
stability, we generate scores multiple times (Nestimates) and compute their mean,
yielding the final LLM-based feature attribution vector (sprm)-

This methodology provides a robust framework for leveraging LLM capabil-
ities to generate reliable feature attribution scores that effectively inform down-
stream predictive models.

4 Experiments

We conducted a comprehensive evaluation of LAAT across diverse tabular
datasets, examining its performance in few-shot learning contexts and scenarios
where significant bias was present in the training data. Furthermore, we per-
formed supplementary experiments to investigate the impact of various hyper-
parameter configurations on the proposed methodology.

4.1 Few-Shot Learning

While large volumes of data are readily available in many domains, expert-
labeled data remains scarce in fields requiring specialized knowledge, such as
medicine. To address this challenge, recent research has focused on enhancing the
generalization capabilities of tabular classification models under minimal labeled
data constraints [22,24,41]. In this experiment, we assess the effectiveness of our
proposed approach in leveraging LLM-derived knowledge as a guiding signal
during extremely low-shot training scenarios.

We evaluate our approach on ten publicly available binary classification
datasets:
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— adult [7] - predicting whether an individual earns over $50,000 annually

— bank [40] - predicting whether a client will subscribe to a term deposit

— bodyfat [43] - predicting whether an individual’s body fat percentage exceeds
the mean

— breast-ljub [62] - predicting whether a patient’s breast cancer will reoccur

— cdc-diabetes [1] - predicting whether an individual has diabetes

— contraceptive [53] - predicting whether an individual uses contraception

— diabetes [28] - predicting whether an individual has diabetes

— electricity [23] - predicting the price change of electricity (up or down) in
New South Wales

— indian-liver [8] - predict whether a patient has liver disease

— myocardial [20] - predicting whether the myocardial infarction complications
data for an individual shows chronic heart failure

The datasets vary in size and complexity, and their additional basic information
is outlined in Table 6 in the Appendix.

Baselines. We compare our proposed method with several baselines: logistic
regression (LR), 2-layer MLP with ReLU activation and 100 hidden units (MLP),
random forest (RF), XGBoost (XGB) [10], CatBoost [15], TabPFN [26] and
FeatLLM [22].

Implementation Details. We employ three distinct foundation models as our
importance score estimators: Llama 3.3 70B (LLag3) [16], Gemini 2.0 Flash
(Gema ) [44] and GPT-4o-mini (Gyom) [27]. As simple downstream models, we
utilized logistic regression and a two-layer multilayer perceptron (MLP) with
ReLU activation and 100 hidden units. Optimization was performed using the
Adam optimizer [31] with a learning rate of 1 x 1072 and no weight decay,
leveraging LAAT’s internal regularization via the ~ factor, which was set to 100.
Additionally, the number of importance score estimations for LAAT was set to
5. LAAT was executed without early stopping. Data preprocessing involved one-
hot encoding categorical variables and standardizing numerical features using
z-score normalization. Feature descriptions were derived from dataset repository
metadata or original publications, whereas task descriptions were formulated
based on prior research on tabular data classification using LLMs [22,24]. As
prompt engineering is not the focus of our work, we leave the exploration of
alternative prompting strategies to future research. Exact task descriptions used
can be found in Table 7 in the Appendix.

For traditional machine learning models (logistic regression, MLP, random
forest, XGBoost, and CatBoost), we performed hyperparameter optimization
through grid search with 5-fold cross-validation, with the exception of 1-shot
learning scenarios where default scikit-learn [42] hyperparameters were applied.
The complete baseline hyperparameter search spaces are detailed in Table 8 in
the Appendix. TabPFN and FeatLLM were implemented with their respective
default parameter configurations as described in the original publications. Addi-
tionally, FeatLLM incorporated early stopping mechanisms in the 5-shot and
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10-shot experimental settings. Due to the inherent complexity of generating mul-
tiple conditions and preprocessing functions in the FeatLLM method, Llama 3.3
exhibited inconsistencies in producing valid outputs. As a result, we excluded it
from the FeatLLM experiments.

All models were trained using k-shot examples as the training set, while the
remaining data served as the test set. To ensure statistical robustness, we con-
ducted twenty independent experimental runs for each model. The significance
of the difference in the mean values of the total scores was verified using the
Wilcoxon signed-rank test with p = 0.05.

In the following sections, we present our experimental results and provide
additional analyses on LAAT’s robustness to noise, as well as an examination
of how LAAT influences the training loss landscape through the lens of the
bias-variance tradeoff.

Results. The results of our experiments, averaged over twenty repetitions, are
presented in Tables 1 (for non-LLM methods) and 2 (for LLM-based methods).
As demonstrated, LAAT models consistently rank among the top-performing
methods, securing the highest or shared highest scores in 28 out of 30 experi-
ments. Notably, the highest-performing variants of LAAT were LAATgfoi and
LAATéme‘O, securing 12 and 21 top or shared top scores respectively. Further-
more, the LAAT-trained models statistically significantly outperformed their
non-LAAT counterparts in 24, 28, and 27 out of 30 experiments using logistic
regression with Llama 3.3 70B, Gemini 2.0 Flash, and GPT-40-mini as scoring
models, respectively. For MLP, LAAT models significantly exceeded the perfor-
mance of vanilla MLP in 23, 28, and 29 experiments, respectively. These results
underscore the positive impact of LLM attribution alignment on the general-
ization capabilities of even simple models, achieving significant improvements
without the need for extensive hyperparameter tuning, which is often required
for other approaches.

Figure 1 illustrates the average ROC AUC performance across all datasets,
highlighting the superior performance of LAAT model variants across all shot
settings. While FeatLLM closely matches LAAT in the 1-shot scenario, its per-
formance plateaus beyond this point. We hypothesize that this occurs for two
reasons: first, FeatLLM generates binary features, which may lack the expres-
siveness of the continuous features present in the original dataset. Second, the
serialized few-shot examples significantly increase the length of the input prompt,
potentially reducing the effectiveness of the rule and preprocessing function gen-
eration procedure. This may occur because the expanded prompt causes the
initial instruction and relevant data to become less prominent among the large
number of tokens. In contrast, LAAT models demonstrate a substantial advan-
tage in both the 5-shot and 10-shot settings, significantly outperforming all other
methods. Among the scoring models evaluated, Gemini 2.0 Flash-Lite emerged as
the top performer, with GPT-40-mini following closely behind. Although Llama
3.3 70B lagged behind these two LLMs, it consistently matched or outperformed
all baseline methods across all settings. In addition to outperforming FeatLLM,
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Table 1. ROC AUC scores of baseline models on the few-shot experiments. Best scores
for each dataset, across both LLM and non-LLM approaches, are emphasized in bold.
Multiple bolded values indicate that their differences were not statistically significant
according to the Wilcoxon signed-rank test at p = 0.05.

Dataset Shot | LR MLP RF XGB CatBoost | TabPFN
adult 1 58.919.5 | 57.914.1 | 67.911.8 | 50.00.0 |64.7145 |64.916.3
5 76.76.6 | 72.87.0 | 73.89.2 | 63.911.0|78.14.8 78147
10 81.03.4 | 78448 |76.45.1 |77.433 |82.335 82.23.5
bank 1 51.212.5 | 55.510.7 | 56.09.1 | 50.00.0 | 56.89.2 56.25.7
63.98.7 |64.678 |65.73.4 | 56.49.3 |68.251 67.59.1
10 |66.73.9 |67.06.3 |69.168 |71.469 |T4.75.1 74.57.6
bodyfat 1 62.722.4 | 69.014.2 | 64.419.1 | 50.00.0 | 67.115.6 | 68.613.7
78.39.6 | 78.710.1|74.88.0 |64.314.1|75.211.9 |78.010.4
10 | 84.43.1 |84.33.7 |79.46.9 |80.250 |83.62.6 86.23.9
breast-ljub 1 55.19.7 | 56.712.7 | 55.87.2 | 50.00.0 | 52.89.1 53.19.8
5 58.410.6 | 57.96.5 |61.68.3 | 55.07.8 | 60.210.0 | 59.99.8
10 61.65.9 |61.256 |60.952 |61.65.1 |64.66.5 66.45.6
cdc-diabetes |1 58.012.9 | 62.411.9 | 59.115.6 | 50.00.0 | 59.712.5 64.111.4
5 69.35.9 | 63.311.5 | 66.0s.4 | 60.65.7 | 73.045 72140
10 | 71.84.3 |67.012.1 |66.785 |69.85.6 |75.53.0 73.34.1
contraceptive | 1 50.94.9 |52.450 |54.45.7 | 50.00.0 |51.93.7 51.35.6
54.24.9 |53.05.2 | 54.56.7 | 52.249 |56.06.8 56.95.9
10 | 56.53.9 |53.66.1 |57.33.9 |57.549 |59.246 59.45 5
diabetes 1 53.913.6 | 58.315.6 | 63.57.9 |50.00.0 | 59.25.3 58.510.1
70.66.4 |64.298 166.07.4 |61.657 |72.651 72.953
10 | 73.87.9 |72.758 68872 |70.974 |75.351 75.85.9
electricity 1 51.512.3 | 54.113.1 | 58.59.5 | 50.00.0 |60.211.8 |58.910.2
5 65.27.9 [69.06.4 |63.6s8.3 |58.39.9 |65.45.1 66.87.9
10 72.645 | 68.088 |70.744 |70.572 |74.52.2 73.251
indian-liver |1 54.314.7 | 55.614.8 | 60.011.6 | 50.00.0 |58.511.3 |61.111.8
5 61.310.5 | 60.412.3 | 60.310.3 | 58.97.1 | 67.74.5 63.46.3
10 67.473 165947 |62.16.8 |62.770 |70.63.2 69.44.2
myocardial 1 50.55.7 |52.13.0 | 51.95.8 | 50.00.0 | 50.84.0 50.84.1
55.35.2 |53.376 |52.36.8 |950.93.4 | 53.36.0 54.65.4
10 |59.35.4 |58.552 |53.45.5 |52.344 |58.75.0 61.05.5

LAAT utilizes, on average, 79% fewer input tokens and 60% fewer output tokens,
as shown in Table 3, demonstrating significant conservation of computational
resources.
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Table 2. ROC AUC scores of LLM-based models on the few-shot experiments. Best
scores for each dataset, across both LLM and non-LLM approaches, are emphasized
in bold. Multiple bolded values indicate that their differences were not statistically
significant according to the Wilcoxon signed-rank test at p = 0.05.

Method FeatLLM LAAT

Model Ensemble LR MLP

Dataset Shot|Gema.0|Gaom |LLasz.s |Gema.o |Gaom |LLas.s|Gema.o Gaom
adult 1 81.26.180.44.7/68.911.6/67.013.1 |70.510.3/70.55.6 |71.49.0 |72.87.6

5 |85.32.581.14.2 (79.24.5 |81.54.6 |77.94.2 |76.34.8 |78.75.2 |77.54.5
10 [84.430(78.55.1 |82.43.4 |85.23.4 [81.03.2 (79.14.8 |82.14.4 |78.63.7
bank 1 |71.433 66.33.0 |61.35.7 |76.210.3/77.27.558.19.4 [72.510.1(74.47 8
5  |71.950 [66.34.3 |65.62.2 |85.62.0 |83.80.8 (64.44.9 |82.05.0 83.42.6
10 |70.34.0 64.25.1 [64.71.4 |86.00.0 84.71.0 [65.64.5 |81.93.9 (84.42 1
bodyfat 1 167.611.5/76.07.4 |88.21.6 |89.60.8 [89.01.2 (84.96.1 |85.66.6 |85.56.2
5 [82.62.4 |81.62.4 [89.00.5 {90.20.4 [89.70.4 |89.00.5 90.20.589.70.5
10 [82.62.4 (78.87.1 189.00.6 (90.20.5 [89.70.6 (89.00.7 90.20.6(89.80.7
breast-ljub |1 60.9¢.9 [61.57.9 [74.00.9 |73.91.1 |74.40.7|72.73.0 |72.62.7 |72.63.1
5 165.07.1 |61.45.5 |74.40.8 |T4.T0.8 |7T4.40.8 [7T4.11.0 |7T4.41.0/74.01.1
10 [63.96.5 61.08.5 [73.81.1 |74.21.1 [73.71.1 [73.61.3 [73.81.4 [73.21.4
cdc-diabetes |1 73.72.8(72.62.9 [72.508 (75.12.7 (72.62.1 [70.84.2 [74.32.9 (72.13.2
5 |71.411.1|75.31.5 |T4.41.9 |78.10.9 |75.11.2 |74.72.2 |78.20.9|75.61.5
10 [73.23.3 |73.42.6 |74.81.3 |78.50.6 [75.T0.9 [75.21.4 [78.60.6(76.31.1
contraceptive|l 55.74.5 [95.64.3 62.80.861.62.4 [61.11.3 63.12.3/61.233 |61.32.2
5 |53.45.5 |53.15.5 [62.70.2 |64.20.7 [61.70.1 62.90.4 64.21 4|61.70.3
10 |54.74.6 [53.64.0 [62.60.2 [64.90.4 [61.60.2 [62.90.4 [65.20.7|61.70.3
diabetes 1 [75.64.5 [73.13.7 [72.88.1 |78.92.9 |75.08.068.49.8 69.89.3 69.79.4
5 |73.18.9 |75.02.0 |78.71.5 |79.80.4 |79.70.6/78.81.5 |'79.80.579.70.7
10 [70.95.7 75.42.3 |79.10.7 [79.60.3 [79.70.4 (79.20.7 |79.70.4/79.80.4
electricity 1 63.94.9 [66.55.7 |65.53.7 |66.83.4 |73.35.3/61.47.1 |61.83.2 |65.49.5
5 |71.84.1 67.65.3 |67.60.6 68.30.2 |74.91.5/67.40.7 |68.20.4 |7T4.91.6
10 |70.83.8 [65.56.3 |67.40.4 [68.40.3 [74.12.0/67.40.5 68.30.4 |74.22.0
indian-liver |1 = |68.54.1 67.64.9 |73.11.6/73.41.1 |72.71.7 |72.02.1 72.11.7 7142
5 72217 |72.70.8 |73.81.0|73.70.9 |73.21.0 |73.70.9/73.51.0 |73.10.9
10 |70.33.8 [70.52.5 |74.00.973.90.7 [73.30.9 (73.90.9(73.91.0 (73.41.1
myocardial |1 [59.03.5 59.14.4 54.85.3 |58.36.3 |57.96.3 |58.52.9 63.13.9(61.74.4
5 159.75.0 |60.63.0 |60.73.7 |65.92.5 [64.93.0 62.01.5 66.11.8/64.42.6
10 [58.72.8 60.73.2 [63.02.7 |67.22.2 [66.53.0 (62.62.4 66.72.5(65.92.7
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Fig. 1. ROC AUC scores for baseline models and LLM-based methods, averaged across
all datasets. In the 1-shot setting, FeatLLM achieves the highest average performance.
However, in subsequent shots, LAAT-based approaches, both Logistic Regression and
MLP variants, outperform the baselines and FeatLL.M.

Table 3. FeatLLM and LAAT average token count comparison. LAAT consumes sig-
nificantly less input and output tokens, conserving computational resources.

Method FeatLLM LAAT

k-shot 1 5 10 N/A

Token Type|Input|Output/Input|Output|Input|Output/Input [Output
Count 3786619730 5170420067 (62310120282 105707990

Sensitivity to Importance Score Noise. We assess the robustness of the
LAAT method by introducing controlled noise into the importance scores pro-
vided by the LLM. Specifically, we define a noise ratio € € [0,1] and compute
the perturbed importance scores, s]{y;, as a linear interpolation between the
original scores and randomly generated scores, Spoise, Sampled from a uniform
integer distribution in the range [—10,10]:

SE?};X == (]- - 6)SLLM + €Snoise (2)
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Figure 2 presents the average performance across all shot scenarios for both
LR and MLP LAAT variants using the GPT-40 mini model under varying noise
conditions. As expected, the performance of LAAT declines as the noise ratio
increases. However, even with noise ratios as high as 0.6, LAAT variants con-
tinue to outperform their non-LAAT counterparts. These results demonstrate
LAAT’s ability to enhance baseline model performance even when the LLM-
derived importance scores are imperfect.

ROC AUC Scores Across Varying Noise Ratios

Model
—e— LAATWR
LAATM?
=== LR
MLP

ROC AUC Score

0.0 0.2 0.4 0.6 0.8 1.0
Noise Ratio

Fig. 2. LAAT robustness to noisy importance scores. Despite performance degradation
with increasing noise ¢, LAAT variants outperform non-LAAT counterparts up to € =
0.6, demonstrating resilience to imperfect LLM scores.

Exploring the Loss Landscape. To understand why LAAT consistently out-
performs other methods, we analyze the training and test loss landscapes [35] of
two logistic regression models: one trained with standard binary cross-entropy
loss and another incorporating the attribution alignment loss with v = 100.
We also visualize their respective training trajectories. Each model was trained
using Adam for 200 epochs without early stopping or weight decay, with only
five training samples per class, while the remaining dataset was used as the test
set.

Figure 3 illustrates the results for the adult and bank datasets, while addi-
tional results for the breast-ljub and myocardial datasets are provided in the
Appendix in Fig. 6.

A key observation from these visualizations is that the loss landscape of
the standard model exhibits a substantial discrepancy between training and
test loss surfaces. This suggests high variance, where the model overfits to the
limited training data, learning feature importance patterns that do not generalize
well. Conversely, introducing the attribution alignment loss alters the training
loss landscape, shifting it closer to the test loss landscape. This shift can be
interpreted as a form of inductive bias, where the model is nudged toward an
attribution structure informed by the LLM’s prior knowledge.
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(a) Loss landscapes - adult dataset.
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(b) Loss landscapes - bank dataset.

Fig. 3. Train and test loss landscapes for logistic regression on the adult and bank
datasets, comparing models with attribution alignment loss (v = 100, top left subfigure)
and without it (y = 0, bottom left subfigure). The addition of attribution alignment
loss results in a closer match between training landscapes (left half) and the test
loss landscape (right half), guiding the training process (colored lines ending with
a point) towards minima that align well with testing minima, indicating improved
generalization. (Color figure online)

From a bias-variance perspective, LAAT’s regularization constrains the
model’s optimization path, discouraging reliance on spurious correlations and
guiding it toward more stable, generalizable parameters. Secondly, the model
becomes less sensitive to variations in small datasets, lowering the variance,
which is preferable in low-data scenarios. This trade-off mitigates overfitting and
enhances generalization, ultimately leading to improved predictive performance,
as demonstrated in previous experiments.
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4.2 Learning on Biased Data

Many real-world datasets exhibit varying degrees of bias, which can negatively
impact machine learning models by introducing misleading correlations. For
instance, a model trained on historical recruitment data may inherit biases
related to gender and job roles [11]. Similarly, systemic biases in criminal justice
datasets often lead to strong correlations between demographic attributes and
outcomes, potentially reflecting enforcement patterns rather than actual crime
rates. In some cases, these confounding factors can be explicitly removed when
they are demonstrably unrelated to the target classification. However, the chal-
lenge becomes more complex when the relationship is “soft”™—i.e., a correlation
exists, but its exact influence is difficult to quantify.

To evaluate the performance of baseline methods alongside our proposed
LAAT method, we introduce artificial biases into the training portion of the
medicine-related datasets used in the previous experiment while keeping the
evaluation data distribution unchanged. This approach mimics real-world biases
that may arise due to the way data is collected—for example, demographic skews
in clinical trials or socioeconomic biases in electronic health records. By training
models on biased distributions and assessing them on the original, unbiased test
data, we simulate practical scenarios where spurious correlations may mislead
models, allowing us to analyze their robustness to such biases. Specifically, we
apply the following modifications:

— bodyfat - Exclude all individuals under the age of 50 with above-average
body fat percentage, introducing a bias that overestimates body fat in elderly
individuals.

— breast-1ljub - Exclude all patients under the age of 50 who experienced breast
cancer recurrence, introducing a bias that overestimates recurrence in elderly
patients.

— cdc-diabetes - Exclude all women with diabetes and all men without dia-
betes, artificially inflating the apparent prevalence of diabetes among men.

— contraceptive - Exclude all working women not using contraceptives and
all non-working women using contraceptives, creating a spurious relationship
between employment and contraceptive use.

— diabetes - Remove all individuals under 50 years old who have diabetes,
encouraging models to over-rely on age for diabetes prediction.

— indian-liver - Remove all male patients with diagnosed liver disease, biasing
models toward associating liver disease more strongly with female patients.

— myocardial - Remove all female patients with a history of myocardial infarc-
tion, biasing models toward overestimating the risk of myocardial infarction
in men.

Results. As in the few-shot experiment, results are presented in Tables4 for
non-LLM methods and 5 for LLM-based methods. LAAT effectively mitigates
dataset biases and achieves the highest performance across all datasets, sur-
passing non-LLM baselines by more than 20 ROC AUC points in some cases.
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Although FeatLLM outperforms traditional baselines, it achieves shared top per-
formance with LAAT on only two datasets and lags significantly behind LAAT
models on the remaining datasets. The superior performance of LAAT on this
challenging benchmark further highlights the benefits of attribution guidance—
not only in enhancing performance in data-scarce scenarios but also in address-
ing subtle, hard-to-detect dataset biases that could otherwise compromise the
integrity of the machine learning pipeline.

Table 4. ROC AUC scores of baseline methods on the biased dataset experiments. Best
scores for each dataset, across both LLM and non-LLM approaches, are emphasized
in bold. Multiple bolded values indicate that their differences were not statistically
significant according to the Wilcoxon signed-rank test at p = 0.05.

Model LR MLP RF | XGB |CatBoost/TabPFN
Dataset

bodyfat 84.54,4 81.14,7 78.16,2 75.07,3 82.34,1 85.03,9
breast-ljub 54.36.6/54.45.455.87.4/54.69 5/54.06.6 |52.97.6

cdc-diabetes 62.20.4/62.40.3/60.32.5/49.31 3/60.22.1  [50.11.3
Contraceptive 57.33,0 50-95.8 55.75,3 47.62,2 57»02.8 50.12,9

diabetes 75.83.372.94.1|72.94.6/60.75.8/75.03.2 76.43.1
indian—liver 60.467 56.853 54.9&4 49.3&1 58.95_6 59.855
myocardial 55-18.2 55.85,9 58.55,1 54.68,7 55.69,9 50-07.8

4.3 Hyperparameter Analysis

We investigate the impact of varying the regularization factor « and the num-
ber of importance score estimations on the final performance of LAAT models.
Specifically, we assess the performance of a logistic regression model trained using
LAAT alignment with importance scores provided by GPT-40 mini. The exper-
imental results are presented in Figs.4 and 5, corresponding to the ~ variation
and the number of importance score estimations, respectively.

Our findings indicate that increasing 7 initially enhances model performance,
reaching an optimal value around v = 100. However, further increases beyond
v = 250 lead to a substantial decline in performance. In contrast, increasing the
number of importance score estimations results in a steady performance improve-
ment, which plateaus at approximately four to five estimations, depending on the
k-shot setting. These results suggest that while additional score generation and
ensembling can enhance performance, their benefits diminish beyond a certain
threshold.
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Table 5. ROC AUC scores of LLM-based models on the biased dataset experiments.
Best scores for each dataset, across both LLM and non-LLM approaches, are empha-
sized in bold. Multiple bolded values indicate that their differences were not statisti-
cally significant according to the Wilcoxon signed-rank test at p = 0.05.

Method FeatLLM LAAT

Model Ensemble LR MLP

Dataset Gems.0|/Gaom |LLass Gema.o|Gaom |LLas.s Gema.olGiom
bodyfat 80.96.4 79.36.2 [84.516.2/83.418.0/84.317.0/89.54.2 191.03.6/90.44.0
breast-ljub 67.8s.7 (62.97.2 |7T1.19.6(71.15.6 (70.55.7 |73.66.9/73.56.58/73.26.9
cdc-diabetes 75.43.3 76.10.8 [72.50.3 [79.00.2(75.60.3 [72.40.3 78.90.3 [74.10.9
contraceptive54.8g.6 [51.83.9 [63.93.4 [66.62.2(62.93 4 63.93.4 [66.12.2 62.935
diabetes 76.83.8 |76.32.8 |78.86.9 |78.47.2 |78.67.3 [79.94.1 |80.03.9/80.24.0
indian-liver [67.46.4 69.36.1|71.15.7|71.45569.35.7/72.14.3/72.13.9/71.24.5
myocardial 54.09.2 (62.55.1/63.86.2 [66.2¢6.4(64.45¢6 |59.47.2 |64.87.3/61.67.3
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Fig.5. ROC AUC scores of LAAT
aligned logistic regression over vary-
ing number of estimates.

Gamma

Fig. 4. ROC AUC scores of LAAT aligned
logistic regression over varying gamma val-
ues.

5 Limitations

While LAAT offers significant benefits, it has several limitations. First, the
method is restricted to tabular data and supports only binary classification tasks.
Additionally, LAAT requires features to be describable in natural language, lim-
iting its applicability to datasets with anonymized or uninterpretable features.
Finally, its effectiveness depends on the general knowledge embedded in LLMs,
which may vary across different data domains.

6 Conclusion

We introduce Large Language Model Attribution Aligned Training (LAAT),
a novel approach that leverages importance scores inferred by large language
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models (LLMs) as local attribution guides. This method effectively harnesses the
generalization capabilities of LLMs while employing simple, traditional machine
learning models. Although gradient boosting trees have traditionally dominated
tabular data learning, LAAT significantly outperforms existing methods in few-
shot learning and biased dataset scenarios. Notably, it surpasses FeatLLM, the
current state-of-the-art LLM-based few-shot learning approach.

Beyond its standalone effectiveness, LAAT is highly versatile and can be used
in conjunction with more complex models, provided they are differentiable—for
example, TabPFN. Additionally, it can be combined with feature preprocessing
techniques such as FeatLLM. Given the interpretability of LLM-derived impor-
tance scores, LAAT could be incorporated into interactive, chat-based interfaces,
enabling human experts to refine these scores before finalizing them. This human-
in-the-loop refinement could further enhance model performance by leveraging
domain expertise.

While we focus on input gradient-based attribution in this work, future
research could explore alternative attribution methods to further enhance
LAAT’s effectiveness. Additionally, future research could explore extending
LAAT to multiclass classification problems by generating LLM-based feature
attribution vectors for each class. Subsequent training could regularize local
attributions based on the class of the current example. Similarly, in regression
tasks, the score generation prompt of LAAT could be adapted to accommodate
continuous target variables.

Furthermore, LAAT’s framework could be expanded beyond tabular data to
other modalities, such as images, by integrating it into concept bottleneck models
[32]. These architectures produce high-level, human-interpretable features that
could serve as input to a LAAT-augmented classifier, facilitating improved fea-
ture selection and attribution in vision tasks. Such an extension could enhance
both interpretability and generalization in image-based applications. We leave
the exploration of these research directions to future work.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

Appendix

We provide dataset details, task descriptions, score extraction prompt, hyperpa-
rameter search spaces, and loss landscapes used in our experiments.

Prompt 1.1. Prompt template for LLM importance score generation.

You are an expert at assigning importance scores to features
used for a classification task. For each feature, output an
integer importance score between -10 and 10. Positive scores
suggest that an increase in the feature’s value boosts the
class probability, whereas negative scores indicate that an
increase in the feature’s value reduces the class probability.
You have to include a score for every feature.
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Table 6. Basic information about dataset used in our experiments.

Dataset SamplesNum. features|Cat. featuresPos. label ratio
adult 48842 |14 8 23.93%
bank 45211 |16 9 11.70%
breast-ljub 277 |16 0 29.24%
cde-diabetes 253680 |21 0 13.93%
diabetes 768 0 34.90%
electricity | 45312 0 42.45%
myocardial 686 91 13 22.16%

Table 7. Task descriptions utilized in the experiments.

Dataset Task Description

adult Predict whether this person earns more than 50000 dollars
per year. Yes or no?

bank Predict whether this client will subscribe to a term deposit.
Yes or no?

breast-ljub |[Predict whether this patient’s breast cancer will reoccur. Yes
or no?

cdc-diabetes/Predict whether the patient has diabetes. Yes or no?

diabetes Predict whether the patient has diabetes. Yes or no?

electricity |In the electricity market, prices are not fixed and are affected
by demand and supply of the market. They are set every five
minutes. Electricity transfers in the state A to/from the
neighboring state B are done to alleviate fluctuations. Based
on the current measurement, predict whether the price of
electricity in state A will go up. Yes or no?

myocardial |[Predict whether the myocardial infarction complications data
of this patient show chronic heart failure. Yes or no?

Task: {task_prompt}

Features:

{features_prompt}

Output the importance scores for the class "{labell}".

Think step by step and output an integer importance score
between -10 and 10 for each feature. You must specify each
feature individually, in order of its appearance.
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Table 8. Hyperparameter search spaces for baseline models.

Model Hyperparameter search space

Logistic Regression|C: [100, 10, 1, le—1, le—2, 1le—3, le—4, le—5|

MLP alpha: [0.001, 0.01, 0.1, 1, 10]
learning rate init: [0.1, 0.01, 0.001, 0.0001]

XGBoost max_depth: [2, 4, 6, 8, 10]

alpha: [le—4, le—3, le—2, le—1, 1, 10]
lambda: [le—4, le—3, le—2, le—1, 1, 10]
eta: [0.01, 0.03, 0.1, 0.3]

Random Forest

bootstrap: [True, False|
max_depth: [2, 4, 6, 8, 10]
n_estimators: [2, 4, 8, 16, 32, 64]

CatBoost

colsample bylevel: [0.01, 0.03, 0.06, 0.1]
boosting type: [‘Ordered”, “Plain”]
depth: |2, 4, 6, 8, 10]
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(a) Loss landscapes - breast-ljub dataset. (b) Loss landscapes - myocardial dataset.

Fig. 6. Loss landscapes for logistic regression on the breast-ljub and myocardial
datasets, comparing models with (y = 100, top left) and without (v = 0, bottom left)
attribution alignment loss. The addition of attribution alignment loss better aligns
training (left) and test (right) loss landscapes, guiding the model towards minima that

improve generalization.
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Abstract. Graph Neural Networks (GNNs) are a powerful technique for
machine learning on graph-structured data, yet they pose challenges in
interpretability. Existing GNN explanation methods usually yield tech-
nical outputs, such as subgraphs and feature importance scores, that are
difficult to understand, thereby violating the purpose of explanations.
Motivated by recent Explainable AI (XAI) research, we propose GraphX-
AIN, a method that generates natural language narratives explaining
GNN prediction. GraphXAIN is a model- and explainer-agnostic method
that uses Large Language Models (LLMs) to translate explanatory sub-
graphs and feature importance scores into coherent, story-like expla-
nations of GNN predictions. Evaluation on real-world datasets demon-
strates GraphXAIN’s ability to improve graph explanations. A survey of
machine learning researchers and practitioners reveals that GraphXAIN
enhances four explainability dimensions: understandability, satisfaction,
convincingness, and suitability for communicating model predictions.
When combined with another graph explainer method, GraphXAIN fur-
ther improves trustworthiness, insightfulness, confidence, and usability.
Notably, 95% of participants find GraphXAIN to be a valuable addi-
tion to the current GNN explanation methods. By incorporating natural
language narratives, our approach serves both graph practitioners and
non-expert users by providing clearer and more effective explanations.

Keywords: Explainable AI - Graph Neural Networks - Generative
AT - Generative XAI - Natural Language Explanations + XAI Narratives

1 Introduction

The exponential growth in the complexity of machine learning models has led
to architectures reaching billions of parameters, resulting in significant improve-
ments in their performance [5,13,26,39]. As these complex ‘black-box’ mod-
els, characterized by their high accuracy yet lack of interpretability, continue
to evolve, the demand for transparency and understanding of the underlying
model processes has intensified [35]. Explainable Artificial Intelligence (XAT)
has emerged to address this challenge by enhancing the trustworthiness and
transparency of the predictions of complex AI models [18].
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GraphXAIN for node 57

"The Graph Neural Network classified the NBA player represented by the target node with index 57
as having a 'High Salary'. Central to this prediction is the player's position as a Small Forward, which
was among the most significant features. Players in this position, known for their versatile roles on the
court, often command higher salaries, which could contribute to the 'High Salary' prediction. The
number of games played by the player also heavily influenced the model, as appearing in more
games often signals competence and reliability, traits associated with higher earnings. Additionally,
the player's height at 200.6 cm placed them around the middle of the height distribution among
players, potentially aiding in their adaptability across positions, thereby making them a valuable team
asset.

The subgraph of the player's Twitter interactions further supported the prediction. The connection with
node 62, heavily weighted in importance, suggests a strong social relation with other players, though
node carries a 'Low Salary' label. In contrast, players like nodes 302, 233, and 26, labeled 'High
Salary', reflected high influence in their respective connections to the target node. Such affiliations
indicate the player's association with influential and well-compensated peers, which might bolster
their salary status. Overall, the predictive power stemmed from a combination of individual
performance metrics, socio-technical network, and the nuanced interplay of player characteristics
within the NBA."

Fig. 1. LLM-generated GraphXAIN (bottom part) complements the explanatory sub-
graph and feature importance output of GNNExplainer [47] (top part), providing a
comprehensive explanation of the GNN’s prediction of salary level classification for the
NBA player (node 57).

Graph Neural Networks (GNNs) have recently gained notable success and
have become state-of-the-art solutions for modelling relational data, character-
ized by instances (nodes) being connected via edges [21,40,44,46]. However, the
need for interpretability of the GNNs’ predictions remains [23,25,47].

Existing GNN explanation techniques [25,47] predominantly offer explana-
tory subgraphs and feature-importance attributions. This is illustrated in the
upper section of Fig. 1, which shows the explanation produced by GNNExplainer
[47] for a GNN model’s prediction on a real-world dataset. The example presents
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the explanation for the classification of node (player) 57 from the NBA dataset,
taking into account the player’s attributes, field statistics, and social connec-
tions. For a node regression example, which illustrates the explanation for the
prediction of the IMDB movie rating for node (movie) 95 based on the movie
features and relations to other movies being connected via shared actors, see
Fig.4b in A.1.

GNNExplainer output provides some insights into the prediction process,
however, the correct interpretation of the subgraph visualization alongside fea-
ture importance metrics alone can pose significant challenges for readers. With-
out a complementary natural language narrative, practitioners employing this
explanation technique to analyse the GNN’s prediction must rely solely on sub-
graphs and feature importance outputs, which can be particularly challenging
given the complex nature of GNN models. Despite its limitations, GNNExplainer
remains a state-of-the-art graph explainer. Such an approach is not aligned with
the comprehensibility postulate introduced by Michalski [30], which advocates
that computer-generated results should be directly interpretable in natural lan-
guage. Moreover, effective explanations should enhance the alignment between
the user’s mental model and the AT model [20,29]. GNNExplainer, among other
graph explainers, does not adhere to these principles and exemplifies the phe-
nomenon termed the “Inmates Running the Asylum”, where solutions are tech-
nical and created primarily for experts, overlooking the needs of less-technical
practitioners and end users who prefer natural-language explanations [6,28,33].

Martens et al. [28] proposed the XAlstories framework that employs Large
Language Models (LLMs) to generate narratives explaining the Al model’s pre-
dictions for tabular and image data based on SHAP and counterfactual (CF)
explanations. In their survey among data scientists and lay users, over 90% of
the general audience found these narratives convincing, while 83% of the sur-
veyed data scientists indicated they would likely use X Alstories to communicate
explanations to non-expert audiences. By incorporating narrative communica-
tion to technical XAI methods, the model’s predictions can be presented in a
manner that aligns with human cognitive preferences, elevating explanations
beyond mere descriptions and clarifying cause-and-effect relationships [6].

To the best of our knowledge, no previous research proposes the general
framework for natural language XAI Narratives to explain Graph Neural Net-
work models’ predictions. In this article, we introduce the first method to auto-
matically generate GraphXAIN, a natural language narrative, to explain the
GNN models. By complementing explanatory subgraphs and feature importances
with coherent XAI Narratives (see Fig.2), we aim to further explain the GNNs’
predictions in a more transparent and accessible way. We posit that this method
will not only enhance interpretability but also facilitate more effective commu-
nication of model predictions across various graph applications.

To summarise, our main contributions are as follows:

— We present the GraphXAIN, a novel model-agnostic and explainer-agnostic
method that generates natural language XAI Narratives to enhance the
explainability of the model’s predictions over graph-structured data.
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Prompt

You aim to generate a narrative explaining the Graph Neural Network (GNN) model's prediction for a target node (node 7).
To achieve this, you will be provided with the following information:

o Dataset Description

o Explanatory Subgraph and Feature Importance

o Target's Node Feature Values and Edge Connections
e GNN Model's Prediction Score

In your answer, follow this set of rules: {rule_1, rule_2, rule_3, ...}

v

LLM

GraphXAIN
"The Graph Neural Networks model predicted that the node 1 ... "

Fig. 2. Workflow diagram of the GraphXAIN method. Graph-structured data, along
with its corresponding features, is first processed by a GNN model. Next, a graph
explainer generates an explanatory subgraph and corresponding feature importance
values for a target node. The dataset description, explanatory subgraph, feature impor-
tance values, target node features and edge connections, and final GNN prediction are
then incorporated into a prompt. This prompt is processed by the LLM, which gener-
ates GraphXAIN, a complementary narrative to explain GNN’s prediction.

— We illustrate our approach by integrating GraphXAIN with the existing graph
XAI framework (GNNExplainer) for GNNs and demonstrating its explana-
tory abilities on real-world datasets, both in classification and regression
tasks.

— We qualitatively assess the GraphXAIN method with a user study conducted
with machine learning practitioners.

— We formalise the concepts of narrative and descriptive explanations within the
context of XAl clarifying their distinctions and discussing their implications
for model explainability.
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2 Related Work
2.1 Explainability in Machine Learning

Several approaches have been proposed to enhance the explainability of machine
learning models across various modalities, including image data [1,16,39,41,43|,
tabular data [4,26,39], natural language [26,39,43], and unstructured data such
as graphs [25,47]. Among the most popular XAI methodologies are post-hoc
explanations, which aim to explain the model’s prediction after the training stage
[35]. The counterfactual explanations indicate what minimal changes in the input
data are required to obtain a different predicted class [29,45]. These methods
comprise feature importance measures, visualisation techniques, and surrogate
models. For instance, SHAP (SHapley Additive exPlanations [26]) and LIME
(Local Interpretable Model-agnostic Explanations [39]) estimate the contribution
of each feature to a particular prediction.

However, despite these advancements, challenges persist in ensuring that
explanations are both methodologically accurate and meaningful for a variety of
stakeholders, both for the data scientists and lay users [11,28,36]. Explanations
must bridge the gap between technical complexity and the reader’s comprehen-
sion, necessitating a careful balance between fidelity and interpretability [6,33].
The need for explainability methods that are understandable to less technical
users is primarily crucial in sensitive domains such as healthcare, finance, and
legal systems, where understanding the model’s prediction process is essential
for trust and transparency [35,39] for both domain experts and end users. As the
conversational Al explanation systems have been studied previously [22,27,42],
the LLM’s general knowledge presents a promising avenue for enriching targeted
explanations with additional insights [48].

2.2 Explainability in Graph Neural Networks

GNNs are increasingly used for modelling relational data in domains such as
social networks, molecular structures, and knowledge graphs [21,40,44]. Their
complex architectures, however, pose challenges for understanding and interpret-
ing their predictions. GNNExplainer [47] is the first method developed to address
GNNs’ explanations by identifying an explanatory subgraph and relevant node
features which are the most influential for a specific prediction. GNNExplainer
formulates the explanation task as an optimisation problem, maximising the
mutual information between the explanatory subgraph with a subset of node
features and the original graph that is subject to explanation.

Among other graph explanation methods, Lucic et al. [25] introduced CF-
GNNExplainer, which alters the GNNExplainer to answer ‘what-if’ questions
using the counterfactual explanation approach. Rather than merely identifying
influential features or subgraphs, CF-GNNExplainer searches for minimal per-
turbations to the original graph that would change the GNN model’s prediction
by edge deletion. This method demonstrates how small changes in graph struc-
ture could impact the outcome, enhancing the understanding of the model’s
decision-making process.
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Although the aforementioned state-of-the-art graph explanation frameworks
are methodologically sound, they merely provide users with additional graphs
and node feature importance values that are not easily interpretable (see Fig. 1
and Fig. 4b), thereby limiting their practical utility and force practitioners to
construct the explanatory narrative themselves.

We posit that incorporating natural language into GNN explanations could
bridge the gap between technical outputs and human understanding by trans-
lating complex model reasoning into accessible narratives, thereby enhancing
comprehension and trust among practitioners. However, previous methods to
generate them are not tailored to the popular GNNExplainer output and/or
provide descriptive explanations rather than a cohesive narrative (see Subsect.
3.1 for a discussion of the important differences). Giorgi et al. [10] addressed this
issue by using LLMs to generate textual explanations for counterfactual graphs.
However, their explanations lack contextual information and do not illustrate
cause-and-effect relationships, resulting in primarily descriptive communication
rather than narrative explanation, the latter being more valuable for conveying
more complex information [6] (see Appendix A.2 for examples).

He et al. [15] used LLMs to generate explanations for counterfactual graphs
in the context of molecular property prediction. However, since their framework
adheres to domain-specific knowledge, it cannot be considered a general method
for graph model explanations with natural language explanations. Furthermore,
the explanations produced by their method exhibit the same limitation as in
Giorgi et al. [10], being more descriptive rather than narrative in their nature
(see Appendix A.3 for examples).

The most comparable approach to ours is presented by Pan et al. [36], who
developed TAGExplainer, a method for generating natural language explana-
tions for Text-Attributed Graphs (TAGs). Although their explanations incorpo-
rate some elements of narrative communication, the examples provided by the
authors consist of bullet points of information that can be rearranged without
affecting the conveyed message, which is a characteristic aligning with descriptive
writing rather than a coherent narrative [6]. Consequently, the proposed expla-
nations remain context-independent. Moreover, the proposed method is limited
only to TAGs, which limits the general use of TAGExplainer to broader graph
data modelling scenarios, as TAGs represent only a subset of real-world graph
data (see Appendix A.4 for examples).

3 Methods
3.1 XAI Narrative and Description

Research in psychology and communication theory indicates that narrative-based
explanations are more accessible and memorable than descriptive forms, mak-
ing them effective for conveying scientific evidence to non-expert audiences [6].
Moreover, narratives are processed more rapidly by individuals without prior
knowledge and are more engaging and persuasive, thereby enhancing trust and
understanding of Al models [3,28,33].
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Further, as narrative communication relies on contextual cause-and-effect
relationships, it is considerably more challenging to fragment a narrative into
smaller, meaningful segments without either significantly altering the interpre-
tation of these segments or disrupting the coherence of the original narrative [6].
Consequently, narratives are often perceived as storytelling, characterised by a
coherent structure comprising an introduction, a main body, and a conclusion.
In contrast, descriptive, context-free communication can be readily fragmented
into smaller units while still effectively conveying the necessary information [6],
however, at the cost of understanding and remembering. The X Alstories method
addresses the aforementioned explanation limitations by enhancing the narrative
communication of SHAP and CF explanations of models trained on tabular and
image data, aligning with the research on human-AI interactions [3,28,33].

Having identified the need to distinguish between narrative and descriptive
explanations in XAl and drawing on social science research [6,7,12,33], we pro-
pose definitions for both terms:

Definition 1 (XAI Narrative). A XAI Narrative provides a structured, story-
like representation of a model’s prediction. Narrative explanations illustrate the
relationships between key features in a context-dependent manner, providing a
coherent and comprehensive understanding of how the model arrives at specific
outcomes.

Definition 2 (XAI Description). A XAI Description provides a static pre-
sentation of key features or attributes relevant to a model’s prediction, delivered
i a context-free and fact-based manner.

In the context of explaining GNN models, a description would just list the
most important features and neighbouring nodes. This relates closely to the
data-to-text or graph-to-text approaches [9,37]. Figure 3 presents an example of
XAI Description for the subgraph and feature importance output provided by
GNNExplainer shown in Fig. 1. Clearly, a XAI Description is less valuable than
an XAI Narrative, as descriptions are less accessible and memorable than narra-
tive communication methods, making them less effective for conveying scientific
evidence to a broader audience [6,28].

From the XAI Description presented in Fig.3, a clear template may be
derived: Prediction of instance X is Y based on: x1 (importance score of fea-
ture 1), feature xo (importance score of feature x3), feature xs (importance
score of feature x3), ..., feature x,, (importance score of feature x, ). Regarding
the connections between the nodes, a XAI Description would just describe which
connections appear in the subgraph, however, not reflecting their meaning, which
is seen in the bottom of the Fig.3. In conveying the information to the reader,
if the order of the features or connections mentioned in the text were changed,
the information conveyed itself would persist, contrary to the assumption of the
coherency and context-dependent manner and therefore violates the definition of
XAI Narrative. The GraphXAIN examples shown in Fig. 1 and Fig. 4b, provide
more coherent story, and are enhanced by LLM’s general knowledge cause-and-
effect narration as an explanation, which is aligned with the recommendations
regarding effective scientific communication [6,12].
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Example of the XATI Description of GNN’s prediction for player (node) 57

Node 57 is predicted as "High Salary" based on the following features
importances: Power Forward-Center Position (0.615), Small Forward Position
(0.599), Games Played (0.561), Player Height (0.530), Point Guard Position
(0.462), Player Weight (0.441), and 2-Point Field Goal Attempts (0.248). The
number of games played significantly influences the model prediction towards
"High Salary". The player’s height, recorded at 200.66 cm, places them near
the median of the height distribution among the players.

The Twitter interaction subgraph reinforces this prediction, with a heavily
weighted connection to node 62 (labelled "Low Salary") and additional con-
nections to nodes 302, 233, and 26 (labelled "High Salary").

Fig. 3. LLM-generated XAI Description for the GNNExplainer’s [47] subgraph and
feature importance explain the GNN’s prediction for player (node) 57. Compared to
GraphXAIN’s output, XAI Description focuses on features and connections in a static
and context-free format, which is less valuable than a XAI Narrative.

3.2 From GNNs to Natural Language Narratives

To address the limitations of existing XAI methods for GNNs, which usually
produce technical outputs, we propose GraphXAINs, which are natural lan-

guage explanatory narratives for graphs. We propose the following definition of
GraphXAIN, a XAI Narratives for graphs:

Definition 3 (GraphXAIN). A GraphXAIN is a XAI Narrative tailored for
graph-structured data.

Our solution involves converting subgraph structures and feature impor-
tance scores derived from graph explainers, dataset information, and external
knowledge of the LLM into GraphXAINs, resulting in coherent natural language
explanatory narratives that explain GNN predictions. The detailed workflow to
generate the GraphXAINs in presented in Fig. 2.

Following the approach proposed by Fatemi et al. [8], we transform the graph
into the textual form for LLM’s further inference. Importantly, our framework is
agnostic to the graph data type, graph model, performed task (classification and
regression), and graph explainer, allowing its application across various graph
scenarios and applications.

4 Experiments
4.1 Datasets

We conduct the experiments on two real-world graph datasets, one used in the
node classification scenario and the other in the node regression task. The dataset
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for the node classification, the NBA players’ dataset!, includes players’ perfor-
mance statistics from one basketball season, alongside various personal attributes
such as height, weight, age, and nationality. The graph is constructed by linking
NBA players based on their relationships and interactions on the Twitter plat-
form. After preprocessing, filtering out disconnected nodes, and ensuring the
graph is undirected, the final graph comprised 400 nodes (players), 42 node fea-
tures, and 21,242 edges (Twitter connections). The node classification involves
predicting whether a player’s salary exceeds the median salary.

The dataset used to perform node regression, the IMDB movie dataset?,
includes information on 1,000 movies from the IMDB database. The movie’s
features consist of information on the director, main actors, release year, dura-
tion, and genre. The graph is created by connecting nodes (movies) by edges
which link movies if at least one actor played in both movies. In total, the graph
consists of 1,000 nodes, 12 node features, and 5,608 undirected edges. The node
regression task involves predicting the IMDB rating score ranging between 0 and
10, where 10 is the maximum score indicating the general appreciation of the
movie by the audience.

4.2 Graph Models

Prior to training, both datasets are randomly divided into separate training,
validation, and test sets in a 60/20/20 split. We systematically explore differ-
ent hyperparameter settings for both classification and regression GNN models,
adjusting the number of layers (2-4), number of hidden channels (8, 16, 31,
64, 128), learning rates (0.001, 0.005, 0.01, 0.02, 0.05), weight decay (1 x 1074,
5x 1074, 1 x 1073), and training epochs (100, 500, 1,000, 5,000, 10,000) to evalu-
ate performance on the held-out test sets. The GNN classification model consists
of two Graph Convolutional Network (GCN) layers [21], with 16 hidden chan-
nels. For training, we use the Binary Cross-Entropy loss function, the AdamW
[24] optimizer with a learning rate of 0.001 and a weight decay of 5 x 10~%. The
training continued for 1,400 epochs, resulting in the GCN classification model
that achieved a test AUC of 0.80.

The GNN regressor model consists of two GCN layers with 32 hidden chan-
nels. The Root Mean Square Error loss function is used to train the model, with
the AdamW optimizer, a learning rate of 0.01 and a weight decay of 5 x 10~%.
The training process continues for 7,500 epochs, with the early stopping of 500
steps, resulting in the RMSE of 0.28 on the test set.

4.3 Graph Explainer

To obtain the explanatory subgraph and feature importance scores, we use
GNNExplainer [47], the current state-of-the-art method for explaining GNN

! https://kaggle.com /noahgift /social-power-nba.
2 https://kaggle.com/datasets/harshitshankhdhar /imdb-dataset-of-top-1000-movies-
and-tv-shows.


https://kaggle.com/noahgift/social-power-nba
https://kaggle.com/noahgift/social-power-nba
https://kaggle.com/noahgift/social-power-nba
https://kaggle.com/noahgift/social-power-nba
https://kaggle.com/noahgift/social-power-nba
https://kaggle.com/noahgift/social-power-nba
https://kaggle.com/noahgift/social-power-nba
https://kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows

100 M. Cedro and D. Martens

models’ predictions. The GNNExplainer formulates the explanation task as
an optimization problem that maximizes the mutual information between the
explanatory subgraph and a subset of node features relative to the input
graph under consideration. In both scenarios (classification and regression), the
GNNExplainer training process are conducted for 200 epochs, adhering to the
default settings recommended by the authors [47]. In the explanatory subgraph,
different shades of the edges indicate the strength of the importance of each
connection, with darker edges indicating higher strength. However, to generate
the GraphXAINs, any graph explainer may be used as long as it provides an
explanatory subgraph and feature importance.

4.4 Graphs and Large Language Models

The XAI Narratives are derived from the GNNExplainer output using an LLM.
In this work, we use GPT-40, however, any LLM may be used to generate
GraphXAINs. In our method we use LLM in a zero-shot manner with the default
hyperparameters. The base of the prompt is inspired by earlier works on nar-
ratives aiming to explain machine learning models developed on tabular data
[19,28], which we adapt to graphs and then refine through iterative manual
adjustments until we achieve reasonable narratives. A thorough prompt engi-
neering process could yield further improvements and help assess sensitivity to
minor prompt changes.

The prompt includes the following information (see Fig. 2): dataset informa-
tion, the target node’s feature values, the feature importance, the explanatory
subgraph, the feature values of the nodes within the subgraph, and the final
GNN model prediction for the target node.

In our visualisations, we use the seven most important features and restrict
the subgraph to output seven nodes with the highest importance, aligning with
Miller’s [31] theory on cognitive limits, which suggests that seven pieces of infor-
mation represent an optimal amount for receiving, processing and recalling. How-
ever, the number of presented nodes in the subgraph and the number of most
important features may be changed. Figure 2 presents the generation process in
detail. The full prompt used to generate GraphXAINs is available in the article’s
GitHub repository?.

5 Results

In the following, we provide examples presenting various automatically generated
GraphXAINs to explain the GNN model’s prediction for the target node. It is
important to clarify that the presented results are not selectively chosen - rather,
subsets of five nodes from the test sets (subject to explanation) are randomly
drawn from both datasets. The GraphXAINs are subsequently generated for
each of the drawn nodes. Figurel and Fig. 4b present examples of generated

3 https://github.com/ADMAntwerp/GraphXAIN.
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GraphXAINs for node classification and node regression tasks, respectively. For
the other GraphXAIN example, see Appendix A.1.

The results of the GraphXAINs show the effectiveness of generating XAI
narrative-based explanations from the technical and context-free subgraphs and
feature importance values. Unlike other GNN XAT descriptive outputs, which
typically present static feature values, the outputs generated by our method
provide coherent XAI Narratives. Not only do these narratives articulate which
features contributed most to the model’s prediction, but they also explain how
and why these features combined in a cause-and-effect manner. For instance,
the narrative for a high-salary prediction highlights the player’s field and perfor-
mance statistics, such as position and the number of games played, simultane-
ously contextualising these with, arguably, broader patterns of team dynamics,
basketball domain considerations, and social interactions.

GraphXAIN approach ensures that the explanation is not limited to mere
numerical and visual descriptions but instead offers a comprehensive, story-like
narrative that enables the practitioners to understand the model’s decision-
making process more intuitively. By conveying the reasoning beyond the sole
prediction, the XAI Narrative explanation addresses a primary goal in XAI by
bridging the gap between technical model outputs and practitioner’s compre-
hension, thereby reflecting both the principles of narrative communication and
the general objectives of explainability research [6].

Note that in the IMDB dataset, movie titles are available and directly
mapped to nodes, whereas in the NBA dataset, player names are hashed, pre-
venting their direct mapping. We hypothesize that having actual names would
allow GraphXAIN to produce more effective explanations by drawing additional
information on specific player information from LLM’s knowledge.

6 Evaluation with Human Subjects: A User Study

To evaluate the proposed GraphXAIN method, we conducted an online user
study similar to Martens et al. [28] and Baniecki et al. [2]. Twenty active
researchers and practitioners from the field of machine learning (ML) and data
science (DS) participated in the evaluation survey. Seventy-five percent of the
participants are academic ML researchers, and the remaining 25% are industry
ML /DS practitioners. Regarding professional experience, 30% of the participants
had between 0 and 2 years of experience, 50% had 3 to 5 years, 15% had 6 to
10 years, and 5% had more than 10 years of experience in the domain. The sur-
vey was distributed to the authors’ network, however, none of the respondents
participated in developing the proposed method, ensuring that the responses are
valid and unbiased.

The purpose of the survey was to evaluate the impact of the proposed
GraphXAIN method in comparison with the current state-of-the-art GNN XAT
method, GNNExplainer [47], to explain GNN predictions. Six randomized GNN
explanation examples were shown to each participant sequentially. After view-
ing each singe XAI method, participants are asked to rate their agreement with
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Table 1. Survey Questions for Assessing Explainable AT Method Perceptions

Dimension Question

Understandability|Q1: I find the explanation understandable.

Trustworthiness |Q2: This explanation increased my trust in the
model’s prediction.

Insightfulness Q3: The explanation helped me gain insight into
the factors influencing the
classification /regression.

Satisfaction Q4: I am satisfied with the explanation’s clarity
and thoroughness.

Confidence Q5: I feel confident in the
classification /regression after reviewing the
explanation.

Convincingness |Q6: I find this explanation convincing in
justifying why node X is classified as
Y /predicted to have a regression score of Y.

Communicability |Q7: I find this explanation method suitable for
communicating the model’s predictions to others.

Usability Q8: If T work with Graph Neural Network models
in the future, I am likely to use this explanation
method to explain the model’s prediction.

eight questions on a five-point Likert scale, ranging from “Strongly disagree” (1)
to “Strongly agree” (5), where higher scores indicate stronger agreement or pref-
erence. Each participant was presented with three examples drawn from each
of the classification and regression scenarios: 1) GNNExplainer [47] explanation
comprising a subgraph and feature importance attributions, 2) GraphXAIN,
which provides a narrative explanation of the model’s prediction, 3) a combined
approach that integrates GNNExplainer and GraphXAIN. The order of method
presentation was randomized.

Respondents evaluated XAI methods across eight dimensions: understand-
ability, trustworthiness, insightfulness, satisfaction, confidence, convincingness,
communicability, and usability. Table1 presents the survey questions used to
measure each dimension. The following section presents the theoretical princi-
ples for selecting these evaluation criteria.

— Understandability - In Hoffman et al. [17], Miller [32], and Mohseni et al. [34],
the understanding of XAl explanation is declared to be a crucial part of the
XAI methods to ensure understandability of the rationale behind the model’s
predictions.

— Trustworthiness - Hoffman et al. [17] note that fostering appropriate trust is
one of the core objectives of explanations, underscoring the need to assess
whether an explanation effectively increases trust.
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— Insightfulness - Riberio et al. [39] declare that a good explanation should
provide additional insights into model predictions.

— Satisfaction - Miller [32] investigates the cognitive and social dimensions that
render explanations meaningful to humans, positing that, among others, prac-
titioner and user satisfaction is fundamental to effective explanatory strate-
gies.

— Confidence - Ribeiro et al. [38] argue that explanations should enable indi-
viduals to gain confidence in the model.

— Convincingness - Miller [32] underscores that an explanation must be persua-
sive to the user.

— Communicability - Miller [32] argues that the information exchanged between
the explainer and the explainee should align with the general rules of cooper-
ative conversation proposed by Grice [12], ensuring that it remains relevant
to the explainee’s context and builds upon their prior knowledge.

— Usability - Miller [33] argues that individuals evaluate explanations accord-
ing to pragmatic influences of causality, which encompass criteria such as
usefulness.

Table 2 presents the survey results along with the statistical significance of
Wilcoxon signed-rank tests assessing the differences between XAI methods, con-
ducted at the o = 0.05 significance level.

In a preference comparison between GNNExplainer (presented in Table 2
as the “GNNExp” method) and GraphXAIN, the latter is preferred in four
dimensions (understandability, satisfaction, convincingness, and communicabil-
ity), while no statistically significant differences are observed in the remaining
four dimensions.

Evaluation of the GraphXAIN alone against a combined explanation that
integrates GNNExplainer’s outputs with the GraphXAIN narratives (presented
in Table2 as the “Combined” method), only one dimension, communicability,
shows a statistically significant difference, with the combined method being pre-
ferred. For the remaining seven dimensions, no significant differences between
GraphXAIN and the combined approach occur, indicating the power and the
need of narrative explanations to explain graph models.

Moreover, across all eight investigated dimensions, the combined method is
always preferred over the GNNExplainer method. This finding suggests that
incorporating GraphXAIN’s narrative component into the technical subgraph
and feature importance explanations consistently enhances the overall quality of
the explanation.

Furthermore, 95% of participants (19/20) answered “Yes” to the question,
“Do you think that the narratives are a useful addition to explaining the GNN
model’s predictions?”. This response aligns with the observed advantages of the
alone and combined approaches over the stand-alone GNNExplainer outputs.

Additionally, at the o = 0.05 significance level, no statistically significant
differences are identified between responses over the NBA and IMDB datasets
across any condition or question. Overall, these findings indicate that partici-
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Table 2. Pairwise post-hoc Wilcoxon signed-rank tests comparing XAI methods for
each dimension question. Higher values indicate increased preference on a 5-point Lik-
ert scale (1-5). “GNNExp” refers to GNNExplainer [47], while “Combined” refers to
combined GNNExplainer and GraphXAIN outputs. Columns M; and M report the
mean + standard deviation (SD) of participants’ preferences, A(Ma2, M1) is the mean
difference (with SD). Bonferroni-corrected p-values are reported (* indicates statistical
significance at a = 0.05). Bolded methods indicate statistically significant preferences.

Dimension Method Comparison My 1T [M27 |A D
(M1 vs M>) (M2, M)
Understandability GNNExp vs GraphXAIN (3.310.8/4.340.5/0.954+1.02 0.004*
GNNExp vs Combined 3.340.8/4.440.6/1.0540.94 0.003*
GraphXAIN vs Combined 4.310.54.440.6/0.1140.58 1.000
Trustworthiness |GNNExp vs GraphXAIN 3.340.713.840.6/0.421+1 .03 0.254
GNNExp vs Combined 3.340.714.240.6/0.9210.94 0.005*
GraphXAIN vs Combined 3.840.6/4.240.6/0.510.84 0.072
Insightfulness GNNExp vs GraphXAIN 3.940.64.240.4/0.28 1062 0.178
GNNExp vs Combined 3.940.64.440.60.510.63 0.018%*
GraphXAIN vs Combined 4.240.44.4140.60.2210.50 0.251
Satisfaction GNNExp vs GraphXAIN (3.0+1.113.840.6/0.8541.29 0.045*
GNNExp vs Combined 3.0+1.1/4.040.6/1.0541.0 0.003*
GraphXAIN vs Combined 3.840.6/4.0+0.6/0.2+0.70 0.586
Confidence GNNExp vs GraphXAIN 3.040.9/3.6+0.7/0.62+1.09 0.085
GNNExp vs Combined 3.040.93.940.8/0.88+1.17 0.015*
GraphXAIN vs Combined 3.640.713.940.8/0.25+£1.02 0.786
Convincingness |GNNExp vs GraphXAIN [3.21¢.713.8+0.5/0.6210.96 0.030*
GNNExp vs Combined 3.240.7/4.1+£1.0/0.9+1.15 0.021*
GraphXAIN vs Combined 3.840.84.141.0/0.28+1.18 0.314
Communicability |GNNExp vs GraphXAIN [2.81103.840.8/1.041.39 0.020*
GNNExp vs Combined 2.841.0/4.240.7/11.4541.22 0.001*
GraphXAIN vs Combined [3.810.54.2140.7/0.4510.63 0.019*
Usability GNNExp vs GraphXAIN 3.240.913.641.0/0.35+£1.43 0.284
GNNExp vs Combined 3.240.9/4.040.8/0.7840.9 0.008*
GraphXAIN vs Combined 3.641.04.040.8/0.4241 04 0.541

pants’ ratings do not differ between the presented scenarios representing different
graph predictive tasks.

Although the sample size is modest, the survey findings demonstrate that
GraphXAIN consistently outperforms the current state-of-the-art graph expla-
nation method [47], serving as a valuable addition to improve understanding,
trust, insightfulness, satisfaction, confidence, convincingness, communicability,
and usability.
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7 Conclusion and Future Work

In this work, we introduced GraphXAIN, a novel method that transforms techni-
cal subgraph and feature importance explanations into coherent natural language
narrative explanations of Graph Neural Network’s (GNN) prediction. GraphX-
AIN is a graph data-agnostic, model-agnostic and explainer-agnostic approach
that complements traditional graph explainer outputs with the use of Large Lan-
guage Models (LLMs). Results of LLM-generated narrative explanations for both
classification and regression tasks on real-world datasets demonstrate that these
narratives provide clearer insight into the predictive processes of GNN models,
making them more accessible to practitioners. GraphXAIN method addresses
a significant gap in the current Explainable AI (XAI) field by moving beyond
technical and descriptive outputs by offering intuitive, story-like explanations
that enhance comprehension and trust.

A user study conducted among practitioners highlights the advantages of
GraphXAIN over the current state-of-the-art graph XAI method, GNNExplainer
[47]. At the a = 0.05 level, the GraphXAIN significantly improves the explana-
tion’s understandability, satisfaction, convincingness, and suitability for commu-
nicating the model’s predictions. Furthermore, when the GraphXAIN narrative
is combined with the GNNExplainer output, the all eight measured dimensions
of the explanation (understandability, trustworthiness, insightfulness, satisfac-
tion, confidence, convincingness, communicability, and future usability) show
significant improvements compared to using GNNExplainer alone, indicating
that integration of the XAI Narratives with subgraph and feature importance
enhances user’s perception of the explanation. Moreover, in seven out of eight
measured dimensions, the preferences of GraphXAIN explanations alone do not
differ from the combined approach (subgraph, feature importance and the nar-
rative), thereby even more strengthening the power and need for the narrative
explanations. Notably, 95% of participants indicate that GraphXAIN is a valu-
able addition to the explanation of GNN predictions. The study result indicates
that explanatory narratives, alone or as a compliment to technical outputs of
graph XAI methods, result in the improvement of the general perception of the
explanations. Therefore, GraphXAIN may offer a solution not only for Al prac-
titioners but also for domain experts and end users in fields where transparency
and understanding are necessary, such as medicine (for clinicians and patients)
or finance (for credit analysts and loan applicants).

In future work, the use of quantitative metrics will be essential for a more
thorough and objective assessment of the quality of generated narrative expla-
nations, as these narratives may happen to be unfaithful since LLMs are prone
to hallucinations [8,19,49]. In particular, an assessment of the prevalence and
impact of errors, in conjunction with the completeness and soundness metrics
introduced in [49] and the faithfulness and assumptions metrics proposed in
[19], could measure the alignment of the generated narratives with the original
explanations. The issue of hallucinations can also be addressed by integrating
our approach with retrieval-augmented generation (RAG) methods designed for
graphs such as G-Retriever [14]. G-Retriever uses a RAG approach on textual
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graphs, ensuring that the answers are retrieved from the original graph, which
decreases the hallucination and leads to a more robust response. However, we
also emphasize that the central aim of this study is to demonstrate the strength
and feasibility of LLM-generated narratives for graphs as an explanation method
and leave their further optimization for future work.
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A Examples of XAI Explanations in Natural Language
for GNN Models

A.1 GraphXAIN

In this section, we present more examples generated by the GraphXAIN method.
Figure4a and Fig.4b provide further insight into the interpretability of the
GNN’s model prediction by presenting coherence narratives, which demonstrates
the GraphXAIN’s consistency across a range of randomly sampled nodes for
both node classification and node regression tasks. The examples showcase the
explanatory depth of GraphXAINs in capturing the reasoning behind the GNN
model’s predictions.

In the truncated subgraph visualisation presented in Fig. 4a, GNNExplainer
is instructed to reduce the subgraph to the seven most influential nodes according
to the edges’ weight importance. As a result, this process occasionally results in
disconnected nodes within the truncated subgraph, as GNNExplainer prioritises
node importance over connectivity in the simplified view. Consequently, these
subgraph representations can appear more unintuitive or fragmented. A comple-
mentary natural language narrative is therefore argued to be essential to bridge
these interpretative gaps, providing end users with a coherent understanding of
the GNN model’s final prediction, regardless of the connectivity of the subgraph.

A.2 Natural Language Counterfactual Explanations for Graphs
Using Large Language Models (Giorgi et al., 2024)

This section presents three examples of textual explanations proposed by Giorgi
et al. [10] for counterfactual explanations of node classification using a GNN
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Feature importance for top 7 features
Personal Fouls 0.766

Points Scored 0.764

Field Goals Made o.755

Team Wins 0.750

0.0 01 02 03 04 05 0.6 07 08

Feature Importance
GraphXAIN for node 379

"The model predicted that the NBA player at node index 379 falls into the "Low Salary" category based on key
performance metrics and social connections with other players. The player's high number of personal fouls suggested
a possible impact on the player's effectiveness within games, which, combined with fewer field goals made and
attempted, might indicate lower scoring contributions compared to peers. Notably, the player's offensive real plus-
minus was quite high, placing the player in the upper percentile, which would typically indicate a strong offensive
presence, but this positive aspect may have been counterbalanced by other factors or perceived inconsistencies. A
pivotal role is also played by the player's position, as being a "Small Forward"—which is less frequently associated
with a high salary—can shape salary expectations.

'The subgraph of related NBA players provides another layer of context for this prediction, showing that the player has
substantial Twitter interactions with those labeled as having low salaries. These connections, especially prominent with!
strongly influential connections like nodes 165 and 18, may suggest similar performance or recognition levels among
peers, impacting salary perceptions. The subgraph edges, which measure the weight of influence on the player's
salary prediction, highlight how these relationships reinforce the low salary prediction by associating with other low-
salary peers. Collectively, these features and relationships paint a comprehensive picture, grounding this prediction in
both individual performance and social dynamics within the NBA network."

(a) GraphXAIN for prediction for the NBA player (node 379).

Feature importance for top 7 features

111: Taxi Driver 921: Inside Man
Rating: 8.3 Ratlng 7.6

The Sllence of Dellcatessen Meta_score
the Lambs Rating: 7.6
Rating: 8.6 Duration

Starl_appearances

Director

~—~._ 936:Unlong

936 dimanche de Certificate
fiangailles
Rating: 7.6 Released_Year
95: Amélie Gross
e Predicted: 0.00 0.10 15 020
7.92 Feature Importance
GraphXAIN for node 95

"The Graph Neural Network model predicted a score of 7.92 for the movie "Amélie" (node index 95) in its task of
estimating an IMDB rating based on various features and relationships with other movies. "Amélie's" director, Jean-
Pierre Jeunet, is a significant factor in the prediction due to his well-regarded filmography, which often yields positive
critic reviews. The movie's Metascore also contributes notably, although it is lower than many in the industry, indicating
that other factors helped bolster the prediction. The extensive audience engagement, with a high number of votes,
underscores the film's popularity, probably influencing the prediction towards a favorable outcome.

The Gross revenue adds weight to the prediction, suggesting commercial success and audience reception aligned

ith a higher rating. Released in 2001, "Amélie" falls within a time when many classic films emerged, possibly aiding
its favorable standing. The film's universal classification (U) suggests widespread accessibility, aligning with the
positive prediction. The strongest connection in the movie's network comes from "The Silence of the Lambs," a highly
rated film, reflecting the shared actor network's powerful influence—emphasizing the social network effects within this
dataset. Overall, "Amélie's" narrative charm, strong industry connections, and these diverse features collectively
contribute to its predicted rating."

(b) GraphXAIN for prediction for the movie “Ameélie” (node 95).

Fig.4. LLM-generated GraphXAINs (bottom parts of the images) complements
GNNExplainer’s [47] subgraphs and feature importance outputs (top parts) in explain-
ing the GNN’s predictions.
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model trained on the Cora dataset. The Cora dataset is a citation network
dataset in which nodes represent research papers, and edges denote citation
relationships, with the task being to classify each paper into one of seven cate-
gories. Since the authors do not provide any output examples in their article, the
examples presented below are taken from the article’s official GitHub repository.
These examples are not selectively chosen but represent the first three expla-
nations generated by the best-performing model, as reported in the paper and

available in the article’s official GitHub repository*:

“The target node (node 15) was originally classified as ‘Probabilistic_ Meth-
ods’ in the factual graph. However, in the counterfactual graph, the classi-
fication changes to ‘Reinforcement Learning’. Despite the features of node
15 remaining identical, the classification shifts due to changes in the clas-
sification of its meighboring nodes. Specifically, nodes 4 and 12, which were
previously classified as ‘Probabilistic_ Methods’, are now reclassified as ‘Rein-
forcement _Learning’. This change in the neighborhood context strongly influ-
ences the classification of node 15, leading to its reclassification as ‘Reinforce-
ment_ Learning’. The only neighbor that remains consistent is node 19, but
its influence is outweighed by the changes in nodes 4 and 12. Thus, the pri-
mary factor driving the change in classification is the altered classification of
neighboring nodes, rather than any intrinsic change in the features of node
15 itself.” (Line 4)

“In the factual scenario, Node 3 is classified as ‘Theory’ and is connected to
Nodes 0, 9, 10, and 13. In the counterfactual scenario, Node 3 is reclassified as
‘Case_ Based’ and is only connected to Node 10. The change in classification
is influenced by the loss of connections to Nodes 0, 9, and 13, and the retention
of a connection to Node 10, which is classified as ‘Case_Based’.” (Line 8)
“In the factual scenario, Node 0 is classified as ‘Theory’ and is connected to
both Nodes 1 and 4. Node 1 shares similar features with Node 0 and is also
classified as ‘Theory’. However, Node 4, which is classified as ‘Case_ Based’,
introduces a conflicting influence. In the counterfactual scenario, the connec-
tion to Node 4 is removed, isolating Node 0 from the ‘Case_ Based’ influence.
As a result, Node 0 is reclassified as ‘Case_Based’, reflecting the reduced
influence of ‘Theory’ nodes and the absence of conflicting ‘Case_ Based’ con-
nections. This counterfactual explanation highlights how the removal of a sin-
gle connection can significantly alter the classification of a node, providing
insight into the decision-making process of the graph-based model.” (Line 12)

According to Dahlstrom [6] and our proposed definitions, these examples

constitute an XAl Description rather than an XAI Narrative.

* https://github.com/flaat /llm-graph-cf/blob/main/data/results/cf-gnn_ Qwen2.5-
14B-Instruct-GPTQ-Int4 cora_Response.json.
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A.3 Explaining Graph Neural Networks with Large Language
Models: A Counterfactual Perspective for Molecular Property
Prediction (He et al., 2024)

Presented below are three examples of textual explanations generated by the
method proposed by He et al. [15] for counterfactual explanations in the context
of molecular property prediction using a Graph Neural Network (GNN) model
trained on a chemical molecule dataset. This dataset comprises molecular struc-
tures in which nodes represent atoms and edges signify chemical bonds, with the
primary objective being the prediction of specific molecular properties. These
three examples are the only instances provided by the authors in their article
[15]:

“This molecule contains a cyclohexane ring, a dithiane ring, a ketone group,
and a thiocarbonyl group, in which the ketone group may be the most influen-
tial for AIDS treatment.” (Page 3, Figure 2)

— “The molecule contains hydrozylamine, cyclohexane, sulfone, and thioether
functional groups, in which hydroxylamine may be the most influential for
AIDS treatment.” (Page 4, Figure 4)

—  “This molecule contains a cyclohexane ring, a dithiane ring, a ketone group,
and a hydrazine group, in which the hydrazine group may be the most influ-
ential for AIDS treatment.” (Page 6, Figure 5)

Again, the explanations presented by He et al. [15] are delivered in a context-
free and fact-based manner without illustrating underlying relationships or
cause-and-effect relationships, thereby categorising them as XAI Descriptions
rather than XAI Narratives.

A.4 TAGExplainer: Narrating Graph Explanations
for Text-Attributed Graph Learning Models (Pan et al., 2024)

Presented below are three instances of textual explanations proposed by Pan et
al. [36] for Text-Attributed Graph (TAG) learning models using their TAGEx-
plainer method. The authors applied TAGExplainer to the Cora, DBLP, and
Book-History datasets to generate natural language explanations that incorpo-
rate elements of narrative communication. These three examples are the only
instances provided by the authors in their article, each corresponding to the
aforementioned datasets, respectively [36]:

“The classification of the ROOT node into the ‘Reinforcement Learning’ cat-

egory can be explained as follows:

e ROOT mentions reinforcement learning, learning algorithms, and hier-
archical control structures indicating that it focuses on reinforcement
learning methodologies and their applications. - Node-1 discusses transfer
learning in reinforcement learning, highlighting how learning agents can
adapt to multiple tasks.
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e Node-1.1-Node-1.8 provide more context about various reinforcement
learning architectures and approaches, including modular Q-learning and
hierarchical reinforcement learning.

e Node-2 focuses on learning in continuous domains with delayed rewards, a
pertinent aspect of reinforcement learning, particularly in real-world appli-
cations.

e Node-2.1 discusses generalization in reinforcement learning using neural
networks, which is relevant but less directly tied to the prediction.

e Node-3: This node discusses the need for hierarchies within control sys-
tems and the improvements in nested Q-learning, which are highly relevant
to the classification label.

In summary, the classification of the ROOT node into ‘Reinforcement
Learning’ is well-supported by the strong presence of key reinforcement
learning terms within the node itself and its direct connections to Nodes
1, 2 and 3, which also focus on reinforcement learning methodologies.”
(Page 10, Figure 4b)
— “The classification of the ROOT node into the ‘Cloud computing’ category
can be explained as follows:

e ROOT: The presence of keywords such as ‘user’, ‘interfaces’, and ‘service-
oriented approach’ indicates that the paper is focused on topics central to
cloud computing, particularly how users interact with cloud services and
the modular nature of these services.

e Node-1: While Node 1 discusses ‘graphical user interfaces’ and ‘domain-
specific languages’, which are relevant to cloud computing, it is slightly
less directly related to the core concepts of cloud computing compared to
the ROOT node.

e Node-1.1: This node emphasizes ‘user interface requirements’ and
‘requirements analysis’, which are crucial for developing effective cloud
applications that meet user needs.

e Node-1.2: This node focuses on ‘stereotypes’ and ‘domain-specific terms’,
highlighting the importance of understanding user interactions and the
context in which cloud services are utilized.

In summary, the classification of the ROOT node into ‘Cloud computing’
is well-supported by the presence of key terms related to user interaction
and service-oriented architectures. The direct connection to Node 1, which
discusses user interfaces, further reinforces this classification, while the
additional insights from Nodes 1.1 and 1.2 emphasize the importance of
user-centric design in cloud computing applications.” (Page 16, Figure 6b)
— “The classification of the ROOT node into the ‘Europe’ category can be
ezxplained as follows:

e ROOT: The presence of keywords such as ‘cambodia’, ‘year’, and ‘transla-
tion’ indicates a context that may involve historical or cultural discussions
relevant to Europe, particularly in terms of colonial history and cultural
exchanges. The mention of ‘english’ and ‘french’ highlights the linguistic
dimensions that are significant in Furopean contexts.
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e Node-1: This node discusses Michael D. Coe, an anthropologist specializ-
ing in Southeast Asia and the Khmer civilization. While it provides his-
torical context, the focus on Southeast Asia may dilute its direct relevance
to Europe. However, the terms ‘civilizations’ and ‘ancient’ could connect
to Furopean historical interests.

e Node-2: This node is more directly relevant as it discusses the destruction
of Cambodia during the Nixon-Kissinger era, a significant historical event
that involved European powers’ interests in Southeast Asia. The emphasis
on ‘destruction’ and ‘cambodia’ alongside key historical figures suggests a
critical perspective on the geopolitical dynamics involving European coun-
tries.

In summary, the classification of the ROOT mnode into ‘Europe’ is sup-
ported by the presence of key terms that indicate a historical and cultural
context relevant to Furopean interests, particularly through the stronger
connection found in Node-2.” (Page 16, Figure 7b)

The TAGExplainer approach applies to text-attributed graphs only and does
not provide an explanatory subgraph or feature importance scores.
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Abstract. A scoring list is a sequence of simple decision models, where
features are incrementally evaluated and scores of satisfied features are
summed to be used for threshold-based decisions or for calculating class
probabilities. In this paper, we introduce a new multi-class variant and
compare it against previously introduced binary classification variants for
incremental decisions, as well as multi-class variants for classical decision-
making using all features. Furthermore, we introduce a new multi-class
dataset to assess collaborative human-machine decision-making, which is
suitable for user studies with non-expert participants. We demonstrate
the usefulness of our approach by evaluating predictive performance and
compared to the performance of participants without AI help.

Keywords: machine learning * decision support -+ scoring systems -
user study

1 Introduction

Machine Learning (ML) methods have achieved remarkable accomplishments
in various application domains. While complex and powerful methods like deep
neural networks offer state-of-the-art predictive accuracy, they lack transparency
and inherent explainability, which are key requirements for high-stakes decision-
making [3]. In general, there are two competing approaches navigating the
accuracy-explainability trade-off in ML [2,4]: On the one hand, complex models
may be accompanied by simplistic post-hoc explanation methods like LIME [39]
and SHAP [28]. These can be applied to any predictive and complex model and
help mitigate some lack of transparency by explaining individual predictions.
Yet, they fail to provide full transparency.
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An alternative approach is the use of less complex models that are genuinely
interpretable, also known as ante-hoc explanation. Corresponding models have
a restricted, simple structure that humans can inspect, offering a global under-
standing of how different features influence the model predictions without the
need for additional explanation. This inherent property of explainability makes
them an appropriate choice for decision support in high-stakes domains [42] when
human understanding and accountability are required.

One of the most prominent model classes of this kind are scoring systems
with a long-standing tradition in clinical decision-making [38|. Simply put, they
assign an integer-valued score to each (binary) feature, and a decision is made by
comparing the sum of all scores for present features to a threshold. Recently, the
need for situation-adapted decision models of such kind has been addressed with
Probabilistic Scoring Lists (PSL) [15], for which a prediction can be made with
any prefix of features in an ordered list. This allows for adjusting the decision
process by stopping the feature acquisition once a prediction can be made with
sufficient confidence for the decision context at hand. A PSL is a simple model
that can be handled by lay persons [19].

While these methods have shown promising performance for the binary case,
they have not yet been adapted to polychotomous decision situations in which
three or more options are considered. However, many real-world applications
are multi-class problems, at least if there is more than one option available (in
addition to “do nothing”). For instance, in many medical situations, there is
more than one treatment available in addition to “do nothing”, which makes this
scenario already a multi-class problem.

In this paper, we introduce Multi-class Scoring Lists (MSL), an extension of
PSL to accommodate multi-class predictions. We evaluate the MSL’s predictive
performance against various baselines on benchmark datasets, and we observe
a favorable compromise between accuracy and interpretability. Additionally, we
introduce a new dataset rooted in the sports domain that is particularly well-
suited for studies on human-Al interaction. To this end, we have conducted a
first study to compare participants’ predictive performance on the dataset with
the introduced model class.

2 Related Work

Scoring systems are widely utilized in medical applications, including the assess-
ment of atrial fibrillation [27], pancreatitis [32], pneumonia [21], strokes [12], and
infants [52]. While their simplistic architecture may result in reduced accuracy,
their transparency and ease of use allow for application without computational
support. Additionally, such transparency and interpretability can lead to higher
acceptance. However, the potential increase in cognitive load compared to so-
called “black-box” decision support systems should be considered to avoid causing
the opposite effect [29,36].

Traditionally, scoring systems have been manually designed based on domain
expertise. However, recent advancements have introduced data-driven methods,
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such as Supersparse Linear Integer Models (SLIM) and RiskSLIM, which employ
mixed-integer programming (MIP) [46,47], as well as Interval Coded Scoring
(ICs) [5,7,8].

Although these models have demonstrated effectiveness in binary decision-
making, there remains a need for scoring systems capable of handling multi-class
classification. Established scoring systems are either considering the pure binary
setting, like the PERC rule [22], or scenarios in which multiple classes exhibit
an ordinal structure, most notably risk classes in the clinical setting, e.g., the
SAPS or APACHE scores [23,30]. In the first case, the total score is compared
to a threshold to make the decision, while in the latter case, the risk classes
correspond to predefined intervals, and membership is determined by checking
in which interval the total score falls. However, little attention has been paid
to the multi-class setting with nominal categories, and only a few proposed
methods exist. Rouzot et al. propose a one-versus-rest decomposition on top of
SLIM for solving multi-class classification problems [41]. While this is a natural
approach to transforming a binary into a multi-class classifier, the resulting
decomposition has one classifier per class. The more recent approach, MISS,
uses a multinomial approach instead [13]. Many existing multi-class approaches
leverage mixed-integer nonlinear programming for model learning [13,41].

Despite their potential, both binary and multi-class scoring models face a crit-
ical limitation: they become inapplicable when essential feature data is unavail-
able. This challenge arises in scenarios where data acquisition is costly or when
decision-makers operate under time constraints, limiting the available informa-
tion [6,45].

To address these constraints, adaptive decision support frameworks are
required. One approach involves decision lists, which apply predefined rules for
prediction. If no applicable rule is found, the decision-making process is deferred
to the next rule in the sequence [40]. Heid et al. [18] propose a framework of
complexity-ordered catalogues of models, where each successive model incorpo-
rates an additional rule compared to its predecessor, along with a methodol-
ogy for learning these models. Expanding on this concept, probabilistic scoring
lists have been introduced [15]. These systems, structured as sequentially depen-
dent scoring models, function similarly to decision lists but provide probabilistic
rather than deterministic predictions, akin to RiskSLIM.

3 Multi-class Scoring List

We consider a decision-making scenario in which decisions have to be made for
varying contexts that are specified in terms of binary features F = {f1,... fx }.
Moreover, decisions are incremental in the sense that the concrete values x; €
{0, 1} of these features are acquired in a stagewise fashion, one after another, in
a prespecified order. At each of these stages 1,..., K, the decision-maker (DM)
has the option to make a decision immediately or gather additional evidence in
terms of further feature values, until all features are exhausted. When learning
an arbitrary set of classifiers, e.g., logistic regression models, those models do
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not share any parameters, which makes it impossible to carry over partial results
from previous stages. Decision lists on the other hand are a joint model and can
also be interpreted as a sequence of models with coherence constraints.

The multi-class scoring list (MSL) is a decision support model tailored to
this scenario and is formally defined as follows:

Definition 1. A multi-class scoring list (MSL) over candidate features F
and score set S C Z is a triple h = (F,S,b), where F = (f1,..., fx) is a list
of (distinct) features from F, S € SC*K is a score matriz and b € S¢ is a
bias term, where ) is the set of classes and C = |Y| is the number of elements
therein.

At prediction time, stagewise decisions are formed in the following manner.

— Let s®) = (sgk), R sg)) denote the cumulative score vector at stage k, with

s&k) the score of class c. At stage k = 0, where no features have been evaluated
yet, the scores are formed by the bias term

s —=p

that can be interpreted as a general tendency towards a certain decision when
no information is available.
— For subsequent stages k > 0, the cumulative scores are given by

st = k=D 4§ xp, Yeey

where S, j, is the score associated with class ¢ at stage k (feature fi) in the
score matrix S.

— After computing the cumulative class scores, the prediction for stage k£ can
be conducted by computing the argmax set of these scores

= argg}ax sk (1)

Note that the argmax of the cumulative scores may indeed be ambiguous due
to the discrete nature of the scores. Hence, the prediction ¢ can be set-valued,
if several classes are scored maximally likely. This is a natural way for the
predictor to express its uncertainty about a predictive outcome [31].

— Another practical interpretation of the cumulative class scores s&k) is to use
them as logits for the softmax function. This way, we can obtain probabilistic

predictions

ox ( (k))

P\ Sc

De = oY Yee) (2)
ZC’E)} exp <Sc’ )

where p. denotes the estimated probability for class ¢. Therefore, multiple

maximal scores in the discrete decision scenario will be converted into equal
predictive probabilities in the probabilistic setting.
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— At every stage k, the decision maker can either exit with decision (1) or
continue the process and acquire the next feature fiy1. This question will
mainly be answered on the basis of the probability estimates (2), which pro-
vides information about the confidence in the decision (1).

Table 1. Example of a multi-class scoring list for football player classification. The
numerical features have been binarized through thresholding (The binarization thresh-
olds are as follows: Many shots > 0.55; Long Playing Time > 78.8; High Pass Success
Rate > 74.5; Many Aerial Duels Won/Match > 0.65; Tall Player > 183.5.). The model
was trained using a score set {0, £1,£2, £3} and Lo regularization of 107°.

Feature Forward | Midfielder | Defender | Goalkeeper
(Bias) 0 1 1 0
Many Shots 2 2 0 -3
Long Playing Time -3 -1 2 3
High Pass Success Rate -1 1 1 -1
Many Aerial Duels Won/Match 2 1 -3
Tall Player -1 -1 -1 2

Table 1 shows an exemplary MSL for classifying positions of football players.
The first row corresponds to the bias term: Here, the class forward and the class
goalkeeper have a score of 0, while midfielder and defender have a score of 1.
These bias scores, which are available before acquiring any feature values, hint
at the marginal distribution of classes. Overall, there are more midfielders and
defenders in a team than there are goalkeepers and forwards. The first feature
acquired is the average number of shots per match (second row). This feature
carries positive evidence for the classes forward and midfielder, no evidence for
defender, and strong negative evidence for goalkeeper. Again, this is intuitively
reasonable, as most shots are performed by players in offensive positions and
definitely not by goalkeepers. This can be continued until all features have been
consumed, and the final prediction is formed.

The MSLs score set S is specified in advance according to the DMs pref-
erences and typically comprises a set of small integers reflecting different lev-
els of “evidence” in favor or against a decision. For example, the score set
S = {0,41,+2, 43} distinguishes three levels of evidence: weak, medium, and
strong. Assigning a score of +1 to a feature then means that the presence of
that feature provides weak evidence in favor of a decision, whereas a score of —3
means strong evidence against that decision. Restricting the magnitude and num-
ber of admissible scores ensures that the resulting model is cognitively tractable
for a human expert. The influence of an individual feature can be immediately
understood and communicated, and in principle, predictions could even be made
without the help of computing devices.
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3.1 Connections to Other Interpretable Probabilistic Classifiers

Given the simple and inherently interpretable structure of MSL, one may won-
der how it distinguishes itself from other simple probabilistic classifiers. Most
notably, MSL resembles a multinomial logistic regression (MLR) with two major
differences: First, MLR has unbounded real-valued coefficients which are harder
to understand than integer-valued scores that stem from a small, predefined
score-set. Secondly, MLR does not provide stagewise predictions but uses the
full feature set for all predictions.

Another natural connection can be drawn to the Naive Bayes (NB) classifier,
which models the posterior probability of class ¢ given a feature vector x as

K
P(c|z) = P(c) H,;(lxz)ﬂ(xk B

Taking the logarithm on both sides yields

K
log P(c | ) = log P(c) + Zlog P(zy | ¢) —log P(x) (3)
k=1
which shows the relation to MSL. The log P(c) correspond to the bias term
b and the log-likelihoods log P(zy | ¢) in the sum correspond to the stagewise
class scores sgk). As P(x) is constant across all classes, it only serves to normalize
the values to form a valid probability distribution over class labels and can be
neglected.

Unlike MSL and MLR, NB can make predictions with any subset of fea-
tures, even without adhering to a predefined order, making it an interesting
choice for situated decision support. However, there are again two major disad-
vantages compared to MSL: The log-likelihoods in NB are not restricted to a
predefined score set, yielding the same disadvantages regarding score complexity
as MLR. Additionally, the probability estimates in NB are built upon the naive
assumption of conditional independence and are formed by normalization. MSL
can implicitly model feature dependencies by selecting scores that reflect the
combined influence of multiple correlated features on the predicted probability.

3.2 Learning Multi-Class Scoring Lists

Consider a standard supervised learning setting in which the data generating
process is characterized by a joint probability distribution P(x,y) over X x ).
Given a loss function (¢, y) that quantifies how different a prediction § is from
the true outcome y, the risk of a classifier h: X — ) is defined as

R(h) = E[¢ (h(z),y)] = / ((h(x).y) dP(z.y). (4)

As the distribution P(zx,y) is unknown, the true risk is substituted with the
empirical risk on observed training data Dyaim = {(x, y) }2_;:

Remyp(h) = %Zﬁ(h(wn),yn)
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In our listwise scenario, we are not considering a single model, but rather a
sequence of models h = (hy,...,hx) € HX, where H is an underlying hypoth-
esis space (in our case the set of scoring systems). The learning objective is to
find such a sequence of models, or decision list, that has minimal global risk
throughout the stages, i.e.,

h* € argmin R(hy) ® R(hs) ® --- & R(hk), (5)
heH
where @ is a suitable aggregation operator! (e.g., the sum).

It is important to note that an optimal decision list (5) does not necessarily
consist of elements hj that have minimal stagewise risk, as the stage-optimal
models may not constitute a valid MSL due to conflicting feature selections and
score assignments. Hence, the problem is not decomposable in the sense that
we could simply identify optimal models for the individual stages and combine
them into a decision list.

In the following, we propose a learning algorithm for inferring MSLs from
training data Dipain. The learning algorithm has to identify three components,
that is, the order of features F', the score matrix S, and the bias term b. Note
that this search space is rather large, precisely, the number of candidate MSLs
for a score set S, K features, and C classes is

K!. |S|(C-(K+1)) ,

as it consists of all possible feature permutations and score assignments. Needless
to say, an exhaustive search in such a huge space is not feasible. Thus, a heuristic
approach has to be employed, that does not consider all candidate solutions. A
natural strategy is to build the model bottom-up and stage by stage, starting
with an empty list, first identifying the bias term, and then adding locally optimal
features and score assignments for each stage consecutively.

An illustration of such a greedy forward selection procedure is given in Algo-
rithm 1. The function EVALUATE is used to compute a loss value for candidate
solutions, fully specified through F', S and b, given the training data Dy;,i,. The
core of the greedy forward selection is the loop starting in line 2, that continues
until all available features have been added to the MSL. In the first iteration,
the bias term b is identified by considering all possible b € S¢.

Afterwards, the subsequent stages are constructed: In each iteration, the
locally optimal extension of the current MSL is identified by selecting the feature
f € F and corresponding score vector s € S¢ that minimizes the loss achieved
on the training data in line 6. As there are |S|“ many possible score vectors and
|F| many remaining features, this step takes |S|” - |F| many calls of EVALUATE.
In the beginning, we start with the full feature set and have |F| = K, which is

! The learning algorithm we propose below is of heuristic (greedy) nature and does not
directly optimize a specific global risk. Therefore, the concrete form of @ is not that
important. The essential property assumed by the algorithm is the monotonicity of
@, which is naturally fulfilled by all meaningful candidates.
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reduced by 1 in each iteration, as features are being added to the MSL. This

results in

K(K+1)

2

overall calls of EVALUATE for identifying the entire MSL including the bias term.
The loss function ¢ can be instantiated with any meaningful loss that com-

pares a class label y with probability estimates. We choose the well-established

cross-entropy loss

|81 + 18|19 € O(K? -18]%)

where p,, is the predicted probability for the true class label y.

To further trade-off interpretability and performance, an Ls-loss of all scores
can be added to the cross-entropy loss as a regularizer. This yields models with
even smaller scores with often little to no expense in performance.

4 Football Player Dataset

Along with the MSL, we introduce a dataset containing the career statistics of
football players and their position (goalkeeper, defender, midfielder, and forward)
as the classification label. Although a classification of players to their positions
may not look like a very important problem, it provides distinct advantages in
experimental human-(X)AI interaction research.

In human-(X) AT interaction experiments, participants are often assigned clas-
sification tasks drawn from various datasets and task types, such as quiz question
answering [10], and playing chess moves [9]. While several well-known tabular
datasets exist for binary classification and regression in human-(X)AI experi-
ments (e.g., income [24], recidivism [49], or house pricing [43]), there is a lack
of comparable datasets for multi-class classification [26]. This gap is partly due
to the common practice of recruiting lay participants—often via crowdsourcing
platforms like Prolific—which necessitates easy understandable tasks to ensure
valid results.

In our view, popular multi-class datasets in the machine learning literature,
such as iris [11], wine [1], and heart [20], do not fully meet this criterion and
therefore cannot be as readily adapted for human-(X)AI research as the afore-
mentioned binary and regression datasets. Football, as the world’s most popular
sport, offers a clear advantage in this context. Its universal appeal ensures that a
diverse participant pool is already familiar with the game, enhancing both task
engagement and the reliability of study outcomes.

Our raw dataset comprises 5,449 active professional football players from
eight professional leagues?. It includes all players who were on their teams’ ros-
ters at the time of data collection. The dataset contains performance statistics
spanning each player’s entire career up to the time the dataset was compiled

2 England and Germany (1st and 2nd divisions), and the top-tier (1st division) leagues
in Spain, France, Italy, Portugal, the Netherlands, Russia, Turkey, and the USA.
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Algorithm 1: Greedy MSL

input : dataset Dirain , number of classes C,
set of all features F including the () for the bias term
the available scores S, loss function £ to evaluate a hypothesis
output : MSL model A
1 FS (), []
# While not all features have been used. For set difference and
inequality operators we treat F' as a set for ease of notation.
2 while F' # F do
# In the first iteration compute the bias term
3 if 0 ¢ F then
4 | b argmin,cgc {mvarvare ((), [],b)}
# Select all remaining features
5 F—F \ F

# Evaluate remaining features with all comb. of scores per class

6 f,8 argmin;cp o sc {EVALUATE (F Il (), {ﬂ ,b)}
7| F<F()
8 S |:S:|

S

9 return h = (F, S, b)

10 Function EVALUATE(F, S, b):

11 L+—0
12 for (x,y) € Dirain do
13 xp — x[F] /* Select features F of instance z */

# Matrix product of scores and selected features and bias
14 s« Sxr+b

15 D < SOFTMAX(S) /* Softmax probabilities acc. to Eq. 2 */
16 L L+ y)
17 return L

(11th November 2024). In addition to basic information such as name, national-
ity, age, height, and current team, the dataset provides a variety of performance
metrics, including the number of matches played, total minutes played, goals,
assists, yellow and red cards, shots, pass success percentage, aerial duels won
percentage, and each player’s primary playing position. To our knowledge, no
comparable dataset exists. Other publicly available football datasets typically
include information from only a single season or provide fewer performance indi-
cators.

Because some players occupy multiple positions (e.g., central defender or
defensive midfielder), various approaches to handling such cases are possible. For
our evaluation, we chose four broad categories—goalkeeper, defender, midfielder,
and forward. Players who could be assigned to more than one of these four
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Fig. 1. Correlation of classes and features in football player dataset.

categories were removed, leading to the exclusion of 1,582 players (29%). An
additional 256 players (6.6%) were removed due to missing data, resulting in
3,611 players in the cleaned dataset. Figurel presents the cross-correlation of
the classes and features on the dataset.

5 User Study

We conducted an online user study as a benchmark for the MSL. Our main objec-
tives were to assess how accurately participants perform the classification task
and gauge the dataset’s comprehensibility. Moreover, to determine the poten-
tial for automated decision support, we wanted to compare the performance of
human decision-makers with the performance of a data-driven approach, namely
a machine learning model.

We recruited 31 participants through the Prolific platform. Each participant
was asked to predict the playing positions of football players drawn from our
dataset. The study included detailed instructions, which were verified through
comprehension checks. Before making their predictions, participants completed
four Likert-scale questions assessing their familiarity with football. They were
then asked to describe their decision-making process during the classification
tasks, after which they received feedback on their responses.

The study included incentives: participants received a fixed payment of € 2
and an additional € 0.40 for each correct prediction. Only UK residents with
English as their native language were eligible to participate. Moreover, partic-
ipants were required to have a Prolific acceptance rate of at least 95% and to
have successfully completed more than 10 prior studies on the platform.
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The dataset was adapted specifically for this user study: we included only
players who had participated in more than 50 games, as those with fewer games
were particularly difficult to classify during a pretest. This criterion removed 54%
of the 3,611 players, but the remaining total of 1,957 players was still sufficient.
Additionally, we included a variable called Man of the Match, which cannot be
published for legal reasons.

Accuracy Distribution (N=31)

40%
---= Participant Mean Accuracy = 0.63
---= MSL Accuracy (12th Stage) = 0.83
30%
S 20%
<
- I I I I
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Accuracy

Fig. 2. Distribution of participants’ accuracy on the football dataset. The red line
shows the mean (63%), and the green line shows the accuracy of the 12th stage of an
MSL model (83%).

The remaining dataset contained 1,957 players, which was then split into
training and test sets. Only players from the test set were presented to partic-
ipants to allow a fair comparison. Each participant was randomly assigned 10
players, ensuring the selected positions mirrored the overall class distribution.
The participant were not made aware of this stratification.

Figure 2 shows the distribution of participants’ classification accuracies com-
pared to the MSL. For a fair comparison, the MSL is trained on the training
data and evaluated on the same test samples as the participants. Their aver-
age accuracy of 63% fell below that of the MSL model, which achieved up to
83%. These results demonstrate that meaningful classifications are possible from
humans (crowd-sourced workers), but also that performance can be improved
through data-driven methods based on machine learning. Pearson correlation
between accuracy and self-reported football knowledge (r = 0.246, p = 0.165)
suggests that greater familiarity with soccer did not necessarily lead to better
performance, although this may be due to self-selection effects in the study or
insufficient sample size.

Figure 3 further analyses the classification errors with the help of a confusion
matrix. In general, the participants make less precise decisions, however, many of
the participants can better judge whether a player plays in the forward position.
Albeit, this is not due to misclassifications, but is caused by many ties during
prediction. Since the MSL implementation is configured to resolve ties at random,
this yields to sub-par performance for ambiguous decisions. Yet, this is not an
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Fig. 3. Confusion matrices for classifier predictions (left) and participant classifications
(right). The matrices show the distribution of predicted labels for each true label, with
row summing to 1.

issue in a decision-support setting, as the classifier will yield both potential
classes, allowing the decision maker to disambiguate.

6 Evaluation

In this section, we provide an evaluation of our newly introduced classifier on
various datasets including the football player dataset presented in Sect.4. The
detailed experimental setup and implementation is publicly available® as is the
implementation of the learning algorithm?.

6.1 Datasets

To evaluate our classifier, we use well-known binary and multi-class datasets
from the UCI repository in addition to our newly introduced dataset.

Table 2 provides an overview of all used datasets. For all datasets we report
the entropy with respect to the base of the class count. A uniform class bal-
ance will, therefore, yield and entropy of 1. A dataset with 1:2 class-imbalance
will yield an entropy of 0.92. The three binary datasets stem from the medi-
cal domain. Note, that the ilp is therefore relatively unbalanced, with signifi-
cantly more positive samples (416) than negative samples (167). The multi-class
datasets include the previously introduced football player dataset as well as one
harder dataset: the customer segmentation dataset, also used in [13].

Since the MSL classifier can only work with binary features, all numerical
features have been binarized by calculating a threshold to minimize the expected
entropy over the two subsets, similar to splits of a decision stump. Note, that

3 https://github.com/TRR318/pub-msl.
4 https://github.com/TRR318 /scikit-psl.
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Table 2. Overview of the datasets used in the evaluation. Entropy is calculated to the
base of the number of classes of the dataset.

Name Classes|Instances Features Entropy|/ Task OpenML|Ref.
breast 2 116 9 0.99 Breast cancer 42900  [[35]
ilp 2 583 10 0.86 Liver disease 41945 |[37]
diabetes 2 768 8 0.93 Diabetes 37 [44]
wine 3 178 13 0.99 Wine origin 187 [1]
player 4 3611 11 0.90 Football player position/46764  |ours
segmentation/4 6665 9 1.00 Customer category [48]

binarization will be problematic if features do not exhibit a monotonic relation-
ship with the target classes. The (close-to) optimal split is selected by employing
a hierarchical search heuristic introduced in [15]. The categorical features in the
segmentation dataset were one-hot-encoded. The detailed dataset preparation
can be found in the experimental repository.

6.2 Setup and Baselines

To evaluate the out-of-sample performance of the classifiers, all experiments have
been conducted using Monte Carlo cross-validation (MCCV) with 20 splits where
% of the data was used for training and the remainder held back for evaluation.
The resulting performances have been aggregated and are reported by mean
performance and its 95% confidence interval. All experiments have been executed
on a single core of a Intel i7-9750H and parallelized over the folds. The total
training time of all experiments was more than 40h when parallelized over 12
cores and mostly dominated by the evaluation of MISS, one of our baselines. All
MSL instances were learned without regularization and configured with a score
set of {0,+1,+2,+3}. Some metrics, like accuracy, precision, or informedness,
do not rely on probability predictions but on discrete classifications. However,
the discrete nature of MSLs small score set will often yields ties, especially in
earlier stages of the classifier. For example, if only the bias term is evaluated (ref.
Table 1), there might be multiple classes with the same maximal total score. In
the case of such a set-valued prediction, we select one of the highest-scoring
classes uniformly at random.

In each evaluation, we train the PSL and MSL models on all features of the
training dataset. Both classifiers create a decision list, i.e., a sequences of decision
models for on a nested sequence of features. We call these models “stages”. All
other baseline models only create single decision models for a specific set of
features. Table 3 provides an overview of the training and evaluation method for
each stage and the baseline models. In the following paragraphs, we explain in
detail how those baseline models can be adapted to those stages.

In Sect. 3.1, we have shown the connection to NB. Using only the likelihoods
P(z | ¢) of the features available at stage k, NB can naturally be extended to
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Table 3. Overview of all models used in the evaluation. k£ is the number of features
used in the kth stage. modeli is the model at the stage k

Model Training|Training features/Evaluation per stage Consistent
PSL global |all global v
MSL global |all global v
NB global |all features of MSL v
MISS local k features of MISS, X
LR, RF, XGBjllocal features of MSLy features of MSLy X

the setting of scoring lists. Similarly to the MSL, the NB classifier is trained on
all features of the training dataset. At prediction time, we only use the same
features that the MSL has selected on that stage.

Grzeszezyk et al. [13] introduced learning algorithm for multinomial scoring
systems. Apart from the fact that miss cannot natively produce decision lists,
we consider this model closely related to our work. The MISS model at each
stage was trained with all features but parametrized to use exactly as many fea-
tures as the MSL did on this stage. Note, that this will not create a consistent
list of models, as selected features and assigned scores can be completely differ-
ent between each model. We have executed MISS with two different timeouts
throughout the experiments. MISSgy and MISS1gg¢ refers to a training timeout
of 90s, and 30 min vice-versa.

Finally, we have selected three additional models as the baseline that have
been trained and evaluated on the same subset of features that the MSL selected
on the stage: Logistic Regression (LR), Random Forest (RF), and XGBoost
(XGB). Overall, we can see that MISS has the largest amount of freedom of
all models with respect to feature selection, as only the number of features is
dictated by the MSLs stage.

To evaluate our model, we rely on two metrics: accuracy (classification
rate) and expected calibration error (ECE). While the classification rate (frac-
tion of correct predictions) is a standard measure of the correctness of the
learner’s final (deterministic) decisions, calibration aims to assess the model’s
probability estimates. Here, we adopt a standard notion of classifier calibra-
tion called confidence-calibration: A probabilistic classifier producing predictions
p(x) = (p1(x),...,pc(x)) is (confidence-)calibrated, if

P(y = argmax p;(z) | maxp;(z) = a) = a

for all « € [0,1]. In words, if the model reports a-confidence in its decision, i.e.,
the probability predicted for the (presumably) most probable class is «, then this
decision is indeed correct with probability «. For example, among all decisions
for which the model reports a confidence of 80%, indeed 80% of the cases are
correct. While this notion of calibration can be criticized (e.g., because it does
not condition on the instance x itself), it does appear useful from the point of
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view of explainability and informed decision-making. In particular, it provides
reasonable support for the stopping condition: A calibrated confidence at stage
k of the decision process provides the decision maker with a clear idea of how
safe or risky it might be to stop and make a final decision at that stage.
Practically, as ground-truth probabilities cannot be observed in the data,
the calibration of a model is measured in terms of the expected calibration error
(ECE), which is based on the partitioning of the unit interval into a set of bins
(intervals) By, ..., By,. Formally, ECE is then defined as follows [14]:

ECE=Y_ % lacc(B;) — conf(B;)], (7)

Jj=1

where N is the number of data points, |B;| is the number of points falling in
bin B;, acc(By) is the fraction of points in bin B; for which the model predicted
correctly (i.e., the accuracy in that bin), and conf(B;) the average confidence
reported by the model for points in B;. We rely on the implementation of Kumar
et al. for an unbiased estimate of the ECE [25].

6.3 Classification Accuracy

Binary classification problems can be interpreted in two ways: Either as the
presence of absence of the positive label or as a genuine two class problem. This
allows comparing the PSL model, which can only make predictions towards the
positive class and the MSL which collects evidence towards all alternative classes.
Recall, that Naive Bayes and MSL operate on the same features at prediction
time.
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Fig. 4. Classifier accuracy across different stages for all binary datasets. The shaded
regions represent confidence intervals of the mean.

Overall, the predictive performance of the compared classifiers yield mixed
results on the binary datasets as seen in Fig.4. While MISS performes good
on the breast and diabetes dataset it exhibits poor accuracy on the unbal-
anced ilp dataset. MSL performes generally sligtly worse than the PSL which is
particularly tuned for binary classification problems. On the particularly small
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breast dataset 20 MCCV splits appear to have insufficient statistical power to
clearly distinguish classifiers performance.

In the multi class setting, we cannot compare to the PSL. Hence, we add
multinomial logistic regression and two less interpretable decision models (RF,
XGB).
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Fig.5. Classifier accuracy across different stages for all multi-class datasets. The
shaded regions represent confidence intervals of the mean.

Figure 5 shows the accuracy of the classifiers across the datasets sorted by
sample size. While the MSL performance is worse in general, it must be noted
that the MSL and NB construct one list of models that are consistent to each
other: Feature subsets form a nested sequence, and the score assigned to a feature
remains constant across stages. This is arguably important from an interpretabil-
ity point of view [18]. The remaining classifiers can create different models for
each stage, thereby compromising interpretability. While LR, RF, and XGB
at least use the same features that the MSL uses, MISS will only use the same
number of features. The parametrizations across those models are not consistent.
Still, the MSL performs similarly well to the other classifiers. The performance of
MISS declines on the largest dataset (segmentation) as more and more features
become available. This can only be explained by the 30 min timeout, meaning
the models still have a large optimality gap.

6.4 Probability Calibration of the Classifier

In this section we analyze the classifiers probability calibration against the same
baselines used in the previous chapter.

Figure 6 shows that all classifiers provide fairly calibrated probability esti-
mates, except for the Naive Bayes classifier, which is known to be a good classifier
but a sub-par probability estimator [51].

On the multi-class datasets (ref. Figure 7) MISS performs slightly worse when
only little features are available. In absolute terms, most models exhibit low
calibration errors across all stages. The strikingly bad performance of MISS on
the segmentation can again be explained by the premature terminated training
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Fig. 7. Expected Calibration Error across different stages for all multi-class datasets.
The plots compare the calibration performance of four models: PSL, MSL, Naive Bayes,
and MISSig00. The shaded regions represent confidence intervals.

due to timeouts. This can also be seen on the player dataset, which is also
stopped due to timeouts for stages 8 and following. Fortunately, on this dataset,
only a relatively small optimality gap is retained after exhausting the 30 min
training budget.

6.5 Runtime Analysis

In the previous sections, we have seen mostly competitive performance of the
MISS classifier. However, particularly on the segmentation dataset, the perfor-
mance was often suboptimal, even though the MISS baseline, was the one with
the most flexibility as it was only constrained regarding the number of features
used.

The MISS classifier is learned by solving a mixed integer program with the
help of the cplex solver. This can yield provably optimal solutions with respect
to the loss function and the training data. However, this training method is
also very costly in terms of training time. This is exacerbated in the scenario of
decision lists, because many decision models have to be learned independently.
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Figure 8 shows the performance of the MSL classifier and two parametriza-
tions of the MISS classifier: one with 90s and one with 30 min. With only 90s
per stage, the performance of MISS already stagnates after 3 features and hardly
exceeds the performance of the MSL, even though the MSL will additionally
enforce coherence of the whole decision list. Even with 30 min, stages 6 and fol-
lowing time out, however, with significantly higher performance, which can even
be seen in the slight performance decrease after stage 8. For the segmentation
dataset, not even 30 min per stage are sufficient and large optimality gaps remain.
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Fig. 8. Accuracy and runtime analysis for the Football Player dataset. The left plot
shows accuracy across different stages for MSL and the two 90s and 30min timeout
configurations of MISS. The right plot shows the total training time for all stages.

7 Conclusion

In the search for explainable Al, two approaches are currently pursued: post-hoc
explaination of complex models and inference of inherently (ante-hoc) explain-
able models. Although the former approach has been fostered by advances in
generative Al, very recent research has shown that explaining complex or even
black-box models in easy terms can result in undesirable outcomes, including
overreliance on Al if predictions are accompanied by explanations that appear
to be comprehensive [17].

In this paper, we therefore pursue a different path to improve the performance
of Al in (human) decision-making tasks. We propose a method for learning
scoring systems that are commonly used and widely accepted for decision support
in real-world applications. In contrast to existing approaches, our method is
able to handle problems with more than two choice alternatives. Moreover, by
constructing a coherent decision list instead of a single model, MSL supports
a stagewise decision-making process, where a decision can be made as soon as
enough evidence has been accumulated.

Not less importantly, MSL is inherently explainable due to its restriction to
integer scores, its simple additive structure, and the coherence of the models that
form a decision list (feature subsets are nested and scores remain unchanged).
Admittedly, compared to black-box models or models being less restricted (e.g.,
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additive models with real-valued instead of integer scores, such as logistic regres-
sion), MSL may exhibit slightly weaker predictive performance. However, the loss
in performance is in general not very high and appears to be acceptable in view
of the gain in explainability. Future work should empirically investigate MSL
with regard to interpretability and explainability, particularly examining how
the stages are used in different decision-making scenarios and how this affects
decision quality.

We evaluated human performance on a specific dataset that is especially
suited for analyzing Al-human collaborative decision-making, and show that
humans perform significantly worse than our approach. Despite this, we believe
that a hybrid approach—where a human expert supports a machine learning
algorithm in constructing an MSL, or more broadly, engages in an Al-human
co-construction of decision models—is a promising direction that we plan to
explore in future work, especially given that prior research has shown human-in-
the-loop approaches can enhance model performance [34,50], improve decision-
making [19], and increase model acceptance [33], even though such methods
may be limited when experts are biased [16]. Broadly speaking, the idea is to let
the human support or correct decisions about the order of features, the scores
assigned to features, etc. This might be beneficial for the learning algorithm, in
particular to counteract the heuristic nature of its greedy search strategy. At
the same time, a hybrid approach could be appealing for the human expert and
increase the acceptance and adoption of automatic decision support —a model
that a human expert co-constructed herself will likely increase acceptance, trust,
and understanding compared to a model that was constructed in a purely data-
driven way and impose on the expert from outside.
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Abstract. Explainable Deep Reinforcement Learning aims to clarify
the decision-making processes of agents. Recent world model-based
approaches, such as Dreamer, train agents through “imagination,” where
the actor learns by interacting with a learned world model that simu-
lates the environment. Consequently, the overall performance of these
systems depends not only on the learned actor but also on the fidelity of
the world model’s representation. Effective explanations should, there-
fore, incorporate the learned dynamics of the environment.

In this work, we propose a method that leverages the imagination
technique from the training process to generate stepwise, contrastive
explanations during inference. Our approach systematically compares
predicted states, actions, and value and reward estimates to evaluate the
observed trajectory. This analysis provides insights into whether failures
arise from inaccuracies in the world model, errors in value estimation,
or deficiencies in reward prediction. We demonstrate the effectiveness of
our method across multiple goal-oriented tasks.

Keywords: Explainable Deep Reinforcement Learning -
Reinforcement Learning + Explainability - Contrastive Explanation -
World Model

1 Introduction

Deep Reinforcement Learning (DRL) involves sequential decision-making under
uncertainty and partial observability, making it inherently complex. Recent
advances, such as DreamerV3 [11], have further increased this complexity by
using models from the learned world to enable training in imagination. This
approach significantly improves sample efficiency and allows the agent to plan
its actions based on predicted future states. However, these improvements come
at the cost of increased complexity.

Despite their performance, modern DRL agents remain black-box systems,
requiring specialized explanation methods to interpret their behavior [28].

Several Explainable Deep Reinforcement Learning (XDRL) approaches have
been introduced [19, 28], but explaining every aspect of the DRL decision-making
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process remains a challenge. Unlike supervised learning models, DRL decisions
depend not only on the current state but also on the learned policy, the reward
function, the value estimation, and the training process itself.

Training in imagination introduces additional challenges for explainability.
Since the agent learns from a surrogate world model rather than from the
real environment, imperfections in the learned dynamics may influence decision-
making in unexpected ways. Existing explanation techniques do not account for
discrepancies between the learned world model and the real world, which can
lead to misleading or incomplete explanations.

To address these challenges, we propose a method that utilizes DreamerV3’s
learned world model to generate outcome explanations based on the imagina-
tion of the world model. By using the same policy, world model, and imagination
process as during training, we ensure that explanations are consistent with the
agent’s decision-making and build on the dynamics the agent was trained on. We
highlight the differences between learned and real dynamics by comparing imag-
ined trajectories with real-world observations. This approach generates explana-
tions that visualize the behavior within the learned world model and compare
it to the behavior in the real environment. These explanations reveal whether
the agent has learned different dynamics, making the agent’s assumptions about
future outcomes transparent. This could help experts better understand the
agent’s behavior, especially when it acts unexpectedly.

We evaluate our approach on five Minigrid benchmark tasks, assessing its cor-
rectness and continuity in discrete environments with partial observability. Our
results indicate that leveraging the agent’s internal world model for explanations
can produce contrastive explanations that are based on the learned dynamics
during training. The process of accessing the learned dynamics could serve as a
foundation for building further explanations.

The contributions of this paper are:

— Identification of the explanatory requirements for training in imagination
DRL algorithms

— Contrastive explanation, making the learned dynamics and decision-making
process transparent

— Adjustable, visual explanation technique for failure analysis and agent behav-
ior understandability

— Extensive technical evaluation

In Sect. 2, we review the key background concepts in DRL and explainable
Al, followed by an overview of the current state of the art in Sect. 3. In Sect. 4,
we describe our proposed explanation technique that integrates learned world
model dynamics into the explanation process. Section 5 outlines our experimental
setup and evaluation metrics, while Sect. 6 presents our empirical findings. We
discuss our findings and related limitations in Sect. 7. Finally, Sect. 8 concludes
the paper and discusses future research directions.

To promote transparency, all additions to the base DreamerV3 implemen-
tation, as well as the model checkpoints, are publicly available https://github.
com/wnnng/dreamer _explanation.
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2 Preliminaries

In this section, we discuss the fundamental concepts on which our work is based.
We give a broad overview of reinforcement learning in Sect.2.1 and explain
the Dreamer algorithm in more detail in Sect.2.2. Finally, we introduce key
definitions and concepts in explainable AT in Sect. 2.3, providing the necessary
context for evaluating DRL explanations.

2.1 (Deep) Reinforcement Learning

DRL extends traditional reinforcement learning to complex, high-dimensional
domains using deep neural networks. In (deep) reinforcement learning, the agent-
environment interaction is formalized as a Markov Decision Process (MDP) [27],
defined by the tuple

(87“4’ T,R, ’7)’ (1)

where S is the set of states, A is the set of actions, T'(s'|s,a) denotes the state
transition probability, R(s,a) is the reward function, and v € [0,1) is the dis-
count factor. The agent aims to learn a policy 7(a|s) that maximizes the expected
cumulative discounted reward:

J(m) =E,

Z’th(staat)] . (2)
t=0

In many real-world scenarios, the environment is only partially observable,
leading to the formulation of a Partially observable Markov Decision Process
(POMDP) [13]. A POMDP augments the MDP framework by incorporating an
observation space {2 and an observation function O(o|s’,a), and is defined by
the tuple

(S, A,T,R,2,0,7). (3)

Here, the agent receives observations o € {2 that provide incomplete infor-
mation about the underlying state.

The decision-making process in DRL is encapsulated in a policy 7(a|s), typ-
ically trained alongside a value function V'(s) that estimates long-term rewards.
DRL approaches are broadly categorized into model-free methods, which learn
the policy and value function directly from experience, and model-based meth-
ods, where the agent either uses a given model or learns a model of the envi-
ronment’s dynamics. The model can be used for planning or to improve sample
efficiency [21].

2.2 Dreamer

For our explanation, we use Dreamer [11] as the base algorithm. Since our tech-
nique uses the internal models and processes to generate explanations, it is
important to understand the Dreamer algorithm. In this section, we give an
overview of the relevant techniques introduced by Hafner et al. [9-11].
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Dreamer is a model-based DRL algorithm. Model-based reinforcement learn-
ing leverages learned environment dynamics to plan ahead, improve data effi-
ciency, and tackle sparse reward settings. In this context, Dreamer serves as
a prime example by using a world model to simulate future trajectories and
optimize policy updates.

It models the environment via a latent dynamics model, specifically a Recur-
rent State Space Model (RSSM). Given a sequence of high-dimensional observa-
tions z1.7 and actions aj.7, the RSSM learns to represent the environment in a
compact latent space. At each time step ¢, an encoder network transforms the
observation x; into a discrete latent representation z; according to:

zZt ~ (N?(Zt | htvxt)v (4)

where h; is a hidden recurrent state that summarizes past information. The hid-
den state is updated with the previous recurrent state, latent state, and action:

he = fo(he—1,2e-1,a¢-1), (5)

with f, denoting the transition function parameterized by ¢.
To ensure that the latent representations capture essential aspects of the
environment, a decoder network reconstructs the observation:

Ty Npqs(ft | htyzt)~ (6)

In addition, auxiliary predictors are employed to estimate rewards r; and
continue signals ¢; via:

7y NP¢(ft | ht,zt), Ct Nqu(ét \ htvzt)- (7)

Training is achieved by minimizing a composite loss consisting of a recon-
struction loss, a dynamics loss (which minimizes the Kullback-Leibler (KL)-
divergence between the encoder’s posterior gy (2; | he, ) and the prior py(z; |
ht)), and a representation loss that regularizes the latent space. Techniques such
as free bits [14] are applied to the KL-divergence terms to maintain a minimum
level of information in each latent dimension, thereby preventing posterior col-
lapse. The model state is defined as s; = {hs, z; }, combining the recurrent hidden
state with the discrete latent representation.

With a well-regularized latent representation, the world model can simulate
future trajectories. This process, known as imagination, allows the model to
predict future states from a given start state without new observations from the
environment:

hiyr = fo(he, 2, aq), (8)

where a; is sampled from the current policy. Since the latent z state depends on
observations, the world model approximates it from the recurrent h-state:

2t ~ Py (e | he)- 9)



144 N. Wenninghoftf and M. Schwammberger

The world model also predicts the corresponding rewards and continue signals
for each imagined state. This rollout creates an imagined trajectory:

S0, o, To, Co, S1,A1,71,C15 ..., ST, QT, T'T, CT*

The agent uses only imagined trajectories to update its policy and value
estimates, a process that can be described as training in imagination. For the
actor-critic, the critic learns to predict the expected return R; from a given latent
state s;.

The actor is updated by maximizing a surrogate objective derived from the
predicted returns of imagined trajectories. In practice, this means the policy is
encouraged to select actions that lead to higher predicted returns, while simul-
taneously incorporating an entropy term to foster exploration. Importantly, the
predicted returns are normalized and treated such that gradients do not flow
back through them, ensuring a stable update process for the actor.

This design allows the agent to efficiently optimize its policy using internal,
model-generated data, significantly improving data efficiency and enabling long-
horizon planning in environments with sparse rewards.

2.3 Explainability

The field of Explainable Artificial Intelligence (XAI) seeks to make the deci-
sions of Artificial Intelligence (AI) systems transparent and interpretable [15].
Explaining the sequential decision-making process of DRL agents, which aim
to maximize long-term returns despite sparse rewards, poses challenges that
traditional XAT techniques do not fully address [4,6,25]. Consequently, recent
research has focused on adapting and extending XAI methods specifically for
DRL [6,28]. In the following, we define key concepts including interpretability,
explainability, and post-hoc and intrinsic explanation approaches, which under-
pin the understanding of DRL explanations.

In accordance with [28], we adopt the following definitions: An ezplanation is
the surface representation of an interpretation that is communicated to the user.
An interpretation is the explanation content produced by an interpretable model,
while interpretability refers to the system’s capacity to generate such content.
Ezxplainability denotes the ability to provide these surface representations, and
transparency describes the system’s capability to deliver understandable expla-
nations in the deployment context, accounting for domain-specific constraints.

Explanations for DRL can target different aspects of the agent. For example,
behavioral explanations focus on the agent’s decision-making process, task expla-
nations illuminate the underlying objectives, and reward decompositions eluci-
date the structure of the reward function. Moreover, while technical challenges
primarily concern model interpretability, explainability must also address the
needs of diverse stakeholders, who vary in their expertise and expectations [15].

One challenge in explainability is the evaluation of explanations, as high-
lighted by Nauta et al. [22]. Explanations that are intuitive and align with users’
expectations may be plausible, but not necessarily correct. Therefore, it is impor-
tant to assess both the plausibility (i.e., how convincing the explanation appears)
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and the correctness of an explanation. To address these challenges, Nauta et al.
propose the Co-12 evaluation criteria [22], which encompass dimensions such as
correctness, continuity, contrastivity, compactness, and controllability. For each
criterion, specific evaluation methods are suggested. For our explanation tech-
nique, we focus on the evaluation of correctness and continuity.

In summary, we have outlined the fundamental concepts of DRL and
Dreamer, as well as the key principles of XAI and XDRL, including the def-
initions and evaluation criteria critical for assessing DRL explanations. With
an understanding of the unique challenges associated with sequential decision-
making, sparse rewards, and training in imagination, we are now ready to
describe our approach. The next section details our methodology, including the
architecture of our explanation technique.

3 State of the Art

As Al processes evolve and are applied to new domains, explanation methods
must be adjusted to align with these emerging contexts [16]. Consequently, eval-
uating existing solutions is essential. This section provides an overview of rele-
vant DRL algorithms that incorporate training in imagination. We also give an
overview of explainability techniques related to our approach.

World-model-based DRL is a promising and growing research direction for
solving complex tasks [8,33]. A key concept in most approaches is training in
imagination, where the actor learns from the dynamics predicted by the world
model rather than direct environment interactions.

Dreamer, introduced by Hafner et al. [9-11], employs a RSSM as its world
model. It represents latent states using two components: a recurrent state, which
encodes historical context, and a stochastic state, which captures the current
state. Dreamer uses an actor-critic model, and its world model predicts rewards
and a continue probability. It is applicable to both discrete and continuous envi-
ronments. We selected Dreamer because it offers a well-structured latent state
representation, a recurrent architecture that supports explanation, and broad
applicability.

Recent approaches to world models for DRL have taken diverse directions.
For example, Mattes et al. [17] proposed a simplified structured state-space (S5)
model that enables parallel sequence prediction, improving efficiency and long-
term dependencies but struggling with short-term dynamics and local precision,
which complicates the explanation process. Similarly, Micheli et al. [18] use a
transformer-based autoregressive model that also has difficulties capturing fine-
grained details. In contrast, Alonso et al. [1] presented a diffusion model that
yields more visually accurate imaginations, though its computationally expensive
denoising step and reduced interpretability limit its applicability. Lastly, Rigter
et al. [24] offer a non-autoregressive diffusion model that iteratively denoises a
random trajectory to reduce error accumulation, yet it still inherits the inherent
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limitations of diffusion-based methods. We acknowledge that all these methods
could be explored for explanation, since the explanation focuses on the compar-
ison of the imagined state and the observation.

Several methods have been proposed to explain DRL outcomes. Yau et al. [30]
showed that post-hoc explanations suffer from value ambiguity, addressing this
by learning a belief map during training. Similarly, Sauliéres et al. [26] used
a Q-learning policy to predict three trajectories—the current, best-case, and
worst-case outcomes, by modifying environment dynamics to illustrate alter-
native results. Both approaches provide valuable outcome explanations for Q-
learning but are not designed to capture action differences emerging from train-
ing in imagination.

Other methods generate counterfactual explanations. Yu et al. [32] construct
causal chains using a causal world model, while Olson et al. [23] and Yeh et al. [31]
employed counterfactual generation via simulated environments and variational
autoencoders, respectively. Although these techniques offer insights into alterna-
tive decision paths, they do not incorporate the learned training dynamics into
their explanations.

Amitai et al. [2] visually compare an agent’s chosen action with a counterfac-
tual alternative, demonstrating improved user understanding through simulation
of subsequent steps in the real environment. In contrast, our approach leverages
the learned world model dynamics to generate explanations, thereby reflecting
the agent’s internal representations more faithfully.

Evaluating explanations is inherently challenging, as it requires balancing
technical fidelity with user-centric criteria such as clarity and relevance [12,16,
22]. While correctness is essential, explanations must also be accessible and useful
to end users.

While explainable DRL has advanced, particularly with the growing focus on
counterfactual outcome explanations, no existing approach addresses the unique
challenges introduced by training in imagination. To the best of our knowledge,
this gap remains unaddressed. We address this gap by integrating the learned
world model dynamics into the explanation process.

4 Methodology

Explanations in DRL should be contrastive [20], meaning they should explain
why one decision was made over another, aligning with human reasoning. How-
ever, explanations must also be faithful, accurately reflecting the true decision-
making process of the agent.

This is particularly challenging in training-in-imagination DRL, where the
agent learns to use a world model rather than direct interaction with the real
environment. Existing explanation techniques primarily focus on the agent’s
interaction with the real environment, which does not capture the dynamics
the agent actually trained on. To generate faithful explanations in this setting,
we need to incorporate the agent’s learned world model dynamics into the expla-
nation process.
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Our explanation technique renders the agent’s decision-making process inter-
pretable by incorporating the learned dynamics of its internal world model. In
our research abstract [29], we introduced the theoretical concept of using world-
model imagination as an explanation technique. Building on this foundation, our
approach generates alternative imagination trajectories directly from the learned
dynamics, eliminating the need for external simulations. These trajectories cap-
ture the agent’s internal expectations, and the contrast between the imagined
and observed trajectories highlights discrepancies between the world model and
the real environment.

Specifically, our method compares the agent’s imagined experiences with
actual observations to pinpoint where its internal expectations deviate from
reality. This analysis allows us to differentiate between errors stemming from
the actor’s policy and those introduced by inaccuracies in the learned world
model dynamics. By providing contrastive, outcome-based explanations that
mirror human reasoning, our approach enhances transparency and reveals how
the agent’s expectations shape its decisions.

4.1 Generating Imagination Trajectories

Step Observation 3 Imagination

Fig. 1. Stepwise comparison of observed (left) and imagined (right) trajectories. Obser-
vations x; (white), latent states z;, 2; (blue), actions a, a; (gold), and hidden states
ht, hi (purple), are compared at each step. This comparison serves as the basis of
our explanation technique and highlights discrepancies between reality and the agent’s
internal model. (Color figure online)

Figure 1 illustrates the generation of imagination trajectories. For each observa-
tion state x; at time step ¢ in a trajectory of length T', we generate an imagined
trajectory of length H, corresponding to the imagination horizon used during
training. Hence, the total number of imagined steps is ¢t + H.
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This procedure replicates the training dynamics by sampling an initial obser-
vation from the real environment and subsequently generating imagined rollouts
that optimize the actor network. Unlike during training, we do not compute a
loss function to optimize decision-making, but instead measure the deviations
between imagined trajectories and actual observations. These deviations indi-
cate potential errors in the learned dynamics, which may lead to suboptimal
decisions.

Since the imagination process does not automatically terminate at terminal
states, we implement a post-processing pruning step. Let C(s) € [0, 1] denote the
continue predictor’s output for a model state s = {h, z}. We prune any state for
which C(s) < 7, where 7 is a user-defined threshold (guided by the continue loss
from training). This step removes invalid imagined states, which would other-
wise be hallucinations—predictions made after the environment has terminated,
when no new observations or training data are available. Consequently, correctly
identifying terminal states is crucial not only to eliminate spurious, hallucinated
states but also to ensure that failure states are accurately detected, thereby
supporting proper learning of negative consequences.

4.2 Identifying Deviations

World Model Discrete State World Model Recurrent State|

Similar Decision
Prediction Problem Prediction Problem

no

no
yes y yes
Action Difference? z-State h-State First imagined Repeat with
Difference? Difference? State? prev. Statc
t

Fig. 2. Sequence of checks for the declaration. Starting with the identification of
whether different actions have been selected, followed by the states of the world model.

To explain the action decision-making process, in this work we focus on discrete
action spaces. Figure 2 illustrates the explanation process. For each time step ¢,
we compare the observed action with the corresponding imagined action. Unlike
imagination processes used during training, which do not inherently perform such
a comparison, this method explicitly identifies deviations in the decision-making
process.

Because the policy samples actions based on a probability distribution, two
input states can produce the same action even if the underlying distributions
differ. Furthermore, it is possible for the same distribution to sample two dif-
ferent actions for the same state. To reduce this ambiguity, we also compare
the full probability distributions. This dual comparison ensures that even if the
final actions appear similar, underlying differences in the agent’s confidence or
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reasoning are not overlooked. While this reduces the risk of ambiguity, it does
not fully eliminate it.

To address the ambiguity of similar outputs, we also compare the states
within the world model. This includes the recurrent state h and the discrete
latent states z. The actor uses the recurrent state and the discrete latent state,
which depends on the stochastic latent state. To differentiate the different trans-
formations, we compare them individually. The comparison is done for each
time step, aligning the observed state with the corresponding imagined state.
For example, when comparing real time step 1, we compare the first observed
action with the first action in the imagination. We compare the predicted world
model states iLt+1, Z¢+1 with the actual observed states hyy1, 2¢41. In Fig. 1, ﬁt+1
and h¢4q are shown in purple, while 2,11 and z;y; are shown in blue.

The state comparison involves Mean Squared Error (MSE) for the recurrent
state, while the discrete latent state is compared using the Hamming distance.
The latter is appropriate because the discrete latent state consists of a set of
categorical variables, each with a number of possible classes. These comparisons
provide insight into the accuracy of the agent’s internal world model, highlighting
deviations in its understanding of the environment.

Next, we evaluate the value estimation by comparing the critic’s estimated
value with the actual sum of rewards in the observations, which reveals whether
the expected return is accurately predicted. If the agent selects a suboptimal
action but imagines a high return, it suggests that the negative consequences
of that action are not well learned. In these cases, it is useful to examine the
world model’s subsequent state predictions. If these predictions differ from the
observed states, it suggests that the model may not fully capture the negative
outcomes. If they closely match the observations, then the discrepancy likely
arises from the critic’s evaluation.

Finally, it’s important to note that the world model may not always be able
to make perfect predictions, especially in stochastic environments. While the
model provides plausible predictions, the expert user must assess the validity
of these predictions. This means that, in certain cases, deviations identified by
the model should be analyzed for uncertainty. We cover this topic further in
Sect. 7, where we discuss how to incorporate uncertainty into the explanation
framework.

4.3 Explaining the Deviations

To explain the decision-making process, our approach highlights the differences
between the imagined and observed trajectories by directly leveraging the agent’s
inherent world model, the very ground truth used for its optimization. Unlike
many existing explanation techniques that rely on external models or surrogate
training strategies, our method provides a faithful diagnostic tool that exposes
where the learned dynamics diverge from actual behavior. By identifying these
deviations, our approach offers domain experts a powerful foundation upon which
more detailed causal analyses can later be built. In essence, our evaluation algo-
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rithm unfolds in three stages: an action-level analysis, an input-state evaluation,
and a reward and value estimation assessment.

Action-Level Analysis. We begin by comparing the discrete actions taken at each
time step. To quantify the similarity between two action distributions m; and
79, we use the Jensen-Shannon distance [7], a symmetric and bounded metric
defined as:

1 1 1
JSD(TK’l,ﬂ'Q> = \/QDKL(WIHM) + 51)}(1,(71’2”]\4)7 where M = 5(7714—7‘(’2) (10)

This distance is always finite, lies in [0, v/log 2] (for base-e logarithms), and
is well-suited for comparing discrete probability distributions over actions in
reinforcement learning. Our dual approach reveals whether similar actions were

chosen for similar reasons, or if subtle differences in decision confidence are
present.

Input-State Fvaluation. Since the policy’s decisions are deeply rooted in the
internal state generated by the world model, we compare its critical components:
the recurrent state h and the stochastic latent state z. For the discrete, cate-
gorical components, the Hamming distance is employed to count mismatches,
while continuous elements, like the recurrent state h, are compared using the
MSE. This analysis pinpoints whether deviations in the world model states have
propagated to impact the policy’s outputs, directly linking discrepancies in the
training process to subsequent decision-making.

Reward and Value Estimation Assessment. Finally, we examine the reward sig-
nals and the estimated value function. By comparing the true accumulated
rewards with the agent’s value estimation, we can identify misalignment in how
the learned dynamics translate into expected outcomes. For instance, if a subop-
timal action is chosen despite similar action probability profiles, a discrepancy
in the value estimation might signal that the policy is not adequately optimized
toward the intended goal.

Collectively, these three evaluation stages, tracing from the imagined states,
through the action decision, to the downstream value estimation, offer a compre-
hensive view of where and how the learned dynamics diverge from actual behav-
ior. By directly using the agent’s internal world model, our method addresses
the unique requirements for understanding decision-making in training-in-
imagination deep reinforcement learning. Although our current approach does
not, yet prove causal relationships, it lays the essential groundwork upon which
future causal analyses can be developed, thereby significantly advancing the state
of explainable reinforcement learning.

In the chosen benchmark, the agent receives image-based observations that
are first encoded into a latent state representation, which is then used for
decision-making. Since this latent representation is not easily interpretable for
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Fig. 3. Exemplary partial visualization of the explanation process. The top row shows
a segment of the agent’s observation, while the second row displays the explanation for
the first step along with its imagination. The first imagined image represents the inter-
nal state derived from the observation, and the second image shows the corresponding
imagined next state, with measurements provided underneath. From the second step
onward, the imagined states diverge from the actual observations. (Color figure online)

human observers, we decode it back into the image space to provide visual expla-
nations. While these decoded images support human understanding, the analyt-
ical comparison used to identify differences in behavior operates entirely in the
latent space. As described in the preliminaries, Dreamer employs an encoder and
a decoder. Although the decoder is not part of the decision-making process, it
is critical for the explanations that the reconstructed images look similar to the
original observations. To ensure this, we measure the Learned Perceptual Image
Patch Similarity (LPIPS) value between the true observation and the decoded
latent state. Unlike MSE, LPIPS focuses on structural similarity and is less sen-
sitive to minor color differences or small non-structural changes. A low LPIPS
value indicates that the decoded image is similar to the original observation,
preserving the fidelity of the explanation. Moreover, the LPIPS error should
correspond to the error in the latent state; if the latent space deviates signifi-
cantly from the true state, the decoded image should reflect this difference to be
a faithful explanation for the decision-making process.

To keep the explanations compact, we only display imagined trajectories
where at least one state deviates from the observation, based on defined thresh-
old values. By adjusting the variables, the explanation size can be controlled.
Figure 3 shows the visualization: green frames highlight states with no devia-
tion, while red frames mark states with deviations. For each deviating state, the
corresponding error metrics are displayed below the transition.
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In summary, our methodology outlines a comprehensive approach to explain-
ing the decision-making process of DreamerV3, a Model-based Deep Reinforce-
ment Learning (MBDRL) agent. We first generate alternative trajectories using
the agent’s inherent world model, ensuring that the explanations reflect the same
dynamics used during training. Next, we compare observed and imagined tra-
jectories at the action, input-state, and reward levels to identify and quantify
deviations. By tracking error propagation over time, our method distinguishes
between minor discrepancies and significant deviations that influence perfor-
mance. Finally, we present these deviations visually through a prototype that
uses LPIPS for image fidelity and color-coded frames for clarity. This structured
approach not only provides diagnostic insights for domain experts but also lays
the groundwork for future causal analyses of explainable reinforcement learning.

5 Evaluation

We use the Minigrid benchmark [5] to evaluate our explanation technique for
DreamerV3. Minigrid offers a collection of 2D grid-world environments featuring
goal-oriented tasks in which an agent must navigate to a predefined, randomly
assigned goal state. Depending on the environment, the task may involve simply
solving a maze or interacting with objects such as keys and doors. The obser-
vations are provided as 64 x 64 x 3 RGB images, and the environments operate
under partial observability with a discrete action space.

MiniGrid-SimpleCrossingSIN1-v0  MiniGrid-SimpleCrossingS11N5-v0  MiniGrid-LavaCrossingS9N1-v0 MiniGrid-DoorKey-5x5-v0 MiniGrid-DoorKey-16x16-v0

g | |

Fig. 4. Example maps for the five Minigrid environments. The green field is the goal,
the red triangle the agent. The highlighted fields around the agent represent the agent’s
visible area. (Color figure online)

For our evaluation, we consider five Minigrid environments. Figure4 shows
an example map for each environment. The first environment, SimpleCrossing,
consists of a maze divided by a wall with a single opening. The agent must
locate the hole in the wall and then proceed to the goal state on the opposite
side. There are different variations of this environment that differ in size and the
number of walls. We use the 9 x 9 map with one wall and the 11 x 11 map with
five walls, each with one random opening.

The third environment, LavaCrossing, is a modified version of SimpleCross-
ing, where a lava stream replaces the wall, and falling into the lava results in
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immediate failure. The fourth environment, DoorKey, requires the agent to find
a key to open a door, with the goal located in the room beyond. We evaluate the
5x 5 and 16 x 16 versions of the DoorKey environment. The increased map size
and limited visibility in the 16 x 16 environment result in additional challenges
for navigation and exploration.

In all environments, the reward function is defined as:

(11)

r—1—09 x (step_count)

max_steps

for successful episodes, and 0 for failures. Each environment allows a max-
imum number of steps per episode (max_steps), relative to its size. The
step_count is the number of steps in that episode. The action space for all
environments comprises seven possible actions, but only three are utilized in the
crossing tasks and five in the key-door tasks.

For each environment, we trained an agent for 800,000 steps, which was
sufficient for the agents to reliably solve the tasks.

To assess the fidelity of our explanation technique, we focus on evaluating
two key properties from the Co-12 framework [22]: Correctness and Consistency,
using a series of experiments.

Model Replacement Check. In the Model Replacement Check, we record a trajec-
tory using an agent trained in a specific Minigrid environment and generate the
corresponding explanation. We then produce explanations for the same trajec-
tory using agents trained on different environments, as well as using trajectories
recorded from agents trained in alternative settings. Our hypothesis is that an
agent’s explanation will closely match the ground truth, as indicated by lower
MSE, JS-distance, or Hamming distance, when the agent and the trajectory
come from the same training task and environment. Qualitatively, the explana-
tion should accurately reflect the key characteristics of the training environment,
such as the maze layout, presence of lava, or the key-door mechanism.

Model Parameter Randomization Check. In the Model Parameter Randomization
Check, we evaluate the correctness of the explanation. We replace the param-
eters of critical submodels, specifically, the world model, actor, critic, reward
predictor, and continue predictor, with random values, while keeping the initial
world model prediction unchanged. Our hypothesis is that this randomization
will yield increased discrepancies in the generated explanations, as evidenced by
higher MSE values. Notably, differences should be observable in the predicted
actions, rewards, value estimations, and continue predictions, with subsequent
imagination steps exhibiting compounded deviations. For each experiment, we
collect quantitative metrics to determine whether the explanations evolve in the
expected direction.
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6 Results

In this section, we present a comprehensive evaluation of our explanation tech-
nique using the Minigrid benchmark. Our primary objective is to assess the
technique’s fidelity by measuring its Correctness and Consistency across two
distinct experiments: the Model Replacement Check and the Model Parameter
Randomization Check.

Quantitative performance is primarily evaluated using the MSE for contin-
uous values, the Jensen-Shannon (JS)-distance for probabilities, and the Ham-
ming distance for categorical values like the discrete latent state. In addition,
qualitative assessments are conducted to verify the alignment of the generated
explanations with key environmental characteristics. The following subsections
detail the outcomes of each experiment.

6.1 Model Replacement Check
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Fig. 5. Heatmap of the MSE for the world model states and JS-distance for the policy
outputs. The y-axis corresponds to the observation environment, and the x-axis corre-
sponds to the environment the replaced model was trained on. The diagonal (matched
condition) shows the lowest error values, indicating that models trained in the same
environment produce the most accurate explanations.

In this experiment, we assess the fidelity of our explanation technique by com-
paring the generated explanations under two conditions:

1. Matched Condition: The agent’s models for both the observation and the
explanation are trained on the same environment.

2. Mismatched Condition: The agent’s models for the observation and the
explanation are trained on different environments.

Each condition was tested on all five benchmark environments, with 25 inde-
pendent runs per condition to ensure statistical robustness. The benchmark
environments include SimpleCrossingS9IN1, SimpleCrossingS11N5, LavaCross-
ingSIN1, DoorKeydx5, and DoorKeyl6x16. We chose Minigrid because it is a
goal-oriented benchmark with discrete actions that facilitate the evaluation of
the explanations..
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Table 1. Model Replacement: Aggregated metrics for the matched (top) and mis-
matched (bottom) conditions across all runs. Metrics include the action JS, the recur-
rent state MSE (h MSE), and the stochastic state difference (2 distance).

Matched Env Act JSD h-MSE 2-Distance
DoorKey-16x16 0.24 + 0.300.01 + 0.0136.07 + 16.82
DoorKey-5x5 0.06 + 0.200.01 + 0.0214.25 + 12.22
LavaCrossingS9N1  |0.14 £+ 0.28/0.01 + 0.02/30.89 + 17.04
SimpleCrossingS11N5/0.06 + 0.22/0.01 + 0.0132.27 4+ 11.58
SimpleCrossingS9N1 0.04 + 0.17/0.01 £+ 0.01/22.49 + 11.26
Mismatched Env |Act JSD |h-MSE z-Distance
DoorKey-16x16 0.60 £ 0.33 10.04 + 0.02 |52.21 £ 8.57
DoorKey-5x5 0.46 + 0.38 |0.03 4+ 0.02 |49.38 4+ 11.65
LavaCrossingS9N1  |0.44 + 0.32 |0.03 + 0.03 |46.15 + 13.23
SimpleCrossingS11N5/0.38 4+ 0.38 |0.03 + 0.02 |[50.00 £+ 11.21
SimpleCrossingSIN1 |0.36 + 0.37 |0.03 £ 0.03 |47.58 £+ 12.67

Quantitative Analysis. For each run, we computed the MSE between the
generated explanation and the recorded observation for both the recurrent state
h and the stochastic state Z. For the action probability distribution, we cal-
culated the JS-distance (Act JS). Our hypothesis predicted that the matched
condition would exhibit significantly lower MSE and JS-distance compared to
the mismatched condition.

As shown in Table 1 and Fig. 5, the lowest errors occur when the explainer is
trained on the same environment as the agent (matched condition). In mis-
matched conditions, lower errors are observed when the explainer’s training
environment shares similar dynamics with the agent’s environment (e.g., Sim-
pleCrossing and LavaCrossing) or when the explainer is trained on a larger
map. Conversely, an explainer trained on a smaller map cannot fully capture
the dynamics of a larger one, resulting in higher errors. These findings sup-
port the hypothesis that an explainer trained on the same model can produce
high-quality explanations, while explainers from similar environments can only
partially bridge the gap.

Aggregating the loss values for the matched and mismatched conditions
across all benchmarks, we observe that the mismatched losses are consistently
higher than those for the matched condition. This supports our hypothesis that
mismatched explanations fail to provide faithful representations, even when the
environments differ only in map size or the task defined on that map.
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Fig. 6. Comparison of model imaginations. Top row: Simple Crossing environment
observation. Second row: matching explanation. Third row: Lava Crossing environment
(identified by lava). Fourth row: Simple Crossing S11N5 environment (identified by an
additional wall). Fifth row: explanation from an agent trained on the Door Key 5 x 5
environment (small size, key, door). Bottom row: Door Key 16 x 16 environment.

Qualitative Analysis. In addition to the quantitative metrics, we performed
a qualitative evaluation of the generated explanations to assess their fidelity.
Figure 6 provides a representative comparison of the model imaginations under
both matched and mismatched conditions.

The top row of Fig. 6 displays the original observation from the Simple Cross-
ing (S9N1) environment. The next row shows the explanation generated by a
model trained on the same, matched environment, which accurately captures
key features such as the wall opening, present in the observation. In contrast,
the following rows illustrate explanations produced by mismatched models. For
instance, when a model trained on the Lava Crossing environment is applied to
a Simple Crossing observation, its explanation incorrectly incorporates features
typical of the Lava Crossing environment, namely, the presence of lava. Similarly,
explanations generated by models trained on Simple Crossing (S11N5) and Door
Key (5x5, 16 x 16) reflect the unique structural characteristics of their respective
training environments, such as an additional wall or the key-door configuration,
even when the input observation originates from a different environment.

These qualitative observations confirm that mismatched models tend to faith-
fully reproduce the characteristics of their training environments rather than
accurately representing the input. This behavior reinforces our quantitative find-
ings, demonstrating that alignment between the training environment and the
explanation generation process is critical for producing accurate and meaningful
explanations.

6.2 Model Parameter Randomization Check

Inspired by Nauta et al. [22], this experiment evaluates the impact of individual
model components on the fidelity of the generated explanations. For each bench-
mark environment, we conducted 25 independent runs using the corresponding
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Fig. 7. Box plots comparing the evaluation metrics: h-state MSE, z-state distance, and
action probability JS-distance across the five model parameter randomization checks.
We compare standard explanation measurements to runs with randomized policy and
world model.

trained baseline agent. For each run, we first generated an explanation with the
baseline agent and then produced additional explanations by individually replac-
ing the values of one of the following components with random values: the policy,
the world model, the reward predictor, the critic, and the continue predictor.

Figure 7 presents box plots that summarize the resulting differences in key
metrics—namely, the h-state MSE, z-state Hamming distance, and the action
probability JS-distance. The x-axis lists the components that were randomized.
As expected, replacing the world model results in the highest MSE for both the
recurrent and stochastic states. Notably, randomizing the policy also contributes
to increased errors, reflecting the sequential dependency between actions and
state predictions. The action probability divergence is primarily influenced by
randomization of the world model and the policy, which aligns with our hypothe-
sis that the input quality from the world model directly affects the policy output.
In contrast, the critic, reward predictor, and continue predictor each show only
increased errors in their specific functions: estimating value, predicting rewards,
and determining explanation length.

The impact of randomization on explanation outcomes is also evident in the
visualizations. Figure 8 illustrates the expected errors: a random policy results
in an agent that lacks goal-oriented behavior, and a randomized world model
prevents the generation of plausible state representations.

Overall, these findings validate our hypothesis: every model component is
crucial for generating faithful explanations, and randomizing any component
leads to measurable deviations from the baseline.

7 Discussion and Limitations

We showed that the world model imagination process used during training can
also be leveraged to create local explanations. This can be helpful for debugging
or failure analysis. A simple example could be an autonomous vehicle involved
in an accident. While the model may have performed well during training and
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Fig. 8. Comparison of the observation, the standard explanation, and explanations
generated by randomized models. With a randomized policy, the agent behaves without
clear direction. A randomized world model omits the decoder, resulting in images
that resemble the environment but have random internal states. Finally, a randomized
continue predictor causes the explanation to persist even after the agent reaches its
goal.

evaluation, there might be a shift in dynamics not captured during training. Our
explanation technique could provide insights that improve the failure analysis
process.

While loss values help to quickly indicate that something is different, they
do not reveal what exactly is different. Our approach enables differentiation on
a more detailed level.

Previous research [2] demonstrated that contrastive outcome explanations
are effective in helping users better understand the decision-making process of
DRL. We adapted this idea to DRL trained in imagination, addressing the spe-
cific requirements involved in such processes. These explanations can serve as
a foundation for integration with other explanation techniques, such as feature
attribution to highlight visual differences, or additional counterfactual analyses
to provide more contrastive explanations.

Correct interpretation of these explanations is critical. Previous research [3]
has shown that world models, especially in Dreamer, tend to overestimate
aleatoric uncertainty. Therefore, world models likely cannot be used to reliably
predict the future. They represent the learned dynamics of the agent, which may
be close to reality but are not guaranteed to match it exactly. This discrepancy
is also the motivation for explanations: they should highlight the differences
between the learned and actual dynamics.

The explanations presented here primarily target domain experts. However,
the information provided by these explanations can also be adapted for other
stakeholders. Further research is needed to tailor the explanation format to lay
users or specific stakeholder groups. Additionally, as the explanations closely
mirror the original training process, further work is required to extend them
with additional explainability techniques that help uncover the causal reasons
behind agent behavior.

Our results provide an initial exploration into explaining DRL agents trained
in imagination. The current evaluation is limited to a discrete environment and a
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single algorithm (Dreamer). Future research should investigate the applicability
of our approach in more complex environments and continuous action spaces. At
present, users must manually define threshold values for various measurements;
more research is needed to automate this process and reduce reliance on expert
input. One potential solution involves generating counterfactuals within imag-
ined trajectories that gradually approach the observation to determine if and
when the agent’s decision changes. This could be applied to both world model
states and policy actions.

With this work, we propose a new explainability approach that can serve as
the basis for future, more complex explanation methods based on agent imagi-
nations.

8 Conclusion

In this paper, we presented a novel approach for explaining MBDRL agents
by leveraging the capabilities of a learned world model. Our method generates
explanations that faithfully capture the underlying dynamics of the environment,
as evidenced by both quantitative metrics and qualitative evaluations.

Our approach tailors explanations to the AT model by incorporating imagina-
tions, predictive simulations generated by the world model, into the explanation
process. Instead of relying on external models, we replicate the training process
and use the model’s internal representations, resulting in explanations that more
accurately reflect the decision-making processes optimized during training.

These results demonstrate the potential of using world models not only
for planning and decision-making but also as powerful tools for interpretabil-
ity. Future work will explore further refinements in explanation techniques and
extend our evaluation to more complex environments and real-world applica-
tions.
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Personality traits play a crucial role in shaping social behaviors in digital spaces,
influencing user interactions and adherence to community guidelines. Research
shows that online behaviors and language features are closely tied to personality
traits, affecting both the nature of interactions and language choices [2]. This
link between personality and language patterns provides valuable opportunities
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A key application of this perspective is in personalized moderation interven-
tions in Online Social Networks (OSNs). Indeed, user responses to moderation
efforts differ significantly based on individual characteristics [49]. Thus, imple-
menting personalized moderation strategies can foster greater user engagement,
improve compliance with OSNs community guidelines, and enhance the overall
effectiveness of moderation by helping to reduce toxic content [10]. However, this
approach faces challenges, including the unavailability of ground-truth personal-
ity data [15], the need for privacy-preserving techniques [36], and the importance
of using interpretable models to ensure fairness and transparency [20].

We address these challenges with TRAITS (Tool for Revealing Attributes and
Identifying Toxic and Safe profiles), a framework for building an interpretable
personality detection model to analyze toxic and non-toxic user behaviors on
OSNs. TRAITS uses semantically transparent features, such as writing style and
affective features, alongside latent personality embeddings derived from an exter-
nal resource. In particular, a clustering method identifies behavioral profiles
based on latent embeddings, while linguistic and affective features are aggregated
for interpretable user representation. An interpretable model is then trained to
predict the cluster labels, linking them to transparent features. By analyzing
explanations for prototypical instances, TRAITS identifies the defining character-
istics of toxic and non-toxic profiles, enabling experts to design targeted moder-
ation strategies. TRAITS helps prevent harmful counter-reactions or user churn
while reducing toxicity more effectively than fixed moderation interventions, by
offering a framework where membership in a specific behavioral group is made
transparent through an interpretable model. We present a case study apply-
ing TRAITS to a dataset of comments from Reddit users. This analysis shows
TRAITS’ ability to effectively distinguish between toxic and non-toxic data-driven
personality profiles. By leveraging language and affective features, TRAITS cap-
tures nuanced behavioral patterns within both groups, and through an analysis
of the interpretable features and their contributions to these distinctions, we
identify and name the profiles as follows: Aggressive, Provocative, Mildly-Toxic,
Constructive, Contentious, and Neutral.

The rest of this paper is organized as follows. After reviewing works in per-
sonality detection in Sect. 2, in Sect.3 we formalize the problem faced, and we
describe our proposal to solve it in Sect. 4. In Sect. 5, we present the experimen-
tal results. Finally, Sect. 6 summarizes our contributions and outlines potential
directions for future research.

2 Related Works

According to psychological trait theory, personality traits are characteristic pat-
terns that reflect individuals’ behaviors, thoughts, and emotions [8]. Several psy-
chological frameworks have been proposed to define and categorize personality
traits [32], with the two most widely used being the Myers-Briggs Type Indicator
(MBTTI) and the Five-Factor Model (OCEAN) [17,33,37]. The former framework
categorizes personality into 16 unique types through binary assignments across
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four dimensions: Introversion vs. Eztraversion, Sensing vs. Intuition, Thinking
vs. Feeling, and Judging vs. Perceiving. The latter organizes personality traits
along five broad dimensions: Openness, Conscientiousness, FExtraversion, Agree-
ableness, and Neuroticism. The OCEAN model constitutes a widely respected
framework in psychology for its empirical reliability and comprehensive scope in
personality assessment [9]. A comparison of MBTT and the OCEAN framework
is explored in [13], which highlights the structural and conceptual differences
between the two models. Based on these frameworks, various datasets have been
developed to facilitate personality trait analysis [16,46]. For our purposes, we
focus on OCEAN due to its reliability and widespread use in psychology [19], as
well as its established role in OSNs users personality analysis [40-42].

Automatic personality detection has been explored across various domains.
A comprehensive overview of approaches for text, audio, visual, and multimodal
data is presented in [34], where main reference datasets and methodologies for
each modality are discussed. For images, in [44] an approach based on Histogram
of Oriented Gradients, Eigenfaces and specific face portions for modeling the face
and training ML models on top is presented. For the audio-visual domain, [26]
introduces a benchmarking framework, which is used to evaluate existing archi-
tectures, while [54| integrates a CNN, a Bi-LSTM, and a Transformer model
to predict personality traits from audio-visual content. Focusing on audio-based
personality detection, the authors of [45] compare different models based on fea-
tures extracted from audios such as jitter, frame intensity, and loudness. On
the other hand, in [43] are employed particle swarm optimization in conjunction
with a CNN for speech-based personality recognition.

In our work, we focus on personality detection from textual data, with partic-
ular reference to OSNs data. In terms of personality detection on texts, two main
approaches can be identified: one based on lexical, linguistic, and psycholinguistic
features, and another leveraging Transformers-based methods. Early approaches
to personality prediction [29,39] employed psycholinguistic and linguistic fea-
tures, later advancing through more complex feature aggregation techniques
such as CNN-based n-gram extraction and hierarchical NNs [30,52]. An unsu-
pervised method for detecting online personality traits is presented in [6], uti-
lizing an ad-hoc clustering technique based on linguistic features. In contrast,
Transformer-based models, such as BERT [35], outperform traditional meth-
ods, with advancements like the TRANSFORMER-MD architecture [53] enhanc-
ing personality detection by integrating dimension-specific attention modules.
While we also train models using interpretable linguistic features, our approach
focuses on predicting labels identified through unsupervised methods applied to
a latent space, aligning with Transformer-based techniques.

Interpretable personality detection methods have been applied to both
feature-based and Transformer-based models. In [38], Integrated Gradients are
used to explain personality predictions based on OSNs users’ activities, while [22]
employs BI-LSTM and MENTALROBERTA directly on users’ texts, applying
LIME and AGRAD to interpret the predictions. Further, [21] refines psycho-
logical representations using a Siamese BI-LSTM, providing interpretability by
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comparing embeddings to baseline personality statements. In [50], the person-
ality detection problem is addressed using affective natural language inference,
determining whether the hypothesis, i.e., the personality label description for a
speaker, is valid given the affective dialogue content as the premise.

Unlike the aforementioned interpretable approaches, we propose both a glob-
ally and locally interpretable model for OSNs comments that identifies data-
driven behavioral profiles to differentiate between toxic and non-toxic users.

3 Problem Formulation

This section presents a problem formalization that aims to clarify the differences
between supervised and unsupervised personality detection.

Definition 1 (Supervised Personality Detection Problem). Let U = {uy,
..y Un} be a set of n users of an OSN, and let Y* = {yi,...,y5} be their
personality traits with yi € Q* and where Q* = {1,...,q} is the set of possible
personality traits. The Supervised Personality Detection Problem consists of
learning a personality detection model f that given in input an unlabeled user u;
returns its personality trait y;, i.e., yf = f(u;).

Unfortunately, the set of possible personality traits Q*, and consequentially
the ground truth for personality traits Y*, are typically unknown, and even
when based on psychological theories, the specific personality traits y; of a user
u; are typically undisclosed due to privacy concerns or lack of expert validation.
This challenge arises despite the fact that users’ content on OSNs is publicly
accessible. Hence, we face the problem from an unsupervised perspective.

Definition 2 (Unsupervised Personality Detection Problem). Let U =
{u1,...,u,} be aset of n users of an OSN. The Unsupervised Personality Detec-
tion Problem consists of the two following parts:

(i) deriwving from the activities of the users U on the OSN a set K ={1,...,k}
of data-driven personality traits such that each user u; € U is assigned with
a data driven personality Y = {y1,...,yn} with y; € K,

(ii) learning a personality detection model f that given in input an unlabeled user
u; returns its data-driven personality y;, i.e., y; = f(u;).

In the rest, we propose an unsupervised method to solve the unsupervised
personality detection problem, treating it as an approximation of the supervised
personality detection problem, especially useful in scenarios where, as is often
the case, ground-truth personality traits for users are unavailable.

4 Methodology

This section presents our framework for deriving an unsupervised, interpretable
model to profile OSNs users and distinguish between toxic and safe, i.e., non
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Algorithm 1: TRAITS(T)

Input : T - OSN textual comments of users where t; ; € T; is the jm comment of user 4,
and T; € T with T3 = {t;1,...,ti,n; } is the set of n; comments of user 1.
Param : D, = (T}, Y,) - external dataset with known personality traits
is__tozic, - returns 1 if the toxicity score is higher than «, 0 otherwise.
a - text toxicity threshold. B - user toxicity threshold.
Output: f - interpretable personality detection model.

1 Gy —{gjlg; =Ly (Tp,Ylfj)) vj € [1,p]}; // learn pers. detectors on external dataset
2 X «— 0 // init. interpretable user representation
3 Xlome ¢, XZ:?{Z — 0; A — 0 // init. latent embeddings and user toxicity label set
4 for i€ [1,n] do // for each user
5 A L,A]LJ {]l(r% Z;;l is_toxic_ (ti,;) > B)}; // calculate and store user toxicity
6 X — X U {eatract_features(T;)}; // extract interpretable features
7 i — U;iﬂfi,j? // concatenate all texts of a user
8 if A; =1 then X!%c  Xlomieyy {embg, ()} // extract toxic user embedding
9 else X:;’nf; — X:fnf; U {embg, ()} // extract non-toxic user embedding
10 YU  cluster(X %), YU — cluster(X:ﬂ;); // cluster toxic and non-toxic users
11 Y « Ytosie yysae; // merge personality traits labels
12 f— Lp(X,Y); // learn interpretable personality detector

13 return f;

toxic, behavior patterns. We present here TRAITS, a Tool for Revealing Attributes
and Identifying Toxic and safe profiles in OSNs, our proposal to solve the unsu-
pervised personality detection problem.

The core idea is to leverage latent embeddings learned from an external
source to identify personality traits and group users accordingly. Simultane-
ously, the same users are represented using interpretable linguistic and affective
features, which are assigned to the identified groups. An interpretable model is
then trained to detect these profiles, revealing the key discriminative factors in
terms of the features. The pseudo-code of TRAITS is in Algorithm 1.

Given a set of n users U = {uj, ...,u,} of an OSN, we name T =
{T1,...,T,} the textual comments generated by the users of the OSN in a cer-
tain period, where T; € T with T; = {t;1,..., tin, } is the set of n; texts of user

1, while ¢; ; € T; is the j™ text of user i. TRAITS is a framework that takes as
input 7" and returns an interpretable personality detection model as f.

We refer to TRAITS as a framework because it relies on external data and pre-
trained functions along with their parameters. Indeed, we assume the availability
of an external dataset D, = (T},,Y},) of texts T}, with attached known personality
traits Y}, of the users that generated such texts, where each ¢; € Tp is the
concatenation of all the texts written by a user i coming from this external
resource and each y; € Y, represents a list of p personality trait scores, i.e.,
Yi = {¥i1,---,Yip} where each y; ; € [1,q] can assume ¢ different scores of
personality for each one of the p traits. Yp(J ) refers to the j-th personality trait
for all the texts in T),. As first step (line 1), TRAITS learns a set of personality
detectors G, = {g1, ..., gp} for each trait using a predefined learning function £,
(see Sect. 5 for implementative details). These detectors g1, ..., g, are trained on
the external dataset D, solving a supervised personality detection problem, and
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they are used in turn, in a transfer learning fashion [18], for extracting latent
embeddings of the users U analyzed by TRAITS. We underline that the set of
users U analyzed is not overlapped with the set of users generating the textual
comments for which we have the associated personality traits in D).

Then, the sets X, X%, X:fr{; and A are initialized. X stores the inter-
pretable representation of the users U in terms of the attributes revealed by
TRAITS; X!°%¢ and Xzfj,f separately store for toxic and safe users the latent
embeddings characterizing the users U in terms of some hidden aspects derived
from the learning procedure £, trained on the external resource D,; A stores a
user toxicity label as 1 for toxic users, 0 for safe users.

For each user in U (loop lines 4-9), the following steps are performed. First,
given a function is_ toxic, (t) that takes a text ¢ as input and returns 1 if the
text’s toxicity score is a or higher, and 0 otherwise, TRAITS counts' the number
of toxic comments made by the i-th user. If the proportion of toxic comments
relative to the user’s total comments meets or exceeds (3, the user is classified as
toxic, and this information is stored in A (line 5). After that, TRAITS uses the
extract _features function to retrieve human understandable linguistic and affec-
tive features from the set of comments 7 (line 6). Then, TRAITS concatenates?
all the texts of a user in #; (line 7) and uses it to extract users latent embeddings
through a combination of the personality detectors with the function embg (%;).
The result is placed in the right set depending on the user toxicity A;.

After that, assuming the availability of a function cluster that takes as input
a dataset with n records and assigns a label Y = {y1,...,y,} to each record,
TRAITS groups the toxic users and safe users w.r.t. their latent embedding stored
in Xtore X SZ{Z, respectively (line 10). The labels Y'*%¢ Ysf¢ identify different
behavioral traits for toxic and safe users. However, it is still not possible to
describe these profiles in a human understandable way. Thus, Yo% ysafe are
merged in Y (line 11) and together with the interpretable user representation X
are used to train an interpretable personality detection model f (line 12).

Given the set of textual comments from any user T;, by applying the func-
tion f to their interpretable features x; = extract features(T;), f(x;) returns
the toxic or safe cluster label assigned to user w;. Since f is interpretable,
this decision is justified in terms of the features z;. Consequently, by ana-
lyzing prototypical members of the cluster groups TRAITS allows the user to
simultaneously reveal the interpretable features that contribute to their classi-
fication and help to characterize the data-driven personality traits in terms of
these features. Details about the implementation of the functions £, is_ tozic,
extract _features, cluster and emby, ... g, and Ly are provided in next section as
they are attached to and dependent on the specific case study.

Ethical Aspects and Privacy Risk Assessment Discussion. Our proposal miti-
gates user privacy and anonymity through several mechanisms. Users can be
pseudonymized, as only their textual comments are needed, not their real iden-
tities. The interpretable features are derived solely from users’ texts without

! The operator 1(cond) returns 1 if the boolean condition cond is satisfied, and 0 otherwise.

The operator U performs the union as the concatenation of texts.
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relying on external data of other users. Data is processed collectively only dur-
ing clustering and model training phases. In the clustering phase, embeddings
make personality traits incomprehensible, and for model training, safeguards like
model aggregation can be used to protect user anonymity. In the model train-
ing phase, additional safeguards can be applied by aggregating feature values to
protect user anonymity [36]. For instance a discretized version of a feature such
as “number of posts” can considerably reduce the risk of re-identification from an
external attacker. Also, risk assessment studies [31] show that an attacker would
need extensive background knowledge to reconstruct a user’s full information.
Even in such cases, the attacker would not gain access to sensitive data, as the
interpretable features only describe writing style and mood, while the target
variable reflects group membership based on these features, without referencing
psychological or sensitive traits like “depressed”; “anxious”, or “narcissist”.

5 Case Study and Experiments

We apply TRAITS to a Reddit users case study?®, outlining the experimental setup,
datasets, and implementation of the functions discussed earlier. We then present
the performance of the interpretable models along with the resulting profiles.

5.1 Experimental Setting

We present here the datasets, external functions, and models utilized in our case
study to apply the TRAITS framework.

Reddit Dataset. We focus on personality detection within a set U of over 15k
Reddit users and their corresponding comments T', based on their activities from
April 2020 to January 2021. For a detailed explanation of how users are selected
and how the text extraction process is conducted, we refer the reader to [7].

External Personality Dataset. As external dataset with known personality traits
D, = (T},Y,), we employ the PANDORA dataset [16], which provides OCEAN
scores for approximately 1,6k users derived from explicit mentions of test results
or responses to personality tests, with scores ranging from [0, 100] for p = 5 per-
sonality traits, i.e., Openness, Consciousness, FExtraversion, Neuroticism, Agree-
ableness. Since PANDORA also consists of a collection of English-language Red-
dit comments, similar to our unlabeled dataset T, it serves as a suitable external
dataset for training models to generate latent representations of the comments
in T'. The users’ comments in T}, are aggregated into a single text per user by
concatenation, while the associated scores are discretized into ¢ = 5 values. This
approach reduces predictive complexity while retaining distinctions in personal-
ity intensity among users. We acknowledge the potential limitations of relying
on these scores, as some reported test results may be inaccurate, and some users
may have intentionally misrepresented themselves. Nevertheless, we still choose
to adopt PANDORA as an external reference dataset for our study, given the

3 The code to replicate the experiments is available at: https://github.com/acascione/traits.
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absence of other readily available alternatives, and leave the development of a
dataset with validated personality scores to future work.

Supervised Personality Detectors. The supervised personality detectors G, =
{91,-..,9p} are obtained training a Transformer for each personality trait
Jj € [1,p=5] on the PANDORA dataset using the OCEAN labels as ground-
truth. Given the consistent documents length, due to the concatenation, a LONG-
FORMER (LF) architecture [3] is applied as learning function £4. This allows an
efficient processing of up to 4,096 tokens, making it well-suited for lengthy text
data?. For evaluating the supervised personality detectors, we divided the users
in D, into a 70%/30% train-test split, with an additional hold-out validation on
the training set using an 80%/20% split. Details for the hyper-parameters are
available in the repository. The weighted F1-score on the test set is reported on
the first line in Table 2.

User Tozicity. In order to implement the function is_ toxic,, we use the Per-
spective API°, which labels a text as toxic if its toxicity score is greater than or
equal to a = 0.7. We set a = 0.7 to balance sensitivity and specificity in tox-
icity analysis, reducing false positives without losing relevant data®. According
to the Perspective API, the toxicity score represents the proportion of readers
who would perceive the comment as toxic. For instance, a score of 0.7 indicates
that 7 out of 10 readers are likely to find the comment toxic. We consider a user
toxic if 10% or more of their comments in T; are deemed toxic, i.e., 5 > 0.1.

Interpretable Feature Extraction. The extract features function computes lin-
guistic and affective-related features for individual texts’, and aggregates them
into user-level representations using statistical measures such as sum, mean,
max, and min. Linguistic features include basic metrics (e.g., counts of stop-
words, emojis, and unique words) as well as advanced readability scores. The
readability scores assess text complexity based on various linguistic factors: syl-
lable count and sentence length (Flesch Kincaid Grade Level, Flesch Reading
Ease, SMOG), word difficulty and frequency (Dale Chall, Spache), letter count
and sentence structure (Coleman Liau Index, Automated Readability Index),
and the proportion of complex words over the entire text (Gunning Fog, Lin-
sear Write). Furthermore, we use MFD metrics to capture moral intensity [24]
and LIWC 2022 language dimensions (such as Culture and politic highlighting
the significance of a text w.r.t these topics). Affective features are extracted
using TextBlob’s polarity score, NRC-Lex, NRC-EIL, and VAD-Lex for valence,

4 For users whose aggregated texts exceeds the 4,096-token limit, the text is split into batches of
up to 4,096 X 5 tokens each, with each batch treated as a complete text. If a user has multiple
associated texts, the majority predicted class among texts is considered as final label.
https://perspectiveapi.com/.

Both the API documentation [1] and previous studies [11] indicate that higher thresholds, such
as 0.9, lower classification errors but exclude cases useful for studying biases in ML models.
Furthermore, using 0.7 facilitates the analysis of terms associated with socially targeted groups,
mitigating the effect of imbalanced distributions in training data.

For a more detailed description of the features, please refer to the reference repository.
Implementations of the tools used are available at: https://pypi.org/project/readability/,
https://textblob.readthedocs.io/en/dev, https://pypi.org/project/NRCLex/, https://www.liwc.
app/, https://saifmohammad.com/WebPages/lexicons.html,.
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Table 1. Cluster sizes and Silhouette scores for different clustering strategies.

Strategy | Type | C1% | C2% | C3% | Silhouette
TRAITS4 | Toxic | 9.71 |4.15 |36.17|0.086
Safe |19.96 |18.02|11.99 | 0.037
TRAITSc | Toxic | 15.12 | 13.82 | 21.08 | 0.049
Safe |31.94|14.60|3.40 | 0.026

arousal, and dominance. We filter out features with a variance lower than 0.2,
obtaining 177 total interpretable features. We retain the obtained features with-
out applying any further transformations to preserve their interpretability as
much as possible. While feature selection strategies could be explored, we choose
to avoid discarding further potentially relevant information that could contribute
to a more comprehensive interpretability analysis. Furthermore, our experimen-
tal analysis in Sect.5 demonstrates that methods capable of automatically dis-
carding irrelevant attributes are the most effective for our case study, justifying
our previous choice.

Users Embeddings. We leverage the trained models G, to obtain user embed-
dings. For each user, the full text #; is processed by averaging token representa-
tions from the penultimate layer of each g;, implementing embg,. If a user has
multiple documents, their embeddings are further averaged to create a single rep-
resentation. Two aggregation strategies are explored: (i) averaging embeddings
from each detector to produce a 768-dimensional vector and (i) concatenat-
ing these embeddings for a 3840-dimensional vector, referred in the following as
(TRAITS4) and (TRAITS (), respectively.

Users Clustering. In our experiments, we adopted a centroid-based approach for
clustering users, employing the standard k-means® algorithm [47]. We also con-
sidered DBSCAN [12] as an alternative density-based clustering strategy, but
it yielded poor results in our initial experiments. Consequently, we opted for
the k-means approach. Moreover, we also preferred k-means due to its ability to
provide a natural identification of exemplar instances, i.e., those closest to the
centroid within each cluster, which are valuable for the in-depth interpretability
analysis of data-driven personality profiles we present at the end of Sect.5. We
tested values of k ranging from 2 to 10 to avoid generating an excessive number
of clusters, which could hinder the subsequent interpretability step. We applied
k-means on the entire set of toxic and safe users, i.e., X0%¢ U X:fyfg , as well
as separately on toxic and safe user embeddings. To evaluate clustering perfor-
mance, we considered the Silhouette scores. After testing different approaches,

we found that the most effective strategy was to cluster toxic (X °%¢) and safe

(X ‘;’i{g ) user embeddings separately and apply the k-means cluster function with

k = 3 for both toxic and safe users.

8 https://pypi.org/project/pyclustering/.
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Table 2. Fl-scores for (black) interpretable models trained and applied on transpar-
ent features to predict data-driven profiles; (blue) supervised pers. detectors trained
applied on the external dataset to predict supervised profiles; (brown) interpretable
models trained and applied on transparent features to supervised profiles; and (purple)
interpretable models trained and applied on latent embeddings to predict data-driven
profiles. Best model in bold, best runner up in italic.

‘Model‘ ‘TRAITSA ‘TRAITS c‘ ‘Agree“ Consc.‘Eavtm“Neurot.‘ Openn.‘ avg ‘ ‘RTRA ‘RTRc‘

CLF | - | - |64 725 | 733 629 | 672 684 - | - |
LGB 675 | .681 || .431 ] 508 | .448 [ .447 | .478 [462[] 453 .480
EBM|| 645 | .659 || 405 | 493 | 434 | 433 | 464 |.446| 468 |.493
PT || 283 | .259 || .338 | 448 | 351 | .337 | .381 |.371|| .455].473
DT || 478 | .491 || .360 | 449 | .366 | .345 | .397 |.383| .318|.337
KNN|| 317 | 207 | 332 | 439 | 337 | 310 | .358 |.355/.339.341
LR | 583 | .575 || .308 | 414 | 338 | .316 | .420 |.360||.439|.437

Cluster sizes and Silhouette scores for the two embedding aggregation strate-
gies are reported in Tablel. By considering both clustering labels Y*°¥¥ and
Ysef¢ we obtain the presumed personality traits Y for the users under analysis.
We observe that, although the Silhouette scores for the clusters are generally
low, the resulting clusters still show a relatively good separation between users
with different online behaviors, as we show in Sect. 5.2. Furthermore, our focus is
on comparing the performance of the two proposed strategies, rather than on the
absolute values of the Silhouette scores. Therefore, we rely on these clustering
results for our subsequent evaluations.

Interpretable Personality Detectors. As personality detector models f and
respective learning function Ly, we experimented with two gradient boosting
algorithms based on Decision Trees (DT) [4]: the Light Gradient Boosting
Machine (LGB) and its interpretable variant, the Explainable Boosting Machine
(EBM) [27]. As interpretable baselines, we include DT and PivotTree (PT) [5],
the latter functioning both as a standalone classifier and a tool for exemplar
instances selection. We also consider Logistic Regression (LR) [25] and k-Nearest
Neighbor (KNN) [23] as additional interpretable alternatives. We evaluate the
performance of each model using a 5-fold cross-validation using the weighted

Fl-score as evaluation measure?.

5.2 Results

We present here experimental results from interpretable predictive models.
Table 2 presents (in black) the experimental results from interpretable predictive

9 Repositories: https://github.com/fismimosa/RuleTree, https://github.com/microsoft/
Light GBM, https://interpret.ml/docs/ebm, https://scikit-learn.org. Details for the hyper-
parameters are available in the repository. The results reported refer to the best hyper-parameter
setting.
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models. In column two and three are reported the weighted F1-scores of the inter-
pretable models f trained on transparent features X to predict TRAITS-driven
profiles Y. Comparing the two data representation aggregation strategies used
for clustering, the concatenation (TRAITS¢) of embeddings demonstrates supe-
rior predictive performance on interpretable features compared to the average
(TRAITS 4) aggregation strategy.

Among predictive models, LGB achieves the highest performance, followed
by EBM. Notably, EBM offers a significant interpretability advantage, provid-
ing both global and local feature importance for each prediction, as its additive
prediction process enables detailed insights [27]. DT, PT, and KNN exhibit
unacceptable performance despite their inherent interpretability. The LR model
performs slightly better but still falls short of LGB and EBM. Thus, we advo-
cate for EBM as the best model for interpretable data-driven personality traits
detection.

To emphasize the importance of the interpretable features X extracted by
TRAITS as well as the data-driven personality traits Y, we conducted experiments
using a set of baselines. As a primary baseline, the first row of Table 2 presents (in
blue) the performance of the supervised personality detectors {g1,...,g,} (LF)
on the external dataset D, for the five OCEAN personality traits, along with
their average score. Notably, the performance of EBM and LGB models within
the TRAITS framework (reported in black) aligns closely with these significantly
more complex LF models (reported in blue), demonstrating the effectiveness of
the interpretable models.

As a second baseline, we compare the TRAITS framework against the training
of the same interpretable models f on the same interpretable features X, but
targeting the recognition of OCEAN personality traits obtained by labeling the
texts T; of Reddit users using supervised personality detectors {g1,...,gp}. The
corresponding results are presented (in brown) in columns four through nine
of Table2. A clear trend emerges: the interpretable models f trained on the
interpretable features X demonstrate poor predictive performance compared to
TRAITS alternatives. The only exceptions are PT and KNN, which perform
marginally better on this task, though their performance remains subpar and
unacceptable overall.

As a third alternative, we experimented by applying cluster in the inter-
pretable feature domain X separately for toxic and safe users, instead of using
Xtozic and X :fr{}f This was done using k-means with k& = 3. We then predicted
the data-driven labels Y/ by training models f on the embeddings X é‘,’,fgc and
Xzf,ffg , instead of the transparent features X. In essence, this approach is the
Reverse process of TRAITS. In Table 2, this method is denoted as RTR 4 and RTR ¢,
representing the average and concatenated versions of the Reverse of TRAITS,
respectively. The results, shown in purple in the last two columns, indicate bet-
ter performance for RTR¢ than RTR 4, except in the case of LR. RTR¢ achieves
comparable performance compared to OCEAN-label predictions (highlighted in
brown), with a notable improvement for PT and LR, though overall performance

remains unsatisfactory.
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Based on these findings, we conclude that the TRAITS ¢ strategy is the most
effective approach for data-driven profile detection for the Reddit case study.

5.3 Analysis of Data-Driven Personality Profiles

We can now utilize the interpretable structure of the trained EBM to analyze the
identified behavioral profiles, focusing on exemplar instances from each dataset.
We complement these findings with an analysis of the intensity of OCEAN per-
sonality traits across clusters, derived from user labeling via LFs.

Interpretable Cluster Analysis. We explain the cluster assignments by considering
one representative user from each cluster. As representative users, we select the
medoids of the six clusters and interpret their profiles using the EBM.

In Fig.1, we present radar plots that illustrate the importance of specific
features in predicting each representative user’s association with their respective
behavior group. Among the 177 interpretable features, we visualize a subset
of features based on two criteria: the top ten features ranked by the global
importance of the EBM (Fig. 1, top), and the top ten features derived from
the NRC-Lex and VAD-Lex sentiment lexicons (Fig. 1, bottom). This approach
allows us to interpret the assignment of users to behavioral clusters from both
an overall feature importance perspective and an affective perspective.

To enhance the readability of the radar plot, we better specify the semantics
of the features used in the visualization.

As already described in Sect.5, given a user u; with a text collection Tj,
each text ¢; ; € T} is analyzed using various tools and attributes. Among many
of the features extracted from each text ¢; ;, Perspective API is used to assess
t;;’s content in terms of obscene (use of offensive or vulgar language), threat
(expressions of harm or danger), insult (derogatory or demeaning language),
and identity _attack (targeted hostility based on identity) scores. TextBlob eval-
uates t; ;’s polarity, which indicates the overall sentiment of the text, ranging
from negative to positive. NRC-Lex identifies positive sentiment, indicating the
presence of emotionally positive expressions. LIWC-extracted features include
swear (use of profane or offensive language), politic (discussion of political top-
ics), and Culture (cultural aspects, including ethnicity, technology, and politics).

For each user u;, the scores of their texts t; ; were aggregated using statistical
measures such as sum, mean, max, and min. Based on feature importance results
from EBM, the sum operator was the most effective in predicting membership to
behavioral clusters. Additional features for each user identified as most relevant
are nbr_posts, which represents the total number of posts made by a user, and
fuck _sum, which counts the occurrences of the word in the user’s texts, and we
report them too in the radar plots.

For affective features, we considered a set of emotional states from the NRC-
Lex, including sadness, surprise, trust, anger, fear, disqust, and joy. These emo-
tions capture a range of human affective responses. Additionally, we incorporated
affective dimensions from the VAD-Lex, namely valence (emotional value rang-
ing from negative to positive), arousal (intensity of emotional response, from



174 A. Cascione et al.

calm to excited) and dominance (degree of control or power, ranging from sub-
missive to dominant). The extraction and aggregation of these features follow

the same approach described above.
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Fig. 1. The plots illustrate the contributions of the top ten most important features
(top) and ten affective features (bottom) for the prototype users of safe (left) and toxic
(right) clusters. For visualization purposes, feature contribution scores are scaled to
the interval [—1,+1], where higher values indicate a greater influence of that feature
on the cluster assignment.

Focusing on clusters interpretation, Cluster 1-tor shows the highest levels of
toxicity, with peaks in identity attacks and insult content. The emotional profile
is dominated by anger, lack of trust, and disqust. We name this group Aggressive
cluster. Cluster 2-tox shows slightly more moderate levels of toxic language, with
a lower focus on political themes: the user’s emotional profile is more oriented
toward arousal, valence, and fear. We name these users Provocative. Cluster 3-
tox presents lower overall toxicity, with higher levels of joy, valence, and trust,
and a reduced tendency toward identity attacks. This can be named as Mildly-
Toxic cluster. For the safe clusters, Cluster I-safe shows peaks of contribution
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Fig. 2. Stacked bar chart of discretized and normalized OCEAN traits distributed
across TRAITSc clusters and respective cluster sizes. Among the ¢ = 5 trait values,
deeper shades indicate higher scores.

in posts number, positive polarity comments, and a low amount of insults. The
emotional profile is oriented toward trust and walence, indicating Constructive
users of the OSN. Users in 2-safe use slightly harsher language compared to the
other ones. They exhibit the highest levels of anger, fear, and the lowest levels
of joy, making them Contentious users. Cluster 3-safe is characterized by lower
levels of surprise and anger, as well as slightly lower polarity. These users are
neutral and less expressive, suggesting they may be considered Neutral users.

OCEAN Traits Across Clusters. We complement the previous findings by high-
lighting how OCEAN personality traits vary in intensity across clusters, as shown
in Fig. 2. I-tox (Aggressive) stands out with extremely high Neuroticism and low
Agreeableness, aligning with the hostile behaviors seen in Fig. 1. 2-tox (Provoca-
tive) users share many of the traits of I-tox, particularly the elevated Neuroti-
cism, but also show higher levels of Extraversion and slightly higher Agreeable-
ness. Lastly, 3-tox (Mildly-Toxic) users display lower Extraversion and moderate
Agreeableness and Conscientiousness, suggesting a more reserved behavior. Mov-
ing to safe users, I-safe (Constructive) ones are characterized by low levels of
Neuroticism and high levels of Agreeableness and Conscientiousness, confirm-
ing emotional stability and cooperative tendencies. 2-safe (Contentious) users
share similarities with 1-safe but with slightly reduced Agreeableness and Consci-
entiousness, indicating their more argumentative tendency. In 3-safe (Neutral)
cluster we observe moderate Openness and Agreeableness levels, reflecting a less
expressive disposition.

6 Conclusion

We have introduced TRAITS, an interpretable framework designed for the unsu-
pervised detection of personality traits in both toxic and safe OSN users, explain-
ing user behavior assignments in terms of lexical and affective features. Through
a case study on Reddit, we have demonstrated that TRAITS effectively identifies
distinct behavioral groups and offers a clearer understanding of users’ behavior
traits, represented by interpretable feature values, by analyzing the contribution
of each feature to the final cluster assignment of a user.
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We acknowledge three potential limitations of our approach and propose
possible ways to address them. The first concerns the conceptual foundation of
our framework, as we assume users’ personality traits to be a sufficient basis
for evaluating behavior on OSNs. However, users with similar personality traits
may exhibit different behavioral tendencies depending on the communication
context [48]. Therefore, we plan to extend TRAITS by incorporating contex-
tual variability and emotional intelligence factors, as they significantly influence
online social interactions [28]. The second limitation concerns the lack of external
validation from experts. To address this, we plan to collect user-generated posts
from an OSN while strictly adhering to ethical and privacy-preserving guidelines.
These posts will be assessed for toxicity and behavioral tendencies using TRAITS
and subsequently reviewed by domain experts. External validation by expert
psychologists could further refine behavioral assessments and provide a foun-
dation for more effective targeted moderation strategies. Additionally, we aim
to integrate expert knowledge to evaluate aspects more closely associated with
toxic personality traits, such as those outlined in the Dark Triad Theory [14].
We also plan to carefully address privacy risks associated with data collection,
ensuring proper anonymization. Moreover, we recognize the challenges of human
annotation subjectivity and the biases that random user selection may introduce,
potentially affecting the representation of various writing styles and personality
traits in our analysis. We plan to account for these factors to ensure a more bal-
anced and reliable evaluation. To further enhance the information provided by
our interpretable model, we plan to incorporate in our analysis contextual data
alongside affective and textual features. In our case-study dataset, the absence
of time zone information limited a deeper temporal analysis of posts, which we
aim to address in future work. Additionally, considering users’ activity within
specific communities could provide more specific insights on users’ tendencies;
however, potential biases must be accounted for to avoid incorrect inferences, as
toxic behavior may be more associated with certain communities than others.

Finally, to evaluate the effectiveness of TRAITS in contributing to impactful
moderation strategies, we aim to explore its application alongside content gener-
ated by large language models. Specifically, we intend to assess whether targeted
moderation prompts, tailored to address toxic individuals within specific behav-
ioral groups, lead to more effective behavioral adaptations in simulated users
compared to generic, one-size-fits-all moderation approaches. This evaluation
will be conducted within OSN-simulated environments [51]. To achieve this, we
plan to conduct experiments with different prompt-design strategies, varying
aspects such as tone, context, and topic, as well as incorporating leading ques-
tions or framing specific issues positively or negatively, while carefully mitigating
the introduction of bias, privacy risks, or unfairness in the design.
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Abstract. Online Social Networks (OSNs) enable large-scale discus-
sions but often suffer from toxic behaviors such as harassment and
hate speech. While automated moderation helps manage toxicity, per-
sonalized approaches remain challenging due to fairness and trans-
parency concerns. We introduce UTOXIC, a machine-learning framework
that detects and analyzes toxic users based on linguistic, affective, and
clustering-derived features. It performs binary and multi-class classifi-
cation while incorporating explainability techniques for transparency.
Evaluating uToxic on a Reddit dataset with over 8 million comments,
we demonstrate its effectiveness in identifying toxic users and specific
toxicity types. Our approach enhances automated moderation, offering
interpretable insights for fairer and more adaptive interventions.

Keywords: Toxicity Detection - Machine Learning - XAI

1 Introduction

Online Social Networks (OSNs) are a key part of modern digital communication,
shaping users’ interactions. Platforms like Facebook, X (formerly Twitter), and
Reddit enable large-scale, real-time discussions. However, these platforms often
suffer from toxic behaviors that harm interactions and degrade discussion qual-
ity. Toxic behavior in OSNs includes cyberbullying, harassment, flaming, hate
speech, and other harmful actions. To counter this, OSN platforms use content
moderation strategies, combining user reports with automated detection meth-
ods. While users can report harmful content, automatic machine learning-based
approaches, which are typically not interpretable, play a major role in identify-
ing and managing toxic discussions at scale. A major challenge in moderation is
implementing personalized strategies that consider user-specific behaviors. Stud-
ies show that users respond differently to moderation efforts [19], thus customiz-
ing moderation policies based on behavior can improve adherence to community
guidelines and enhance moderation effectiveness [4]. However, this approach
presents challenges, such as the lack of ground truth, and the importance of
interpretable machine learning models to ensure fairness and transparency [9].
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In order to pursue this direction, we present UTOXIC!, a User TOxic
eXxplainable Identification and Characterization framework for toxic users based
on features extracted from their comments and activity. UTOXIC employs lin-
guistic and stylistic, affective-based, and clustering-derived features, aggregat-
ing them at the user level to perform binary classification (toxic vs. non-toxic)
and multiclass classification (identifying specific toxic behaviors). UTOXIC also
incorporates explainability techniques to clarify model decisions at both local
(individual cases) and global levels. We evaluate UTOXIC on a Reddit dataset
with over 8 million comments from 15,000 users. Our results show that uTOXIC
effectively distinguishes toxic from non-toxic users and identifies specific types
of toxicity, such as harassment, violence, racism, and profanity. By using inter-
pretable linguistic, sentiment-based, and unsupervised features, UTOXIC enhances
automated toxicity detection and characterization, potentially enhancing mod-
eration in OSNs.

The rest of the paper is organized as follows. After reviewing the literature
in toxicity detection both at a comment and at the user level in Sect.2, we
formalize UTOXIC in Sect. 3. Section 4 presents the Reddit case study together
with the experimental results. Finally, Sect. 5 summarizes our contributions and
outlines potential directions for future research.

2 Related Works

In the literature, there is not a single and agreed-upon definition of the term
“toxicity” or “toxic-speech” but it is often used as an umbrella term indicating
negative behaviors. In general, studies in the literature can be grouped into two
main lines of research: a first line focuses on identifying and classifying toxicity
at the comment level, while the second addresses it at the user level.

Online toxicity detection at the comment levels often involves analyzing toxic
posts and comments, where “toxic” includes rude, vulgar, harmful, or hateful
behavior, such as hate speech. In [15], hate-speech detection is performed on
tweets by combining textual features with user-related attributes (e.g., demo-
graphics, behavior, personality, readability, and writing style), employing mod-
els like SVM, Logistic Regression, Random Forest, CatBoost, and XGBoost.
Similarly, in [8] multilingual hate speech detection on Facebook posts is investi-
gated, focusing on user demographics. For similar tasks, in [18] and [21], Logistic
Regression, SVM, and Multilayer Perceptron are used to classify comments. In
these works, the performances of the models involved for the toxicity detection
tasks improve considerably thanks to the features extracted from the comments.

Another strand of research in online toxicity detection focuses on analyzing
the behaviors of users who post toxic comments, i.e., user level toxicity detec-
tion. For instance, in [12] the authors studied users’ toxicity on Reddit over
time by labeling over 3 million comments with Perspective API and categoriz-
ing users into four groups based on toxicity trends, i.e., steady, fickle-minded,
pacified, and radicalized. Similarly, in [2] over 500 million comments across eight

! The code is available on GitHub at https://github.com/LauraPollacci/UTOXIC.
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platforms over 30 years are investigated by defining user toxicity as the frac-
tion of toxic comments. The study shows that toxicity arises during interac-
tions between highly polarized users rather than influencing user participation.
Factors contributing to toxicity, such as user demographics, posting time, and
trolls, are highlighted in [7,10]. For instance, the author in [7] adopts an inter-
disciplinary approach, combining linguistics and discourse analysis to examine
trolling in asynchronous computer-mediated communication. Through a quali-
tative analysis of user discussions, the study identifies four key characteristics
of trolling: aggression, deception, disruption, and success. Also, it presents a
structured framework for understanding trolling as a deliberate and socially dis-
ruptive behavior in online interactions. The studies in [17] and [16] apply binary
classification for toxic user detection. In contrast, [2] and [12] categorize users—
using two and four labels, respectively—but without performing a classification
task, instead proposing a detailed labeling methodology. In [17], the authors
investigate the link between toxic online behavior and Dark Triad personality
traits, i.e., narcissism, Machiavellianism, and psychopathy, using classification
models such as SVMs, Random Forests, and Naive Bayes on Twitter data. They
observe correlations between language use and Dark Triad traits but show low
model performance when analyzing individual users.

We propose an interpretable approach for toxic user modeling and classifica-
tion by exploiting features extracted from their comments and from their activity
on the platform like [17] and [16]. Despite our work not being primarily focused
on hate speech detection, like [15], we employ textual, such as readability levels,
and affective-based features for modeling. In the literature, most of the works
that involve XAl focus on the detection of hate speech or similar toxic behaviors,
while in our work, we do not employ XAI techniques for the explanation of text
classification, but exclusively for the toxicity traits of the users.

3 Methodology

In this section we present UTOXIC, a User TOxic eXplainable 1dentification and
Characterization framework for modeling and classifying toxic users in OSNs.
UTOXIC involves extracting interpretable linguistic and behavioral features, and
training opaque classification models on top of them to distinguish between
toxic and non-toxic users. Finally, we employ explainability techniques on the
interpretable features to understand the model’s decisions.

We start by formalizing the problem of toxic user identification and classifi-
cation, distinguishing between binary and multi-class settings.

Definition 1. (Toxic User Detection Problem). Let U = {u,...,u,}
represent a set of n users in an OSN, and let T* = {t1,...,t,} represent their
tozicity levels, where t; € T* and T* = {0,...,c} represent the set of possible
toxicity states. The Toxic User Detection Problem consists of learning a classi-
fication model f that, given an unlabeled user u;, predicts their toxicity level t7,
i.e., t7 = f(u;), where t; € T* represents one of the classes in T*.
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Building on Definition 1, we approach the problem of toxic user identification
and characterization by leveraging machine learning models. In particular, we
face two problems: the binary Toxic User Detection Problem with ¢ = 2, i.e.,
7* ={0,1} with 0 for non-toxic and 1 for toxic, and the multiclass Toxic User
Detection Problem with ¢ = 5, i.e., 7* = {0, 1, 2, 3,4} with 0 for non-toxicity, 1
for harassment, 2 for violence, 3 for racism, and 4 for vulgarity.

However, ground truth labels for user toxicity, such as expert-based annota-
tions, are often unavailable, complicating the direct classification of users. More-
over, the nuanced and context-dependent nature of toxic behavior in OSNs fur-
ther complicates the task. To address these challenges, we propose a supervised
machine learning approach for both the identification (binary classification) and
characterization (multi-class classification) of toxic users. This is achieved by
extracting features from users’ comments and aggregating them.

Definition 2. (Supervised Toxic User Detection Problem). Let U =
{ui,...,u,} be a set of n users in an OSN. Fach user u; € U has a set of
comments C; = {¢iy, Ciy,...,¢i,, }, where m denotes the number of comments
posted by the user. The set of features F(c;;) is extracted from each comment
ci; € C; for every user u;. These features are then aggregated using an aggre-
gation function A (e.g., sum, mean) to represent the user in terms of their
commenting activity. The Supervised Toxic User Detection Problem consists of
learning a classification model [ that, given an unlabeled user u; € U, predicts
their toxicity level t¥, i.e., t¥ = f(u;), where t} € T* represents one classes in
T*. Specifically, the model assigns a label t; to each user based on the aggregated

features of their comments, where t; = f (.A (U;n:l f(cij)>).

We apply Definition 2 to both the Binary Supervised Toxic User Detection
Problem with ¢ = 2, i.e., 7* = {0,1} with 0 for non-toxic and 1 for toxic, and
to the Multi-class Single-label Supervised Toxic User Detection Problem with
c¢c=5,1e,T" =1{0,1,2,3,4} with 0 for non-toxicity, 1 for harassment, 2 for
violence, 3 for racism, and 4 for vulgarity.

In the rest, we present the UTOXIC framework, aimed at improving the detec-
tion and classification of toxic users in OSNs. This framework addresses the
challenge of toxicity detection in situations where ground truth data on user
toxicity is often unavailable. In Fig.1 is summarized the core idea of UuTOXIC
that extracts interpretable and meaningful features from user comments and
behaviors to identify and characterize toxic users. The process begins with a
two-level feature extraction (1): first, from the comments themselves (1.a), and
second, from the users’ profiles (1.b), which also include aggregated features
from the comments. These features are then used to model user toxicity (2),
with both binary (2.a) and multi-class (2.b) classification models. Finally, we
apply an explainability technique (38) to interpret and provide insights into the
classification models, making the decision process transparent and understand-
able.

Through the interpretable features UTOXIC framework can help not only in
identifying toxic users but also in understanding the factors behind the toxicity
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Fig. 1. Workflow of the user toxicity identification and characterization process. The
pipeline includes ground truth definition, feature extraction at both comment and user
levels, user toxicity modeling (binary and multi-class), and an explainability step.

classification, enhancing the interpretability of the underlying machine learning
models.

The pseudo-code of UTOXIC is in Algorithm 1. Given a set U = {uq,...,u,}
of n users in an OSN we consider T' = {T3,...,T,} the textual comments
generated by the users of the OSN in a certain period, where T; € T with
T; = {ti1,..., tin,} is the set of n; texts of user ¢, while ¢; ; € T; is the 4t
text of user i. UTOXIC takes as input 1" and returns f as the interpretable users’
toxicity classification model by employing «, that is the threshold for determin-
ing whether a comment is considered toxic based on its toxicity score, derived
by D,, an external dataset containing comments (7},) and their corresponding
toxicity annotations (Y}) (used for training and model validation), and § that
is the threshold for classifying a user as toxic based on the percentage of toxic
comments.

As a first step (line 1), we establish the ground truth for comments (G¢)
by using external toxicity annotations, specifically from the Perspective API.
Perspective API provides scores indicating the likelihood that a reader would
perceive a given comment as toxic or as exhibiting a specific toxicity-related
attribute. While Perspective API is not fully transparent regarding its anno-
tation process and may introduce biases, its behavior has been widely investi-
gated, and performances and biases are-at least partially-quantified in the liter-
ature [6,11,12,14]. Moreover, prior research [5,20] has provided insights into its
application, including recommendations on threshold settings for toxicity detec-
tion [1]. In contrast, human annotation would not only entail significant costs
given the vast number of comments to be evaluated but would also introduce
biases that are inherently more difficult to analyze and quantify. Toxicity and its
associated attributes are not entirely objective constructs, and their perception
may at least in part depend on individual sensitivity. Thus, human annotation
could have introduced biases driven by subjective judgment or prejudice, which,
unlike those of Perspective API, would have been challenging to identify, mea-
sure, or control. The ground truth helps train the model by associating comments
with known toxicity labels. This is done by creating a set of toxicity labels, G,
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Algorithm 1: utoxic(T)

Input : T - OSN textual comments of users where ¢; ; € T; is the j”l comment of user 1,
and T; € T with T; = {t;1,...,ti n,} is the set of n; comments of user i.
Param : « - toxicity threshold for comment-level toxicity scoring
B - toxicity threshold for user-level toxicity classification
D, = (Tp,Yp) - external dataset with known toxicity annotations
Output: f - toxicity classification model for users.

1 Gy —A{gj | 9; =Yp(ti;) Vti; €T} // Ground truth for comments from Perspective API
2 yiy — Lif Yy (ti ;) > aelse y; ; « 0; // Assign label (1 if score >= alpha, else 0)
3 Ye[i,j] «— i 3 // Assign the label to each comment
4 for i € [1,n] do // For each user
5 Nyogic < count _tozic comments(T;, Ye[i]); // Define users’ ground truth from Y.
Ptozic < "’;’%, // Compute the percentage of toxic comments for user i if pipzic > 0

then
6 Gyli] «— T, // Classify user as T if > 3 of their comments are toxic
‘ Gﬁl [¢] « tox label(Xysers,i); // Multi-label ground truth for toxic users

else
8 Gyli] < NT; // Otherwise, classify the user as non-toxic
9 ‘ GMi] « NT; // Classify the user as non-toxic in multi-label classification
10 X, « 0 // Initialize comment-level features
11 for t; ; € T do // For each comment
12 Tienical “— extract _lexical _features(t; j); // Extract lexical and syntactic features
13 T affective < eztract_sentiment_emotion(ti,j); // Extract affective-based features
14 Ttozic words < extract toxic__lemmas(t; ;); // Identify toxic lemmas in the comment
15 Touster < extract _cluster _features(t; ;); // Cluster comments to identify toxicity
16 X — Xe U{Zievicals Taffective, Trozic_words s Teluster }3 // Aggregate comments’ features
17 X, «— 0 // Initialize user-level features
18 for i € [1,n] do // For each user
19 x. < aggregate features(Xc i); // Aggregate comment-level features
20 T activity < eztractiactivityifeatures(Ti); // Extract users’ activity features
21 Xy — Xo UA{zy, Tactivity }3 // Combine all features for user
22 Apinary < binary_classification (X, Gu); // Classify users as T or NT
Ay — multi_classification(X,, Gﬁl); // Classify users into categories
Femptanation — XAI(Apinary, Amatiis Xu); // Apply explainability to all models return
fc:[planatzo'n; // Return the interpretable toxicity model with explanations

where each label g; corresponds to a comment ¢; ; in the dataset T'. Thus, for
each comment ¢; ;, the toxicity label g; is directly obtained from the Perspective
APT score, as represented by g; = Y,(¢;;). The ground truth G, is populated
by the toxicity labels for all comments in the dataset, where j ranges from 1 to
n, the total number of comments. This step is crucial to set the benchmark for
labeling toxicity in the data, which is then used for training the model. Once a
continuous toxicity score is assigned to each comment from the Perspective API,
the algorithm assigns a binary label (toxic or non-toxic) based on whether the
score (Y,(t;;)) is greater than or equal to the threshold . Specifically, if the
score meets or exceeds the threshold, the label y; ; is set to 1; otherwise, it is set
to 0 (lines 2 and 3).

Next, at the user level (lines 4-12), the algorithm defines the ground truth by
computing the toxicity scores of each user’s comments. For each user i € [1,n]
(line 4), the number of toxic comments (N¢p4ic) is computed (line 5) by counting
how many of the user’s comments are labeled as toxic in the ground truth Gi.
The percentage of toxic comments for user ¢ is then calculated (line 6) by dividing
the number of toxic comments by the total number of comments the user made.
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If a user has at least (8 toxic comments (line 7), they are classified as toxic (T)
in the binary ground truth (G,) (line 8). For toxic users, a multi-label ground
truth (GM) is created based on the average toxicity values of their comments,
providing deeper insight into their behavior (line 9). Otherwise, a user is classified
as non-toxic (NT) for both binary and multi-label classification (lines 11-12).

Moving to the feature extraction process (lines 13-19), the algorithm initial-
izes comment-level features X, (line 13). Then, for each comment ¢; ; € T (line
14), the following functions are called:

— The function eztract lexical features (line 15) is called to capture textual
characteristics, such as the number of unique words, the frequency of specific
word types (nouns, verbs, adjectives), and readability indices.

— The function extract_sentiment emotion (line 16) analyzes sentiment polar-
ity (whether the comment is positive, negative, or neutral), tone, through
measures like valence, arousal, and dominance, end emotions.

— The function eztract toxic lemmas (line 17) identifies toxic-related lemmas
appearing in the comment.

— The function extract_cluster features (line 18) applies clustering techniques
to capture patterns or types of toxicity based on how similar comments are
grouped together.

Once these features are extracted for each comment, they are aggregated into the
set X, (line 19), which holds all the features for every comment in the dataset.

After extracting the features at the comment level, the algorithm moves to
extract features at the user level. It starts by initializing the set X, (line 20) to
store the aggregated features for each user. For each user ¢ € [1,n] (line 21), the
algorithm performs the following steps:

— The individual comment-level features for all comments posted by the user
are aggregated into a single vector for the user using the function aggre-
gate_ features (line 22). This aggregation involves computing statistics such
as the sum, mean, maximum, and minimum for each feature across all com-
ments made by the user.

— The function extract activity _features (line 23) is used to capture features
related to the user’s commenting activity. This includes information such as
the total number of comments made, the number of toxic comments, and the
number of different subreddits or topics the user has participated in.

Finally, the aggregated comment-level features are combined with the activity
features (line 24) to form a comprehensive feature set for the user. With the
feature set for each user, the algorithm then models toxicity at the user level.
A Dbinary classification algorithm (line 25) is applied to classify each user as
either toxic or non-toxic, based on the features extracted from their comments
and activity. For users classified as toxic, the algorithm further categorizes them
into different toxicity types (line 26). This is done through a multi-class clas-
sification, where users are classified into distinct toxicity types based on the
features extracted from their comments. The final step of the algorithm is to
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apply Explainable AI techniques (line 27) to interpret the classification results
and understand which features contributed the most to the model’s decisions.
The algorithm generates explanations for both binary and multi-class toxicity
classifications, at a local and global level, providing insights into how different
features impacted the classification decisions for users (line 28).

4 Case Study

To evaluate the effectiveness of our framework, we apply UTOXIC to a case study
of Reddit users. This section details the experimental setup and the feature
extraction process. We then present the classification model performance and
insights derived from applying XAI.

4.1 Experimental Setting

We apply the methodology described in Sect.3 to a Reddit case study by first
defining the ground truth, then extracting features from comments and users to
model and characterize toxicity, and finally applying explanation techniques. In
this study, we employ the Reddit dataset? presented in [3], covering the period
from April 2020 to January 2021. The dataset represents comments through 16
properties, including toxicity, severe toxicity, obscene, threat, insult, and iden-
tity attack scores. These scores capture toxicity-related information extracted
using the Perspective API3. To define our target variables for multi-class clas-
sification, we map identity attack to racism, threat to violence, obscene to
vulgarity, and insult to harassment, using the corresponding scores from the
dataset. Together with these, the comments are described by the user, the sub-
reddit where they are posted, the identifiers of the parent comment and the
submission, the timestamp (without timezone information), their score, and
any potential awards or gildings. After an initial phase of data preparation,
which comprises the removal of duplicate comments and irrelevant features, i.e.,
awardings, gildings, parent id and submission, the dataset includes 8,724,581
comments, produced by 15,721 unique users, and belonging to 45,334 unique
subreddits. To define whether a comment is toxic or not, we set a threshold o on
the toxicity score. We chose a >= 0.7 to ensure a broader inclusion of cases,
rather than restricting the analysis to only the most clearly toxic ones, as would
happen with a higher threshold, as suggested by the documentation [1]1. As a
result, we obtained 961,251 toxic comments and 7,763,330 non-toxic comments.
Before the feature extraction, we perform an initial text-cleaning phase in which

2 https://doi.org/10.5281/zenodo.14034510.

3 Perspective API: https://perspectiveapi.com/.

4 While ML research often employs stricter thresholds (e.g., 0.9), a lower threshold
balances inclusivity and precision, capturing a broader range of cases while main-
taining reliability. According to prior research [1,5], ensuring a more comprehensive
and representative dataset for analysis.


https://perspectiveapi.com/
https://perspectiveapi.com/
https://perspectiveapi.com/
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double spaces, URLs, special characters, and punctuation are removed using reg-
ular expressions. Further, to avoid losing useful information, emojis are decoded
into the corresponding textual definition by using Emoji®, and contractions are

expanded by using Contractions®.

4.2 Feature Extraction

Once the comments were cleaned, we focused on the feature extraction phase
at the comment level (Algorithm 1, lines 14-18). As described in Algorithm 1
(line 15), we extracted text-related features, capturing the linguistic and stylistic
characteristics of the comments. These include, among others, the total num-
ber of words and the count of uppercase words, extracted using NLTK”, and
the scores of nine readability tests (See Appendix A.1), obtained from Read-
ability®. Regarding the affective-based features (Algorithm 1, line 16), we used
TextBlob? to obtain the polarity score, NRC-Lex!'? for the eight basic emo-
tions'! by Plutchik [13], and the NRC Lexicon!? for valence, arousal, and
dominance average values in each comment. To obtain additional toxicity-based
information, we focused exclusively on the toxic comments to extract their most
relevant and frequent words (Algorithm 1, line 17). Specifically, we used the
Wordcloud!® Python library to identify the most frequent terms, selecting the
top 150,000 comments for each of the six types of toxicity, and we applied Term
Frequency-Inverse Document Frequency!'* (TF-IDF) to detect the key terms
in the same set of comments analyzed in the wordclouds. The combination
of the two approaches provides a set of 27 words that have been lemmatized
and then individually added as binary features in a one-hot encoding fashion:
1 if the lemma is present in the comment, 0 otherwise. Moreover, we add the
toxic_words feature, representing the total number of toxic lemmas per com-
ment. By following this approach, we obtained a set of 59 features that allow
to fully describe textual, affective, and toxic traits in comments. Moreover, we
applied a centroid-based clustering analysis (Algorithm 1, line 18) using K-means
and taking into consideration the six toxicity-related features. We applied the
Elbow Method to determine the optimal number of clusters, which was found
to be 5. We started from the assumption that the values of the centroids of
each cluster define the type of toxicity of each comment. Thus, the centroid
of Cluster 0, labeled “extreme toxic”, shows high values for toxicity, obscenity,

5 Emojis: https://pypi.org/project/emoji/.
5 Contractions: https://pypi.org/project/contractions/.
" NLTK: https://www.nltk.org/.
8 Readability: https://pypi.org/project/readability/.
9 TextBlob: https://textblob.readthedocs.io/en/dev/.
10 NRC-Lex: http://saifmohammad.com/WebPages/NRC- Emotion-Lexicon.html.
11 Namely, anger, fear, sadness, disgust, surprise, anticipation, trust, and joy.
12 NRC VAD-Lexicon: http://saifmohammad.com/WebPages/nrc-vad.html.
3 Wordcloud: https://pypi.org/project /wordcloud,/.
14 TF_IDF is a numerical statistic that reflects the importance of a word in a document
relative to a collection, balancing word frequency with its rarity across documents.
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and insult. The centroids of Clusters 2 and 3 show elevated levels of toxicity and
both toxicity and insult, respectively, and are referred to as “moderate toxic” and
“obscene toxic”. In contrast, the centroids of Clusters 1 and 4 show low values
across all toxicity types, indicating that comments in these clusters are generally
non-toxic. As a result, they are labeled “polite” and “non-toxic”, respectively.

After extracting features from the comments, we focused on the users to iden-
tify the features that will be used in the classification tasks. Firstly, we grouped
the comments per user, then we extracted user-based features also aggregating
the comment-based ones (Algorithm 1, lines 22-24). In addition to the textual-
related features, we considered users’ activity-related features (Algorithm 1, line
24). These include the number of comments, number and percentage of toxic
comments, list and number of toxicity type above average, number of distinct
subreddits the user is active in, list and number of emotions above average,
number of comments per cluster, ratio of non-toxic comments and number of
subreddits, and the ratio of toxic comments and number of subreddits. Addi-
tionally, we defined a set of features representing the number of comments of
the users belonging to each cluster, i.e., extreme toxic, polite, moderated toxic,
obscene toxic, and low toxic. By following the described approach, each user is
characterized by 184 features - listed and described in Appendix A.2 - encom-
passing linguistic aspects, sentiment and emotion attributes, textual complexity,
and activity-related metrics.

4.3 Classification

Ground Truth and Experimental Setting. To accomplish the classification
tasks, we first set two different ground truths for users, i.e., G, and GM. The first
annotation (G, ) identifies a user as toxic (7') or non-toxic (NT'). This is achieved
by setting a threshold  on the feature that indicates the percentage of toxic
comments per user (Algorithm 1, line 7-9, 11). The a threshold g is set at 10%,
meaning a user is classified as toxic if at least 1 over 10 of their comments are
toxic. This threshold is based on the idea that even a small percentage of toxic
behavior can have a significant impact on the online discussion environment'®.
The 10% threshold allows for the identification of harmful behaviors without
over-classifying users who contribute minimally to toxic content. As a result of
the binary annotation, we obtain a balanced dataset including 7,843 toxic and
7,878 non-toxic users.

The second annotation (GM) focuses exclusively on the toxic users, and it is
based on the average of the toxicity-related features derived from the Perspective
API, i.e., threat, insult, obscene, and identity attack, respectively translated as
violence, harassment, vulgarity, and racism (Algorithm 1, line 9). The multi-
class annotation led to an imbalanced dataset composed of 16 violent users, 297
molesters, 7,496 vulgar users, and 34 racists.

15 Toxicity, can negatively affect other users’ experiences and the overall climate of
the community and research in OSNs have explored how relatively low levels of
negative content can create a harmful environment, emphasizing the importance of
identifying and mitigating such behavior early.
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Table 1. Binary classification. Best results in bold.

NT T

Model|Acc. |Prec. |Rec. |[F1  |AuC|Prec. |Rec. F1 |AuC
LR 93.6%0.925/0.953 |0.939|0.98 |0.950 0.920/0.935/0.98
RF  92.8% |0.911 0.953 |0.931 |0.99/0.949 0.903 |0.926 |0.99
SVM (92.7% |0.889 0.980/0.932 0.98 |0.977/0.874 |0.922 [0.98
DT 90.6% |0.888 0.933 0.910 |0.95 |0.927 |0.879 |0.902 |0.95
KNN 89% |0.859 0.939 |0.897 |0.97 |0.930 |0.841 |0.883 |0.97

Table 2. Multiclass classification before SMOTE. Best results in bold.

Model| Acc. |harassment|non-toxic|racism|violence|vulgarity
RF 90%/0.491 0.921 0.110 |0.402 0.901
SVM 90% |0.282 0.943 0.000 |0.000 0.901
DT 89% [0.256 0.912 0.000 |0.000 |0.881
KNN 88% [0.000 0.904 0.000 |0.000 |0.872
LR |84%|0.361 0.902 0.021 [0.012 |0.871

Both the binary and multi-class single-label classification tasks are carried out
using Hold-out Test Set (with a 70-30 split) and testing five different models DT,
RF, KNN, LR, and SVM whose parameters have been tuned through random
search'®. Given the variety of features extracted, a preliminary feature selection
allowed to find the best set of features for the classification tasks. The feature
selection combines boxplot analysis and Mutual Information'” and led to a set
of 33 features (highlighted in bold in the complete list in Appendix A.2).

Binary Classification. The performance are reported in Table 1. Every model
shows a high overall accuracy, ranging around 90%, with Logistic Regression
achieving the highest (93.6%), and KNN the lowest (89%). All models show
similar and comparative performances on both classes (NT and T') and for all
considered metrics, with values between 0.89 and 0.99, except KNN which shows
precision on NT and recall on T slightly lower (0.86 and 0.84, respectively).

Multi-Class Single-Label Classification. After the binary classification
task, we experimented with multi-label single-class classification, which takes

6 Scikit Learn RandomizedSearchCV: https://scikit-learn.org/stable/modules/
generated /sklearn.model _selection.RandomizedSearchCV .html.

17 Mutual information is a statistical measure that quantifies the amount of information
shared between two variables, indicating how much knowing one variable reduces the
uncertainty of the other.
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Table 3. Multiclass classification before SMOTE. Best results in bold.

Model| Acc. |harassment|non-toxic|racism|violence|vulgarity
RF 89%0.419 0.920 0.068 |0.000 |0.895

LR [85% (0.325 0.918 0.053 |0.017 |0.866
DT |84% (0.256 0.897 0.071 10.133 |0.861
SVM 84% |0.261 0.902 0.175 /0.081 |0.833
KNN |78% (0.151 0.895 0.030 |0.000 ]0.780

into account four types of toxicity, i.e., harassment, violence, racism, and wvul-
garity, plus non-toricity. Since, as mentioned in Sect. 4.3, the dataset is highly
imbalanced, we applied the SMOTE oversampling algorithm.

Tables2 and 3 present Accuracy and the five Fl-scores for the classifiers
before and after applying SMOTE, respectively. Starting from the performances
on the imbalanced dataset in Table2, every model shows high accuracy, with
also high Fl-scores for the most represented classes, i.e., non-toxicity, and vul-
garity. Instead, for the classes racism and violence the values are close to 0 for
every classifier except for RF, which has 0.11 and 0.40, respectively. In terms
of Fl-score, model performance varies significantly, especially depending on the
types of toxicity. However, RF seems to outperform the other classifiers for every
class except non-toxic, where SVM achieves the best performance. After oversam-
pling, as shown in Table 3, the accuracy scores slightly decrease for each classifier
(ranging from —1% to —5%), and the Fl-scores for the least represented classes
(racism and wviolence) show no improvement. In general, the oversampling shows
only slight improvements, particularly for the least represented classes (racism
and wiolence). However, in most cases, including RF, SMOTE tends to worsen
the Fl-scores across all other classes.

4.4 Explainable Al

We applied the SHAP'® explainer, using TreeExplainer, to the Random For-
est model to analyze feature importance and impact across both classification
tasks. Our analysis considers both local and global explanations, highlighting
key similarities and differences between the two approaches.

Local Explanation of Binary Classification. For the local explanation, the
points considered correspond to the medoids of the SHAP value clusters, com-
puted for each class. Here we show in Fig. 2, for illustrative purposes, only two
medoids: one for the non-toxic class and one for the toxic class. With regards
to the non-tozic medoids (Fig. 2a), the feature tox_over, representing the num-
ber of toxicity types above average, has a high importance in every case, even
if in one case-here not showed-, it contributes negatively to the classification.

'8 SHAP: https://shap.readthedocs.io/en/latest /index.html.
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Fig. 2. Local binary classification explanation.

Among the emotion-based features, disgust_mean has a positive impact in every
medoid, while fear_mean has a positive impact for three medoids. The feature
extreme_toxic_group is always present as an important feature and in most
cases contributes positively to the classification. fuck_sum and shit_sum, repre-
senting the sum number of occurrences of “fuck” and “shit” terms per comment,
are the only two features based on toxic-related terms that appear as the most
important, although with different contributions.

Considering the toxic medoids (Fig.2b), the feature tox_over is by far
the most important one in every case, but for a medoid it determines a mis-
classification. The attributes ratio_toxic, i.e., the ratio between the num-
ber of toxic comments and the number of subreddits for each user, and
extreme_toxic_group, i.e., the number of comments from cluster 0 - which has
high values for the features toxicity, obscene and insult, appear as important
features for three medoids. In general, for the binary classification task the most
important features are tox_over and ratio_toxic, followed by the information
about the clusters that contain toxic comments. Among the features representing
emotions, disgust and fear are present in most cases with different impacts.

Local Explanation of Multi-Class Single-Label Classification. The bar
charts of the local explanation for the multi-class classification are shown in
Fig. 3. Focusing on the non-tozic class (Fig.3a), tox_over is again the most
impactful feature, followed by valence_sum, i.e., the sum of the valence score per
comment. In one case, ratio_toxic shows a positive contribution, and the emo-
tion disgust consistently plays a role, albeit with varying degrees of influence.
For the harassment class (Fig.3b), the most impactful features are tox_over
and the cluster-related attributes, which generally show a positive contribu-
tion. Also, features linked disgust appear in two medoids but with a negative
contribution, while toxic terms, such as “fuck”, “shit”, and “idiot” show a small
positive contribution. In the case of racism (Fig. 3c), only one medoid is classified
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Fig. 3. Local multi-class classification explanation.

correctly. Here, the most relevant feature is obscene_toxic_group, i.e., the num-
ber of comments from Cluster 3, that is characterized by high values for toxicity
and insult, followed by ratio_toxic and valence_sum. However, in the mis-
classified medoids, the importance of features changes significantly. Although
obscene_toxic_group always provides a small positive contribution, features
like tox_over, arousal_max, and extreme _toxic_group show higher impact,
although depending on the case. Regarding violence (Fig.3d), we analyzed a
well-classified medoid and one that was misclassified. For the correctly classi-
fied medoid, disgust_mean contributes negatively, while obscene_toxic_group,
extreme_toxic_group, and tox_over play a positive role. Conversely, in the
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misclassified medoid, obscene_toxic_group and extreme_toxic_group still
provide a positive contribution, but trust_max and toxic_words_sum have a
negative impact on the classification. Finally, for vulgarity (Fig. 3e), all medoids
are classified correctly, showing consistent patterns in feature contributions. The
most significant attribute is obscene_toxic_group, which is complemented by
tox_over — although in one case it has a negative contribution — and other
cluster-related features. Moreover, ratio_toxic provides a small positive con-
tribution, and toxic-related terms such as “fuck”, “shit”, and “toxic_ words” rank
among the most relevant for this class. In general, for every class the most rele-
vant features appear to be the ones related to the clusters of the comments and
to the toxic activity of the user, like tox_over and ratio_toxic.

tox_over [
ratio_toxic [N
extreme_toxic_group NG
toxic_posts _
disgust_mean [
valence_sum -
fuck_sum -
obscene_toxic_group [l
fear_sum [l
anger_sum [l
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nbr_subreddit | .
== toxic

stupid_sum | == non-toxic

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Fig. 4. Global binary classification explanation with SHAP.

Global Explanation of Binary Classification. For the binary classifi-
cation, we compared the relevance of the features calculated by the SHAP
Explainer (Fig.4) with the features’ importance directly derived from the Ran-
dom Forest classifier (Fig.5). The importance of the features for the two
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Fig. 5. Global binary classification explanation with RF feature importance.

approaches is almost identical, with tox_over is by far the most impor-
tant one, followed by ratio_toxic and extreme_toxic_group. According
to SHAP, obscene_toxic_group is slightly more important than fuck_sum,
while for RF feature importance it is the opposite. Both approaches iden-
tify two features as important, based on readability tests: coleman_liau_sum
and dale_chall_mean. These features estimate readability by considering word
and sentence length, as well as familiar vocabulary and sentence structure,
respectively. On the other hand, the approaches differ in terms of the features
stupid_sum and arousal_max, which are important for SHAP and RF feature
importance, respectively.

Global Explanation of Multi-Class Single-Label Classification. The
global explanation of the multi-class single-label RF classifier highlights that
the six most important features remain the same before and after oversam-
pling, although their impact differs. Moving to the SHAP explainer (Fig.6),
before SMOTE (Fig.6a), tox_over is the most important feature, particularly
for the most represented classes (non-tozicity and vulgarity). After balancing
(Fig.6b), obscene_toxic_group becomes the most important feature, with a
greater impact on the racism class. In both cases, these two features are by
far the most relevant for this classification task. ratio_toxic is the third most
important feature in both scenarios, with a greater impact on the racism and
violence classes after SMOTE. In the balanced dataset, extreme_toxic_group
and moderated_toxic_group have a bigger importance, while valence_sum
decreases its relevance for every class. While the top six features remain simi-
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Fig. 6. Global multi-class classification explanation pre and post SMOTE.

lar before and after SMOTE balancing, the remaining fourteen features play a
different role in the classification and have a smaller impact, with their SHAP
values close to 0 in both cases.

4.5 Explanation Comparison

Local Explanation Comparison. At the local level, both binary and multi-
class classification tasks highlight the importance of features related to user
toxicity and comment clusters. For the binary classification, key features such as
tox_over, ratio_toxic, and extreme_toxic_group are identified as the most
impactful across various medoids, indicating that the overall toxicity of a user or
their comments plays a significant role in the classification. In multi-class classi-
fication, this trend persists for classes such as harassment and vulgarity, where
features like tox_over and those related toxic clusters show consistent contribu-
tions. Also, emotion-related, like disgust and fear appear in some cases, but
their influence varies in terms of polarity (positive/negative). In cases of racism
or wiolence, the impact of emotion-related features becomes more pronounced,
but again, with variations in their contribution. Specific toxic terms such also
show some level of positive contribution, particularly for the vulgarity class.
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Global Explanation Comparison. In the global explanation, both
SHAP and RF approaches align closely in terms of identifying the
most important features for binary classification. Features like tox_over,
ratio_toxic, and extreme_toxic_group are consistently ranked as highly
influential in both methods. However, minor differences arise, such as the
importance of obscene_toxic_group and fuck_sum, where SHAP ranks
obscene_toxic_group slightly higher than fuck_sum, while the opposite is true
for Random Forest. For the multi-class classification, especially after SMOTE,
the feature obscene_toxic_group becomes more prominent, particularly for the
ractsm class, whereas tox_over maintains its importance across most classes.
These two features dominate the classification, with ratio_toxic also remaining
significant, particularly in classes such as racism and wviolence post-balancing.
The global analysis thus reinforces the helpful impact of these toxicity-related
features, particularly after that the dataset is balanced.

Local Vs. Global Explanation. When comparing the findings from local and
global explanations, we observe both overlapping and distinct aspects in feature
importance and behavior. Both approaches identify key toxicity-related features
such as tox_over, ratio_toxic, and extreme_toxic_group as the most sig-
nificant across both binary and multi-class classification tasks. However, local
explanations provide a more nuanced, case-specific perspective, revealing that
features linked to emotions, like disgust and fear, have variable impact depend-
ing on the specific medoid and class. For example, disgust shows a positive
contribution in harassment but a negative one in wiolence. In contrast, global
explanations, fails to capture such class-specific variations. Another key differ-
ence is in how dataset balancing affects feature importance. Local explanations
do not account for oversampling techniques like SMOTE, leading to consistent
feature importance across instances. On the other hand, global explanations
show how the distribution of classes shifts the relative importance of features
after balancing, as seen in the increased significance of obscene_toxic_group
for identifying racism post-SMOTE.

5 Conclusions

Toxic behavior in Online Social Networks poses a significant challenge to main-
taining healthy digital interactions. In this work, we introduced uTOXIC, a ML
framework designed to detect and analyze toxic users by leveraging linguistic,
stylistic, affective-based, and clustering-derived features. By aggregating these
features at the user level, UTOXIC performs both binary and multi-class clas-
sification, distinguishing toxic users from non-toxic ones and further catego-
rizing specific toxic behaviors such as harassment, violence, racism, and pro-
fanity. Our results demonstrate that UTOXIC effectively identifies toxic users
and provides interpretable insights into their behavior. The use of explainabil-
ity techniques ensures transparency in model decisions, addressing key concerns
in Al-driven moderation. Additionally, our analysis confirms that even without
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directly incorporating toxicity-related features, our approach maintains strong
classification performance, highlighting the robustness of the extracted user fea-
tures. By offering an explainable and behavior-driven approach to toxicity detec-
tion, UTOXIC can serve as a valuable tool for improving content moderation in
OSNs. Future work could explore personalized moderation strategies, integrat-
ing adaptive interventions to mitigate toxic behavior while maintaining fair and
transparent moderation policies.
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A  Appendix
A.1 Readablity Tests

— Flesch Kincaid Grade Level: Measures the readability of a text based on
the average number of syllables per word and the average number of words
per sentence. The result corresponds to a U.S. grade level, indicating the
minimum education level required to understand the text.

— Flesch Reading Ease: Another readability measure that rates text on a 0-100
scale. Higher scores indicate easier readability, with 60-70 being considered
plain English, and scores below 30 indicating very difficult text.

— Dale Chall Readability: Estimates the reading level of a text by counting
difficult words not commonly found in elementary school-level texts.

— Automated Readability Index (ARI): Calculates the readability of a text
based on its word and sentence length, yielding a score corresponding to
the U.S. grade level required to understand the text.

— Coleman Liau Index: Similar to ARI, it assesses readability based on the
average number of letters per 100 words and the average number of sentences
per 100 words.

— Gunning Fog: Measures the readability of English writing based on sentence
length and the percentage of complex words.

— SMOG: “Simple Measure of Gobbledygook”. It estimates the years of educa-
tion a person needs to understand a piece of writing, based on the number of
words with three or more syllables.
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— Spache: Evaluates the readability of children’s books by considering the num-
ber of words per sentence and the number of unfamiliar words.

— Linsear Write: Calculates readability by considering the number of words of
more than two syllables per sentence.

A.2 User’s Features List

user: ID of the user

nbr_posts: Number of comments

toxic_ posts: Number of toxic comments

nbr_subreddit: Number of subreddits where the user comments
extreme toxic group: Number of comments from cluster 0
polite_group: Number of comments from cluster 1

moderated toxic_group: Number of comments from cluster 2
obscene toxic_group: Number of comments from cluster 3

low _toxic_group: Number of comments from cluster 4

Aggregated Metrics (sum, mean, max, min):
score: Aggregated score of the comments
toxicity: Aggregated toxicity
severe toxicity: Aggregated severe toxicity
obscene: Aggregated obscenity
threat: Aggregated threat
insult: Aggregated insult
identity attack: Aggregated identity attack
emoji_count: Number of emojis per comment
num_ unique_words: Unique words per comment
num_words_upper: Uppercase words per comment
num_ full words: Full words per comment

Emotion Metrics (sum, mean, max, min):
fear, anger, anticipation, trust, surprise, joy, disgust, positive, negative

Readability Scores (sum, mean, max, min):
flesch _kincaid, flesch, coleman liau, dale chall, ari, linsear write, smog,
spache, gunning fog

Valence-Arousal-Dominance (sum, mean, max, min):
valence, arousal, dominance

Occurrences of each word per comment:
‘ass’, ‘bitch’; ‘black’, ‘bootlicker’; ‘die’, ‘dumb’, ‘fuck’, ‘fuckin’, ‘fucking’, ‘gay’, ‘get’,
‘go’, ‘holy’, ‘idiot’, ‘just’, ‘kill’; ‘like’, ‘oh’, ‘people’, ‘racist’, ‘shit’, ‘shut’, ‘stupid’,
‘think’, ‘want’, ‘white’, ‘would’

Additional Features:
toxic_words sum: Aggregated number of toxic words per comment
tox over: Number of toxicities above average
tox list: List of toxicities above average
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emotion_over: Number of emotions above average
emotion list: List of emotions above average

User Behavior Ratios:

ratio: Ratio between the number of comments and the number of subreddits for each
user, in [0,1]

ratio_toxic: Ratio between the number of toxic comments and the number of sub-
reddits for each user, in [0,1]

perc: Percentage of toxic comments

toxic_annotation: User’s toxic label
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Abstract. Technical and ethical concerns impede the establishment
of trust among healthcare professionals (HCPs) in developing artificial
intelligence (AI)-based decision support. Yet, our understanding of trust
models is constrained, and a standard accepted approach to evaluating
trust in AI models is still lacking. We introduce a novel methodology to
assess and quantify HCPs’ perceived trust in an interpretable machine
learning model that serves as clinical decision support for diagnosing
COVID-19 cases. Our approach leverages fuzzy cognitive maps (FCMs)
to elicit and quantify HCPs’ trust mental models for understanding trust
dynamics in clinical diagnosis. Our study reveals that HCPs rely pre-
dominantly on their own expertise when interacting with the developed
interpretable clinical decision support. Although the model’s interpre-
tations offer limited assistance in diagnostic tasks, they facilitate the
HCPs’ utilization of it. However, the impact of these interpretations
on the establishment of perceived trust varies among HCPs, which can
lead to an increase in trust for some while decreasing it for others. To
validate quantified perceived trust, we employ the degree of agreement
metric, which quantitatively assesses whether HCPs lean more towards
their own expertise or rely on the model’s recommendations in diagnostic
tasks. We found significant alignment between the conclusions of the two
metrics, indicating successful modeling and quantification of perceived
trust. Plus, a moderate to strong positive correlation between the two
metrics confirmed this conclusion. This means that FCMs can quantify
HCPs’ perceived trust, aligning with their actual diagnostic advice shift
after interacting with the model.
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1 Introduction

The need for trustworthy artificial intelligence (TAI) systems is clear in driving
the integration of Al into healthcare, primarily due to the limited measurable
benefits observed in real-world patient care, despite the promising results demon-
strated by an increasing number of Al-driven clinical decision support systems
in preclinical and in silico studies [37]. The European Ethics Guidelines for TAI
[11] outlines specific criteria to establish trustworthiness that Al systems must
comply with. The existing literature reveals a scarcity of prospective studies
to validate proposed AI solutions in real-world settings [12]. This scarcity has
resulted in diminished trust from healthcare professionals (HCPs) towards the
developed solutions. Therefore, in the current study, we propose a methodology
to assess and quantify perceived trust of HCPs in interpretable clinical decision
support. We aim to adhere to the guidelines set forth by the General Data Pro-
tection Regulation (GDPR) [10], emphasizing the critical role of transparency
and explainability in establishing TAI. Miller [23] recommends incorporating
interpretable machine learning (IML) models, particularly in high-stakes tasks,
to enhance the comprehensibility and reliability of Al systems. Doshi-Velez and
Kim [9] presented a taxonomy of IML model evaluation methodologies, including
application-based assessments that involve domain experts using the IML model.
Aligned with the goals of this study, which aim to assess and quantify HPCs’
perceived trust in the developed clinical decision support, and considering the
problem’s high sensitivity, we involve HCPs to develop our methodology. Our
proposed methodology considers perceived trust as a dynamic entity affected by
different elements. Hence, we aim to elicit and quantify HCPs’ perceived trust
mental model.

Initially, IML serves as clinical decision support, recommending and inter-
preting diagnostic advice. This helps categorize suspected COVID-19 patients
into positive or negative cases. Then, we have structured a diagnostic task that
engages the HCPs in diagnosing the COVID-19 status of selected patients under
two distinct scenarios: (i) relying on their expertise and (ii) interacting with the
IML model. Then, they will express their satisfaction with the effectiveness of
interpretations in the diagnostic task, using the Explanation Satisfaction Scale
(ESS) proposed by Hoffman et al. [13] using fuzzy linguistic variables. This phase
seeks four main objectives: (i) its efficacy in assisting HCPs in diagnosing the
disease, (ii) the effectiveness of interpretations in diagnosing the disease, (iii)
the impact of interpretations on establishing HCPs’ trust, and (iv) incorporat-
ing HCPs’ subjectivity and uncertainty through the use of fuzzy variables. In
the next phase of the research, HCPs will contribute to eliciting their mental
models of perceived trust in the IML model based on the influence of ESS on
their perceived trust using fuzzy cognitive maps (FCM) [19] using fuzzy linguis-
tic variables. FCMs model and simulate dynamic systems with complex interac-
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tions, allowing decision-makers to forecast future system states through scenario-
making, learning algorithms, and current state analysis [1]. Upon constructing
FCMs by HCPs, a distinctive perceived trust mental model will be established
for each HCP and we can derive a quantified value indicative of perceived trust.
To validate the results, we measure the degree of agreement (DoA) between the
diagnostic advice of HCPs when relying on their expertise and after interac-
tion with the IML model. This measure can elucidate whether HCPs exhibit
reliance on their expertise or lean toward the IML model’s recommendations.
Considerable alignment and correlation between the two metrics can indicate
whether FCMs could successfully measure HCPs’ perceived trust. In undertak-
ing this research, we contribute to the literature in several ways by addressing
the following gaps.

— Prospective studies validating Al solutions remain limited, as noted by Nauta
et al. [26], revealing a gap in the literature on eXplainable AT (XAI) with
respect to application-based performance assessments of IML models. The
contribution of medical experts is crucial to this study, as their involvement
is essential for establishing the realism and reliability of a trust analysis.
Although the number of participating experts is limited to 15, their input
plays a vital role in understanding trust behaviors toward AI models.

— Trust in AT models is often evaluated using Hoffman’s trust scale [13], which
relies on Likert-scale questions to provide a simplified representation of users’
trust perception. To better model this perception, we utilize FCM to extract
mental models of HCPs, capturing their trust perception following their inter-
action with the XAI model.

— Existing methodologies overlook the role of transparency, interpretability, and
explainability in shaping trust [22]. By embedding the model’s interpretability
into the diagnostic decision-making process and leveraging FCM’s capability
to model the impact of interpretability on trust, we emphasize the critical
role of interpretability in modeling and measuring perceived trust.

The subsequent sections of this paper are structured as follows. In Sect. 2,
we investigate the XAI literature, reviewing studies that address trust in XAI
models. Section 3 encompasses the primary definition of trust and used meth-
ods to develop the proposed methodology. The experimental task designed to
measure and quantify perceived trust is described in Sect. 4. In Sect. 5, we will
validate the proposed methodology. Lastly, Sect.6 encompasses the discussion
of the results and outlines potential avenues for future research.

2 Background

Nauta et al. [26] found that a minority of XAI papers engage users in eval-
uating model explanations, a trend consistent even when domain experts are
involved in assessments. Also, Vereschak et al. [38] conducted a comprehensive
study revealing a lack of organized research on modeling decision-makers’ trust,
inspiring us to assess the impact of model interpretations on the trust levels of
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HCPs. Lakkaraju and Bastani [20] conducted groundbreaking research aimed
at empirically establishing how user trust in black box models can be manip-
ulated through misleading explanations. However, the study did not compare
the results with users’ own perceptions regarding the efficacy of explanations
in decision-making and their trust levels to elicit their mental models. Zhang
et al. [42] underscored that local explanations for Al-assisted decision-making
struggle to accurately calibrate human trust in AI. Nonetheless, they did not
also directly assess users’ perceptions regarding the effectiveness of explanations
in facilitating the decision-making process.

In their empirical evaluation of XAI methods, Wang and Yin [39] conducted a
comparison of established X AT techniques, analyzing their impact on Al-assisted
decision-making and user trust. However, their study did not delve into users’
perceptions regarding the effectiveness of these explanations in shaping their
decision-making processes. Bansal et al. [4] conducted mixed-method user stud-
ies on three datasets. In these studies, participants were assisted by an Al sys-
tem, with accuracy comparable to humans, in completing tasks. The Al system
explained itself in some conditions, and the researchers studied whether users
trusted the XAI model or not. However, the results may not be generalizable
to high-stakes domains with expert users, such as medical diagnosis. Yang et al.
[41] investigated the effects of example-based explanations for an ML classifier
on end users’ appropriate trust. However, we contend that they primarily mea-
sured agreement rather than trust. Additionally, their focus was solely on the
efficacy of explanations in terms of helpfulness, neglecting other essential aspects
of ESS. In Huber et al.’s study [14], which explored the impacts of global and
local explanation methods on reinforcement learning agents, the methodology
primarily focuses on assessing users’ agreement rather than their trust. The
interpretable decision support interface for sepsis treatment proposed by Sivara-
man et al. [35] predominantly examines the influence of AT model explanations
on HCPs’ confidence in their diagnoses, yet it only marginally addresses their
trust in the IML model.

Wysocki et al. [40] introduced a pragmatic evaluation framework for XAI
within clinical decision support in a separate study. However, their approach
merely assesses HCPs’ trust with a simplistic survey, lacking a systematic method
to assess trust in the AT model. In an extensive study, Mehrotra et al. [21] showed
the impact of various integrity-based explanations made by an Al agent on the
appropriateness of human trust in that agent. However, their evaluation focused
solely on the usefulness of the provided explanations in decision-making tasks
and corresponding trust, neglecting other essential factors of ESS. Joshi et al.
[18] presented a Wizard of Oz study comparing low- and high-explainability
versions of a vacation planning chatbot in a between-subjects design, examin-
ing the effect of explainability on users’ understanding, trust, and acceptance.
Chanda et al. [6] developed an XAI model to generate domain-specific, inter-
pretable explanations to support melanoma diagnosis. In this study, medical
experts assessed their trust in the model using a 10-point Likert scale. Perlmut-
ter et al. [32] also investigated the impact of an example-based XAI interface on
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trust, understanding, and performance in highly technical populations using a
10-point Likert scale.

Therefore, the main shortcomings of existing studies in the literature can be
summarized as follows: misdefining the concept of trust, conducting studies at a
general user level without involving domain experts, and neglecting to assess the
efficacy of explanations in facilitating decision-making tasks and their impact
on users’ trust, which causes overlooking the elicitation of users’ trust mental
models.

3 Methodology

In this section, we outline the foundational concepts of this study. Sub-sect 3.1
explores the definition of trust, while Subsect. 3.2 introduces FCM.

3.1 XAI and Perceived Trust

Trust is generally defined as “the willingness of a party to be vulnerable to the
actions of another party based on the expectation that the other will perform a
particular action important to the trustor, regardless of the ability to monitor or
control that other party [36].” In the same way, when a user trusts the AT model,
the anticipation depends on whether the model can fulfill its expectations. Here,
we refer to the definition of Jacovi et al. [16] for Human-AI trust:

“If H (human) perceives that M (AI model) is trustworthy to contract C and
accepts vulnerability to M’s actions, then H trusts M contractually to C. The
objective of H in trusting M is to anticipate that M will maintain C in the
presence of uncertainty; consequently, trust does not exist if H does not perceive
risk.”

Ribeiro et al. [33] asserted the importance of trust for effective human inter-
action with ML systems, emphasizing the importance of explaining individual
predictions as a key factor in assessing trust. By hypothesis, effective and satisfy-
ing explanations enable users to construct a good mental model. So, this sound
mental model can facilitate the development of trust in AI and enhance user
performance when using it [13]. Miller [22] states that trust as a mental attitude
must be measured in field studies, lab experiments, and surveys/interviews with
human participants. The main reason is that trust can rapidly deteriorate when
subjected to factors such as time constraints, noticeable system defects, high
error rates, or frequent false alarms [13]. Like the diverse forms of trust, various
manifestations of negative trust exist, including mistrust and distrust [13]. The
proposed trust continuum by Cho et al. [7] can demonstrate this behavior (see
Fig. 1).

In the XAI domain, the trust assessment is based mainly on the trust scale
proposed by Hoffman et al. [13]; however, Miller [22] declares that the trust scale
presented does not explicitly measure the effect of trust. In fact, this scale mea-
sures users’ trust through a set of Likert scale questions, primarily focusing on
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Fig. 1. Trust continuum [7].

the users’ perception of trust rather than their demonstrated trust when inter-
acting with an XAI model. Besides, the existing techniques do not measure the
impact of transparency, interpretability, and explainability methods on human
participants’ trust [22]. In essence, trust measurement efforts have often focused
on precisely defining the elements of trust to measure perceived trust, often over-
looking the underlying mental models that shape users’ perceptions. Therefore,
it is imperative to introduce a methodology that delves into the influence of
explanations on trust establishment and examines how they can impact users’
perceived trust.

3.2 Eliciting Perceived Trust Mental Models by FCM

The ESS proposed by Hoffman et al. [13] serves as the foundational elements of
HCPs’ perceived trust mental models in this study so that we can analyze the
contribution of interpretation in building trust. We slightly modified the ESS
for our specific context by adding a “Functionality” scale, as outlined in Table 1.
In this study, trust is considered a dynamic entity with intricate interactions
among ESS, and we model it using FCM.

Table 1. Explanation Satisfaction Scale and description

ESS Description

Understandability (US)  |The interpretation was understandable in diagnosing the disease.

Sufficiency of details (SD) [The interpretation had sufficient details to help me diagnose the disease.

Completeness (CL) The interpretation was complete enough to diagnose the disease.

Feeling of satisfaction (FS)I am satisfied with the quality of the interpretation for diagnosing the disease.

Accuracy (AC) The interpretation was accurate enough to diagnose the disease.
Usability (US) Interpretation is easy to use to diagnose the disease.
Functionality (FC) In general, the interpretation helped me diagnose the disease.

Kosko [19], for the first time, introduced FCMs to mitigate the limited ability
of cognitive maps [3] to represent causal beliefs in social scientific knowledge [25].
Multiple domain experts who have knowledge in a particular area contribute as
knowledge engineers to manually develop an FCM or a mental model [30]. They
start by identifying key domain components or concepts (C') and then determine
the influence (edges) of concepts, including their strength on each other or weight
(w) [30]. A semantic representation of an FCM (including concepts, edges, and
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weights) is shown in Fig. 2. In our study, ESS serves as FCM concepts, and their
initial value, edges, and weights are determined by HCPs.

T W2h——p
/ / w46
/
w45
W13 w55
T W35—py |

Fig. 2. A semantic representation of an FCM.

There are three types of relationships between concepts in the FCM [28]:

— w;j > 0, direct influence between concepts C; and C},
— w;j < 0, inverse influence between concepts C; and C},
— w;; = 0, no relationship between concepts C; and Cj.

The established reasoning process of an FCM [19,25,28,30], uses the following
simple mathematical formula:

N
] LS D DI Lt (1)

j=1.j#i

where, Ci(k) represents the value of concept i at iteration k of the reasoning pro-
cess. wj; indicates the weight of the edge from Cj to C;, and IV is the number of
entered edges to C;. Our study utilizes a state vector of size 1 X 8, encompassing
ESS and a target concept denoted as perceived trust (PT).

The initial values of these concepts reflect HCP’s subjective satisfaction
with ESS effectiveness in diagnostic tasks, employing fuzzy linguistic variables
detailed in Table2. With this approach, we achieve two primary objectives:
firstly, we gain insight into the satisfaction level of HCP with interpretations; sec-
ondly, we embed HCP’s satisfaction impact in establishing the perceived trust,
which, in fact, models their trust mental model based on the model’s inter-
pretability. To convert these linguistic variables into actionable data to develop
FCM, defuzzification is applied to convert them into crisp numbers (see Table 2),
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employing the center of gravity (CoG) method [31]. Due to its high accuracy, the
CoG defuzzification method is the most widely used in practice [2]. It effectively
satisfies important criteria such as continuity, disambiguity, and plausibility, con-
tributing to its reliability and interoperability [2]. These initial values fall within
the interval [0, 1], with proximity to 1 indicating higher importance.

w is an 8 X 8 weighted matrix defining relationships between ESS and PT,
determined by HCPs using the linguistic variables outlined in Table 3. In the
same way, defuzzification is applied to weights as well (see Table 3), transform-
ing them within the range [-1, 1|, with values closer to 1 indicating stronger
influence and the sign denoting direct or inverse influence between concepts.
Following this approach, we integrate the influence of each individual ESS on
one another, ultimately culminating in their collective impact on the perceived
trust of HCP. The activation function f(z), typically sigmoid or hyperbolic tan-
gent, is employed to constrain the state vector’s values within [0, 1] and [-1,
1], respectively. Our study adopts the hyperbolic tangent function to align per-
ceived trust values with the trust continuum outlined in Fig. 1. According to
FCM literature, interaction among concepts persists until one of the following
states occurs [5]:

stable state: The model reaches an equilibrium fixed point, with output values
settling at constant numerical levels.

limit cycle: The concept values fall in a loop of numerical values.

chaotic behavior: The model exhibits non-deterministic, random fluctuations
in concept values.

We set a maximum iteration limit for the algorithm, ensuring that it terminates
after this number of iterations, regardless of convergence status. Finally, the
ultimate value of PT in the state vector quantifies the corresponding HCP’s
perceived trust level. This process will be repeated for all HCPs to elicit a unique
mental model for each participant involved in this study.

Table 2. Linguistic variables for the initial values of C.

Linguistic variables Membership function Defuzzified value
11T disagree strongly |(0, 0, 0.25) 0
2[I disagree somewhat|(0, 0.25, 0.5) 0.25
3’'m neutral about it|(0.25, 0.5, 0.75) 0.5
4|T agree somewhat (0.5, 0.75, 1) 0.75
51 agree strongly (0.75, 1, 1) 1

4 Experimental Design

This section outlines the step-by-step process used to quantify perceived trust in
this study. Subsect. 4.1 introduces the implemented dataset, the training of the
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Table 3. Linguistic variables to determine w.

Linguistic variables Membership function Defuzzified value
1Inversely high (-1, -1, -0.5) -1
2/Inversely low (-1, -0.5, 0) -0.5
3/No influence (-0.5, 0, 0.5) 0
4 Directly low (0, 0.5, 1) 0.5
5/Directly high (0.5, 1, 1) 1

IML model, and its interpretation. Subsect. 4.2 explains how HCPs were selected
for the study. Subsect. 4.3 analyzes the shift in diagnostic advice during the
decision-making task before and after interaction with the IML model. Subsect.
4.4 evaluates HCPs’ satisfaction with the model’s interpretability. Subsect. 4.5
presents the elicited mental models of HCPs’ using FCM, followed by presenting
the quantified perceived trust for each HCP based on FCM implementation in
Subsect. 4.6.

4.1 Clinical Setting and Exploited IML Model

Data Set: The data set comprises the results of blood sample tests obtained
from suspected patients with COVID-19 upon their arrival in the emergency
department, encompassing a minimum of 30 distinct clinical measurements. The
data set comprises 12873 patients with 32 clinical features derived from blood
samples. We followed the ethical aspects of the Al application by signing writ-
ten agreements regarding the limited use of data. Second, we adhered to security
measures to protect data privacy per the agreements. Third, patients’ identities
were removed. The data set includes missing values in both the features and
labels. Certain observations collected before the COVID-19 outbreak were clas-
sified as negative cases. Observations with no labels and missing values exceeding
40% were discarded as they offer no meaningful information for the IML model.
Patients under the age of 18 years were also excluded. Ultimately, the data set
comprises 8781 observations, of which 8461 are negative and 320 are positive.

IML Model: Repeated Incremental Pruning to Produce Error Reduction (RIP-
PER) (8] is an IML algorithm that operates on rules directly learned from the
data. Abbaspour Onari et al. [27] showed its high predictive performance com-
pared to other ML models in COVID-19 prediction. RIPPER produces IF-THEN
classification rules using the separate-and-conquer technique and the reduced-
error pruning approach. Afterward, a set of rules is returned, which can be
applied to classify new objects [27]. Before implementing RIPPER, KNN data
imputation is applied to correct 2563 missing values in the data set. Then, the
correlation between the features is calculated, and features with a higher cor-
relation value of 0.7 with each other are dropped from the data set, leaving 27
features to build the IML model. The data set is split into training and test
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data sets with 80%—-20% partition, respectively. Although RIPPER shows high
capability in unbalanced data set classification, we implement the SMOTE over-
sampling technique to have the same number of positive and negative cases in the
training phase. Furthermore, the model’s hyperparameters are optimized using
grid search. The model undergoes 5-fold cross-validation on the training data
set to validate its performance. The results on the test dataset demonstrate per-
formance metrics of 0.9841 for accuracy, 0.8667 for precision, 0.6393 for recall,
and 0.7358 for the F1 score.

Interpretations: To interpret the prediction’s logic, RIPPER generates three
rules on the test data set represented in Table 4. The instances that satisfy either
of these rules are classified as positive cases, and all others are considered as neg-
ative cases. Building upon the insights of Huysmans et al. [15], which demon-
strated that representing decision rules in decision tables enhances respondents’
understanding of the rules, we will present RIPPER rules in the same format.
We represented RIPPER’s logic in correctly diagnosing a truly affected patient
in Table5 as a visual representation in Fig. 3. The legend in the figure explains
the colors used: orange indicates that the conditions based on the patient’s clin-
ical features are not verified in the RIPPER’s conditions, blue shows that the
patient’s features are verified in the RIPPER’s conditions, and purple highlights
when all conditions are satisfied, and the rule is applied to the patient. In cases
where only a single rule is satisfied in RIPPER, that specific rule becomes the
sole basis for the classification decision.

Table 4. Rules generated by RIPPER to classify patients into positive cases.

Feature Rule 1 Rule 2 Rule 3
Albumin < 37.9- -
Alkaline Phosphatase <82 <836 |-
Calcium < 2.28- -
Erythrocytes > 3.94- >4.29
Glucose > 5.66- -
Lactate Dehydrogenase > 302 |- > 320
Basophils - <0.01 |-
C-Reactive Protein - > 19.62-
Leukocytes - < 7.69 [<7.68
Lipase - > 30.5 |-
Mean Cellular Haemoglobin - - > 1.85

4.2 Selection of Participants

In the current study, we use an IML model to recommend and interpret diag-
nostic advice to HCPs due to the high-stakes nature of decision-making. Inter-
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Table 5. Blood sample test results of a patient diagnosed as a positive case by RIPPER.

Features Test result

1 |Albumin 37

2 |Alkaline phosphatase 70

3 |Basophils 0.03
4 |Calcium 2.09
5 |C-reactive protein 1.43
6 |[Erythrocytes 4.75
8 |Glucose 10.36
9 |Lactate dehydrogenase 392
10 Leukocytes 7.13
11|Lipase 47.8
12]Mean Cellular Haemoglobin|1.895

—  Notsattiedsondiion
Postive COVID-19 e

Calcium Erythrocytes Glucose Lactate Dehydrogenase

ive Protein Leuk Lipase

" -.---

Mean Cellular
Haemoglobin

- -_--

Fig. 3. Representation of RIPPER’s rules as decision tables.

Erythrocytes Lactate Dehydrogenase Leukocytes

pretable models rely on a limited set of features characterized by a low complex-
ity. The underlying assumption is that the model encompasses the necessary
explanatory information due to its interpretability [23]. This study will focus on
understanding how interpretability can build perceived trust among HCPs in
the IML model. The university’s ethical board granted ethical approval for this
research project!. The participants in our study, including HCPs, were identi-

! This study has been approved by Ethical Board of the university with reference
number: ERB2023TEIS10.
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fied by snowball sampling. Initially, we contacted our network of clinically active
HCPs with practical experience in healthcare centers during the COVID-19 pan-
demic. Subsequently, we requested them to send our participation request to indi-
viduals who meet our criteria and might be interested. Our research involved a
total of N=15 HCPs. While this sample size classifies the study as a pilot, the
valuable contributions of the HCPs make it highly insightful and meaningful.
We used Qualtrics software as our main tool to design the user study. First, the
HCPs responded to three questions about their professional background, profes-
sional tenure, and whether they wanted to participate in this research voluntarily.
This question is apart from the ethical consent forms sent to them. If they had
opted not to participate, their survey would have been terminated immediately.
HCPs are general practitioners, senior medical students, cardiovascular imaging
specialists, medical specialists in infectious diseases, and internal medicine spe-
cialists. Our participants have at least two years of professional work experience
in healthcare centers and, at most, 13 years. HCPs from diverse geographic loca-
tions participated: Iran (10), Italy (2), Canada (1), Australia (1) and the UK
(1). The gender distribution comprised 7 men and 8 women.

4.3 Diagnostic Task: Diagnostic Advice Shift

Four instances were selected from the test data set to present to all HCPs. In two
cases, the ground truth status aligns with the recommendation of the IML model,
while in the remaining two, there are contradictions. In the first sub-task, the
clinical blood sample test results (As shown in Table5) are presented to HCPs,
and they are asked to offer their diagnostic advice relying on their expertise.
The same question is asked in the next sub-task, including generated rules by
IML and recommendations (see Fig.3) functioning as clinical decision support
to diagnose the disease. For both sub-tasks, HCPs can choose an option between
“Positive COVID-19,” “Negative COVID-19,” and “Not possible to diagnose.”
The results of the diagnostic task have been outlined in Fig.4. Using Sankey
diagram, we show how HCPs change their diagnostic advice after interaction
with the clinical decision support.

In Case 1, following their interaction with the IML model, seven HCPs
adjusted their diagnostic advice. Remarkably, six of them aligned their advice
with the model’s recommendation. Notably, one HCP revised their initial diag-
nosis from “Negative COVID-19” to “Not possible to diagnose.” This adjustment
can be deemed a positive impact of the model, revealing the HCP’s initial lack
of confidence in their initial diagnostic advice. Moving on to Case 2, four HCPs
modified their diagnostic advice to “Negative COVID-19” after engaging with the
model. Regarding Case 3, there was no discernible shift in the diagnostic advice
patterns of HCPs. It appears that the clinical features recommended by the
model lacked sufficient information for the HCPs. It is plausible that these fea-
tures resembled those of a patient with “Positive COVID-19,” prompting HCPs
to err on caution. In Case 4, six HCPs followed the model’s recommended advice
after interacting with it. In conclusion, we assert that the IML model can influ-
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Diagnosis of Case 1: HCP Expertise =-=-= > IML decision support Diagnosis of Case 2: HCP Expertise ===-- > IML decision support

(a) Ground truth: (b) Ground truth:
Positive COVID-19 Negative COVID-19
IML recommendation: IML recommendation:
Positive COVID-19 Negative COVID-19
Diagnosis of Case 3: HCP Expertise =-=-- > IML decision support Diagnosis of Case 4: HCP Expertise =-=-- > IML decision support

(c) Ground truth: (d) Ground truth:
Negative COVID-19 Positive COVID-19
IML recommendation: IML recommendation:
Positive COVID-19 Negative COVID-19

Fig. 4. Diagnostic advice shift of HCPs before and after interaction with IML model’s
recommendations and interpretation.

ence HCPs’ diagnostic advice in at least three tasks to some extent, though not
drastically.

4.4 HCPs’ Satisfaction with Interpretations

After completing the diagnostic tasks, the HCPs expressed their satisfaction with
the effectiveness of the model’s interpretation as outlined in Sect. 3.2. The results
have been demonstrated in Fig. 5. The results indicate that HCPs perceived the
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model’s interpretations as insightful across three scales: understandability, satis-
faction, and usability. However, regarding completeness and accuracy, HCPs did
not deem the model’s interpretations sufficiently informative. This observation
might help explain why HCPs were inclined to refrain from providing precise
diagnostic advice on the diagnostic task and prefer to rely on their expertise.
Finally, when it comes to evaluating the sufficiency of details and functionality,
a notable lack of meaningful consensus among HCPs is apparent. Consequently,
no informative conclusion can be drawn from these aspects. In conclusion, the
utility of the model’s interpretability appears more evident when HCPs intend
to utilize it for their understanding rather than as a significant source of infor-
mation for offering diagnostic advice.

=== | disagree strongly I disagree somewhat 1 am neutral about it I agree somewhat  mEE | agree strongly

Understandability 2 4 5

Sufficiency of details

Completeness 4 3 a
Feeling of satisfaction 3 7
Accuracy 5 2 4
Usability 3 6
Functionality 7 3

Fig. 5. HCPs’ satisfaction with model’s interpretations.

4.5 Eliciting HCPs’ Mental Models Using FCM

In the conclusive phase of the experiment, HCPs contributed to eliciting their
perceived trust mental models, as detailed in Sect. 3.2. Using FCMExpert tool
[24] to semantically visualize mental models as FCMs, we identified four dis-
cernible patterns: trust, distrust, neutrality, and unknown, as illustrated in Fig. 6.
The positive-weighted edges that originate from the ESS and enter PT in Fig. 6a
represent a direct influence of ESS on HCP trust. An elevation in ESS values
corresponds to an increase in perceived trust in them. In contrast, the negative-
weighted edges from ESS to PT in Fig. 6b indicate that an increase in ESS values
leads to a decreased perceived trust of HCPs. This observation may stem from
the realization that the model falls short of meeting their expectations when its
interpretability is increased. The neutrality behavior emerges when the cumu-
lated weight in PT converges to zeros, signifying that edges’ weights neutralize
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each other, and HCPs feel neutral about the IML model (see Fig. 6¢). Finally,
the solitary unknown pattern indicates that the HCP perceives no influence from
ESS on PT and vice versa (see Fig. 6d). Extracting meaningful information from
this pattern regarding HCP’s perceived trust is challenging. To keep the paper
concise, we present mental models for four HCPs to illustrate key patterns.

Table 6. Quantified perceived trust and DoA results. The “Alignment” column shows
whether both metrics converge in a common conclusion.

HCP [PT DoA |Alignment
HCP1 |0.8098 [1.1660|v

HCP2 |-0.7619/0.6111|v

HCP3 0.9992 |0.7849
HCP4 |unk 0.9668
HCP5 |0.9836 |0.8876
HCP6 |0.0 0.8326
HCP7 |—0.7805/0.6489
HCP8 |0.5884 |1.0694
HCP9 |—0.0746|0.7849
HCP10/0.9997 |1.1660
HCP11/0.2061 |0.6111
HCP12/0.9997 [1.1660
HCP13/0.9999 |1.6988
HCP14/0.9942 (1.0694
HCP15/—0.4631/1.0694

X

NN

4.6 Quantified Value of Perceived Trust for Each HCP

The FCM for each HCP was implemented following the reasoning process out-
lined in Sect. 3.2. The reasoning process is terminated once the algorithm reaches
its maximum iteration limit (k = 35). To determine this value, we began by test-
ing smaller iteration counts (e.g., 10) and observed whether FCM demonstrates
triple stop criteria. If it did not, we incrementally increased k and reassessed it.
Eventually, at k = 35, all concepts either reached steady state convergence or
showed chaotic behavior, thereby satisfying the stop criteria outlined in Subsect.
3.2.

Upon completing the FCM implementation, we derived the quantified PT
values for each HCP, as presented in Table 6. Comparing the results obtained
with the trust continuum illustrated in column “PT” of Fig. 1 reveals distinctive
patterns. Two HCPs (2 and 7) demonstrate distrust towards the model, while
two others (9 and 15) exhibit an undistrusting stance. HCP6 expresses a neutral
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(a) Trust (HCP12) (b) Distrust (HCP7)

(c¢) Neutral (HCP6) (d) Unknown (HCP4)

Fig. 6. Semantic representation of mental models (FCMs) of four HCPs representing
trust, distrust, neutrality, and unknown behavior.

stance towards the model, and HCP11 displays an untrusting disposition. Also,
the quantified value of trust for HCP4 is unknown, as depicted in Fig. 6d, and
we exclude it in our future analysis. While the remaining HCPs express trust in
the model, the extent of trust varies among them.

5 Validation of the Quantified Perceived Trust

Formal validation of FCMs is challenging due to their subjective nature. The
difficulty lies in the fact that FCMs represent different interpretations of the sys-
tem, and assessing their accuracy requires comparing them against yet another
interpretation of reality [29]. To achieve this, we adopted the approach outlined
by Schmidt and Biessmann [34], who introduced a metric to quantify trust by
incorporating the concept of mutual information. However, Miller [22] believes
that the metric primarily measures the agreement of users with the ML model’s
recommendations rather than trust. So, we have adjusted the terminology to
refer to this metric as DoA. This metric measures the shift of diagnostic advice
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among HCPs after interacting with the IML model, indicating reliance on it.
To do so, using the information collected in Sect.4.3, the mutual information
between the IML model recommendation and the diagnostic advice of each HCP
after interacting with it is measured using the following formula:

N . N . p(Urmr, Yur)
IYivmL,yur) = p(Yrmr,Yur)logy ———~———~ 2
( 2 182 s ) )
YimML,YHI

In Eq.2, the result is measured in bits. Similarly, I(Jer,ynE) indicates
the mutual information between the ground truth status and HCP’s diagnos-
tic advice based on their expertise. Hence, the following equation can be used
to measure DoA of each HCP with IML recommendations:

Do — ML Iir) Q0
I(yGTayHE)

where DoA < 1 represents that HCP does not have a high agreement with the
model’s recommendation and prefers to rely on its own expertise. DoA > 1
shows the HCP relies on the model’s recommendation. The perfect agreement
between the HCP and the IML model is established when the DoA = 1. The
measured DoA for all HCPs is presented in DoA column of Table 6, showing
eight HCPs rely on their expertise (DoA < 1). This tendency may be influenced
by factors such as confirmation bias, general skepticism toward Al models, and
the way IML rules are presented. HCPs found the rules lacking in completeness
and accuracy, with no clear consensus on their sufficiency in terms of detail and
functionality. While these factors are important and warrant further investiga-
tion to understand the underlying reasons for this behavior, they fall outside the
scope of this research.

The results indicate that seven HCPs exhibit reliance on the model’s diag-
nostic advice (DoA > 1), which is a sign of over-reliance on it. Possible factors
contributing to this preference include the level of expertise, and general opti-
mism toward Al. However, we acknowledge that further studies are needed to
better understand the underlying causes of this over-reliance. The “Alignment”
column of Table 6 evaluates whether both metrics lead to consistent conclusions
regarding PT and DoA. Apart from three HCPs (3, 5, 15), all others adhere to
the trust continuum pattern depicted in Fig. 1 and DoA. For instance, HCP3’s
PT is 0.9992, suggesting near-perfect perceived trust. However, during the diag-
nostic task, they relied on their own expertise (DoA < 1). These discrepancies
may stem from inaccuracies in how their mental models were elicited. Weights
and edges in an FCM reflect the subjective perspectives of HCPs, which is an
advantage because it incorporates domain-specific expertise, but it is a limita-
tion due to its inherent subjectivity. This highlights the need for further analysis
in future studies.

Finally, we further analyze the obtained results by calculating the Pearson
correlation between PT and DoA in Table 6. The correlation coefficient is 0.6851,
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indicating a moderate to strong positive correlation between the two metrics.
Thus, FCM demonstrates a high level of confidence in quantifying the perceived
trust of HCPs, aligning closely with their propensity to adjust diagnostic advice
after interaction with the IML model.

6 Discussion and Conclusions

This study introduces a novel methodology to measure the perceived trust of
HCPs in interpretable clinical decision support by eliciting their mental models.
Our findings suggest that while clinical decision support can somewhat influence
HCPs’ diagnostic advice, its impact is limited. Additionally, HCPs did not find
interpretations very useful for diagnosing diseases; instead, they were more help-
ful in implementing them in the diagnostic task. This finding resonates with Jin
et al.’s [17] conclusion that existing XAI algorithms often fall short of meeting
clinical needs. The study validates the quantified perceived trust obtained via
FCMs by comparing it with the DoA measure, which shows in most cases, both
metrics converge to the same conclusion about the behavior of HCPs. Finally,
the moderate to strong correlation between perceived trust and DoA suggests
that FCM can effectively measure HCPs’ perceived trust.

Our developed methodology is applicable across all realms in which domain
experts are accessible. The pivotal aspect of this research lies in identifying key
components that contribute to trust establishment within the domain of interest.
This can be achieved by involving experts to pinpoint the principal elements of
their trust. The strength of the proposed methodology lies in its ability to model
the trust mechanisms of participants and reflect their subjectivity. Leveraging
the high interpretability of FCMs, we can detect crucial aspects contributing to
participants’ trust refinement. Subsequently, this understanding enables us to
refine and improve the IML model to increase trust. Furthermore, FCMs offer
the flexibility to be updated or modified based on new information or changes
in the system, allowing for continuous refinement and improvement.

This study is limited by its small sample size, which categorizes it as a pilot
study and potentially renders the results statistically unreliable. While a larger
sample might reveal a greater discrepancy between PT and DoA, it is impor-
tant to note that the core contribution of modeling perceived trust through FCM
remains unaffected. Because FCM is a subjective model grounded in each HCP’s
mental model, the quantified perceived trust precisely reflects what HCPs report
and how they conceptualize their mental models due to the mathematical basis
of FCM is robust. Despite these limitations, the insights gained—particularly
from user studies involving HCPs—remain valuable. Trust, though central to
this study, is a nuanced concept encompassing multiple facets beyond the scope
of ESS alone. Future research will involve participants in identifying and artic-
ulating these broader trust elements.
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Abstract. Recent legislative regulations have underlined the need for
accountable and transparent artificial intelligence systems and have con-
tributed to a growing interest in the Explainable Artificial Intelligence
(XAI) field. Nonetheless, the lack of standardized criteria to validate
explanation methodologies remains a major obstacle to developing trust-
worthy systems. We address a crucial yet often overlooked aspect of XAI,
the robustness of explanations, which plays a central role in ensuring
trust in both the system and the provided explanation. To this end,
we propose a novel approach to analyse the robustness of neural net-
work explanations to non-adversarial perturbations, leveraging the man-
ifold hypothesis to produce new perturbed datapoints that resemble the
observed data distribution. We additionally present an ensemble method
to aggregate various explanations, showing how merging explanations
can be beneficial for both understanding the model’s decision and eval-
uating the robustness. The aim of our work is to provide practitioners
with a framework for evaluating the trustworthiness of model explana-
tions. Experimental results on feature importances derived from neural
networks applied to tabular datasets highlight the importance of robust
explanations in practical applications.

Keywords: XAI - Robustness + Feature Importance + Neural
Networks - Tabular Data - Trustworthy Al

1 Introduction

The popularity of neural networks and their application to high-risk scenarios has
recently raised questions on their accountability and trustworthiness. The rapid
expansion of the field of Artificial Intelligence (AI) has stimulated legislative
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discussions and a series of novel regulations and guidelines has been proposed.
In the European Union, the AT Act [10] and parts of the General Data Protection
Regulation (GDPR) [9] have stressed the need for a fairer and more transparent
approach to artificial intelligence. Similarly, the United States of America have
proposed the new Blueprint for an AI bill of rights [31] that strives for a fair
development and deployment of Al systems.

Modern Al systems are increasingly complex due to the elevated number of
parameters involved to solve challenging tasks and are often referred to as black
boxes given the opaque nature of their predictions. Transparency is, instead,
a fundamental property that AI systems should guarantee, aiming to provide
detailed descriptions of the model reasoning, even in natural language. Imagine
that a model is being used in healthcare for patient diagnosis. If doctors can
understand how it reached a given prediction, they gain a valuable tool for eval-
uating the correctness of such diagnosis and grow confidence in the Al system,
even if they don’t fully comprehend the technical aspects of the black box model.

The field of Explainable Artificial Intelligence (XAI) has proposed a variety
of approaches to open the black bor and provide explanations addressing the
model inner reasoning, for example in the form of feature importances. While not
explicitly referred to from a legislative standpoint, XAl can act as a powerful tool
in enhancing transparency of Al-based systems. Understanding the reasoning
behind a model decision is an asset from a technical standpoint, allowing experts
to validate the predictions and detect possible biases before a model is deployed.
Additionally, end-users may benefit from explanations as the right to explanation
cited in the GDPR explicitly requires the user to receive an explanation when
the decision is entirely subject to an automated decision system.

Despite their usefulness, the lack of standardized criteria to validate explain-
ability approaches is still a major obstacle towards transparent and trustworthy
systems. Although it is a critical aspect, the robustness of explanations remains
an often underexplored facet of the development of explanation approaches.
Robustness can be defined as an explainer’s ability to provide consistent explana-
tions for similar inputs. It can be evaluated through both non-adversarial pertur-
bations, showing intrinsic weaknesses even under small changes, and adversarial
attacks, implying a malicious nature of manipulating explanations.

Another complex characteristic of the XAl field is the disagreement problem
[14], which occurs in scenarios where multiple explanation methods applied to the
same datapoint return contrasting results. The debate over which explanation
to choose (or trust) is still open, as explanation disagreement posits practical
impediments to trustable Al systems.

Our contribution explores the following points:

— We propose a set of desirable properties that a robustness estimator should
satisfy and show that our proposal, tailored for feature importance methods,
satisfies them all.

— We address the disagreement problem on neural network explanations by
proposing an ensemble of explanations focused on the ranking of the features.
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— We introduce a framework to test explanation robustness to non-adversarial
perturbations and assess their trustworthiness in practical applications.

— We propose a novel validation assessment of the robustness estimation, to
tackle the lack of a ground truth.

We have tested our proposal on eight publicly-available tabular datasets and
three neural network-specific feature importance methods. Our analysis demon-
strates the need for evaluation tools to assess explanation robustness, supporting
transparency and accountability in real-world applications.

2 Related Work

LIME [23] and SHAP [16] are among the most widely used XAI techniques in
real-world applications. LIME works by fitting an inherently transparent model
(such as a linear model or a decision tree) around the datapoint which is being
explained. A neighbourhood is constructed from a fixed data distribution, gen-
erating a set of points on which the model, which acts as a local explanation,
is fitted. SHAP makes use of Shapley values to explain predictions, measuring
how the prediction changes when a feature is included or excluded in the feature
set. It then averages these changes across all possible combinations of features,
producing a vector of feature importances.

Despite their wide use, both methods lack robustness (or stability), which in
this context represents the ability of an explanation method to produce similar
and consistent explanations when different conditions change. LIME is an unsta-
ble method by design, as the neighbourhood generation step yields different sets
of datapoints at each call of the method. This implies that, at each time the
method is applied to the same datapoint, a different model is fitted, resulting in
explanations whose coeflicients differ feature-wise by magnitude or even by sign.
SHAP is instead susceptible to feature correlations, sampling variability and data
distribution shifts due to the way Shapley values are approximated. The insta-
bility of these approaches was first proved in [28], where the authors showed how
an adversarial model could easily be defined to mask biased classifiers though
unbiased explanations. Their untrustworthiness, along with other model-agnostic
additive methods, has also been investigated in [12]. Their theoretical assump-
tions on feature independence are hardly met in practice, rendering them unable
to correctly detect feature interactions when present.

According to [19], explanation robustness can be tested along three directions:
robustness to input perturbations, to model changes and to hyperparameter
selection. The first one includes the scenarios where the input may be modified by
random perturbations or by adversarial attacks to the explanations themselves.
The second one refers to manipulations of the model, such as fine-tuning of the
parameters with a modified loss function, and the last one considers the influence
of technique-specific hyperparameters.

An adversarial attack in the context of XAl is a perturbation of the input
such that the model prediction is unchanged but the explanation marks dif-
ferent features as important or not [6]. An evaluation is provided in [11], in
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which attacks to interpretations provided by neural networks aim at maximising
the change in the explanations (according to different change functions) under
the constraint that the perturbation is small and the prediction is unchanged.
[8] explores how model manipulation, in particular with the introduction of a
penalty term in the loss function, can damage explanations. They call for a
rigorous test of robustness to limit the effects of such manipulations. In [4] the
authors note that it is possible, for any classifier g, to construct a classifier § that
exhibits the same behaviour on seen data but presents biased explanations. They
propose a version of the presented gradient-based explanations ([5,30]) robust
to model manipulation by projecting the explanations on the tangent space of
the data manifold.

While random perturbations and adversarial attacks to explanations in the
context of images (as in [11]) can be easily examined by human experts, as
the changes are often evident even to the naked eye, it is not sufficient to rely
on non-quantitative evaluations. Robustness analysis must be supported by an
adequate robustness estimation and agreed-upon metrics must be defined. To
this end, [13] proposes a robustness score to evaluate explanation robustness
when the data generation process is known, but this assumption makes it difficult
to adapt to real-world datasets, where a ground truth is hardly available. In [2]
the authors propose a formalization of local robustness based on the estimate of
the local Lipschitz continuity. They test their proposal on explanations applied
to images and show that gradient-based approaches are much more robust than
their perturbation counterparts (LIME and SHAP).

The work of [20] presents an in-depth survey on the evaluation of XAI tech-
niques and identifies different metrics that can be used to assess explanation
robustness. Similarities can be computed with metrics such as: rank order cor-
relations, top-k intersections, rule matching and structural similarity indexes.
[25] proposes similar metrics for evaluating stability, as the Jaccard similarity,
additionally requiring that stability tests should be performed using perturba-
tions that do not change the class label and that introduce small amounts of
resampling noise to ensure the stability of the explanations.

Robust-by-construction approaches have emerged as an interesting area of
research. For example, [3] proposes self-explaining neural networks, a class
of models for which faithfulness and robustness are enforced by construc-
tion through a specific regularization, aided by a generalization of the above-
mentioned local Lipschitz continuity. Similarly, ROPE [15] is a framework based
on adversarial training that generates explanations which are robust to both
changes in the input and in the data distribution.

We aim at investigating the robustness of explanations to non adversarial
perturbations on tabular datasets, presenting a robustness metric that addresses
limitations of the previously mentioned methods (recalled within brackets in
this paragraph). In particular we define a metric that can be computed even
in absence of a ground truth [13], considering practitioners needs (for example,
deploying a model without requiring a retraining [8]) and keeping in mind the
limitations derived from theoretical assumptions [12]. Importantly, our metric



When Can You Trust Your Explanations? 229

is bounded within the [0, 1] range, allowing for comparability among methods,
datasets and used models [2].

Alongside robustness analysis, we seek to explore the efficacy of an ensem-
ble approach on explanations. [14] presents an overview of the disagreement
problem according to practitioners: while it is underlined that the problem is
of non-negligible size, the authors do not propose solutions or good practices.
In the context of adversarial attacks, [24] showcases the efficacy of ensemble
methods as defences on explanations. They test their aggregated explanation
on image data and show that it is more resilient to attacks, when a compos-
ing explanation method or the model itself is being fooled. Aggregations can
also be performed leveraging multiple explanations from the same method: [7]
derives a more robust Shapley-value explanation by aggregating the explana-
tions computed on a carefully crafted neighbourhood, minimizing explanation
sensitivity. We will consider these characteristics when devising our ensemble
and considering the robustness estimator.

3 Background

This section introduces key terminology related to the XAT field and describes
the techniques used in the experimental analysis.

3.1 Terminology

While there is not an agreed-upon taxonomy to classify XAI techniques, we
follow the proposal of [1], which identifies the following axes of interest:

— Scope of the explanation: a local approach aims at explaining how a given
individual prediction is made while a global one focuses on the model as a
whole, analysing its overall reasoning.

— Model of interest: model-specific techniques are tailored to the structure of
the model under investigation, while model-agnostic ones can be applied to
any model.

— Transparency: intrinsically transparent models are interpretable by construc-
tion (and are also known as glass bozes) while post-hoc techniques are applied
after the model is fully trained.

As we will be discussing results obtained from neural networks, we can
further distinguish between perturbation-based and gradient-based approaches
[26]. Perturbation-based approaches are often model-agnostic and rely either on
neighbourhood generation or combinatorial aspects, as in LIME [23] or SHAP
[16]. Gradient-based methods, instead, are specific to neural networks and har-
ness their inner structure, mainly taking advantage of the backpropagation mech-
anisms [5,27,30].

The broader category of approaches we will be considering is that of fea-
ture attributions. Having an input x = (21,...%,,) with m features, a feature
attribution is a vector a = (ay,...,a,) of size m where each entry represents
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the importance of the corresponding feature towards the model’s prediction.
According to the specific datatype of x, the attributions may refer to individ-
ual variables (tabular data), words or bag of words (natural language), pixels
or superpixels (images - in this case explanations are often called heatmaps). A
positive (negative) sign usually represents a positive (negative) contribution of
the feature and its relevance in the prediction. In the following, we will use the
terms feature importances and attributions interchangeably.

3.2 Considered Techniques

We focus on local post-hoc approaches specific to neural networks and that are
applicable to nets trained on tabular datasets. We have not considered model-
agnostic approaches such as LIME [23] and SHAP [16] due to their known
instability [2,12,28], as presented in Sect. 2. Model-specific approaches, such as
Saliency and Input X Gradient [26] are also known for being unstable [2,11] and
have therefore been excluded from the analysis.

Note that neural network explanations require the selection of the output
neuron to be explained: this is more relevant in classification problems where
one may want to investigate the features that contributed to any of the classes
probability scores. In the following, the target neuron will be chosen as the one
associated with the model’s predictions, that is, the one with the largest output
score.

DeepLIFT. DeepLearning Important Features (DeepLIFT) [27] computes fea-
ture importances with respect to their difference from a given reference. In par-
ticular, the differences between the two outputs are explained in terms of the
differences among the two inputs. Each neuron is analysed with respect to the dif-
ference between its activation and that of the reference input. DeepLIFT makes
use of contribution scores and multipliers to backpropagate the difference in
output through the network. It requires a single forward-backward pass through
the net, making it efficient. The propagations are computed through appropriate
chain rules, defined according to the neuron’s type and its activations.

Integrated Gradients. Integrated Gradients (IG) [30] satisfies the axioms of
sensitivity and implementation invariance. It computes the integral of the gra-
dients of a net f along the straight-line path from a baseline =’ to the input =z,
considering a series of linearly separated instances along the path from the base-
line to the point of interest. In practice, it takes advantage of an approximation
of s steps such that, for the j-th dimension, it holds:

-2 S~ Of(2 + (x—a') - k/s
S SUCT IR "

approxr __

IGj =

k=1

The authors of [30] found that s € (20, 300) produced satisfactory approxi-

mations but the computation can nonetheless be expensive when the number of
steps is large.
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Layerwise Relevance Propagation Layerwise Relevance Propagation (LRP)

[5] is based on the backpropagation principle. It defines a series of rules to prop-

agate the output score (or relevance) f(z) through the net’s layers, according to

the architecture at hand. The conservation property holds: with R; the relevance

for neuron j, for each pair of layers 3, R; = >, Ri and globally it holds that

summing over all layers ). R; = f(x). Two common propagation rules are the
epsilon and the gamma rules:

a; Wik

LRP-¢: R = 9 9%

J ; 6+207j aj - Wik (2)

aj - (wik +7 - wi)

LRP-v: R; = Ry
! zk:GJrZo,jaj'(wjkﬂW-wﬂ)

Ry,

where a; is the activation of neuron j, wj; is the weight linking neuron j to
neuron k in the following layer (w;rk is a positive weight), >, ; is the sum over

all lower-layer activations.

Missingness Property. DeepLIFT, Integrated Gradients and LRP satisfy the
missingness property: if ; = 0 = a; = 0. The features corresponding to the
null entries in the feature vector will have null coefficients in the attribution
vector, representing a lack of importance towards the prediction. This property
is particularly relevant when dealing with categorical variables, preprocessed
with one-hot encoding.

4 Methodology

Our approach is applied to tabular datasets and classification problems. Let us
introduce the following notation: let D = (X,y) be a dataset with N datapoints
and m features such that (x%,7%) = (@, ... 29 . 20™) 48) with ¢ a
class label. The dataset is split into a training, validation and test datasets,
identified by Dirain, Dyatid and Dyest respectively. Let f(-) be a neural network
trained on Dyrqin and t be a target class. Let e be an explanation method (or
explainer) and e(x?) := e(x’, f) the explanation of model f prediction of point
x!. More specifically, let the feature attribution vector of the I-th method be

i 7,1 T,m
aj = (al( ),...,al( )).

4.1 Robustness Estimator

We define the robustness of an explanation as a measure of its variability when
the input is modified. If we consider x the original datapoint, X a perturbation,
e an explanation method and e(x) the corresponding explanation, then:

X — X, e(x) — e(X) = r(x,¢e) = g(x, X, €) (3)

that is, the robustness r of e(x) is a function of the chosen explanation method,
the original datapoint and the perturbed one.
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Further considering a constraint of the form dist(x,%) < € with ¢ > 0 and
dist a distance metric (such as the euclidean distance), we can introduce the
notion of local robustness.

Definition 1. An explanation method e is locally robust if perturbing the input
results in a similar explanation. If x — X with dist(x,X) < € (e > 0) = e(x) ~
e(x).

Given a robustness estimator R(x?, N'') := R(x*, N, e, f) that measures the
robustness of the explanation method e applied to the neighbourhood N of the
point x* over the model f, we can define the following set of desiderata.

Property 1. If r(x%,x%) = r(x%, X', e, f) is the robustness of e(x’) with respect
to the perturbation X*, then the robustness R = E[r| is estimated by:

1

RN = 137

> L) (4)

XiEN
where N'* = {x!|x’ = x’ + X\ with dist(x’,x%) <€ (¢ > 0), A € R™}.

Two points which are close to each other within the dataspace will produce
explanations with comparable robustness scores.

Property 2. If R is a local robustness estimator, then for two distinct points
x',x7 such that dist(x",x?) < € (e > 0) it holds that:

36 >0 st [R(x,NY) — R(xI,N7)| <& (5)

Robustness estimation is intrinsically linked to uncertainty in the estimates,
due to errors in the explanations themselves and the lack of a ground truth for
the robustness.

Property 3. R is such that R = R + 6, where R = E[r] is the true robustness
and . # 0 is an error term.

By definition, the neighbourhood generation is highly influential in the
robustness estimation process when non-adversarial perturbations are consid-
ered. On-manifold perturbations better reflect the true data distribution and
the manifold learned by the model, therefore exhibit greater robustness scores
than random perturbations which may be off-manifold.

Property 4. 1t N is an on-manifold neighbourhood and N an off-manifold one,
then R(x!, N?) > R(x!, N?).

The robustness of an aggregation of explainers is bounded by the robustness
of the individual components.

Property 5. 1f the explalner € is an aggregation of explainers, & = agg( €15 -, €r)s
then, if R(e) := R(x', N, e, f), it holds that R(€) < max(R(e1),...,R(e;)).
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Two equivalent models predicting the same class for a datapoint will be
related to explanations with comparable robustness scores. The data manifold
learned by the models influences the robustness score.

Property 6. Let f(-) and g(-) be two models with comparable accuracy on the
dataset D. If the pointAxi is predicted to belong to the same class by both models,
say J} = Jg, and let R(f) :== R(x",N", e, f), then:

IR(f) — R(g)| < & with § > 0 (6)

We propose the robustness r to be computed as 7r(x',x') =
ple(xt, f),e(X%, f)), where p is the Spearman’s rho rank correlation coefficient
and e(x’, f) the explanation of model f prediction of point x*. By Property 1,
it then holds that the robustness R can be estimated via:

ROC A ) = g 3 plelsd 1), e 1) (™

xieN

where N' = {X'|%" = x"+ \ with A € R, dist(x’, X') < ¢ (¢ > 0) and § = j'}.
By definition, it holds that 0 < R(x*, N e, f) < 1.
We will show in Sect. 5 that our estimator also satisfies Properties 2-6.

4.2 Neighbourhood Generation

As remarked in Property 4, neighbourhood generation is an influential step in
the estimation of the robustness, as the score is averaged over the set N. In
the previous subsection, we have limited the constraints of the neighbourhood
to only consider perturbed points x’ which are close to the original datapoint
x' and for which the model’s prediction is the same, §* = §°. We will consider
two possible neighbourhood generation mechanisms which deeply influence the
robustness computation. Let us distinguish between numerical and categorical
variables, z¢,,,, and z’,, respectively, as they require different perturbations by

num
construction.

Random Neighbourhood (N'g). A first naive approach is the random gen-
eration of the neighbourhood, consisting of the addition of random white noise
to numerical variables and a random flip of the categorical ones:

num

{i‘izum =t .+ with §' — N(0,0?) (8)

zt,, = flip(z?,,) with probability Yea:
The flip of a categorical variable entails a random sampling among the pos-

sible modalities associated with that variable, the observed value of z,, being
excluded.

Medoid-Based Neighbourhood (N ;). We propose a more refined mecha-
nism that leverages the manifold hypothesis to generate perturbed datapoints
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which are still on-manifold, as our interest lies in testing non-adversarial per-
turbations consistent with the observed data distribution. Consider a k-medoid
clustering on Dy qiid, With kpnedoids selected so that each cluster is, on average,
of size ny = 10. For each cluster, the medoid x€ is used as a representative and
its kas nearest neighbours among the other cluster centres are stored in the set
NN¢ = (x!,...,x*M). For each point x* € Dy.s we want to test, the associ-
ated cluster c is retrieved. From the corresponding cluster centre neighbours list
NN¢, one of the medoids is randomly chosen, say x™. With a and .. the
probabilities of perturbing a numerical and a categorical variable respectively, a
perturbation is performed according to the following scheme:

=1 —-a) xl,,+a zM  with @ « Beta(a - 100, (1 — a) - 100)
5 xt , with probability 1 — ceqs

cat M, with probability aq:

9)
With both generating schemes, the resulting neighbourhood should be of
at least size n = 100 to ensure statistical significance. A filtering step is then
performed to remove the perturbations for which the model prediction is different
from f(x!). Hyperparameter tuning is performed on 6; = (0,7cq:) and 0y =
(a0, Qcat, kar) to ensure that, on average, at least 95% of the points are kept.
The main differences among the two approaches are presented in Fig. 1, where
the Swiss roll dataset is used as an example. Both schemes were applied to the
same datapoint: the left most column represents a 3D visual of the dataset (in
the shape of a rolled piece of paper), while the middle one is a view from above.
It is easy to note that the random neighbourhood is expanded beyond the Swiss
roll spiral shape. This is more evident in the right-most column, where a zoomed-
in visualization is proposed: while the random neighbourhood does not follow
the data manifold even when a small perturbation is applied (¢ = 0.05), the
medoid-based one remains constantly within bounds despite a larger coefficient
being used (a = 0.3).

4.3 Ensemble

We present a novel aggregation approach that aims at dealing with the disagree-
ment problem [14] by merging feature importances, focusing on the ranking of
the features according to their absolute value. Let L be the number of methods
which are being aggregated and let r! be the i-th ranking, a vector of size m
storing the indices that would sort the array |a§| in decreasing order. Then, let

an average attribution a’ . be defined by:

L (i i
oi9) — =t )
ens Zlel wl(z’j)

where w; is the weight corresponding to the I-th feature attribution vector, A =
0.15 is a penalization term and 7(*7) is the number of methods for which there is

(1+ ARy (10)
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Fig. 1. An example of neighbourhood generation (n = 500) on the Swiss roll dataset:
the top row depicts the random neighbourhood generation Mg (o = 0.05) while the
bottom one the medoid-based generation Ny (¢ = 0.3 and kp = 5). Blue datapoints
represent the generated perturbations while the orange ones in the bottom row are the
kar neighbouring cluster centres.

a disagreement on the sign of the attribution al(m )for 1 =1,..., L. The ranking
ri, . storing the indices that would sort the attribution vector a’,,, in increasing
order is the results of our approach.

This aggregation method is able to deal with practical issues that emerge
when considering multiple explanations altogether. First of all, attributions may
result in coefficients very close, but not equal, to zero. A zero coefficient implies
that the feature is not important towards the prediction, but the lack of a com-
mon scale for feature attributions makes it difficult to discriminate between
important and unimportant features only based on the absolute value of the
corresponding coefficient. We aim at limiting this issue by considering the fol-
lowing weighting scheme where, for the I-th methods, i-th point and j-th feature,
it holds:

wl(i,j) _ o(ay) (11)

laj] - |ay™7|

with a the feature importance vector, aié its average and o(a}) the standard
deviation.
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Smaller values of the feature importance coefficients translate into larger
weights, that contribute to moving a feature into the set of non-informative ones
of our ranking, effectively capturing the scarcer importance towards the predic-
tion. As coeflicients may differ greatly in magnitude between multiple methods,
a normalization is then introduced with the consideration of the average and
standard deviation within the weighting scheme.

The ensemble is computed as the weighted average of the L = 3 rankings
and a penalization term ) is introduced to penalize features that exhibit sign
disagreement among the L methods, as we consider it a symptom of feature
instability. The penalization term allows us to favour the features for which
there is sign concordance (n(%7) = 0), either positive or negative, and when the
attribution magnitude is non negligible. Considering how larger weights move
features towards the set of non influential ones, the penalization contributes
to a lower attribution value for concordant features, effectively capturing their
(absolute) relevance and importance towards the prediction.

We will compare our ensemble to another aggregation method in Sect. 5.
Inspired by [24], we will simply consider the average of the attributions, when
the vectors have norm 1. If a} is such that ||a}||> = 1, then

- 1N (i
it = 721 7 (12)

with a?,,,, such that ||a’, .|z = 1.

One of the disadvantages of using the mean as aggregation is that it may
assign a zero attribution even when all L coefficients are non-null. Assume that,
for the j-th feature, the L = 3 coefficients derived from the corresponding meth-
ods are (v,v,—2v) with v > 0. The mean will be equal to zero, implying that
the feature is non relevant towards the prediction, but the importance for each
of the L method highlights a relevance of magnitude at least v. Our ensemble
is, instead, able to take this into account, penalizing the disagreement but still
considering the feature to have some level of relevance towards the prediction.

While we have computed both aggregations with the feature attributions
derived from DeepLIFT, Integrated Gradients and LRP (as presented in Subsect.
3.2), both approaches can be easily extended to include a higher number of
feature attribution methods.

4.4 When Can You Trust Your Explanations?

Assessing the trustworthiness of explanations on previously unseen datapoints is
a non trivial task. While it is possible to compute an estimate of the robustness
via Eq.7, we argue that the result may not reflect the true robustness of the
considered datapoint, as it may lay in an unstable area of the feature space. We
want to verify not only if a datapoint is robust, but also if it lies in a robust
area of the feature space: knowing that the neighbourhood is non robust allows
us to doubt the robustness score of a previously-unseen datapoint. To tackle
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this issue, we propose the usage of a k-nearest neighbours regressor fitted on
Dyatia robustness scores. For X' € Dy.q, We compute both the robustness score
R(x') == R(x!, N, e, ) via 7 and the regressor’s prediction Ry (x?). According
to a selected threshold value 74, it is possible to discriminate between three
scenarios:

1. if 7A2(x1) > 14, and Rpnn (x) > 74, then x* is a robust point;

2. if R(x%) > 4, and Rpnn(x?) < 745 then x? is an uncertain point, as it lies in
an uncertain area of the feature space and its robustness should be carefully
considered;

3. if R(x?) < 74, then x* is a non robust point.

The second scenario represents a set of conditions that practitioners should
carefully evaluate: despite the robustness score being greater than the selected
threshold, the local information derived from the neighbours suggests otherwise.
This scenario aims at ringing a bell in the practitioner evaluating a given expla-
nation: knowing that it may be misleading, the analysis will be more careful
and require a more detailed human-evaluation of both the prediction and its
explanation.

The usage of a knn regressor instead of a knn classifier allows for indepen-
dence from the selected robustness threshold ry,, requiring the model be fitted
only once. The number of neighbours kg is a dataset-dependent hyperparame-
ter and relies on the goodness of approximation of the robustness score by the
regressor.

The selection of the threshold 7y, is a delicate step of the procedure: as the
robustness estimator is bounded by construction in the [0, 1] range, it is possible
to select a case-specific threshold to discriminate between robust and non robust
datapoints. As it will be seen in Subsect. 5.1, in which hyperparameter selection
is discussed in detail, a default value of r;, = 0.80 works well on most of the
datasets.

4.5 A Complete Pipeline

With the considerations presented up to this point, we can discuss the complete
framework (Fig.2) for robustness evaluation and explanation trustworthiness.

1. Split the dataset into Dyrin, Duvalid, Piest and perform the required prepro-
cessing steps.

2. Train a neural network on Dy qin -

3. Perform k-medoid clustering on D¢ and compute the kj; nearest neigh-
bours among the medoids.

4. For each point X/ € Dy,,15q, generate a neighbourhood A7 of size n.

5. Compute the attributions of DeepLIFT, Integrated Gradients and LRP and
merge them following the ensemble aggregation scheme.

6. Compute the robustness score via Eq. 7 for each point x7 € Dyqisq-

7. Use the previously computed robustness scores to train a k-nearest neighbours
regressor and select an appropriate threshold ryp,.
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Fig. 2. The complete pipeline.

Dtest X

8. For each datapoint x* € Di.q, predict the medoid cluster it belongs to and
generate a neighbourhood N*.
9. Compute the L feature attribution vectors and the resulting aggregation.
10. Compute then the robustness score via Eq.7 and the predicted robustness
via the knn regressor.
11. Assess the trustworthiness following Subsect. 4.4.

Note that the computational cost of the procedure is dominated by the com-
putation of the individual attributions, as a pass through the network is required
for each datapoint, for each perturbation and for each of the three methods. The
scaling of the underlying robustness method inherits this complexity.

The advantages of using this framework include the leveraging of an
ensemble-based explanation, which captures the signals of L individual explana-
tion methods, and the estimation of the robustness on a carefully constructed
neighbourhood. The pipeline is designed to point out possibly non robust points,
even when they appear so, ensuring greater trustworthiness in the system and a
more aware analysis from a practitioners perspective.

The presented framework is applicable to datasets entirely made of numerical
variables, but to correctly consider also categorical ones a small adjustment is
required. Categorical features are often preprocessed with a one-hot encoding
before a neural network is trained. For example, a feature x.,; with four modal-
ities is represented by a vector of the form (0,0,1,0), where the non zero-entry
corresponds to the observed modality. A feature attribution method applied to
the one-hot encoded feature vector returns a set of importances of the form
(0,0, u,0): the non-zero entry is the only one associated with a non-null value.
This is to be expected as the attribution methods we are evaluating satisfy the
missingness property (Subsect. 3.2). To limit the effects of zero-entries in the
Spearman’s rho computation, we propose a reverse encoding of categorical vari-
ables. They are represented by the observed modality and the variable x.q; is
associated with an attribution a; = w. This allows us to consider feature vectors
of size m, as in the original feature vector, and to perform a more effective com-
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parison of the robustness. The reverse encoding is applied in steps 5 and 9, prior
to the ensemble’s computation.

4.6 Validation

Robustness estimation is often subject to the lack of a ground truth, as the
data generation process is not known in real-world applications and comparison
against expert-provided explanations can be unfeasible due to the large amount
of data being examined. We argue that robust (explanation-wise) points lie in
a robust area of the feature space and can be deemed robust even when passed
though different models. Our assumption implies that non robust points will
exhibit differences both in the explanations and in the predictions of multiple
models, as their lack of robustness is a somewhat intrinsic characteristic of the
area of the manifold in which they lie.

Let us consider three neural networks, say f1, fo and f3, which have compa-
rable accuracy over Dy,.qin and that differ either in the number of hidden layers
or neurons per layer. Let Dygree be the subset of datapoints for which models
f1, fo, f3 predict the same class and Dgjsagree the subset for which one of the
models predicts a different class. Consider a point to be robust if R(x") > 74,
and non-robust otherwise.! We propose the validation to follow a ROC/AUC
analysis, where the True Positive Rate (TPR) and False Positive Rate (FPR)
are defined as:

#{Robust & Agree} FPR — #{Robust & Disagree}
#{Agree} N #{Disagree}

Varying the threshold value 1, it is possible to plot the ROC curve and
compute the corresponding AUC value.

TPR =

(13)

5 Experimental Evaluation
5.1 Experimental Setting

We have selected the following publicly-available datasets from the UC Irvine
Machine Learning Repository: beans, cancer, mushroom, white wine, adult
and bank marketing. We have additionally used the heloc and ocean datasets,
following the work of [21,29] respectively. The first four represent toy examples,
as the classification tasks are easier to tackle even with non-neural models and
present an overall lower number of both features and datapoints. All the datasets
propose binary or multiclass classification tasks and contain both numerical and
categorical variables.

We have relied on the Python libraries pytorch and captum for the imple-
mentation of our approach. The former was used for the training and usage of

! Note that, in this case, we are not considering the classification presented in Subsect.
4.4, but only if the robustness score R is above the selected threshold 7.
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the nets while the latter, a pytorch-compatible explainability framework devel-
oped by Meta, was applied for the retrieval of the attribution vectors. The full
implementation is available on Github.?

For all datasets, the following preprocessing steps were performed:

— Standardization of numerical variables and one-hot encoding of the categori-
cal ones.

— Removal of correlated features. Spearman’s rank correlation coefficient was
used for numerical variables while the normalized mutual information crite-
rion for the categorical ones. The removal of highly correlated features ensures
that neighbourhood generation is more aligned with the data distribution and
that the computed attributions are non distorted by unconsidered correlations
among the features.

— Softmax in the final layer of the net, also for binary classification examples.
It ensures stability during attribution computations, as higher relevances are
backpropagated. This also reduces the effects of the vanishing gradient prob-
lem, when the attribution is returned as a zero-vector, as the signal is lost
when the output score is propagated through the net.

— Selection of the gamma rule for LRP attributions. It was chosen as it was the
rule minimizing the vanishing gradient problem, and it was applied to all the
layers of the nets (as they are all linear layers).

As anticipated in Subsect. 4.6, we trained three neural networks per dataset,
say Model 1, 2 and 3, with comparable accuracy scores (Appendix A, Table4).
Model 1 represents the baseline model, model 2 has more layers and more neurons
in each layer while model 3 is a more compact version, with fewer layers and
neurons. The ReLU activation function was used in all cases, with the exception
of the ocean dataset, where tanh was used, following the structure in [29].

Hyperparameter Selection. Default values for the neighbourhood generation
hyperparameters are 1 = (0 = 0.05, v.q: = 0.05) for the random generation Ny
and 0y = (a = 0.05,acq: = 0.05,kp = 5) for the medoid-based one Nys. In
both cases, the neighbourhood should be of size at least n = 100 (we have set
n = 100 in our experiments) and dataset-specific hyperparameters are set via
a grid search, ensuring that at least 95% of the generated datapoints are kept
within the neighbourhood, i.e. they are predicted to belong to the same class as
the original datapoint.

The number of neighbours kr to be used in the knn regressor is chosen as
the one minimizing the approximation error over the robustness scores derived
from all three nets in each dataset. A good default value is kg = 7.

The robustness threshold r;, is selected by looking at the distribution of
robust, non robust and uncertain datapoints at varying levels of the threshold.
In particular, it is chosen as the threshold value that corresponds to the first
inflection point of the robust percentage curve. The default value 7y = 0.80
works well in most scenarios.

2 https://github.com/ilariavascotto/ XAl robustness analysis
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Fig. 3. The robustness score distribution for adult dataset of the ensemble (left) and of
the mean (centre) with medoid-based neighbourhood generation; random and medoid-
based neighbourhood generations are compared for the ensemble aggregation (right).

Dataset-specific hyperparameters can be found in Appendix A, Table 5.

5.2 Results

We will begin the discussion focusing on the results derived from Model 1, that
acts as our baseline, on the test set Dyegy-

Figure 3 depicts the robustness score distribution derived from the ensemble
(left) and the mean (centre) aggregations with the medoid-based neighbourhood
generation mechanism on the adult dataset. They are compared with the robust-
ness scores derived from the individual XAI approaches, taking into account the
nature of the aggregation. In particular, the ensemble is compared to the robust-
ness computed on the feature importance vectors in absolute value, to mimic the
reasoning of the ensemble’s construction, while the mean is compared to the fea-
ture vectors with sign. As stated by Property 5, in both cases the aggregated
explanation robustness acts as an average of the robustness of the individual
approaches and is limited by their span. In this example, Integrated Gradients is
on average the least robust method while DeepLIFT and LRP present grater val-
ues of the estimated robustness. Note that this behaviour is dataset dependent:
Integrated Gradients is not, in general, the least robust method. The aggregated
explanations, either with the ensemble or the mean, represent an advantage over
the use of individual approaches. In particular, the aggregation acts as a conser-
vative explanation, that takes into account the individual method’s robustness
and their feature-wise agreement. While the average robustness may be lower
than that of some of the considered approaches, it is able to take into account
the possible undesirable effects of a less robust and disagreeing method, flagging
possible untrustworthiness for a given datapoint.

The rightmost part of Fig. 3 depicts the comparison between the effects of two
neighbourhood generating schemes on the ensemble non-adversarial robustness.
As previously shown in Fig. 1, the random neighbourhood consists of datapoints
which are off-manifold, while the medoid-based one is constructed to remain on-
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Table 1. When can you trust your explanations? Comparison of the robustness scores
with ensemble and mean aggregations with r;, = 0.80.

Ensemble Mean

Dataset Diest |IRobust|UncertainNon Robust/Robust|UncertainNon Robust
beans 500 74.6% |7.2% 18.2% 93.0% [2.2% 4.8%
cancer 50 162.0% [12.0% 26.0% 100.0%/0.0% 0.0%
mushroom 400 [0.0% |1.2% 98.8% 0.0% (0.0% 100.0%
white wine 200 [7.5% [26.5% 66.0% 56.5% [11.0% 32.5%
adult 1000 63.4% |7.1% 29.5% 72.6% |7.3% 20.1%
bank 1000 |65.2% |7.1% 27.7% 44.6% (16.4% 39.0%
heloc 500 [62.8% [9.2% 28.0% 60.6% [14.0% 25.4%
ocean 10000/79.1% |5.6% 15.3% 53.5% [16.0% 30.5%

manifold, mimicking the effects of non-adversarial perturbations. This reflects
into larger average robustness over the test set of the latter neighbourhood over
the random one, validating that the robustness estimator with the ensemble
consistently satisfies Property 4. The same property is satisfied also by the mean
aggregation and the individual XAI methods when tested individually.

Table 1 presents the classification of the test set into robust, uncertain and
non robust datapoints (as per Subsect. 4.4). For comparability, we set ry, =
0.80 for all datasets and both aggregation methods, even if the ensemble often
requires lower values of ry, compared to the mean (see Appendix A). Medoid-
based neighbourhoods were used, as it was shown in Fig. 3 that they produce
larger robustness scores.

For almost all the datasets, robust datapoints are the majority, with the
exception of the white wine dataset with the ensemble and mushroom dataset
with both aggregations. This is due to the selection of the threshold value equal
for all datasets, as carefully selected dataset-specific thresholds would be lower
than 0.80. The percentages of uncertain and non robust datapoints are non-
negligible. In particular, we consider uncertain datapoints to be the most inter-
esting ones to investigate. They represent areas of the feature space where the
robustness estimation is uncertain (as per Property 3) and should be carefully
considered during a practical evaluation.

In Fig. 4 we present a two dimensional visualization of the UMAP [18] projec-
tions of the validation set D, 444, clustered with HDBSCAN algorithm [17], where
each cluster is coloured by its mean robustness score. UMAP is a dimensionality
reduction technique that allows us to visualize a lower dimensional projection of
the data. We applied the density-based clustering algorithm HDBSCAN to such
projections, producing clusters without the need of setting hyperparameters for
the desired number of clusters, as in k-means for example. As can be seen in
the figure, the projected data space may be more or less complex according to
the dataset being analysed. Robustness homogeneity within the derived clusters
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Fig. 4. HDBSCAN clusters, coloured by mean robustness scores, over the two dimen-
sional UMAP projections (Pi, P»): beans dataset (left) and adult dataset (right).

Table 2. Comparison of ensemble’s robustness classification (with 7, = 0.80) accord-

ing to Model 1,2,3 concordance in the prediction.

Robust Non Robust
Dataset  |Agree |DisagreeN. points/Agree DisagreeN. points
beans 95.35% [4.65% 409 95.60% |4.40% 191
cancer 91.89% [8.11% |37 92.31% [7.69% |13
mushroom [100.00%(0.00% |5 100.00%|0.00% 395
white wine94.11% 5.88% |68 92.42% |7.58% 132
adult 93.76% 6.24% |705 80.68% (19.32% 295
bank 95.99% 4.01% [723 90.25% (9.75% 277
heloc 82.22% [17.78% (360 56.43% |43.57% 140
ocean 85.21% [14.8% (8475 80.33% [19.67% (1525

support the claims of Property 2, in which close points are expected to exhibit
smaller differences between their robustness scores. This allows us to support
the use of the knn regressor to estimate local robustness scores as points are
naturally grouped in clusters with similar robustness scores.

As introduced in Subsect. 4.6, the validation of robustness estimations is
subject to the lack of a ground truth. Table 2 shows how the percentage of points
over which the three models (Model 1, 2 and 3) (dis)agree varies according to
the predicted robustness of the datapoints, with r, = 0.80 for all datasets. The
ensemble robustness is computed with the medoid-based neighbourhood. Note
that the mushroom dataset is a particular case, as all three methods reach 100%
accuracy and are, therefore, always agreeing. It can be seen that the percentage of
disagreeing points within the non-robust ones is, for most datasets, greater than
that of the robust ones. This supports our validation proposal, as we consider
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Fig. 5. ROC curves on the bank dataset with ensemble aggregation and medoid-based
neighbourhood (left), mean aggregation and medoid-based neighbourhood (centre) and
ensemble aggregation with random neighbourhood (right). The gray dotted line repre-
sents the bisecting line.

Table 3. Average AUC value of Model 1, 2, 3 for both aggregation types and neigh-

bourhoods. For each dataset, the largest average AUC is presented in bold.

Medoid Random
Dataset |Ensemble Mean |EnsembleMean
beans 0.5711 |0.4854 |0.4842 |0.4067
cancer 0.7346  /0.74000.6766  |0.6612
mushroom (0.0000  0.0000 {0.0000 |0.0000
white wine0.4762  |0.5931 |0.4819 |0.6614
adult 0.7018 |0.6695 |0.8284 |0.8077
bank 0.6670 |0.3883 0.6612 |0.4696
heloc 0.6640 |0.6673/0.6262 |0.5875
ocean 0.5194 |0.5128 |0.4350 |0.4053

the disagreement in the predictions to be a symptom of non robustness, as per
Property 6.

The ROC/AUC analysis presented in Subsect. 4.6 allows us to jointly con-
sider the aggregation method and the neighbourhood generation scheme which
better fit the dataset at hand. Figureb depicts the ROC curves of the three
models in varying scenarios: Model 2 is consistently associated with the highest
ROC curve, suggesting that, for the bank dataset, a deeper net is better able
to propose robust explanations. Moreover, the ROC curves are preferable for all
three models with the ensemble aggregation and the medoid-based neighbour-
hood, while the mean aggregation (as shown in the central plot) presents ROC
curves even below the bisecting line.
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This is further confirmed by the results presented in Table 3, where the aver-
age AUC is computed for the four possible combinations of aggregation method
and neighbourhood generation. The dataset-wise maximum values of AUC are
presented in bold, showing how the ensemble is, on average, preferable with
respect to the mean aggregation and how the medoid-based neighbourhood is
related to larger AUC values in most examples. The mushroom dataset repre-
sents, as in Table2, a peculiar case: having only agreeing datapoints the ROC
and AUC cannot be computed and are therefore exempt from this analysis.

6 Conclusions and Future Work

We presented a novel framework to test explanation robustness, introducing a
new neighbourhood generation mechanism, an ensemble approach to merging
explanations and a validation test. We have shown that our robustness estima-
tor satisfies the desiderata 1-6 and it overcomes the limitations of other met-
rics (Sect. 2). In practical applications, our approach would aid practitioners in
understanding the quality of an explanation in terms of its robustness, allowing
questioning on the proposed results when the framework flags a datapoint as
uncertain.

We have proposed our work targeting neural networks, but the approach is
agnostic in nature with respect to both the investigated model and the XAI tech-
niques being applied. Future steps include a first generalization of the proposal
on different classes of machine learning models, such as tree-based ones, assum-
ing that local feature importance approaches are available for testing. Future
work will also aim at better investigating the relationship between robustness
and adversarial attacks. In particular, we aim at assessing the defence ability of
our ensemble - as aggregated explanations have proved to be more resilient to
adversarial attacks in numerous contexts - and to validate whether our robust-
ness estimator is able to detect attacks. Lastly, we wish to investigate how our
explanations could be used to increase the robustness of classifiers, as in [22].
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A Dataset Description and Hyperparameters

Table 4. Dataset description and model accuracy.

Dataset details Accuracy (%) - Dtrain
Dataset  |Classes|#Num|#Cat Dirain [Dvatid Dtest |kmedoids Model 1 Model 2 Model 3
beans 7 7 0 10888 2223 500 225 93.41 [93.44 [89.47
cancer 2 15 0 397 121 |50 |10 99.5 99.75  199.24
mushroom |2 21 6498 1225 400 [120 100.00 |100.00 [100.00
white wine|2 0 3918 780 |200 |80 89.23 [89.10 |86.55
adult 2 7 36177 8045 [1000 |1000  [91.39 |91.38 |91.09
bank 2 9 36168 (8043 1000 {1000  191.99 91.76 91.45
heloc 2 14 2 8367 1592 500 |130 85.50 |85.57 |85.01
ocean 6 8 0 10925930328 100003000  [92.04 |87.88  |92.27
Table 5. Dataset-specific hyperparameter selection.
Nur Nr
Neighbourhood | Ensemble(Mean |Neighbourhood EnsembleMean

Dataset o |acatlbpr  kr[Ten |kRTih |0 Yeat kririn  |kr[Ttn—

beans 0.10~ |10 9 10.85 |9 |0.90/0.02 — 5 10.75 0.80

cancer 0.10—- |4 1110.85 |9 10.900.10 |- 5 10.55 |7 ]0.65

mushroom - |0.15/10 7 10.70 |11/0.60- 0.15 9 10.70 |11/0.60

white winel0.15- |5 11/0.85 |7 |0.80/0.03 |- 9 1045 |7 0.65

adult 0.05/0.05/5 9 10.80 0.80(0.05 |0.05 5 10.70 |5 10.70

bank 0.050.10/5 0.80 11/0.80/0.05 |0.10 7 10.75 19 0.75

heloc 0.05/0.05/5 15/0.80 |13]0.80/0.03 |0.10 11/0.45 |5 |0.60

ocean 0.05- |5 5 10.65 |5 |0.75/0.001- 5 10.75 |5 10.65
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Abstract. Convolutional Neural Networks (CNNs), such as VGG and
ResNet, have been widely used for image classification for several years.
Numerous explainable AI (XAI) algorithms, including Grad-CAM and
XRAI, have been proposed to enhance interpretability in this domain.
However, a persistent challenge lies in quantitatively comparing dif-
ferent XAI algorithms, variants of the same algorithm, or combina-
tions of CNN models and XAI algorithms. In this work, we introduce
XAIEV — a versatile framework for computationally evaluating the qual-
ity of saliency-map-based XAI algorithms. This framework includes (A)
a benchmark dataset (traffic sign recognition) with a known ground
truth and (B) a software toolbox designed to facilitate the evaluation
pipeline. The pipeline consists of four steps: (1) model training, (2) apply-
ing XAI algorithms to generate weighted saliency maps, (3) generating
new test images with varying percentages of “important” pixels removed
or retained, and (4) statistically evaluating accuracy changes on these
test images and comparison to the ground truth. Based on this statisti-
cal evaluation, we define an Accuracy-Sensitivity Quotient (ASQ) as a
novel quality metric for XAI algorithms applied to image classification.
Using the XAIEV framework, we compare various combinations of CNN
architectures (“SimpleCNN” (custom model), VGG, ResNet, ConvNext)
with multiple XAT algorithms (Grad-CAM, XRAI, LIME, PRISM). Our
numerical results reveal that the performance of XAI algorithms is highly
dependent on the underlying CNN model.

Keywords: XAl-evaluation - CNN - Image Classification - Quality
Metric - Accuracy Sensitivity Quotient

1 Introduction

Along with the success of deep neural networks (DNN) in the field of image
classification there is a growing interest in explaining the outputs of such models.
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Since more than a decade (as of 2025) researchers have proposed a multitude of
“explainable artificial intelligence” (XAI) methods to cater this need, see e. g. [14,
20] and the references therein. These methods typically yield “explanations” in
the form of suitable visualizations which are often superimposed on the original
image in order to make the classification process comprehensible for humans.
An illustrative example (taken from [18]) is that a dysfunctional Wolf-vs-Husky
classifier could be uncovered by using XAI: The classifier achieved good accuracy
on the test set but actually (due to missing variability in the dataset from which
both train and test split were taken) learned to associate snow-related features
with the “wolf”-class. As the XAI method highlights mainly the snowy areas
on the (correctly classified) wolf-pictures a human can then easily recognize the
trained model as flawed.

The development of these various XAI methods, however, raised the issue
of how to objectively measure and compare the performance of those different
methods or even of one method with different parametrizations. In principle
there are two different types of approaches: a) human-based evaluation (i.e.
user studies) and b) algorithmic evaluation.

Because explainability is a human-oriented objective the first category of
approaches is obviously reasonable, see e. g. [14]. However, user studies also have
some disadvantages: They require considerable effort to prepare, conduct and
evaluate and additionally rely on (many) voluntary participants spending their
time which is a limited and costly resource. Additionally, the results of those
studies might be systematically influenced by the selection of those participants.

Thus, algorithmic evaluation methods are desirable to provide fast and cost-
efficient quantification of XAI performance, at least as a complement to user
studies.

However, designing and implementing such evaluation methods comes with
its own challenges: Different XAI methods produce different kinds of results
which are nontrivial to compare and an objective ground truth does not exist.
Also, there are degrees of freedom (design parameters) with a certain range of
plausible values, which nevertheless affects the resulting performance score. Fur-
thermore, it should be noted that the suitability of an XAI method might depend
on the downstream task [7], which justifies the existence of various XAI meth-
ods as well as evaluation methods and metrics. Previously presented evaluation
metrics include e. g. [1,2,6,11].

In this contribution we present the XAI evaluation framework XAIEV [10]
which focuses on simplicity w.r. t. understandability, usability and reproducibil-
ity, to ease algorithmic evaluation and to facilitate comparative studies. This
framework allows to algorithmically generate a quantitative performance metric
(so-called Accuracy-Sensitivity Quotient, ASQ) for combinations of a trained
Convolutional Neural Networks (CNNs) model and a XAl-method. This score
is based on how much the classification accuracy changes if different quantities
of importance-ranked pixels (according to the saliency map produced by the
respective XAI-method) are occluded or revealed. To eliminate the influence of
the input data, the framework includes a dataset tailored to the evaluation task.
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Note that, while drawing inspiration from earlier occlusion-sensitivity based
approaches such as [28] our approach has a different goal: We use occlusion (and
revelation) based on the importance values of XAl saliency maps to evaluate
them, whereas that method uses a sliding occlusion window to generate a saliency
map.

2 Material and Methods
2.1 XAI Methods

In this study we consider four different XAI methods: Grad-CAM, XRAI, LIME
and PRISM. However, it should be noted that due to the modular structure
of the XAIEV framework further methods could be added straightforwardly,
provided they are compatible with the used classification models.

Grad-CAM. The Grad-CAM [21] method is a generalization of the CAM algo-
rithm [29]. It extracts localization information for features from the last convo-
lutional layer in a network. Thereby Grad-CAM is able to operate on CNNs,
which do not meet the special requirements set by CAM for the structure of the
classification head: It uses the gradients of the feature maps of the final convo-
lutional layer with respect to the desired output class as weights. The outcome
is a saliency map with the dimensions of the original image. Due to upsampling
the important pixels form relatively large connected regions.

XRAI. The XRAI method proposed by [9] is based on the Integrated Gradients
(IG) method introduced by [23]. Among other features it addresses a major
issue of IG-generated saliency maps: They usually contain scattered important
pixels with neighboring seemingly unimportant pixels, making the output less
interpretable for humans and harder to compare to other XAI methods [15].

Thus, XRAI uses precomputed segments of the input image generated by
the Felzenszwalb’s segmentation algorithm [4]. In particular, using six different
parameter settings a so-called oversegmentation is produced, where a singular
pixel in the original image is part of multiple segments.

Importance values are given to each segment by calculating the mean attribu-
tion value for the contained pixels with IG. The segment with the highest value
is moved to a separate list, and its pixels are excluded from other segments.
This process repeats, ranking segments by importance until the entire image is
covered. The ranked segments are then combined into a weighted heatmap using
their mean attribution values.

LIME. The LIME-method (“Local Interpretable Model-agnostic Explanations”)
proposed by [18] uses perturbations of the input data to explore the behavior of
the model for a certain local area. When applied to CNNs, so-called super-pixel
segments, which are essentially larger areas of the input image, are perturbed.
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The perturbed instances are fed into the CNN to receive the outputs. Using
these outputs, a new interpretable model (sparse linear classifier as suggested in
[18]) is trained with the goal of approximating the behavior of the CNN for each
image. The importance of the regions/super-pixels in the original input image
can directly be derived from the weights of the sparse linear classifier. This allows
for a ranking of the features.

To use the results for the comparisons, a heatmap is derived using only the
most important feature. Thus, this variant of LIME only highlights the feature
and does not include any weighting within the important/unimportant area.
This results in a binary heatmap which, in the context of this study smoothened
in order to achieve a gray scale saliency map.

PRISM. Principal Image Sections Mapping (PRISM) unlike many other meth-
ods does not depend on backpropagation [25]. PRISM, similar to Grad-CAM,
assumes that the features in the final convolutional layer have a high spatial
correlation to relevant areas in the input image. PRISM derives its importance
heatmap, by performing Principal Component Analysis (PCA) for the last con-
volutional layer, which for this purpose has to be reshaped from 4D to 2D.

The PCA results are truncated to the three most important components and
reshaped to the original spatial dimensions (batchsize, height and width). These
three channels are now considered as the color channels of an RGB-image. As
final step upsampling is achieved with so-called Gradual Extrapolation [24].

PRISM thus produces an RGB image which mostly contains gray base color,
where important regions can visually be identified by a bright saturated color. To
extract a 2D saliency map for comparison with the other XAl-methods, the gray
base color is subtracted and the highest value of the three channels is selected
as the importance value of a pixel.

2.2 CNN Models

In this study we investigate the different XAI Methods for four different CNN
models. Although in recent times transformer-based classification models such
as Swin Transfomer [12] are considered state of the art CNNs remain widely
used for various reasons: They typically have fewer parameters and require less
computational resources for training and inference [13]. Also, they perform better
when training data is scarce, while transformers require larger datasets to achieve
comparable or superior results [17]. Additionally, due to their longer existence,
they are better covered by XAI literature.

As for the XATI methods due to the modular structure of the XAIEV frame-
work further CNN models could be added straightforwardly.

Simple CNN. The “Simple CNN” is a custom model by the authors, designed
to allow observations of XAI methods on basic building blocks. It starts with a
7 x 7 convolutional layer (stride 2) that reduces spatial dimensions while increas-
ing channels from 3 to 32. This is followed by a 3 x 3 convolution, increasing
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filters to 64. A max pooling layer reduces spatial dimensions to 55 x 55, followed
by two more 3 x 3 convolutional layers, increasing channels to 128 and 256 respec-
tively. The single max pooling layer maintains larger feature maps, which could
be interesting for XAI methods deriving heatmaps from the last convolutional
layer. ReLU activation is applied after each convolutional layer. The model ends
with Global Average Pooling, creating a 1 x 256 feature vector mapped to 19
classes. To combat overfitting, Batch Normalization is applied after every convo-
lutional layer, and 25% dropout before the global average pooling. This simple
architecture was iteratively developed to achieve over 90% training accuracy
while maintaining good generalization.

VGG. The VGG architecture proposed by [22] over a decade ago is still very
popular today. While its accuracy on the ImageNet benchmark is not as good as
that of more recent models, VGG16 (also used in this study) still achieves state
of the art performance on other datasets, for example outperforming many more
recent CNN designs on the InDL [26] dataset, while matching the performance
of ConvNeXt.

Despite being a much deeper network with a large amount of parameters as
compared to the proposed Simple CNN, it still consists of very basic building
blocks, utilizing only simple convolutional filters, the ReLU activation function
and max-pooling layers for the feature extraction.

ResNet. Residual Networks (ResNets) were proposed in [5] and introduced so-
called “residual connections” (also: “shortcut connections”). These consist of a
signal path which adds the input of a block (typically comprising two or three
convolutional layers) directly to its output. The input-output-relation of such a
“residual block” is thus y = = + f(z) instead of the usual y = f(x), which signif-
icantly improves the gradient flow and thus alleviates the problem of vanishing
gradients during the training of very deep CNNs. In this study the ResNet50
is used. It offers a reasonable trade-off in terms of computational demand and
performance which makes it a popular choice in the field of XATI [20].

ConvNeXt. The ConvNeXt architecture, proposed by [13], is based on ResNet
but updated in several aspects inspired by the Swin Transformer [12] design
and training methodology. In particular these updates include modified block
designs, larger kernels sizes, GeLU instead of ReLU activation functions, replac-
ing batch normalization by layer normalization and using so-called LayerScale
regularization during the training. With this architecture, [13] showed that a
model consisting only of classical CNN components can compete with state of
the art Transfomer architectures. In this study the “ConvNeXt-Tiny” variant is
used.
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2.3 Augmented Traffic Sign Dataset (ATSDS): Dataset Creation
and Properties

Large and well designed datasets like ImageNet [3] have been very important for
the progress made in the field of computer vision. However, such diverse datasets
are not optimally suited for our study because their images often contain many
relevant features with varying degree of importance that are distributed over
multiple locations.

For a given input image we expect the XAl algorithm to identify those pixels
which are decisive for the classification of the image by a chosen CNN model.
Thus, we require the dataset images to have a clearly distinguishable “important
area” whose size is limited and similar across the whole dataset!. To perform
sanity checks of the XAI results, the dataset should contain annotations of the
exact position of that important area (i.e. partial image segmentation). Fur-
thermore, each image should include a “natural substitution background” which
can be used to (partially) replace the important area in occlusion and revelation
scenarios (see Sect.2.4). Finally, the dataset should be simple enough to allow
the chosen CNN models to achieve classification accuracy close to 100% in order
to rule out incorrect assignments caused by a poor model as far as possible.

To meet these characteristics we decided to artificially generate a new dataset
taylored to the task of evaluating saliency-map based XAl algorithms: the “Aug-
mented Traffic Sign Dataset” (ATSDS) as follows: From the over 60K
Google Street View images published along with [27] depicting urban road traffic
infrastructure, we randomly chose 9500 and cropped them to a size of 512 x 512.
From the “German Traffic Sign Detection Benchmark” [8] we chose those 19
classes for which at least 500 distinct images are available and from these classes
we chose the first 500 images. For each of them we produced a cutout patch
by using the available bounding box annotation and the known shape of the
respective traffic sign (round, triangular, etc.). Finally each patch was overlayed
on top of one of the 9500 background images at a random position (with suffi-
cient margin to prevent protruding). The patch position was saved as a binary
mask which enables to access the initial background pizels of the classification-
relevant area — i. e. the overlayed traffic sign — for the occlusion-based evaluation
(see Sect.2.4). Figurel shows some random examples of this dataset. In total
it consists of 9500 images, divided into 19 classes each with a train-test-split of
450:50.

2.4 XAlI-Evaluation: Incrementally (Un)Occluded Test Images

The actual evaluation of a combination of an XAT algorithm and a CNN model
is performed in four steps (summarized in Fig. 2).

Step (1) consists of training the chosen CNN model on the ATSDS. In
step (2) for each image of the dataset the XAI method is applied to generate

! This is motivated by our earlier observations [15,16] where saliency map generating
XAI methods performed well on image classes like “lighthouse” or “windmill” whereas
the saliency maps for image classes like “dining room” or “desert” are less plausible.
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Fig. 1. ATSDS example images for four (out of 19) classes.

XAI: XAIEV: generate CNN:
CNN: importance-based evaluate
. generate Lo A
model training - evaluation images classification
saliency maps - .
(revelation/occlusion) accuracy

Fig. 2. XAIEV evaluation pipeline.

a saliency map (sometimes also called “heatmap” [19]). This 2D array has the
same resolution as the input images i. e. 512 x 512 and associates an “importance
value” i(z,y) € [0,1] to each pixel (with coordinates ,y)?.

Step (3): For each image of the dataset a series of 10 additional images is
created, both for the occlusion and revelation method. More precisely, for every
threshold value T' € {1%, 2%, ...10%} a binary mask (2D array) mr(z,y) € 0,1
is created. Those pixels (z,y) of the map whose corresponding importance value
is greater or equal to the (1—T)-quantile of the overall saliency map are assigned
to 1, while all other pixels of the map are set to 0. With each of those 10 binary
masks two evaluation images are generated: The occlusion-image consists of the
original ATSDS-image but with the top T' most important pixels replaced by the
initial background pixels (see Sect. 2.3). On the other hand, the revelation-image
consists of the whole initial background (before the traffic sign overlay) but with
the top T" most important pixels replaced by the original ATSDS-image.

™

P

e
sg

Fig. 3. Examples for the evaluation images for different values of T'. Left: Occlusion.
Right: Revelation.

2 For Grad-CAM this saliency map is the direct result, for the other X Al-methods
some post-processing such as Gaussian blur is necessary to obtain a comparable
saliency map.
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In step (4) the CNN model is applied to classify all of the evaluation-images
from step (3). Thereby, the accuracy is calculated for a given threshold value T
and for occlusion /revelation separately which results in two accuracy-sensitivity
curves, aoc(T) and a,(T), like schematically depicted in Fig. 4. Qualitatively, a
monotone dependency is to be expected because the occlusion of (presumably)
relevant pixels should decrease the probability of correct classification for a single
image and thus reduce the accuracy when classifying the whole dataset. An
analogous consideration holds for the revelation case. Since the most relevant
pixels are associated with low T-values, it is plausible that the curvature of the
curves has the opposite sign of the slope. In other words: both curves start steep
and then flatten out.

2.5 Proposed Metric: Accuracy-Sensitivity Quotient (ASQ)

Based on the accuracy-sensitivity curves from step (4) we can define the areas
Aoct, Aoel, Are1, Arez below and above the curves as shown in Fig. 4. Thereby,
the left and right bounds of these areas are determined by the threshold values
T =0 and T = Tiax (chosen to Tyax = 10%). The upper and lower bounds
of these areas are given by amax (accuracy achieved on the unchanged ATSDS
images) and ap;, (inverse of the number of classes, i.e. accuracy achieved by
randomly guessing).

Occlusion
Accuracy 100% Accuracy
a/max amax
Gmin Gmin
1 » 1 >
L T »~ L T [put
0 Twax T 0 Tnax T

Fig. 4. Schematic depiction of expected accuracy curves (blue) in dependence of the
importance threshold 7T'. Left (occlusion): For T = 0% we have maximum accuracy,
then it drops. Right (revelation): For T = 0% we have minimum accuracy (random
guessing), then it rises. The colored areas below and above the curve are used to
calculate the ASQ in Eq. (1) (Color figure online).

While these areas by themselves have no obvious interpretation, their share
of the total colored area (for each respective diagram) has: The expression
ﬁm € [0,1] represents the loss of accuracy due to occluding presumably

relevant pixels while % € [0, 1] represents the gain of accuracy due to
revealing those pixels. In both cases a higher number, i.e. closer to 1, means a
higher sensitivity of the accuracy and thus a higher share of accuracy-relevant

pixels which are occluded or revealed, respectively.
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By symmetrically combining these two quantities we can now define the
Accuracy-Sensitivity Quotient

ASQ:1< Aoor - Aret )e[o,l] (1)

2 Aocl + Aoc2 Arel + AreQ

as a measure how much the classification accuracy changes if the important pixels
(according to the chosen XAI method) are gradually revealed or occluded.

This formula follows the rationale that a good XAI method should identify
those pixels as important which significantly influence the classification result.
Thus, if the accuracy curve strongly depends on the importance threshold T the
areas Aoe1 and Ape1 (both green) take up a large fraction of the total area which
results in a high ASQ value.

2.6 Software Toolbox xaiev

While the individual steps of the evaluation pipeline described in Sect. 2.4 can
be implemented without too much effort the total amount of work is still not
negligible. To facilitate the quantitative evaluation of XAI methods, we preset
xaiev, an easy-to-use Python toolbox, which provides the necessary evaluation
infrastructure. It is available on github [10] and the Python package index.

The toolbox offers a simple command line interface with a main command
for each of the pipeline steps, i. e. xaiev train, xaiev create-saliency-maps,
xaiev create-eval-images and xaiev eval. This main command is followed
by options such as --model simple_cnn_1_1 or --xai-method gradcam. The
full range of commands and options is available via xaiev --help.

To facilitate the first steps for users of the toolbox is equipped with a
--bootstrap command and an extensive README.md file. Also, the functioning
of the system is ensured by deploying continuous integration which at the same
time specifies a verified runtime environment and thus significantly supports the
reproducibility of the results.

3 Results

According to step (1) the four CNN models from Sect. 2.2 where trained on the
ATSDS dataset until achieving at least 97% accuracy on the test fraction (Simple
CNN: 98.9%, VGG16: 99.3%, ResNet50: 98.6%, ConvNeXt Tiny: 97.7%).

After applying the other steps of the pipeline we obtain 32 accuracy-
sensitivity curves which are displayed in Fig.5. From those curves the ASQ-
values for the 16 model-XAl-combinations are calculated according to (1), see
Table 1.
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Fig. 5. Accuracy-Sensitivity curves for all CNN models and XAI-methods.

4 Discussion

The results from Sect. 3 allow for the following conclusions: (1) The classifica-
tion accuracy in dependence of T behaves qualitatively as expected (cf. Fig. 4).
(2) The exact shape of the curve strongly depends on the specific combination
of CNN model and XAI method. (3) The proposed quantity ASQ seems to be
a suitable scalar measure for the “quality” of the curves. (4) In most cases the
revelation curves are similar to a flipped version of the occlusion curves. This
is plausible because the relevant features of the ATSDS images are locally con-
centrated. However, for XRAI the revelation method results in significantly less
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Table 1. Resulting ASQ values according to (1).

Grad-CAM|LIME|PRISM XRAI
Simple CNN 0.85 0.67 10.05 0.70
VGG16 0.86 0.68 |0.75 |0.67
ResNet50 0.78 0.63 0.47 |0.65
ConvNeXt Tiny|0.12 0.66 |0.14 |0.66

accuracy dependency. Especially for higher T-values there is almost no addi-
tional accuracy gain. This means that those pixels whose importance value is
in the top 90% to 95% of our XRAI saliency maps in average do not contain
enough information to enable the correct classification of more images. On the
other hand they do prevent correct classification if they are occluded together
with the more important pixels.

Note that the focus of this work is the development of an easy to use algo-
rithmic XAI evaluation method — not the evaluation of the used XAI methods.
The latter would require a broader study where each XAI method should be
investigated with different parameter settings and each model should be trained
with different initializations.

Nevertheless, our results indicate that the ASQ-performance strongly
depends on the used CNN model. This is noteworthy because all investigated
XATI methods are “model-agnostic” but this obviously does not mean that they
perform equally (w.r.t ASQ) on different CNNs.

5 Summary and Outlook

In this paper we presented a framework to evaluate the performance of saliency
map generating XAl methods on CNNs. Apart from the theoretical background
(cf. Sect.2.4 — 2.6) the framework consist of a dedicated dataset and an open
source toolbox [10].

For the future the availability of this framework significantly simplifies stud-
ies to answer e.g. the following research questions: How much does the XAI
performance depend on the (random) initial weight distribution of a CNN? How
does the training progress (i.e. test accuracy) influence ASQ? How sensitive is
the XAI performance on changes to the model architecture or training process??

Another interesting research direction is to compare ASQ-results to user
studies and search for scenarios where it can serve as a proxy for such — or
under which circumstances both approaches yield contradicting results. A related
question is, how helpful a metric like ASQ is in selecting the adequate XAI
method for a given task.

3 This question is motivated by the observation that the ASQ value for Grad-CAM
drastically improved when the so-called “Layer Scale’-regularization (used in [13]) is
removed from the training process.
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Finally, it should be stated that the XAIEV framework itself still bears signif-
icant potential for improvements, e.g. more XAl-methods, more datasets, more
flexible configuration or more modularization. For example, currently it is an
open question how generalizable the presented approach is when applied to more
complex datasets.

Nevertheless, despite its imperfections we are convinced that sharing version
1.0 of the framework with the community is the right way to generate feedback
and foster XAT research.
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Abstract. Despite their critical applications in healthcare, particularly
in digital pathology, Multiple Instance Learning (MIL) models have been
poorly investigated with regard to their properties, vulnerabilities, and
reasoning. To address this research gap, we propose rule-based synthetic
datasets SyntheticSMIL, and ReasonSMIL protocol, for the investigation
of the attention-based MIL models. The datasets are generated on a rule
basis to enable easy manipulation of their difficulty level. Moreover, they
are designed in such a way that the model has to pay attention to multiple
locations within the images to perform correct classification (spatial con-
text). The ReasonSMIL consists of two parts: (1) ReasonSMIL-R, which
checks if models reason according to ground truth and (2) ReasonSMIL-
A, which measures the agreement between models trained on different
subsets (stability). We used the proposed SyntheticSMIL and ReasonS-
MIL to analyse CLAM and TransMIL models. These tools offer a novel
way to address the challenges of investigating model properties with-
out relying on expert knowledge, as the ground truth is given during
the dataset generation.

Keywords: Synthetic datasets -+ Model evaluation - Multiple Instance
Learning - Spatial context

1 Introduction

By 2030, most data used in Al is expected to be artificially generated through
rules, simulations, or models [19]. While the focus is typically on generating real-
istic data [4], an alternative approach is to create simplified datasets to shed some
light on model behavior. Such datasets allow for precise evaluation of whether
models are learning the correct relationships. Though simplified, these datasets
are crucial for testing model reasoning, particularly in complex tasks like medi-
cal imaging. By using clearly defined rules, they enable targeted investigations,
help identify model weaknesses, and ensure models are reasoning correctly rather
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than relying on shortcuts [6,12,31]. In this work, the term ‘reasoning’ is used in
a distinct sense compared to its use in Large Language Models.

Our approach is a reverse of ‘garbage in, garbage out’ in the form of ‘under-
standable input, understandable output’ — making synthetic datasets an effective
tool in explainable AT (XAI) research and for early-stage model development,
ensuring transparency, scalability, and reproducibility before deployment.

SyntheticSMIL

=
l%&ﬁ sl B
o © =
attention ) | > ¥ 5 [ ’}E
A E § Ve
Q &
niﬁ*;:E g
X Nfolds

ground truth

attention

d)

Fig. 1. The proposed ReasonSMIL protocol evaluates the reasoning ability of attention-
based MIL models trained e.g. on the SyntheticSMIL dataset. ReasonSMIL-R compares
the model’s patchwise attention scores against ground truth, while ReasonSMIL-A
checks the agreement between attention maps from models trained on different cross-
validation folds. Ground truth and model-identified important patches are highlighted
in green and yellow, respectively. (Color figure online)
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In our work, we focus on attention-based Multiple Instance Learning (MIL)
models [16] which are often applied to large, high-resolution images with sin-
gle global label, such as Whole Slide Images (WSIs) in pathology. Such medi-
cal application makes them an important area for research investigation. These
models aggregate information extracted from image patches to make an overall
prediction. Note that in real high-resolution images, more than one patch can
be crucial in the decision-making process.

Our goal is to quantitatively investigate if the models truly capture all impor-
tant patches instead of relying on just a few, i.e. shortcuts. The assumption that
each image can contain multiple important patches leads to the concept of spa-
tial context (relationships between the patches in the space), which is in line
with a notion of spatial XAI [29]. Our proposed pipeline is shown in Fig. 1. We
address the need to investigate the behavior of the attention-based MIL models
in regards to their spatial reasoning capabilities (SMIL) which are important
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e.g. in the analysis of histopathological images [1,7]. We propose a term Spatial
Multiple Instance Learning (SMIL). It is an extension of traditional Multiple
Instance Learning (MIL) models by incorporating spatial context and relation-
ships between instances (patches) in a bag. This makes it a powerful approach for
tasks that require understanding of spatial patterns, such as in medical imaging.
The notion is inspired by ‘correlated MIL’ [26].

Our main contributions are: (1) a set of configurable datasets (Synthetic-
SMIL) where multiple patches are essential for correct classification (spatial
context), (2) a fine-grained, multi-criteria evaluation protocol to analyze if MIL
models reason correctly (ReasonSMIL-R) and are stable within cross-validation
folds (ReasonSMIL-A), (3) an illustrative investigation of the popular CLAM
and TransMIL models using the proposed datasets and protocol.

The code is provided at https://github.com/gozderam/synth reason smil.

git.

2 Related Work
2.1 Multiple Instance Learning

In Multiple Instance Learning (MIL), images of extremely high resolution with
only global labels (weakly annotated) are processed. This approach is widely used
in Whole Slide Images in digital pathology. Such images are analysed as bags of
instances (here understood as patches). Each patch can be either with tumour
cells or without. One patch with a tumour is enough to label the whole lesion
as a tumour. In MIL, the samples (patches) from images are often first analysed
individually and later the information from them is aggregated within attention-
based modules to make a final decision about a bag. Common attention-based
MIL models used for WSI analysis include CLAM [21], TransMIL [26], Pro-
toMIL [25].

Our work focuses on analysing the reasoning of the attention-based MIL
vision models, used for instance, in digital pathology for Whole Slide Images.
Typically, such models are evaluated by global performance metrics (e.g., accu-
racy, AUC) and visualizations of attention scores via heatmaps. However, spatial
context understanding through attention scores has rarely been studied, with
only a few exceptions [14,30]. In the first, the coexistence of some instances
(MNIST images) within bags is evaluated (only even/odd numbers in a bag or
only adjacent pairs of numbers in a bag). In the latter, the spatial regression is
used to quantify the role of context in a form of neighborhood in WSIs.

2.2 Model Evaluation on Synthetic Data

Synthetic datasets have been used in machine learning mainly to address data
sensitivity and privacy issues [24]. The rise of Generative Adversarial Net-
works [13] and diffusion models [15] has further popularized the use of syn-
thetic datasets, including text-to-image generation [17] and 3D environments
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for dataset sampling [8,22]. These methods aim to create realistic images for
training models, ensuring good performance in real-world scenarios.

However, synthetic datasets can also be used to evaluate models by testing
hypotheses, such as understanding spatial relationships [27], or vulnerability to
adversarial attacks [5]. Such datasets can also serve for explainable AI (XAI)
study [3,28]. The MIL models were challenged under the adversarial attack [32,
33] and other synthetic tile modifications [2]. Yet, no rule-based datasets were
used to investigate the MIL model’s reasoning, vulnerabilities or properties.

The model testing using rule-based datasets in our work is inspired by the
notion of unit tests for symbolic conceptual reasoning in Deep Learning using
synthetic datasets [20] that are based on the theory of concepts by [11] where
one of the arguments is a significant role of compositionality in reasoning. The
ability of abstract reasoning is also evaluated in visual IQ tests i.e. based on
Ravens Matrices [23].

3 SyntheticSMIL Datasets

We propose a set of three synthetic datasets, SyntheticSMIL, to test MIL models’
ability to reason using spatial context, where distinguishing classes depends on
multiple patches. MIL is often used to analyse images of non-standardized size
larger than typical 224 x 224, with weak labels, and valuable role of spatial
relationships e.g. WSIs in digital pathology.

The SyntheticSMIL datasets were inspired by histopathological images that
are input to the analysed MIL models. Key features in histopathological images
are shapes, textures, and densities [18]. Their analysis is critical for detecting
abnormalities and classifying tissue samples: (1) shape—irregular or enlarged
nuclei often indicate malignancy, (2) texture—coarser chromatin texture is a
common marker in cancerous nuclei, (3) density—increased cellular density typ-
ically signals high-grade tumors. We wanted to create datasets checking one data
characteristic to make models’ explanations as firm and straightforward as possi-
ble. Hence, to isolate the understanding of spatial context, we designed datasets
with pure signal, free from distractors, ensuring straightforward interpretation
without the need for disentanglement.

Inspired by configurable 3D environments [8,22], the datasets allow flexi-
ble adjustments thanks to parametrization. The SyntheticSMIL implementation
enables the generation of images of different sizes (Fig. 3). We describe the gen-
eration process of the synthetic binary datasets, their configurable parameters,
and methods to define important patches (ground truth). The goal is to create
a flexible, diverse dataset generation framework with adjustable difficulty levels.
The key values of the parameters used for the generation of datasets for the
experiments are provided in Sect. 5.

Concavity. The concavity dataset focuses on differences among concave shapes.
The task is to distinguish structures based on the ratio of a given structure’s
area to its convex hull area. Specifically, structures with a ratio below a given
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threshold (‘more’ concave) must be separated from those with a ratio above it
(“less’ concave).

Algorithm 1. Concavity dataset generation (single image).

ay — —1
while af & [ay,,.. s Cfmas] dO
bpts < gen_points (Mpmin, Npmaz, dm, ds, dvar)
Spts < get_spline_points(bpts)
Chull < convex_hull(sp¢s)
af < pol_area(spts) / pol_area(chun)
end while
PtSscaled < scale(Spis, S fmin, 8 frmaz)
draw_polygon(ptsscaied)

In Algorithm 1:

— gen_points (Npmin, Mpmaz> dm, ds, dvar) generates base points for spline cre-
ation. The number of points n, is an integer sampled from {npmin, Npmin +
1,..., Npmag — 1} with equal probabilities for each value. Later, for each point
i,1€{0,1,...,n, — 1} a distance d, (from the origin of the coordinate sys-
tem) is sampled from a normal distribution d; ~ N (d,, ds). Therefore, each
point ¢ can be placed on a circle with a radius d;. The points are placed on the
corresponding circles so that the angle between the y axis of the coordinate
system and the line from the origin of the coordinate system to the point 7 is
rot; = 2mwi/n, + shift;w/n, where shift; ~U(0,1) is a noise factor.

— get_spline_points(b,:s) generates the B-spline based on points bp;s.

— convex_hull(sy,,) returns a list of points that are the convex hull of points
Spts-

— pol_area(*) returns the areas of polygons formed by s,:; and cpy respec-
tively.

— Generation algorithm keeps repeating as long as the resulting area ratio ayf
(computed for a generated shape) does not fall into the range [ay, ,.,af,...]-

— scale(Spts, Sfmin, 5fmaa) scales generated points with a scaling factor sf ~

u(sfmina Sfmax)~

The graphical explanation of Algorithm 1 is shown in Fig. 2.

The classes differ in the allowed values of ay — the ratio of the polygon area
to its convex hull area. For class 1, the allowed values ([ay,,,, ;af,...,]) are lower
than for class 0 ([af,,,, s@fn..,])- The ranges for different classes are disjoint
— ‘more’ concave belong to class 1, whereas the ‘less’ concave to class 0. The
smaller and closer a; ranges for classes, the more difficult it is to classify a
dataset.

In concavity, key patches (ground truth, GT) for class distinction can be
defined in three ways: (1) background only, (2) foreground — polygon area (with-
out the edge), and (3) polygon edge (Fig.3d). Each method provides enough
information for classification.



SyntheticSMIL and ReasonSMIL 269

(a) Coaxial cir- (b) Spline base (c) Generated (d) Final image

cles with random points placed with shape based on in the coordinate
radius and cen- random angles on spline base points. system.

tres in the origin each circle.

of the coordinate

system.

Fig. 2. Concavity images generation process.

(a) concavity — ‘less’ vs. (b) onion — same vs. dif- (¢c) points density — Npa,
‘more’ concave ferent width vs. Nha,

(d) concavity GT — variants: ‘background’, (f) points den-

‘foreground’; ‘edge’ (e) onion GT sity GT

Fig. 3. Samples from two different classes of the concavity, onion, and points density
datasets (a—c), along with exemplary ground truth patches outlined (d—f). The size of
images can be different — width and height can be sampled from normal distribution
given mean and standard deviation.

Onion. An image from the onion dataset consists of a series of nested, light-grey
regions, referred to as layers, surrounding a central area. Each layer is enclosed
by a dark-grey boundary (called edge). In class 0, the layers are coaxial and share
the exact same shape, differing only in scale. In class 1, however, the shapes vary
across layers.

In Algorithm 2:

— get_edge(epts,, €,) returns a set of points constituting an edge shape that
is constructed based on eps,. The edge has a width of e,,.
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Algorithm 2. Onion dataset generation (single image).

edges «— ()
€ptsqg € Spts
for each i € {0,1,...,lc. — 1} do
edges <+ edges U get_edge (epis;, €w)
epts; 4, + transform(epis;, lw,noisestq)
end for
draw_layers(edges)

— transform(epss,, lw, N0iSesq) returns transformed points being the input
points for the next (inner) edge. The transformation is based on layer width
(lw) and the normally distributed noise factor ns applied to points location,
ns ~ N(1,noisesq) (ns = 1 means no noise is applied).

—  Spis are generated as for concavity dataset (Algorithm 1).

The key parameter in the generation scheme is noisesq. When noisegtq =
0, the noise is not applied to the subsequent layers and all layers on a single
image are of the same shape disregarding a scale (class 0). With noisesq # 0,
subsequent layers differ both in a scale and shape (class 1). The lower noisestq,
the more difficult it is to properly classify images.

The important patches (ground truth) are all the patches that include pixels
comprising layer edges (Fig. 3e).

Points Density. The points density dataset refers to images where the distin-
guishing factor is the number of areas with a high density of points (Fig. 3c).

Algorithm 3. Points density dataset generation (single image).

r < discrete_uniform({rmin, 2Tmin, - - -y Wrmin })
ptsyy < get_background_points(nyg)
centerspq < get_high_density_centers(Npq)
ptspa — 0
for each cpq € centerspqg do
ptse,, < get_hd_neigh(cha, Nha, T)
Ptspa < ptsSpa U ptse,,
end for
draw(ptsyy), draw(ptsnq)

In Algorithm 3:

— get_background_points(n,) returns ny, points (Zpg,Yng) uniformly dis-
tributed across the entire image, xyg, ypg ~ U(0,1).

— get_high_density_centers(Nyy) returns Nypg points (Zpde, Ynde) that con-
stitute the centers of areas with high densities and are uniformly distributed
across the image without border parts, Zpdc, Ynde ~ U(0.15,0.85). A given
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minimal distance between centers (cgq,,,, ) is preserved in order not to gener-
ate high-density areas in the same regions.

— get_hd_neigh(cpq, npg, ) returns nyg points (T4, yra) that define the dense
area around point ¢pq(Zhde, Ynde) and are normally distributed with scale 7,
Tha ~ N(Thae,7), Yna ~ N (Ynde,r). For each image, r is randomly sam-
pled from the discrete uniform distribution, r ~ Uy ({rmin, 2rmin, - - + » Wrmin })
where w - maximal multiplicity parameter.

In the points density dataset, classes are distinguished by the number of
dense areas (Npq). The dataset difficulty can be controlled by adjusting npq —
lower values increase difficulty.

The key patches (ground truth) for decision-making in points density dataset
are the ones that cover regions of a high density (Fig. 3f).

4 ReasonSMIL Protocol

We propose the ReasonSMIL evaluation protocol to investigate the attention-
based MIL models in a fine-grained manner to understand the model’s inter-
nal reasoning. The ReasonSMIL evaluation protocol has two components for
the investigation of: (1) alignment between model reasoning and the important
patches (ground truth) and (2) consistency across models.

4.1 Investigation of Model Reasoning

The goal of ReasonSMIL-Reasoning (ReasonSMIL-R) is to verify if the model’s
decision is based on the correct patches. Since the datasets are synthetic, we
know the key rules for class distinction. The process involves (1) defining a
ground truth (GT), (2) extracting attention scores per patch from the trained
model for each image, (3) using evaluation metrics to compare attention scores
with the GT, (4) averaging the metric values across all images.

Metrics. We propose using diverse metrics from two domains for a comprehen-
sive analysis — segmentation (Dice score) and classification (with binarization:
balanced accuracy (BAC), Matthew’s correlation; without binarization: AUC,
PR AUC, Relevance Mass Accuracy (RMA) [3]). The Dice, BAC and Matthew’s
coefficient scores are applied after binarizing the attention scores, while metrics
like AUC and PR AUC handle continuous values. BAC and Matthew’s correla-
tion are useful for imbalanced datasets. Here, a dataset is a set of patches within
an image where in the case of weakly annotated data, a region of interest is often
small.

Binarization. To binarize the attention scores, we select the same number of
top-scoring patches as there are important patches in the ground truth. Recall
and precision are not used as they yield the same values as the Dice score with
this binarization method.
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4.2 Investigation of Models’ Agreement

The ReasonSMIL-Agreement (ReasonSMIL-A) compares models trained on dif-
ferent data subsets during cross-validation, focusing on internal reasoning rather
than global metrics like accuracy or AUC. It analyzes the correspondence of
attention scores, similar to inter-annotator agreement, using Fleiss’ kappa [10]
(0 = no agreement, 1 = full agreement) and RMSE for attention score maps.

5 Experiments

The ReasonSMIL protocol is versatile and applicable to any attention-based
vision MIL model. We use CLAM and TransMIL to illustrate how ReasonSMIL
and SyntheticSMIL can be employed to analyse a specific MIL architecture.
Additionally, to demonstrate how these methods can facilitate the comparison
of different architectures, we conduct a comparative analysis between CLAM
and TransMIL.

For CLAM, we used default hyperparameters (except switching from Resnet-
50 to Resnet-32 due to datasets simplicity). In TransMIL, we used the same patch
features as in CLAM, with default parameters except for points density, where
the learning rate was set to le-5.

We generated 3 versions of each of the datasets — concavity, onion, points
density, for the experiments. The versions differ in difficulty level which was
achieved by manipulation of dataset parameters: concavity (easy: areafmin, =
0.90, areatmaz, = 0.89,areasmin, = 0.80, medium: 0.93,0.92,0.86, hard: 0.97,
0.96, 0.94); onion (easy: noisesq = 0.07, medium: 0.06, hard: 0.05); points den-
sity (easy: npq = 200, medium: 110, hard: 90) are specified in Table 10 (Sect.
A.2). Each image is of size 8960 x 8960 pixels (40 x 40 patches of size 224 x 224).
More statistics on data is provided in Table 11 (Sect. A.2). We fixed the image
size as one degree of freedom to focus on dataset difficulty. In total, the dataset
used during 5-fold cross-validation contains 300 images and the test set (same
for all folds) comprises 100 images. The number of samples in the datasets were
inspired by the setup of the widely-used CAMELYON16 [9] dataset in digital
pathology research on MIL models which consists of 270 training and 130 test
samples.

6 Results CLAM

We provide the results (on test sets) of an illustrative investigation of the CLAM
model trained on the proposed SyntheticSMIL datasets.

6.1 Global Performance

The global classification performance of CLAM model trained on Synthetic-
SMIL datasets of various difficulty levels (defined by a set of parameters) are in
Table 1. As expected, easier datasets yield higher global performance (accuracy
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and AUC), with models showing stability across cross-validation folds (small
standard deviations). The exception is the onion dataset (medium), where the
standard deviation of accuracy is 0.16. Next, we apply the fine-grained Reason-
SMIL protocol for further investigation.

Table 1. The performance of the CLAM model on SyntheticSMIL datasets. Perfor-
mance metrics are reported as mean and standard deviation. Hereinafter red color
means the most difficult dataset/the worst metric value within a given dataset; green
— the easiest dataset/the best metric value; yellow — in between.

dataset |level ‘accuracy AUC
hard 0.66+0.03 0.73+0.03

concavity medium 0.77+0.02/0.88+0.01

easy 0.86i0,02 0.93:|:0,01
hard 0.59:!:0.04 0.62:|:0.03

onion medium 0.8240.16]0.9140.06
easy 0.93+0.03/0.98 £ <0.01
. hard 0.55;[:0,05 0.60;[:0,02
points .
. medium 0.66+0.05(0.73+0.01
density

easy 0.99+40.02/1.0+<0.01

6.2 ReasonSMIL-R

The results of ReasonSMIL-R for the CLAM model are shown in Table2. The
highest values occur in the concavity dataset when the ground truth is ‘fore-
ground’. Lower values are found in the ‘edge’ variant of concavity and in points
density, both of which have sparse ground truth. Negative Matthew’s correlation
coefficients appear only in concavity when the ground truth is ‘background’.

Points Density. There is a clear link between higher global performance and
higher fine-grained metrics, indicating that models are better at assigning cor-
rectly attention scores to important patches in easier datasets. However, in
these easiest cases, despite near-maximal global performance, fine-grained met-
rics remain unsatisfactory, suggesting that models may focus on unimportant
patches.

Onigon. For the most difficult onion dataset, the fine-grained metrics are signif-
icantly lower than for other variants (i.e. Dice score equals 0.04). However, in
easier dataset variants, fine-grained metrics remain similar to each other despite
varying global performance: (in contrary to points density dataset). Therefore,
here the reasoning metrics are not in line with global accuracy. This can be
attributed to two aspects. Firstly, sometimes there are more and less important
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Table 2. ReasonSMIL-R on CLAM. In the first column, different datasets (‘d’) are
pointed out (‘c’ — concavity, ‘0’ — onion, ‘p’ — points density). In the ‘variant’ column,
different methods for defining the ground truth are indicated (‘back’ — background,
‘fore’ — foreground, ‘edge’).

dlevel  variant PR AUC AUC BAC Dice M. coeff. RMA
hard back 0.69+0.16 0.3110.37 [0.4240.31 0.5140.26 |—0.16+0.62/0.58+0.03
mediumback 0.78+0.18 0.47+0.45 0.57+0.36 0.66+0.20 0.1410.73 0.63+0.04
easy  back 0.66+<0.010.14+0.01 0.3+<0.01 0.45+<0.01 —0.40-+0.01 0.60+0.02
hard fore 0.844027 0.840.40 [0.8340.32 [0.77+0.41 0.65+0.64 [0.35+0.03
c. mediumfore  0.694+09.34 0.6240.49 0.694037 0.57+051 0.37+0.74 0.30+0.04
easy fore  0.95+0.01 0.98+0.01 0.9610.01 0.95+0.01 0.9210.02 0.33+0.02
hard edge 0.214002 0.214002 0.56+0.01 0.18+0.02 0.1110.02 0.07+<0.01
medium|edge 0.2640.06 0.27+0.04 [0.58+0.03 0.22+0.06 0.16+0.07 10.07+<0.01
easy  ledge 0.2410.05 0.27+0.03 0.5710.03 [0.240.05 |0.1410.06 |0.07+£<0.01
hard - 0.4610.06 0.46+0.18 0.5210.13 0.48+0.14 0.0410.25 0.5010.05
0. medium/|- 0.53+0.02 0.63+0.01 |0.57+£<0.01/0.53+<0.01/0.14+<0.01 (0.58+0.03
easy - 0.53+0.01 0.63+<0.01/0.57+<0.01/0.53+<0.01/0.14+ <0.01 |0.60+ <0.01
hard - 0.06+£<0.01 0.57+0.01 0.52+<0.010.0840.01 0.03+0.01 0.04+<0.01
p.- medium/|- 0.1140.02 0.640.01 [0.-5540.01 [0.13+0.02 [0.0940.02 [0.05+<0.01
easy |- 0.29+<0.01 0.6610.01 |0.62£<0.010.284<0.01/0.24£<0.01 |0.07£<0.01

patches within ground truth. There are patches with a central density peak, as
well as those scattered toward the periphery — potentially less relevant. However,
some metrics in ReasonSMIL-R expect a binary decision if a patch is important
or not. This could be mitigated by more selective choice of GT patches. Secondly,
the feed-forward layers may make wrong predictions even though the assigned
attention scores to patches are reasonable.

Concavity. All models achieve very weak values in ‘edge’ variant in comparison
with other GT variants. Adding to this very low standard deviations (stdevs), we
can conclude that models tend to not choose ‘edge’ variant in its reasoning. For
the two hardest versions of the dataset, we observe varying metric values and sig-
nificant standard deviations for both the ‘back’ and ‘fore’ GT variants. Such high
standard deviations suggest that different cross-validation models select different
GT variants, which can be further analyzed using ReasonSMIL-A. Notably, for
the ‘back’ variant, the best metric values are observed for the medium dataset
variant, while for the ‘fore’ variant, the worst metrics appear in the medium
variant. For the easiest dataset variant, we see low metric values for the ‘back’
variant and very high ones for ‘fore’, both with low standard deviations—leading
to the conclusion that the reasoning of all cross-validation models aligns with
the ‘fore” GT variant. Additionally, there is no clear relationship between global
accuracy and ReasonSMIL-R metrics for this dataset.
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For datasets with one possible definition of ground-truth important patches
(such as points density, onion), the low ReasonSMIL-R metric value means the
model does not reason in a correct way. For datasets with multiple possible
ground truth variants (concavity), ReasonSMIL-R analysis becomes more com-
plex and insightful. Firstly, if a model for a given GT variant achieves a poor
metric value, it does not necessarily mean that it reasons in an incorrect way —
it could have learnt a pattern matching a different GT variant. Secondly, models
trained on different cross-validation folds can reason in line with different GT
variant which directly impacts ReasonSMIL-R metrics calculated as averages of
values from models trained on different cross-validation folds. To detect such
phenomena, we calculate the standard deviations for all ReasonSMIL-R metrics
and introduce another component of ReasonSMIL — ReasonSMIL-A.

6.3 ReasonSMIL-A

The results on reasoning stability are shown in Table 3. There is no clear rela-
tionship between ReasonSMIL-A metrics (Fleiss’ kappa, RMSE) and dataset
difficulty: for points density and concavity the Fleiss’ kappa values are not in
line with global accuracy, for onion such a relation can be observed. For concav-
ity, models achieve the lowest Fleiss’ kappa values for medium dataset in all GT
variants. The small Fleiss’ kappa values in the medium dataset and mediocre
in hard suggest that the models tend to reason in line with different ground
truth variants (Fig. 4 and Appendix B). The analysis of RMSE metric gives per-
spective on the topic of stability which does not depend on the definition of the
ground truth variant (does not require binarization). Note that in the case of
points density and onion, there is an alignment that the Fleiss’ kappa and RMSE
for the easiest dataset are the most favorable.

7 Results — TransMIL

Global Performance. The results for TransMIL are provided in Table4. In the
case of concavity CLAM achieves better or similar performance than TransMIL
unlike in the case of onion. In points density, in a hard variant, CLAM outper-
forms TransMIL which is contrary to the situation in the medium variant. For the
detailed comparative study between CLAM and TransMIL, we select datasets
on which the models achieved similar performance (concavity: medium, onion:
easy, points density: easy). In the following analyses, we used the attention scores
from the first multi-head self-attention module of TransMIL.

ReasonSMIL-R. TransMIL outperforms CLAM in the concavity ‘back’ variant in
all metrics. In the ‘edge’ variant it is observed for all metrics except PR AUC and
RMA. However, CLAM performs better than TransMIL in the concavity ‘fore’
variant and across all metrics in onion and points density. The exact results are
in Table 5.
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Table 3. ReasonSMIL-A on CLAM.

dataset |level |v. |Fleiss’ T RMSE |
hard back|0.4110.11
hard  fore 0.4040.08/0.11+0.02
hard edge|0.50+0.09
medium back|0.1640.15
concavity medium|fore [0.144¢.12/0.07+0.02
medium|edge 0.35+0.05
easy back|0.93+0.04
easy fore 10.9440.01/0.12+0.02
easy edge|0.69+0.14
onion hard - 0.69+0.06 0.10+0.01
medium-  0.84+0.03/0.1440.02
easy -  0.88+0.020.06+0.01
) hard -  0.784+0.050.1440.01
points .
density medium/|- 0.7040.050.13+0.01
easy -  0.81+0.040.03+<0.01

Table 4. The performance of the TransMIL model on SyntheticSMIL datasets.

dataset level  |accuracy AUC
concavity hard  |0.5540.05 [0.61+0.06
medium 0.78+0.06 [0.84+0.00
easy 0.8040.11 |0.86+0.10
onion hard  |0.9440.03 [0.99+0.01
medium|0.9640.02 0.99+<0.01
easy 0.96+0.01 10.99+0.01
points density/hard  0.50+<0.01/0.76+0.02
medium|0.8440.02 [0.96+0.01
easy 0.9510.01 [0.99+<0.01

Table 5. ReasonSMIL-R on TransMIL where the model achieved similar performance
metrics as CLAM.

d.level  |variant|PR AUC AUC BAC Dice M. coeff. |RMA

c. mediumback [0.7940.07 [0.6740.21(0.79+0.21/0.8540.14/0.58+0.41 |0.67+0.05
fore  |0.394+0.13 [0.3340.22/0.4440.18/0.23+0.26|—0.13+0.35/0.26£0.05
edge |0.1010.03 [0.4640.09(0.6440.13/0.321£0.250.27+0.27 |0.07+<0.01

0.leasy - 0.41+0.02 [0.3740.03/0.2340.07/0.16£0.08| —0.54+0.15/0.42+0.02

p.easy |- 0.07+£<0.01{0-5140.01/0.57£0.01|0.1940.01{0.1410.01  0.061£<0.01
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ReasonSMIL-A. The results are in Table6. In the case of concavity, TransMIL
exhibits higher RMSE values compared to CLAM, which favors CLAM since,
for RMSE, lower values indicate better performance. Regarding Fleiss’ kappa
for concavity, the results are inconsistent and heavily influenced by the GT
variant. In the ‘back’ and ‘fore’ variants, TransMIL achieves higher Fleiss’ kappa
scores than CLAM, which is favorable as higher Fleiss’ kappa values are better.
However, in the ‘edge’ variant, TransMIL’s Fleiss’ kappa scores are lower than
CLAM’s, giving an advantage to the CLAM model.

For onion, TransMIL yields lower Fleiss’ kappa scores and higher RMSE val-
ues than CLAM. In terms of points density, Fleiss’ kappa scores are comparable
between TransMIL and CLAM, while TransMIL shows a higher RMSE.

Table 6. ReasonSMIL-A on TransMIL.

dataset level |att |Fleiss’ T |RMSE |

concavity medium/back|0.324+0.25/0.504+0.07

fore O.21i0,22
edge|0.16+0.00

onion easy - 0.62+0.06/0.114+0.04

points densityleasy - 0.8240.06/0.08+0.11

(a) fold 1 (b) fold 2

Fig. 4. The important patches in the same test image, identified by the CLAM model
but trained on different cross-validation folds. We selected the same number of patches
as the ground truth in the ‘fore’ variant.

8 Under the Lens

Along with the analysis of ReasonSMIL metrics, we inspected visualizations of
the important patches identified by CLAM and TransMIL models in the case
when multiple GT variants are possible (concavity).

For the analysis of TransMIL in Sect. 7, we picked the attention scores from
the first attention layer (att0) as their visualizations seem less noisy than the
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ones from the consecutive layer (att!) (Appendix — Fig. 5), It may be due to some
additional high-level patch interactions (Appendix). The ‘edge’ variant is very
rarely observed in reasoning (both in att0 and att!). Note that it may happen
that in att0 the model follows another GT variant than in att! (Appendix —
Fig. 7). From now on, we focus only on att0. TransMIL tends to alternate its
reasoning for different samples within the same cross-validation fold.
Tt is observed mainly between the ‘fore’ and ‘back’ variants (Fig. 8b —Appendix).
However, there are a few exceptions. In one fold in each of the dataset difficulty
levels (easy, medium, hard), TransMIL reasons mostly in line with just one GT
— the ‘back’ variant.

The empirical analyses showed that the CLAM model reasons in general
in line with one GT variant within one cross-validation fold (Fig.8a —
Appendix). However, it turns out that the model tends to choose a
different reasoning scheme across different folds (Fig.4). From 5 differ-
ent cross-validation folds CLAM learnt to reason in line with the following GT
variants depending on the dataset difficulty: hard (4/5 models — ‘“fore’; 1/5 —
‘back’), medium (3/5 models — ‘fore’, 2/5 — ‘back’), easy (5/5 models — ‘fore’).
In general, the most popular is ‘fore’ GT variant.

Overall, we can conclude that the TransMIL model is less consistent than
CLAM, as it shows less ability to consistently focus on a specific GT variant
within a given fold. These observations are reflected in standard deviations of
ReasonSMIL metrics averaged within each cross-validation fold.

9 Role of Position Encoding

In order to check the benefit of positional encoding (PE) in TransMIL, we run
additional experiments. In TransMIL, the positional encoding is created in the
PPEG module where convolutional layers with different kernel sizes are applied
to input patch features to catch the information on neighbourhood at differ-
ent granularities. We ran our evaluation pipeline on TransMIL with PE turned
off meaning no convolutional kernels are applied and only identity operation is
preserved.

The global performance values in case with and without positional encod-
ing are given in Table7. In general, positional encoding in all analysed cases
improved global accuracy slightly (the biggest difference is in the case of con-
cavity). The fact that the differences are small aligns with the ablation study
conducted by the authors of TransMIL on Whole Slide Images.

ReasonSMIL-R. The results are provided in Table 8. For concavity in the ‘back’
and ‘edge’ variants, PE improves most metrics, particularly PR AUC, AUC, and
balanced accuracy (BAC). In contrast, the ‘fore’ variant experiences a decline in
most metrics. The onion variant shows minimal improvement in PR, AUC and
AUC, while balanced accuracy, Dice, and Matthew’s coefficient slightly degrade.
For points density, all metrics exhibit slight but consistent improvements with
PE, indicating that PE generally enhances model alignment with ground truth
patches.
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Table 7. Performance comparison of TransMIL with and without positional encoding

(PE).

dataset

w/o PE

w/ PE

difference

accuracy

AUC

AUC

accuracy

accuracy

AUC

concavity (medium)

0.73+0.06

0.83+0.09

0.7840.07/0.84+0.09

+0.042

+0.008

onion (easy)

0.94+0.02

0.99+0.01

0.96+0.01/0.9940.01

+0.012

+0.001

points density (easy)

0.94+0.01

0.9810.01

0.95+0.01(0.99+0.01

+0.006

-+0.006

Table 8. ReasonSMIL-R comparison for concavity (medium) with and without posi-
tional encoding (PE).

metric ‘w/o PE ‘W/ PE ‘difference
back variant

PR AUC 0.7940.11 |0.8040.07 |+0.005
AUC 0.66+0.28 |0.67+10.21 |+0.008
BAC 0.7840.28 [0.7940.21 |+0.010
Dice 0.84+0.22 |0.8540.14 |+0.010
Matthews Coeff. 0.5640.57 |0.5840.41 [+0.019
Relevant Mass Acc.|0.6810.09 [0.6710.05 |—0.007
edge variant

PR AUC 0.0940.03 |0.10+0.03 [+0.005
AUC 0.44410.08 |0.4610.00 |+0.015
BAC 0.60+0.14 [0.6410.13 |+0.036
Dice 0.2540.26 |0.3240.25 |[+0.068
Matthews Coeff. 0.2040.28 |0.2740.27 [+0.072
Relevant Mass Acc./0.0740.01 [0.0740.01 |4+0.001
fore variant

PR AUC 0.4040.19 [0.3940.13 |—0.014
AUC 0.3440.30 [0.3340.22 |—0.013
BAC 0.474+0.30 |0.4410.18 |—0.031
Dice 0.2840.41 [0.2340.26 |—0.043
Matthews Coeff. —0.07+0.60|—0.134+0.35 —0.062
Relevant Mass Acc.|0.254+0.08 [0.2640.05 |+0.006

ReasonSMIL-A. The results are provided in Table 9. The shift from the ‘without
PE’ to the ‘with PE’ scenario reveals that Fleiss’ kappa improves for concavity
(all GT variants), while RMSE is worse (Table 11). In the onion variant, Fleiss’
kappa slightly drops, but RMSE improves significantly. For points density, Fleiss’
kappa shows a notable improvement, suggesting better agreement, while RMSE
remains stable (Table9).
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Table 9. ReasonSMIL-A comparison of concavity (medium) with and without posi-
tional encoding.

variant Fleiss’ Kappa

w/o PE\w/ PE (difference
back 0.274+0.150.324+0.25 +0.05
edge 0.1240.08/0.1640.09/+0.04
fore 0.1640.12/0.214+9.22/+0.05

RMSE

variant w/o PE\w/ PE (difference
back/edge/fore|0.45+0.04/0.50+0.07/+0.05

10 Conclusions

We propose a set of configurable synthetic datasets (SyntheticSMIL) comple-
mented with a comprehensive evaluation protocol (ReasonSMIL) for the investi-
gation of the attention-based vision MIL models. To justify their usefulness, we
provide an illustrative investigation of the CLAM and TransMIL models.

The results show that there is no straightforward mapping between the mod-
els’ global performance metrics and the models’ reasoning correctness evaluated
using ReasonSMIL-R. It is observed that the maximal global performance met-
rics do not lead to maximal fine-grained metrics. It turns out that the reasoning
of models in cases when they can base their prediction on different valid rea-
soning schemes (‘foreground’, ‘background’; ‘edge’) is surprising. CLAM model
seems to reason consistently across all images when trained on a particular cross-
validation fold. However, this reasoning scheme may not be the same across folds.
TransMIL in turn follows different reasoning patterns (GT) for different images
even within a single model, trained on a given cross-validation fold. We can
therefore conclude that the reasoning of the CLAM model is more consistent
than the TransMIL’s.

The proposed tools give valuable insights into model’s internals and reason-
ing which may be useful in the early stage of SMIL architecture development
(analogy to unit tests to explore program properties).
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A Datasets
Al Ground truth definitions

Concavity Let p;; be the patch of a given image, i € {1,2,...,N}, j €
{1,2,..., M}, and ptSscqieq - as in Algorithm 1 (main paper). The procedure of
selecting ground-truth important patches in the concavity dataset is described
in Algorithm 4.

Algorithm 4. Setting ground-truth for a given image from concavity dataset.

pol «— polygon(ptsscaied)

bg < background (ptsscaied)

gtpatchesbg — {Pz? |plj ﬂpOl = (B}

gtpatchespnl - {pij|pij N bg = @}

Gtpatches.qge < 1PijlPiz N pol # O A pij Nbg # O}

In Algorithm 4:

— polygon(ptsscaied) Teturns a region determined by ptsseaieqd (together with
the edges).

— background (ptsscqieq) returns the background of the region determined by
DtSscaled (8 complement of polygon(ptsscaieq) in the context of the entire
image).

Onion Let p;; be the patch of a given image, i € {1,2,...,N}, j € {1,2,...,M}.
The procedure of selecting important patches (ground-truth) in onion dataset
is described in Algorithm 5.

Algorithm 5. Setting ground-truth for a given image from onion dataset.

gtpatches — @
for each i € {1,2,...,N} do
for each j € {1,2,...,M} do
Necolors < get_n_colors(p;;)
if ncolors > 1 then
gtpatches — gtpatches U {ng}
end if
end for
end for

In Algorithm 5:

— get_n_colors(p;;) returns the number of different colors (pixel RGB values)
present in a patch p;;.
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Points density Let p;; be the patch of a given image, i € {1,2,...,N},
Jj € {1,2,...,M}, and centerspq, ptsc,, - as in Algorithm 3 (main paper).
The procedure of selecting important patches (ground-truth) in points density
dataset is described in Algorithm 6.

Algorithm 6. Setting ground-truth for a given image from points density
dataset.
gtpatches — @
for each cjq € centerspqs do
Tmin, Tmae < Min_x(ptsc, ), max_x(ptse, ;)
Ymin, Ymaz < min_y(ptsc, ,),max_y(ptsc, )
Cent@?"neigh «— rect (x'rnin, Tmaxzs Ymin, ymaac)
Glpatches < Gtpatches U {pij |pij n Centern&'gh 7é @}
end for

In Algorithm 6:

— min_x(pts,,,), max_x(pts., ), min_y(pts.,,), max_y (pts,,,) return minimal
and maximal x and y coordinates of a set of points pts,, .

— rect (Tmin, Tmazs Ymin, Ymaz) returns a rectangular area determined by ver-
tical (Zmin, Tmaz) and horizontal (Ymin, Ymas) lines.

A.2 Generation parameters

Table 10. The parameters of the SyntheticSMIL datasets used in the experiments. The
values of the parameters in bold were modified to create datasets of different difficulty
levels.

param value
Npmin 4
Npmazx 10 param value
dm 1.5 Tmin 0.025
d 04 param value w 1
° ' Cw 0.0555
dvar 05 Cd, . 015
lw 0.1111 e
afnLamO 0.99 4 tho 1
., 0.97/0.93/0.90 ° N 3
Uming 0-97/093/090 @ 10.05/0.06/0.07 "
Qfpan, 0.96/0.92/0.89 npa  90/110/200
ay,,,, 0.94/0.86/0.80 Mg 20000
Sfmin 0.6
S fmax 1.0

(a) concavity (b) onion (c) points density
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Table 11. The number of ground truth patches (min, max, mean with standard devi-
ation) across datasets of different difficulty levels. The whole size of the image within
the datasets is 1600 patches (40 x 40).

dataset level variant/minjmax jmean
concavity hard back 464 (1282|948 1202
medium|/back 44512881003 +177
easy back [672{1289(10024+175
hard fore 227/990 |5364+185
medium |fore 220/1013|483 1162
easy fore 221|794 (4804159
hard edge |84 |149 [11641s
medium|edge |84 |148 |115417
easy edge |90 |153 [117418g

onion hard - 657|783 (732424
medium|- 644 783 730426
easy - 645783 728498

points density hard - 25 |121 (70435
medium|- 25 |139 (7443s
easy - 30 |160 86446

B  Patches visualisations

Fig. 5. TransMIL vs. ‘back’ GT variant green patches (first column). In the second
column, there are visualisations of important patches based on att0 from TransMIL,
whereas, the third column — attl. Dataset difficulty: hard, upper image: class 0; lower
image: class 1, cross-validation fold: 0. In this case for the same image, the reasoning
in att0 follows ‘edge’ whereas in att0 it is ‘foreground’. (Color figure online)



284 P. Tomaszewska et al.

Fig. 6. The comparison of important patches selected by TransMIL against the ‘fore’
GT variant in green (first column). In the second column, there are visualisations of
important patches based on att0 from TransMIL, whereas, the third column — attl.
Dataset difficulty: medium, upper image: class 0; lower image: class 1, cross-validation
fold: 0. It is visible that for att0, the choice of important patches is more reasonable.
(Color figure online)

Fig. 7. TransMIL vs. ‘edge’ GT variant (green patches, yellow patches - selected by
TransMIL: att0 — second column, att! — third column). Dataset difficulty: medium,
upper images: class 0; lower images: class 1, cross-validation fold: 0. GT ‘edge’ is rarely
chosen in the performed experiments, here only visible in att0). When checking the ‘fore’
variant in the case of att! (fourth column), it seems that indeed this is the reasoning
in this model layer. (Color figure online)
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(b) TransMIL ground-truth variants choices.

Fig. 8. The choices of GT variants in the case of a model trained on a given cross-
validation fold shown on few samples (green patches — GT, yellow patches — selected by
CLAM (a)/TransMIL - att0 (b)). Dataset difficulty: medium, two upper rows: class 0;
two lower rows: class 1, cross-validation fold: 0. GT patches visualizations were selected
to match models’ choices (‘fore’ or ‘back’). In all experiments, a given CLAM model
trained on a given fold chooses a single GT variant in all test images. When trained
on a particular fold, TransMIL tends to alternate with different reasoning schemes for
different images. (Color figure online)
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Abstract. As machine learning models are increasingly considered for
high-stakes domains, effective explanation methods are crucial to ensure
that their prediction strategies are transparent to the user. Over the
years, numerous metrics have been proposed to assess quality of expla-
nations. However, their practical applicability remains unclear, in par-
ticular due to a limited understanding of which specific aspects each
metric rewards. In this paper we propose a new framework based on
spectral analysis of explanation outcomes to systematically capture the
multifaceted properties of different explanation techniques. Our analysis
uncovers two distinct factors of explanation quality-stability and target
sensitivity—that can be directly observed through spectral decomposi-
tion. Experiments on both MNIST and ImageNet show that popular
evaluation techniques (e.g., pixel-flipping, entropy) partially capture the
trade-offs between these factors. Overall, our framework provides a foun-
dational basis for understanding explanation quality, guiding the devel-
opment of more reliable techniques for evaluating explanations.

Keywords: Explainable AI - Spectral Analysis - Stability -
Sensitivity * Interpretability - Explanation Quality - Transparency -
Machine Learning

1 Introduction

Machine learning (ML) models are being adopted in critical domains such as
healthcare, finance, and media, often surpassing human capabilities in various
tasks. However, their internal decision-making processes—particularly in artificial
neural networks—are notoriously opaque, effectively making them ‘black boxes’.
As these models permeate high-stakes domains, the need for robust transparency
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and interpretability has grown. This lack of transparency has spurred the devel-
opment of Explainable AT (XAI), a field that focuses on extracting explanations
for the predictions of complex ML models.

A range of explanation methods have been proposed (see, e.g., [5,6,11,21,
34,35,41,46,47]), each of which has been shown to be useful in specific domains.
Yet, with the large number of XAI methods, users face the challenge of selecting
an appropriate method and assessing its quality. Additionally, evaluating the
quality of XAI methods is essential not only for improving human interpretabil-
ity but also because heat maps have been reported to mislead users, a concern
heightened by their recent use in sensitive domain such as healthcare [18] and
industry [25]. For instance, adversarial attacks can manipulate explanation meth-
ods [15], and models may base their predictions on spurious correlations rather
than meaningful patterns, a phenomenon known as the ‘Clever-Hans’ effect [23].

Previous work [29,43] highlights that evaluating an explanation’s quality is
inherently multifaceted. While numerous evaluation techniques have been pro-
posed (e.g., [1,13,32]) to assess explanation quality, there is still limited clarity
about which specific aspects each technique rewards. There has been longstand-
ing effort to holistically assess explanations (e.g., [17,43]), yet this remains largely
empirical. In contrast, we aim to develop a deeper theoretical understanding of
how evaluation techniques are interconnected.

In this paper, we seek a better theoretical understanding of the question of
explanation quality. We propose a novel spectral analysis approach that applies
Singular Value Decomposition (SVD) to a matrix containing input-neuron con-
tributions for each output neuron, thereby characterizing explanations via their
singular values. We demonstrate that these singular values can reveal whether an
explanation meets specific desired properties: Sensitivity to the model’s output
(termed target sensitivity) or distinct identification of salient features (termed
stability).

Our spectral analysis is tested on two image datasets, MNIST and ImageNet.
Specifically, we investigate how the explanation techniques and their hyperpa-
rameters relate to the sensitivity and stability properties identified in our spectral
analysis. Our analysis also allows us to check whether parameters that perform
well on both properties are consistent with those identified by pixel-flipping and
other commonly used evaluation techniques. Our results provide further support
for existing approaches for evaluating explanations.

In summary, our work unifies previously disparate explanation quality met-
rics and proposes a framework to guide the development of more robust evalua-
tion techniques.

2 Related Work

In this section, we review two areas of XAl that are most related to the problem
studied here, namely, the problem of evaluation, and the spectral analyses that
operate on explanation techniques. For a broader discussion of XAI and its
applications, we refer to the review papers [4,20,33].
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2.1 Evaluation of Explainable AT Methods

Evaluating XAI methods has become a pressing concern, prompting the devel-
opment of a wide range of approaches (cf. [29] for a review). In the context
of expert systems, [43] identifies a number of desiderata aimed at holistically
characterizing what constitutes a good explanation. Other research efforts have
focused on mathematically defining what makes an explanation desirable, estab-
lishing specific axioms or unit tests that any effective explanation should satisfy
[1,8,27,37].

Another category of work addresses the question of evaluating explanations
by performing direct tests on the model, specifically testing whether removing
features deemed relevant by the explanation results in a substantial change in
the output of the model. These methods include pixel-flipping and its many
variants [2,5,9,31,32]. Pixel-flipping tracks the change in the target prediction
as individual pixels are removed (flipped) in order of relevance, from most to
least relevant. Denoting i1,...,474 the feature indices sorted by relevance, and
Tyiy,..i,} @ data point where the k most relevant features have been replaced
with a placeholder value, a ‘pixel-flipping curve’ {d)(x{il,_wk})}z:l is created,
where ¢ is the ML-model. The smaller the area under the pixel-flipping curve
(PF-AUC), the more successful the explanation was at identifying the truly
relevant features.

Another category of methods evaluates the consistency of an explanation
against established ‘ground-truth’ knowledge, such as leveraging the outputs of
a high-performing vision model. Several studies have proposed verifying whether
the spatial distribution of relevance scores aligns with the regions corresponding
to visual objects detected by the model [13,49].

In [45,48], the authors suggest using Shannon entropy to assess whether the
explanation is free of highly entropic noise patterns, which is a prerequisite for
these explanations to be faithful and interpretable. The entropy can be quantified
by first converting the explanation into a probability vector R = |R|/1T|R| and
then calculating the entropy as — Y, R; - log(R;).

Efforts have been made to develop benchmarks and software tools to enable
a comprehensive, multifaceted evaluation of explanation techniques [17]. Finally,
[16,36] describes end-to-end evaluation settings where a human recipient is
actively involved and where performance metrics can be more easily defined.

2.2 Spectral Methods for Explainable Al

Spectral methods have interacted with the field of XAI in several ways. Spectral
Relevance Analysis (SpRAy) [23] generates a collection of explanations from a
dataset and uses spectral clustering to identify clusters of prototypical decision
strategies. While both SpRAy and our approach rely on singular values, our
approach differs by focusing on characterizing the explanation for a single data
point, rather than analyzing the broader decision strategies of an entire model.

Spectral methods are also employed in [12], where eigenvalues of a cross-
covariance matrix, which links model activations to responses, are used to assess
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the complexity of a decision strategy. While the techniques used are related, our
work focuses on the distinct problem of evaluating an explanation.

The authors of [38] analyze the rank of explanations in propagation-based
methods and observe a rank collapse under certain conditions, causing explana-
tions to lose their task specificity. While it shares the same general goal as our
work of evaluating and better understanding explanation techniques, our work
differs in that it looks at the globality of the explanation spectrum and makes
connections to other properties of explanations, such as their stability.

3 Spectral Analysis of Explanation Quality

In this section, we present our spectral analysis framework for analyzing model
explanations. Its purpose is to gain better insight into the structure of explana-
tion quality, by uncovering underlying factors that contribute to it.

Our analysis will apply to ML models, typically neural networks, that map
some input vector € R? to some output z € R" via some function ¢ : R? — R”
learned from the data. The model’s output may consist of h class logits or an
abstract h-dimensional representation, suitable for linear readouts. We focus on
attribution-based explanation techniques, which assign a relevance score to each
input feature, indicating its importance in the model’s prediction.

Our framework begins by encoding the attribution from each output to each
input in a d x h redistribution matrix R.|.. Each column is defined as:

_ &%)
T T ()

for all j = 1...h. Here £(z;) € R? denotes the attribution of the model’s output
z; at class j to the input features, given by the explanation method of interest
at one specific data point. The matrix R.|. satisfies the property ITR.|. =1.In
particular, when its entries are non-negative, it acquires a probabilistic interpre-
tation, where its elements correspond to the percentage of each output that is
redistributed to each input of the network.

This redistribution matrix is particularly useful because it enables any quan-
tity y € R" at the network output to be propagated backward via matrix-vector
multiplication £(y) = R.|.y, producing the desired explanation. For example, if
the output of the network represents class logits, we can explain evidence for
class j by defining y = e; © z where ¢; is a one-hot vector of the jth dimension,
and then matrix multiplying by R.|.. Likewise, defining y = (e; —e;/) © z enables
to explain the log-likelihood ratio between two classes. In a general case, when
the output of the network is an abstract representation, defining y = w ® z
enables to explain the readout with the weights w.

We now would like to characterize general properties of the explanation pro-
cess in a way that is independent on the exact prediction task. In particular,
we analyze the inherent behavior of the multiplication of y by R.., and whether
it amplifies or attenuates the magnitude of the vector y it multiplies to. These
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amplification /attenuation properties can be characterized by the spectrum of
R.|., that is, the collection of singular values extracted by singular value decom-
position (SVD):

K
R‘ (SLD) Zaiuiv; (1)
i=1

with K = min(d, h) and 01 > 09 > -+ > og > 0 are the singular values. The
largest singular value oy is equivalent to the spectral norm of the redistribu-
tion matrix ||R..|2 and corresponds to the maximum amplification that can be

experienced during the explanation process. In turn, o3, o3, ... represent second,
third, etc. largest amplification factors along orthogonal directions usg, u3, ... and
v2,v3, ... in both input and output space, respectively.

3.1 Stability of an Explanation

The stability of an explanation technique is defined by its ability to produce con-
sistent explanations that remain unaffected by factors irrelevant to the model’s
prediction strategy. One manifestation of irrelevant factors in the context of deep
neural networks is the shattered gradient effect [7], where strong variations of
the ML-model manifest themselves only locally. Simple gradient-based explana-
tion techniques such as Gradient x Input (see [3]) are strongly affected by them
and tend to produce noisy explanations that perform poorly on explanation
benchmarks (e.g., [8]).

Thus, the content of an explanation should be limited to what is strictly
necessary to support the prediction y. Assuming our explanations £(y) satisfy
the conservation property (1T&(y) = 1Ty), such an objective can be enforced
with a small norm ||£(y)]||, where || - || represents any operator norm. If ||€(y)||
is small, we can generally assume that the heat map is rather smooth or stable.

Our spectral analysis is especially useful to quantify this property as it gives
an upper bound on the norm of the explanation in terms of the first singular
value o1 of the redistribution matrix R, ie:

€@l _ o)

Iyl —
In other words, it is desirable for an explanation technique to have a low o;.
Similar relations to Eq. (2) can be stated beyond the spectral norm oy = || R.|.||2
for other norms of ||R.|.||,. We show in Sect. 3.4, in the context of the Layerwise
Relevance Propagation (LRP) explanation method [5,28], how ||R.;.|[1 (and the
resulting explanation stability) can be controlled by an appropriate choice of the
LRP parameter v.

It should be noted, however, that a stable explanation like the aforemen-
tioned is not sufficient to ensure high quality explanations. A uniform redistri-
bution matrix of the type R.|. = 1/d, has a very small o1, but this results in a
uniform redistribution over the input features, which is undesirable since it lacks
any sensitivity to the output, and thus fails to discriminate between features
contributing to different predicted outputs.
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3.2 Sensitivity of an Explanation

Sensitivity of the explanation to different outputs, in other words, the ability to
distinguish attributions between classes, is an important additional property of
an explanation, and its importance has been highlighted in several works (e.g.,
[1,8,29]). To illustrate how sensitivity can be related to the spectral properties of
the explanation, let us consider two different output neurons ;7 and j', accessed by
the readout functions y = e;©z and y’ = e;; ®z. If the two output neurons encode
different concepts, and the latter are supported by different input features, it is
fair to say that the two explanations should be different. Using our spectral
analysis, we can express these two explanations and decompose them in terms
of the singular values extracted by our spectral analysis:

Ey) =Ry =X, 0iuny (3)
EW) =Ry =X, 0y (4)

A key observation in these equations is that the explanations of y and vy’ are
tightly controlled by the spectra of the network. In the extreme case, when oo =

=0k =0, E(y) and E(y') become mere rescalings of each other—the rapid
decay of the singular value spectrum severely limits the capacity to generate
explanations that accurately capture the diverse concepts present at the output.
This phenomenon has also been observed in [38] for certain backpropagation-
based techniques in deep networks. Maintaining large values for all singular
values, which can be quantified by the norm |[|(o%)f_, ||2, is, therefore, essential
to ensure the sensitivity of explanations.

explanation 4
quality
SSM

sensitivity stability

explanation
>
parameter

Fig. 1. Cartoon depiction of the two factors of explanation quality that can be derived
from our spectral analysis and the SSM metric (Eq. (5)) that aggregates them. We pos-
tulate the existence of a ‘sweet spot’ where both explanation stability and sensitivity
can be achieved. This can be reached by a subtle adjustment of explanation parame-
ters such as LRP’s v and SmoothGrad’s standard deviation (as later shown in Figs. 3
and 4).

3.3 Stability-Sensitivity Metric

Having singled out o1, or more precisely its inverse 1/01, as a factor of expla-
nation stability, and (k)% |2 as a factor of explanation sensitivity, it comes
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quite natural to combine them into a single score, which we define as the ‘sta-
bility-sensitivity metric’ (SSM):

1
SSM = — - [[(ox) i [l2 (5)
g1

The SSM and the two factors on which it depends are sketched in Fig. 1 for
a hypothetical explanation parameter that interpolates between a stable but
insensitive explanation and a sensitive but unstable explanation. This explana-
tion quality metric and the two factors that make it up will be compared to
existing evaluation metrics such as pixel-flipping in later experiments. The com-
putational complexity of evaluating the stability, semsitivity, and the SSM is
discussed in Appendix C.

3.4 Linking LRP Parameters to Stability and Sensitivity

To demonstrate how the parameters of an explanation technique can influence
the stability-sensitivity profile of an explanation method, we perform a theo-
retical analysis for the case of the LRP [5,28] explanation technique. LRP is
an explanation technique that operates by propagating the output of a neural
network layer-by-layer to the input features, where each propagation step con-
sists of the application of a purposely designed propagation rule. Extending the
framework of Sect. 3, we can characterize the LRP explanation process as a com-
position of multiple redistribution steps. In other words, it is achieved through
a sequence of multiplications with redistribution matrices defined at each layer:

R{ =R\ RY - R (6)

We specifically consider the case where the propagation rule LRP-v (cf. [27]) is
applied at each layer. At a given layer, let j and k denote the indices of input
and output neurons, respectively. The LRP-v rule then defines the resulting
redistribution scheme:

+
R\ = a; - (Wi + 7wy)
3l Ej’ aj - (’wj’k + fywjjk)

(7)

where a; and a; are the neuron activations and wjj are the weights connect-
ing these neurons. The parameter v emphasizes positive contributions, which is
instrumental in controlling the explanation behavior of LRP.

Next, to analyze the stability of R_ITRP, we combine matrix norm identities

and the form of Eq. (6), to derive the following chain of inequalities:

[ -
l
o S IR < T IR, (8)
p i=1

which hold for any p. In the case of p = 2 the expression reduces to an expression
involving spectral norms computed either globally or individually for each layer.
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If, instead, we choose p = 1, we get a closed-form expression where the layer-
wise terms can be written analytically as ||R(‘l)||1 = 14+2c0/(1 - c® + )
with ) = maxy, [ 32 [hjw;] ™|/ Y2 [hjwia] t € [0,1) (the proof is given in the
Appendix). This leads to the closed-form relation:

& L 2¢M0
B 1 (1+ ) ©)

W - U

This shows that increasing  tightens the bound on the operator norm, promot-
ing stability. As observed in prior work (e.g., [12,30]), small v values result in
noisy explanations and poor benchmark performance. Notably, both noise reduc-
tion and explanation stability are achieved rapidly, as Eq. (9) saturates relatively
quickly with increasing .

4 Experiments

In this section, we empirically evaluate our proposed XAI framework on neu-
ral networks trained for the MNIST [24] and ImageNet [14] vision tasks, using
four different explanation methods. We then compare our results to established
metrics, highlighting the strengths and insights offered by our spectral analysis
approach.

4.1 Experimental Setup

Machine Learning Models. We evaluate our approach on two established datasets
of different sizes and characteristics. MNIST, containing gray-valued 28x28
images for the task of digit classification, and ImageNet, with colored images
of size 224x224 picturing everyday objects of 1000 classes. For ImageNet, we
download a pre-trained VGG16 model, specifically the IMAGENET1K_V1 weights
from the torchvision library [26]. The model achieves a Top-5 accuracy of 90%
on images sampled from the ILSVRC 2012 validation set [14], meaning in 90%
of the the predictions the correct class is within the most probable 5 class pre-
dictions. For MNIST, we use a Convolutional Neural Network (CNN) (11 layers;
Top-1 accuracy 98%) whose artificially deep architecture makes it challenging to
explain. For more information on the training and architecture of the model on
MNIST we refer to Appendix D.

Ezxplanation Techniques. We employ multiple explanation techniques to compare
our framework against existing evaluation techniques. Below, we detail how we
apply and parameterize the different explanation techniques.

Layer-wise Relevance Propagation (LRP): For the LRP explanation
method [5], we follow the approach of [28]. Specifically, on the VGG-16 Ima-
geNet model, we use the LRP-+ rule in the first three blocks of the architec-
ture, and the zB-rule in the first layer. For the small MNIST-CNN, we use
LRP-~ for all layers except the last one. In our experiments, we analyze the
effect of varying v on the different measures of explanation quality.
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SmoothGrad (SG): For SG [39], we calculate the gradient of the model 10
times, each time under a zero-mean Gaussian noise perturbation of the input.
In our experiments, we analyze the impact of different smoothing parameters
s (i.e. standard deviation values for the noise).

Integrated Gradient (IG): In the explanation method IG [42], we approxi-
mate the integral by 10 equidistant evaluations of the model. The reference
point in the integral is a black image.

Shapley Value Sampling (Shapley): We use the Shapley method [40] as an
additional baseline, and limit the number of feature removal cycles to 25.
The scheme we use for removing pixels and patches consists of filling them
with uniform black color.

XAI Evaluation Metrics. We compare our spectral analysis framework with the
evaluation methods pixel-flipping [5,32] and Shannon entropy. In pixel-flipping,
we remove increasing sets of the most relevant features. We stop after 5% of the
total features are flipped, and calculate the area under the curve (PF-AUC) as
a summary of how faithful the explanation is to the model. The lower the PF-
AUC, the better the truly relevant features have been identified. Placeholder
values for flipped pixels in the input image are in-painted using the OpenCV
[10] implementation of the Fast-Marching algorithm [44], utilizing 3 and 5 pixels
around the deleted section for MNIST and ImageNet inputs, respectively.

We then compare our spectral analysis to Shannon entropy, which is com-
monly used to detect noise and evaluate the overall readability of heat maps.
We calculate the Shannon entropy according to the formula given in Sect.2.1.
Explanations are evaluated on 100 different input images each.

4.2 Comparison of XAI Evaluation Methods with Spectral Analysis

We first provide an qualitative description of heat maps that fulfill stability or
sensitivity to build an intuition of how either manifest visually, and then show a
quantitative analysis of the different properties we are interested in on a variety
of explanation methods.

Qualitative Assessment of Stability and Sensitivity. In Fig.2, we see
how the « parameter in the LRP method influences the heat maps and how each
heat map corresponds to specific properties, such as stability and sensitivity.
For a small v parameter (i.e., v = 0.005), stability is low but the sensitivity is
high. This means that the explanation may vary with small output perturbation,
yet is distinguishable from different classes. Effectively, we see that the heat
map looks relatively noisy and irregular, which aligns with our expectation,
since a small o, ! does not limit the growth of noise in the explanation phase.
The other extreme is when + is high (i.e., v = 0.3), where we observe high
stability but low sensitivity. The absence of noise in the explanation gives it
high stability. However, its low sensitivity suggests that heat maps may not be
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- -

~ = 0.005 ~ =0.04 v =03
Stability X v v
Sensitivity v v X

Fig. 2. Examples of explanations produced by the LRP explanation technique using
the rule LRP-y with different values of the parameter v. An increase in -y is associated
with an increase in explanation stability (visible here as the vanishing noise pattern
in the explanation). On the other hand, choosing too large a value for 7 results in a
decrease in target sensitivity.

able to distinguish features specific to each class, thereby reducing its overall
usefulness as an explanation. For the case when v = 0.04, a ‘sweet spot’ is
reached where both stability and sensitivity are high. The noise remains small
and the heat map is easy to interpret, while the sensitivity measure indicates
that heat maps are specific to each class.

Quantitative Comparison with Different Evaluation Methods. We con-
sider in our quantitative analysis the MNIST and ImageNet models described
above, and apply to each model different explanation techniques and evaluations
of these explanations. In addition to the LRP and SG explanation techniques,
each of which come with a hyperparameter, we also include results for IG and
Shapley value sampling for comparison. Note that we do not include the Shapley
value sampling method in the ImageNet experiments for computational reasons.
Results of our comparison are shown in Figs. 3 and 4. Exact numerical values
are reported in Appendix A.

For the LRP method, we observe in both models that as the v parameter
increases, the explanation stability increases while its sensitivity decreases. Our
analysis suggests the existence of a ‘sweet spot’, where stability and sensitivity
can be both achieved, as indicated by a high value for the sensitivity-stability
metric (SSM). In the LRP case, this sweet spot corresponds to choosing an
intermediate value of the « parameter (y = 0.04 for ImageNet and MNIST,
cf. Appendix A). For the SG explanation method, we observe a trend similar to
LRP, where increasing the smoothing hyperparameter s results in higher stability
but lower sensitivity. For the ImageNet model, SSM exhibits a clear preference
for a specific parameter, whereas on MNIST, the smoothing hyperparameter
seems to have no effect on SSM.

Comparing the result of our stability-sensitivity analysis with the pixel-
flipping evaluation, specifically, the PF-AUC score described above, we see that
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Fig. 3. Quantitative analysis of evaluation metrics for explanation methods on an
ImageNet-trained model using 100 images. The top row shows exemplary heat maps for
the class ‘sulphur-crested cockatoo’, one per method and parameter choice per dashed
vertical line drawn in the main plot. Below, we present evaluation metrics (top to bot-
tom): stability & sensitivity (ours), SSM (ours), PF-AUC, and entropy. Explanation
methods (left to right) include LRP, SG, and IG. For LRP, results for 11 « values are
shown, and for SG, 4 different noise levels. PF-AUCs are calculated after deleting 5%
of the image. Thick lines indicate the median, with shaded areas showing variability:
5% for SSM and PF-AUC, 25% for stability, sensitivity, and entropy. The star indicates
where explanation quality under the given metric is maximized.

both methods reveal a preference for intermediate values of +. Extending the
comparison to the entropy-based evaluation, we see that the entropy expresses
a similar preference for intermediate values of the v parameter in LRP. This
close relation between SSM and entropy is particularly intriguing as the entropy
was originally intended as a test for the presence of noise in the explanation, in
other words, a measure of stability only. It turns out that the entropy metric
does more than that: Stable but insensitive explanations are also highly entropic
due to the spreading of relevance scores onto excessively many pixels. Thus, our
analysis suggests that entropy is a fairly holistic measure of explanation quality.
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Fig. 4. Quantitative analysis of evaluation metrics for explanation methods on an
MNIST-trained model using 100 images. The top row shows exemplary heat maps
for the class ‘8’, one per method and parameter choice per dashed vertical line drawn
in the main plot. The structure of this figure follows Fig. 3, with the following differ-
ence: The rightmost column includes results for the Shapley methods. The LRP curve
was obtained using 80 different v parameters.

Furthermore, we observe that entropy fails in some cases in its original aim
to characterize explanation stability (i.e. absence of noise). The SG explanation
with low smoothing, which is objectively highly instable, appears not to be so
when looking at its low entropy score. This discrepancy can be traced to the
normalization step before the entropy computation, which tends to ignore the
magnitude of noise patterns, causing noise to be neglected when it is collocated
with very strong noise occurring only on few pixels.

Overall, our analysis has revealed that the SSM metric and most evaluation
methods witness a subtle interplay between different factors of explanation qual-
ity such as stability and sensitivity. Explanation hyperparameters are shown to
be effective in influencing those factors of explanation quality. However, these
evaluation methods disagree on what precise hyperparameter values are optimal.
This imposes caution in drawing general conclusions from the results of specific
explanation evaluations.
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4.3 Expanded Explanations with Spectral Analysis

In this section, we show another use of our spectral analysis, which follows from
the decomposition of the explanations it offers in terms of singular values; in
particular, we recall that the explanation £(y) can be rewritten as:

K
(y) ;0 y (10)
g(y; Ji)

Each term &£(y; 0;) of the sum has the same shape as the original £(y) and can
therefore also be rendered as a heat map. Furthermore, the collection of heat
maps sums to the original heat map and can thus be seen as a sum-decomposition
of the original explanation. This analysis is shown in Fig. 5 for an image predicted
by the same model, but explained by two versions of LRP (with different ~
parameters).
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Fig. 5. LRP explanations for the class ‘paddle’ decomposed into contributions of dif-
ferent singular values (cf. Eq. (10)). Heat maps visualize how bins of singular values,
namely, the ranges (1,1), (2, 10), (11,100), and (101, 1000) contribute, with the norm of
this partial result (as a percentage of the norm of the full heat map) denoted in brackets.
The top row of heat maps corresponds to LRP with v = 0.04 and the bottom row uses
v = 0.11. The plots on the right visualize the rise in the heat maps norm as it is pro-
duced with approximations of R.|. with increasing rank k: || | £(y;09)[2- |E(W)]7 "
Depending on the choice of 7, small singular values contribute little to heat maps and
their norm, indicating that explanations are sensitive to only a low number of patterns
in the data.

As the 7 parameter increases, the bulk of the explanation is shifted to a
smaller number of leading singular values. These are also associated with less
noisy singular vectors. As a result, this shift—associated with an increase in -
causes both a denoising of the explanations and the effective degree of freedom
in which explanations vary to drop.
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5 Conclusion

XAI was originally conceived to increase the transparency of complex, nonlinear
machine learning methods. Over time, a wide array of evaluation metrics has
emerged to assess the quality of explanations, yet this diversity has created
new challenges in determining which metric is most appropriate for a particular
application and in correctly interpreting the resulting scores. Consequently, it is
crucial to develop a better theoretical understanding of the underlying factors
that determine explanation quality, as well as how these factors are weighted in
different evaluation metrics.

In this work, we propose a novel formal analysis framework that elucidates
the multifaceted nature of explanation quality. By applying a spectral analysis of
the explanation-generating process, our approach mathematically characterizes
two distinct evaluation factors, explanation stability and explanation sensitivity,
which jointly contribute to achieving high-explanation quality.

Moreover, extensive simulations on MNIST and ImageNet models illustrate
how the factors of explanation quality align with popular explanation metrics
such as pixel-flipping or the explanation’s entropy.

We also demonstrate how to operationalize our framework by decomposing
explanations into their spectral components, distinguishing primary explanation
factors from secondary effects or noise. Overall, these findings underscore the
potential of our conceptual framework to guide the search for better, more con-
sistent explanations.
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A Numerical results of explanation quality

Table 1 provides numerical values for the stability-sensitivity metric (SSM), Pixel
Flipping (PF-AUC), and Shannon Entropy metric displayed in Figs. 3 and 4. On
the LRP-y and SG methods, we report the values for the optimal parameter
choice «y or o (shown in brackets).
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Table 1. Explanation quality metrics for the ImageNet and MNIST datasets. We
report the median score over 100 validation images. The values correspond to the best
parameter setting for each method; parameter choices for LRP-y and SmoothGrad are
denoted in brackets. (1) The higher the better, and (]) the lower the better.

‘LRP (v)  [SG (s) IG [Shapley

ImageNet
SSM (1) 1.24 (0.04) 11.31 (0.32) |1.26 —
PF-AUC (5%) (]) 4.81 (0.3) |4.81 (0.1) |5.03 —
Shannon Entropy (])10.99 (0.30)[11.38 (0.03)|11.14—
MNIST
SSM (1) 1.18 (0.04) 11.00 (0.32) |1.00 1118
PF-AUC (5%) (1) [3.53 (0.07) [5.10 (0.32) 4.58 [3.49
Shannon Entropy (])4.61 (0.10) |5.80 (0.03) 4.60 |4.60

B  Analytical form of LRP-~ operator norms

The LRP-v rule leverages the preference towards positive contributions in reas-
signing relevance as a stabilizing effect in the creation of heat maps [28]. We now
provide an analytical perspective on this heuristic, demonstrating that + has a
domain-specific regularization effect on the explanation process, reducing the
operator norm of the conditional relevance matrix R.|.. In this section, we define
pr = > ;lajwik] " and ng := 3 [ajw; k] " as the sum of all positive or negative
inputs to the neuron k. We then focus on ReLU-activated neurons, denoting
their activation value by 0 < |ng| < py.

We first observe that every element of the conditional relevance matrix
decreases monotonically in magnitude as -y increases, ultimately favoring smaller
outputs in the matrix multiplication. Negative entries in the matrix have
R = lajwjx]™/((1 4+ )pr +ni); the conditional relevance goes towards 0
because the denominator increases with «. Positive entries of the matrix have
Rjx = (L+79)[ajw;r]™/((1+7)px + nx) and the derivative dR;x(7y)/0y =
[ajw; k)™ ne/((1+7)pk +nk)? < 0 is negative (because ny < 0). The con-

+
ditional relevance decrease monotonically towards lim. o Rjj;, = M

Moreover, we establish a precise relationship between the L1 operator norm
of LRP explanation steps and the 7 parameter. The key observation is that
LRP normalizes the total relevance leaving each neuron: while both positive and
negative values of any magnitude are allowed, they must cancel each other so
that each column sums to 1, c.f. Section2.1. This requirement aligns with the
L1 operator norm’s role of measuring the sum of all absolute relevances going
out of a neuron. Leveraging these parallels, we derive an analytical expression
for the L1 operator norm in terms of ~.
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First, the L1 norm of a column £ of the conditional relevance matrix is:

(1 + v)a;lw;r]™ + a;[w)e]~
R. =) IR = ’
e e P A

_ Zj [(L+7)aj[w; k] ™ + ajlw; k]|
(1 +7)pk + 1y,

Then, using the fact that ([a;w; ]t = 0) V ([ajw, k]~ = 0) for a given (j, k)
we can pull the absolute value operation into the terms of the denominator and
use our definition of the summed negative and positive contributions to a neuron
as pr and ny:

>0 1+ Majwie] ™|+ [lajw;x] |

R. =
_ 12 lagwie] T+ 13 lagwsn] |
(1 +7)prk + nu
72 |
_ A y)pe ] _ 2|ny| - 25
(1 +7)pk — || (1+7)pk — |l 1 el gy
By defining ¢ := M, we obtain a compact expression for the L1 column

. Pk
norm in dependence of ~:

2Ck

R, I
1R (V)1 [—

The induced L1 operator norm is then simply the maximum over all
columns &’ norms. While all column norms decrease with -, the column index k
of the column that is largest stays constant across the whole domain of . This
allows us to define a constant ‘coefficient’ ¢ for the entire operator and write the

operator norm in a compact form. With ¢ := maxy/ |n,,|<p,, |Z::| and k as the
argmax of the expression,
2c
||R~|-(’Y)||1 = %@XHRW(V)Hl = HR-\k(W)”l =1+ m (11)

When v = 0, the L1 norm ||R.;.(0)[|; can become large if there is an acti-
vated neuron k in the layer, whose negative inputs are almost as large as it’s
negative input: |ng| g pr = ¢ 5 1. The LRP-v rule outweighs the positive con-
tributions when assigning relevance. If the positive inputs already dominate in
every neuron, the operator norm is not significantly changed by increasing the
y-parameter.

Finally, we can bound the operator norms of the entire explanation
method as a function of the LRP-y parameters in the layers that use the rule.
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Simplifying to the case that every layer 0 < ¢ < T of the network uses the LRP-
7 rule, and that the measured ¢ is the same for all layers ¢, we find that the
operator norm of the entire explanation process is bounded by

14D ()] <H||A M = (1 +L>T=i [
i ! l—c+vy t) l—c+vy

t=0

The operator norm bound decreases monotonically with . In fact, for large
¢ ~ 1, the bound can shrink rapidly, at a rate up to y~7. Practitioners com-
monly observe this effect in deep networks explained with the LRP-~ rule across
multiple consecutive layers (e.g. [28,30]). Specifying too high ~ quickly leads to
very high Stability and low Sensitivity. The explanations have a coarse-grained
nature and can not distinguish between classes anymore, as visualized in Sect. 4.3
(bottom,).

C Computational Complexity of the Evaluation Methods

Stability, as the largest singular value, can be computed efficiently using iterative
methods such as the power iteration or Lanczos algorithms [22]. Assuming a net-
work with d inputs and h outputs, and its redistribution matrices as described
in Sect. 3, these methods have a computational cost of O(dh) per iteration. The
number of iterations until the first singular value and vector are found depend
on the desired precision and the spectral gap of the matrix. Sensitivity can be
calculated as the square root of the sum of the squared entries of the redistri-
bution matrix, which is equivalent to its Frobenius norm. The computational
complexity for this calculation is O(dh).

Complexity of Constructing the Redistribution Matriz. In perturbation-based
methods (such as Shapley), heatmaps for all classes—and thus the entire redis-
tribution matrix—can be created simultaneously by collecting each class’s output
for every perturbed input. Therefore the complexity to create the redistribution
matrix is equivalent to the complexity of the explanation for one target output.

Propagation-based methods such as LRP and SmoothGrad require both for-
ward and backward passes per (perturbed) input to generate a heatmap. How-
ever, the forward computation can be reused to compute gradients for multiple
classes. In summary, LRP scales with O(h) per input image, while SmoothGrad
with k noise perturbations scales with O(hk).

D MNIST CNN architecture

The convolutional neural network (CNN) architecture used for the MNIST
dataset is a small network with 6 convolutional layers containing ReLU acti-
vation functions. The full sequence includes 3 convolutional layers with kernel
sizes 3 x 3, 3 x 3, and 5 x 5 using 8 filters each, followed by a max-pooling layer
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with kernel size 2. This is followed by convolutional layers of kernel sizes 5 x 5,
3x 3, and 3 x 3 and 16 filters each. After a second max-pooling layer (with a ker-
nel size of 2), the output is flattened and passed through a fully connected layer
to compute the 10 logit scores. The network is trained using the SGD optimizer
and a learning rate of 0.1 until convergence.

The data from the Kaggle Digit Recognizer dataset [19] is randomly split into
a training and test set with a ratio of 80% to 20%. The network is trained on
the 33,600 training data points using the SGD optimizer and a learning rate of
0.1 until convergence. 100 images are drawn from the test set for the evaluation
of the explanation methods.
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Abstract. The explanations of large language models (e.g., where each
word is assigned a relevance score) have recently been shown to be sen-
sitive to the randomness used during model training, creating a need
to evaluate this sensitivity. While simple visualization tools such as box
plots can provide a qualitative characterization, exploring the design
space of the parameters influencing the explanation’s sensitivity to the
training randomness may benefit from a more quantitative approach.
First attempts in this direction explored simple (word-level univariate,
first-order) explanations and proposed tentative information theoretic
metrics such as the explanation’s signal, noise and Signal-to-Noise Ratio
(SNR). They left the suitability of such metrics as an open question,
which we tackle in this work. For this purpose, we start by identifying
corner cases where they appear unable to capture intuitively desirable
features of explanations corresponding to a different training random-
ness. Namely, the SNR does not reflect well the relative differences of
relevance (between words). We next put forward that the correlation
with a mean explanation provides a better treatment of these corner
cases, at the cost of being unable to reflect absolute differences of rele-
vance (for single words). We then discuss how to turn these observations
into a consolidated approach for analyzing the explanations’ sensitivity
to the training randomness. While there is no silver bullet that per-
fectly deals with the full complexity of this sensitivity problem, we argue
that design space exploration with the correlation metric and individual
model analysis with box plots provides a good tradeoff. Besides, we put
forward additional desirable features of the correlation metric (e.g., unbi-
ased estimation thanks to cross-validation and simple confidence inter-
vals).

1 Introduction

In recent years, Large Language Models (LLM) like BERT [8] or GPT [9] have
led to significant performance improvements for a vast amount of Natural Lan-
guage Processing (NLP) tasks [1]. These improvements generally come from
more complex architectures with more parameters, of which the training relies
on randomized optimization techniques. As a result, it has been consistently
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observed that the explainability of LLMs is a major challenge [14], which is
especially important for applications implying critical (e.g., medical or legal)
decisions.

At high level, the explainability of LLMs relates to broad and hard-to-define
concepts like faithfulness [12,16] and plausibility [11,12]. Informally, faithfulness
requires that an explanation accurately reflects the algorithmic reasoning process
behind a model’s predictions, and plausibility requires explanations to be under-
standable and convincing to the target audience. In this paper, we are concerned
with a more specific issue which has connections with both concepts. Namely, the
sensitivity of the explanations to the randomness used to train models, recently
put forward by Bogaert et al. [3,6]. The main observation of this paper is that it
is sometimes possible to produce many models of which the training only differs
by the (indistinguishable) random seeds they use, that are “equivalent” from the
accuracy viewpoint and nevertheless lead to different explanations.! The authors
then argue that this sensitivity to the training randomness must at least be char-
acterized, since in the extreme case where the explanations would be uniformly
distributed, any selection of explanation would be completely arbitrary.

The explanations’ sensitivity to randomness has for now been exhibited in
the case of “simple” explanations, defined in [5] as word-level, univariate (i.e.,
assigning a single relevance value per word) and first-order (i.e., assuming readers
are interested by mean explanations in case of sensitivity to randomness). We
will use Chefer et al.’s Layerwise Relevance Propagation (LRP) method as our
running example [7]. Such simple explanations, next denoted as (1,1,1), are of
course not expected to be perfectly faithful, although we assume they reflect the
models’ reasoning to a sufficient extent. They are not expected to be the only
plausible ones either. Yet, they provide a useful theoretical framework to answer
the question: how stable can the simple explanations of complex models be?

Evaluating the sensitivity to the training randomness of LLMs can be done
qualitatively. For example, visualization tools like box plots provide a good intu-
itive understanding of single texts. Yet, more quantitative tools become useful
to explore the explanations’ design space. For example, one could be interested
to compare the randomness’ sensitivity of different texts, and for explanations
assigning relevance scores for various number of words. One could also be inter-
ested to compare the randomness’ sensitivity of bigger vs. smaller models, for
various tasks, datasets or languages, or for different explanation methods. First
steps in this direction were made in [5], where the explanations’ signal, noise
and Signal-to-Noise Ratio (SNR) are proposed as tentative explanation stability
metrics. In this paper, we consolidate these investigations in three directions.

First, we highlight the limited ability of the SNR to reflect the relative dif-
ferences of relevance (between words) in a set of explanations corresponding to
different (random) training seeds. We additionally show that the correlation with
a mean explanation mitigates this issue, as to cost of being unable to reflect abso-
lute differences of relevance (for single words), which are better captured by the

! Equivalent meaning that there is no statistically significant difference in their accu-
racies, implying that there is no “better” model from the accuracy viewpoint.
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SNR. Second, we discuss the consequence of these observations and argue that
combining a design space exploration with the correlation metric and a more
qualitative analysis thanks to box plots appears as a good tradeoff. The first
one better captures relative differences within explanations, whereas the second
one reflects absolute differences at the individual word level, exhibiting possibly
interesting intuitions that the (quantitative) SNR metric may hide. We finally
put forward additional desirable features of the correlation metric such as easier
interpretation, unbiased estimation thanks to cross-validation and simple confi-
dence intervals thanks to a well-known statistical distribution.

Related Works. The quantitative evaluation of the sensitivity to the training
randomness is quite related to the problem of inter-annotator agreement — see
for example [2,10]. One difference is that the explanations of LLMs provide con-
tinuous relevance scores (vs. more discretized ones for human annotators). The
other is that, due to the (1,1,1) restriction, we can replace pairwise correlations,
which are frequently used in the inter-annotator agreement literature but can
become expensive as the number of random seeds under investigation increases
in our context, by the correlation with a mean explanation. Our study is also
related to [18] which, among others, performed an experiment to test whether
the words’ relevance obtained thanks to four different types of explanations were
impacted by the random seeds used for model initialization. They used Pearson’s
correlation for this purpose, but only considered two random seeds and did not
ensure model equivalence (nor input compatibility, as we define next).

2 Background
2.1 Dataset, Model and Explanation Method

We run our experiments on the InfOpinion dataset [4], composed of 10,000 french
texts belonging to the information and opinion journalistic genres. This binary
categorization relies solely on the articles’ annotation by their authors as either
information or opinion. The dataset is split in 3 parts: a training set (80%), a
validation set (10%) and a test set (10%). The classes are balanced among each
of these sets. The task is to predict the binary category of a given text.

The model we consider is the French pre-trained transformer model Camem-
BERT [15], in the two different setups presented in [8]. In the first one, that
we denote as fine-tuned, we jointly train all the weights of the encoder blocks
and the classification head during 2 epochs. In the second one, that we denote
as frozen, we only train the classification head while freezing the encoder blocks
(i.e., the model learns to use the embeddings without modifying them). We note
that the model’s training randomness can be controlled via a seed parameter
that rules the initialization of the layers, the order of the training dataset and
the neurons that are deactivated by the dropout layers during the training.

Once our model is trained, we use Chefer et al.’s LRP method to generate
word-level explanations for every text [7]. It back-propagates the relevance from
the last layer of the network using conservation constraints, so that the relevance
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of each neuron is redistributed to the neurons of the previous layer based on their
respective gradient. This principle is then followed through the whole network
up to the input layer in order to obtain word-level explanations.?

2.2 Equivalent Models’ Explanations

In a previous work [3,6], Bogaert et al. showed that the training randomness of
LLMs can have an impact on their explainability. To do so, and as illustrated
in Fig.1, they trained many models with the same settings and on the same
dataset, but with different random seeds.The accuracy of these models was then
evaluated on a test set, and a subset of m most accurate models was selected,
such that the difference between the best (a) and worst (b) accuracies of the
models in the subset was not statistically significant. For this purpose, one can
computed the z statistic [13], which can detect whether two proportions (here,
the accuracies a and b) are different:

test set

(possibly random) l
—
hyperparamters
modely —e—«——> ———» accuracy;
l models ——> accuracy,
training and - models | — > accuracy,
o training _
validation sets test >— equivalent
model,, —> accuracy,,
l -/
compatible inputs

|——> explanation,

|——> explanation,

|— > explanationy
explanation

—> > explanation,,

optional parameters

Fig. 1. Setup for the generation of equivalent models and compatible inputs.

2 CamemBERT uses the roBERTa tokenization to work with word pieces. We post-
process explanations to get one weight per word instead of one per word piece.
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As Bogaert et al., we next consider that z values greater than 1.96 (p < 0.025)
mean that the accuracies of the best and the worst models in a subset are
different. For lower z values, we conclude that these accuracies do not differ
significantly and therefore, we consider the models in the subset as equivalent
from the performance viewpoint. Starting from 200 models (see Sect.2.1), a
restriction to m = 100 was sufficient to reach model equivalence in the subset.
We then selected so-called compatible inputs for which all models predict the
same class, and we computed explanations for each model on such inputs.

2.3 Explanation Stability

The main observation in [3,6] is that the explanations of equivalent models on
compatible inputs can differ, raising a need to characterize their sensitivity to
the training randomness. For this purpose, one can construct an explanation
matrix of m rows (corresponding to different random seeds) and n columuns (cor-
responding to different words), where each as,, corresponds to the relevance
value assigned by the s-th model (seed) to the word at the w-th position, as
showed in Fig. 2. The left part of the figure additionally shows the average curve
which corresponds to the “simple” (word-level, univariate and first-order) expla-
nations introduced in [5]. Word-level means that all m explanations of an n-word
text display a weight for each word independently. Univariate means that each
of these weights is a single value. First-order means that variable explanations
are summarized by their mean (i.e., a first-order statistical moment).

n words

- » ai,l ai,2 ai,n
3
w &8 a1 a2:2
= S
S
P 2
love machine learning o Am,1 =~ Am,n

Fig. 2. Explanations of n = 4-word texts for m = 3 seeds and mean (dotted).

2.4 k-Words Explanations

To capture the possibility that shorter explanations are more plausible, we can
evaluate so-called k-word explanations, obtained by keeping only the 0 < k < n
highest relevance values of each explanation. To further simplify the individual
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explanations, one can also use k-word binary explanations, where only the k top
words are considered relevant, without any distinction among them:

A if ag o € TOPy(as,.), 1if as . € TOPy(as,.),
— ' ' ' Qs = ' '
Sw 0 oth. S 0 oth.

2.5 Signal, Noise and SNR

Simple (word-level, univariate and first-order) explanations naturally suggest
simple quantities to capture their sensitivity to randomness. In [5], the explana-
tions’ signal (S), noise (N) and Signal-to-Noise Ratio (SN R) were suggested as
tentative metrics for this purpose. Intuitively, the signal reflects the flatness of
the average explanation, the noise reflects the variation of the relevance scores
for each word (averaged) and the SNR is simply the ratio between both:

S— Var ( £ (as,w)), N- E (vsr (as,w)), SNR= 3.

n words \ m seeds n models \ m seeds

3 Metrics’ Corner Cases

We next discuss the adequacy of the SNR metric to reflect the stability of expla-
nations in the setting of Fig. 2. For this purpose, we use illustrative hand-made
examples and compare how the stability of some explanations is captured by the
SNR and by an alternative simple metric, namely the (average) correlation with
a mean explanation. We are in particular interested in the ability of these metrics
to reflect the relative differences of relevance between words and the absolute
differences of relevance for single words in a set of variable explanations.

3.1 Relative Differences (Between Words)

Figure 3 illustrates two pairs of explanations such that the relevance of some
words are swapped when moving from the left to the right plots. As a result, these
left and right plots show quite disparate relative differences of relevance between
words. Interestingly, the SNR metric is unable to reflect these relative differences.
This is because the swaps do not affect the mean explanations (which are the
same on the left and right plots, leading to the same signal) nor the absolute
difference between words (hence the noise). By contrast, the correlation metric
captures these relative differences: the explanations of the left plot are highly
correlated with the mean explanation; the ones of the right plot are not.

3.2 Absolute Differences (for Single Words)

A complementary situation is illustrated in Fig. 4, in which an offset § was added
to all the relevance values of one explanation and subtracted for the other. As
a result, the left and right plots show disparate absolute differences. This time,
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Fig. 3. Two pairs of explanations (A and (), with the same absolute differences and
different relative differences, with the mean explanation in dotted line.

o e
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Fig. 4. Two pairs of explanations (A and (), with the same relative differences and
different absolute differences, with the mean explanation in dotted line.

the correlation metric is unable to reflect the discrepancy between the left and
right plots (because the correlation is invariant to the 0 offset). By contrast, the
SNR reflects it because the noise of the left and right plots differs.

3.3 Discussion

The two examples above suggest a quite natural tradeoff between the SNR and
correlation metrics: the first one better captures absolute differences, the second
one better captures relative differences. While this may encourage using both
metrics in parallel, Fig. 5 highlights additional limitations of the (noise compo-
nent of the) SNR metric. Namely, it illustrates that the noise metric is averaged
over (possibly dependent) words, which may hide important intuition regarding
which word is causing the noise. (By contrast, the correlation can be averaged
over independent seeds). As a result, we suggest using the correlation metric for
design space exploration and box plots for a qualitative analysis of the noise. As
will be experimented next, this appears as a relevant combination to character-
ize the explanations’ sensitivity to the training randomness, capturing both the
absolute and relative differences within these explanations.?

Besides, the SNR is also slightly less convenient to manipulate from the sta-
tistical viewpoint. First, it is a biased metric since small estimation errors in the
mean explanations are considered as signal by definition. Second, its interpreta-
tion in case of small noise levels is not always intuitive (e.g., the SNR tends to
infinity when the noise tends to zero). Despite these drawbacks do not lead to
fundamental issues (i.e., the SNR bias decreases with the amount of seeds and

3 In Appendix A, we give additional arguments why the noise metric alone cannot
be used for design space exploration. In appendix B, we give additional arguments
why the signal metric alone is making undesirable implicit plausibility assumptions.
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Fig. 5. Two pairs of explanations (A and (), with the same (average) relative differ-
ences but distributing these differences differently among the words of a sentence.

can be corrected, intuition is just less direct), we show next that the correlation
coefficient also comes with advantages in this respect. It can be estimated with-
out bias thanks to cross-validation, benefits from a well-known sample distribu-
tion leading to easy-to-obtain confidence intervals and its interpretation is direct.

4 Application to Case Studies

We now apply the methodology proposed above to the classification case study
described in Sect. 2. First, we detail how to estimate the correlation metric in
Sect.4.1. Next, we show how it can be used for design space exploration in
Sect. 4.2. Finally, we illustrate how such a quantitative analysis is nicely com-
bined with a more qualitative one using box plots in Sect. 4.3.

4.1 Estimation and Confidence Interval

The examples of Sect. 3 suggest using the correlation of different explanations
with their mean as a good way to quantify the explanations’ sensitivity to the
training randomness.* We next detail how correlation samples can be estimated
without bias thanks to 10-fold cross validation, and possibly averaged.

For this purpose, the average explanation is first repeatedly computed using
90% of the explanation matrix’s rows and the remaining 10% of the rows are
repeatedly compared to these means in order to compute correlation samples
(one per explanation). Figure 6 shows a scatter plot of all the correlations to the
mean (i.e., one per trained model, so 100 in our case study), highlighting the
high disparity of the results depending of the training randomness.

Different quantities of the correlation distribution could then be considered
to summarize the explanations’ stability. In the following, and for simplicity
purposes, we suggest to use the average correlation. We note that while it is
in general better to estimate the correlation between two variables based on
a large set of samples than averaging correlations estimated from several smaller
sets of samples, this approach can serve as a useful heuristic in our context, if
interpreted carefully. Namely, as a way to capture a global tendency for many

* Under the assumption of simple explanations formalized in [5] as (1,1,1) explana-
tions, computing the average correlation to a mean explanation rather than the
average pairwise correlation allows significant speedups without intuition loss.



318 J. Bogaert et al.

e I i L0 i I
Ll g l|l!gg!|| I e
o8 /Lill! : = 08{ i
0.6 '|§| 0.6
Q. e - Q.
0.4 0.4
021 ' 0.2
00!’ 0.0 -
0 10 20 30 40 50 0 100 200 300 400
k k
1.0
0.8
0.6
«Q
0.41
0.2
007!
0 10 20 30 40 50 0 100 200 300 400
k k

Fig. 6. Scatter plot of the correlation to the mean for LRP explanations correspond-
ing to the frozen (top) and fine-tuned (bottom) models in function of the number of
words used per explanation, illustrated for a short (left) and a long (right) text. For
readability, only the values k = 10, 20, 30, ... are displayed for the long text.

explanations, possibly leading to different correlation values. For this purpose,
we follow [17] and first use the following “Fisher Z transformation”:

1. 1+p
F(p) = 5 Py _ arctanh(p),

which projects the correlation samples in a space where they are normally dis-
tributed. We can then compute the average Fisher value I, as well as its sample
variance 62. A confidence interval on the estimation of F' (e.g., 96%) is obtained
by adding or removing 2 "m to F. Applying the inverse function p = tanh(F(p))
finally leads to 96% confidence interval for the average correlation:

_ 26 _ 26
[tanh (F — \/%) ; tanh (F + \;%)} .
This interval indicates that the average correlation is better estimated with more
models (i.e., large m values). By contrast, longer texts (i.e., large n values) lead
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Fig. 7. Average correlation to the mean (with confidence intervals) for LRP explana-
tions corresponding to the frozen and fine-tuned models in function of the number of
words used per explanation, illustrated for a short (left) and a long (right) text.

to better estimated correlation samples, but do not necessarily decrease the
variance &, since the correlations of different explanations may differ.

4.2 Quantitative Analysis

Figure 7 shows the average correlation to the mean for k-word explanations.
Positing that shorter and more aligned explanations are more plausible, such an
exploration can lead to identify relevant parameters to investigate more quali-
tatively. For example, we can see on the left plot that the average correlation
to the mean increases up to kK = 7 and then reaches a plateau . Hence, larger
values of k (i.e., longer explanations) may not lead to a reduced sensitivity to
the training randomness. We next complete this observation with a qualitative
analysis for the explanations obtained for k = 7 and the maximum k = 51.

4.3 Qualitative Analysis

Starting with the box plot for £ = 7 displayed on Fig. 8, we can observe that,
qualitatively as well, the LRP explanations of the frozen model are significantly
less sensitive to the training randomness than the ones of the fine-tuned model.
This is quite expected since the amount of network weights that are trained
in these two models vastly differ. What is maybe less expected is that the the
variability per word is also distributed very differently for both models. Namely,
7-word explanations across the 100 seeds only consider 10 different words in
the frozen case, while most words are considered by the fine-tuned models. This
tends to justify our proposed methodology, where we do not analyze the absolute
difference with the noise metric (which is averaged over the words).

More interestingly, Fig.9 shows the box plots obtained for the same models
and k = 51. Its upper part is particularly relevant: it confirms that increasing
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Fig. 9. Box plot for k = 51 and the frozen (top) and fine-tuned (bottom) models.

the explanations’ length beyond k£ = 7 is not only discouraged by the correla-
tion metric, it actually also leads to harder to interpret first-order explanations
assigning non-zero relevance scores to most words, as the fine-tuned model.

5 Conclusions

Our results provide consolidated tools for analyzing the sensitivity of the expla-
nations of LLMs to the training randomness, hopefully opening a path to their
better understanding and leading to various interesting open problems.

First, and maybe most importantly, the extent to which the stability of the
explanations of LLMs is a requirement for their plausibility remains unknown.
While we posit in the paper that shorter and more aligned explanations are easier
to understand, it could also be that human explanations show variations that
are similar to the ones observed in this paper. Designing a real-world experiment
with human annotators would be interesting to contribute to this question.

Second, even if explanations appear unstable when considering their average
correlation to a mean explanation as in this paper, it is possible that some
clusters exist within these explanations. This would mimic a situation where
a few groups of human annotators share very similar explanations within the
groups and have very different ones between the groups. In order to stimulate
research in this direction, Fig. 10 shows a TSNE visualization of 100 explanations
used in our experiments. It would be interesting to investigate whether clusters
an be extracted from such plots and lead to more stable/aligned explanations.

Third, it would be interesting to investigate whether more complex explana-
tions (e.g., assigning relevance scores to tuples of words) or more complex models
(e.g., generative ones) may lead to different outcomes, and whether a sensitivity
to the training randomness is observed for other tasks or data sets.
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Fig. 10. TSNE for k = 51 and the frozen (left) and fine-tuned (right) models.

Finally, our conclusion may also differ for other modalities than texts. For
example, image explanations may be more stable due to the more correlated
nature of adjacent pixels (compared to consecurive words in a text).

Acknowledgments. Frangois-Xavier Standaert is a research director of the Belgian
fund for scientific research (FNRS-F.R.S.). This work has been supported by the Service
Public de Wallonie Recherche, grant n02010235-ARIAC.

A The Noise Is Not Good for Design Space Exploration

As illustrated in Fig. 11, we cannot use the signal or the noise alone to explore
our design space, as their range is directly impacted by the amount of top words
k. This is the case even for deterministic/random explanations, which lead to
an hypothesis that selecting a certain ratio of word leads to more stable expla-
nations, even if all the models perfectly agree on the relevance of every token.
This is not the case for the correlation metric that is always at its maximum for
the deterministic model, and at its minimum for the random one.
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Fig. 11. Signal (left), noise (middle) and correlation (right) of deterministic (-) and
random () explanations, for the binary variant of k-word explanations.
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B Implicit Assumption of the Signal Metric

As illustrated in Fig. 12, it is possible to obtain explanations such that their
absolute and relative differences are identical, but their signal differs, because
the signal is focused on the flatness of the mean explanation. It implicitly sug-
gests that more relative differences within this mean explanation lead to better
explainability, which may not be connected to a definition of plausibility.

ot =

_A — —

1 1

o o

p —Q . p—

| love machine learning o love machine learning o

Fig. 12. Two pairs of explanations (A and (), with the same absolute and relative
differences and different signal, with the mean explanation in dotted line.
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Abstract. Electroencephalographic (EEG) recordings are often con-
taminated with artefacts, such as eye blinks, which complicate their anal-
ysis. While various methods exist to address, identify, and mitigate arte-
facts, many require human intervention. This study introduces a novel,
self-supervised, fully automated approach for identifying and reducing
artefacts in EEG signals using a Variational Autoencoder (VAE) archi-
tecture. In detail, subject-specific VAEs, with convolutional layers, are
trained from spatially preserved EEG topographic maps. A sample-wise
strategy based on the negative log-likelihood of activated latent vectors
from training data is proposed to identify anomalous topomaps. This
assigns an anomaly score to each model’s input. The vectors of input
topomaps above a chosen threshold are automatically clipped with a
percentile-based approach of activated latent space components. Even-
tually, the reconstructed EEG signals are compared with a baseline built
upon an offline ICA method with automatic detection of artefactual com-
ponents inspired by the FASTER methodology. Results show that the
signal-to-noise ratio (SNR) and the peak signal-to-noise ratio (PSNR)
of the FP1, FP2, and other channels were higher, while the remain-
ing channels were similar to ICA Fast. Similarly, mean absolute error
(MAE), normalised root mean square error (NRMSE), and correlation
coefficients indicated comparable signals from both methods. In addition,
findings demonstrate the method’s strength in avoiding signal updates
in non-artefactual segments, preserving their neural dynamics. The con-
tribution to the body of knowledge is a fully automated, subject-specific
method for identifying and denoising EEG signals.
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interpretability - Artefacts removal - Deep learning - full automation -
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1 Introduction

Electroencephalography (EEG) serves as a technique for capturing brain activ-
ity by employing electrodes positioned on the scalp [14]. EEG signals are impor-
tant because they can convey crucial information about brain functioning across
frequency, temporal, and spatial domains. While they have proven valuable in
diagnosing various mental disorders, the analytical process is challenging, and
decision-making poses difficulties due to factors such as low amplitude, intri-
cate data collection setups, and significant noise [29]. EEG noise sources include
physiological artefacts such as eye blinks, muscle movement, and artefacts from
the EEG equipment itself. The superimposition of these artefacts on the EEG
data may obscure its interpretation. This is especially important in the medical
industry, where EEG signals might be employed as the sole diagnostic source,
and failure to recognise artefacts can seriously impact clinical judgements. Con-
sequently, artefact identification is the first and most important stage in EEG
signal processing before its mitigation.

It is widely recognized that EEG signals encompass crucial information across
frequency, temporal, and spatial domains. EEG topography mapping is a neu-
roimaging approach using visual-spatial depiction to map the EEG signal [54].
The EEG data from the electrodes is collected and processed into topograph-
ical maps (topomaps). A topomap usually depicts raw EEG data of voltage
or power amplitude to topographic head visualisations [4]. Other studies have
generated spectral topographic head maps for various EEG bands, aiming to pre-
serve spatial information while capitalising on the insights from the frequency
domain [49]. Topographic maps have also recently been used with deep learn-
ing for various tasks. For example, a 2D Convolutional Neural Network (CNNs)
to autonomously learn EEG features across diverse mental tasks without prior
knowledge has been designed in [5]. Similarly, a tensor decomposition-based algo-
rithm reduces the CNN input into a concise set of slices to improve computa-
tional efficiency and enhance the extraction of relevant EEG features for cate-
gorising epileptic seizures. Another example of works employing deep learning
with EEG data is Variational Autoencoders (VAEs) [32]. Autoencoders (AE) are
self-supervised deep-learning neural network architectures that leverage unsu-
pervised learning to acquire efficient features without labelled inputs. These fea-
tures, part of a latent space, are often of lower dimension than the original input
and are employed to reconstruct it with high fidelity [8]. A variational autoen-
coder (VAE) is a specific version of AE that learns a probabilistic model of the
input sample and subsequently reconstructs it based on that model, essentially
generating synthetic data [15]. For example, convolutional VAEs were used with
topographic maps to learn prominent high-level features of a lower dimension of
EEG signals [1-3]. However, limited exploration exists to use autoencoders with
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EEG topography and understand the meaning of their latent representations for
artefact identification and reduction.

This research tackles this problem and focuses on developing an offline, self-
supervised approach using subject-specific VAEs trained with spatially preserved
EEG topographic maps to detect and minimize artefacts in EEG signals fully
automatically, specifically of an ocular nature. The proposed method is a novel
contribution to the body of knowledge for reducing the amplitude of EEG sig-
nals during artefactual intervals. The detailed research question being addressed
is: Can a fully automated, offline denoising architecture for EEG signals using
Variational Autoencoders trained with EEG topographic maps perform better
or equal to traditional ICA-based methods for artefact detection and mitigation?

Neuroscience Artificial Intelligence

Electroencephalography

Deep Learning VAE

Explainable Al

Sensitivity Analysis of Latent space

Fig. 1. The scope of this research is at the intersection of electroencephalography from
the discipline of neuroscience, variational autoencoders (VAEs) from deep learning, a
sub-discipline of artificial intelligence, and sensitivity analysis of the latent space of
such VAEs from the new discipline of explainable.

This research is at the intersection of neuroscience, Artificial Intelligence (AI),
and Explainable AT (XAI) to address the problem of identification and mitiga-
tion of artefacts in EEG signals (Fig.1). In detail, explainable AI techniques
are used to perform sensitivity analysis on their latent components to better
understand person-specific models trained using a deep variational autoencoder.
It follows similar work on sensitivity analysis, where Receiver Operating Char-
acteristic (ROC) curves and Area Under the Curve (AUC) metrics were used to
assess the discriminated performance of individual latent components involved in
capturing eye blink artefacts [18]. Similarly, interpreting the latent space could
facilitate the generation of realistic, plausible representations of EEG dynamics,
potentially paving the way for a more in-depth understanding [13].

The subsequent sections are structured as follows: Sect.2 delves into prior
research on VAE-based methods for handling EEG artefacts and the interpreta-
tion of their latent spaces. Section 3 outlines the empirical study and its method-
ology to address the earlier research question. Section 4 presents the experimen-
tal results, findings, and discussion. Finally, Sect.5 concludes the manuscript,
summarizing the contribution to the body of knowledge and outlining potential
directions for future research.
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2 Literature Review

EEG data is widely used in research, including neuroscience, cognitive sci-
ence, cognitive psychology, neurolinguistics, and psycho-physiological studies
[53]. Unfortunately, various internal and external artefact sources overlap neural
data in laboratory-based or naturalistic settings, hampering its analysis. Arte-
facts can be classified according to their origin. If the source is within the sub-
ject’s body, they are called physiological artefacts; outside, they are called exter-
nal artefacts. Physiological artefacts are caused by electrical activity in other
regions of the subject’s body that disguise EEG signals. These include ocular or
muscle artefacts among others. Ocular artefacts are generated by eye blinks or
saccades inducing a voltage change in the electrodes near the eyes, especially at
the Fpl-Fp2 (Fronto Parietal) electrode locations on the scalp. They generate
high-amplitude signals many times greater than the amplitude of the EEG sig-
nals of interest [20], especially in low-frequency EEG bands (0-12 Hz). Muscle
artefacts are generated, for example, by chewing, swallowing, tongue movements,
and grimacing, to mention a few. They mainly contaminate the high-frequency
EEG bands (110-140 Hz) and occur less frequently in sleep, overlapping with the
beta band (15-30Hz) [7,50]. Cardiac artefacts are generated by the heart and
are visible from an electrocardiogram (ECG) signal in the temporal left area.
They are more prominent in subjects with short necks, overlapping with neu-
ral frequency around 1Hz, with amplitudes in the millivolt range [50]. External
artefacts are derived from electronic devices, transmission lines, and environ-
mental lines, among other things. For example, phone artefacts are caused by
a cell phone signal overlapping with the high-frequencies of EEG signals in a
spurious way [50]. Electrode artefacts are low-frequency types of noise caused by
poor contact with the scalp. They are short transients localised to one electrode,
for example, caused by respiration that might move it [50]. Physical movement
artefacts are generated by electrode contact loss caused by the sudden physical
movement of a subject. Its morphology differs from that of an EEG [50].
Several methods exist to remove the above types of artefacts. Regression
methods are the most basic and widely used to remove them from EEG sig-
nals by modelling and subtracting the unwanted components based on their
linear relationship with reference signals [10,19,25]. Adaptive filtering is based
on the assumption that there is no relationship between the true EEG signal
and artefactual activities [46]. The objective of an adaptive filter is to adapt the
coefficients of a selected linear filter and, therefore, of its frequency response to
generate a signal similar to the noise present in the actual EEG signal to be
filtered. Blind source separation (BSS) refers to a group of techniques to sepa-
rate mixed signals into their original, independent sources without prior knowl-
edge of the mixing process or the sources themselves. In EEG signal processing,
BSS methods include independent component analysis (ICA), principal compo-
nent analysis (PCA), and canonical correlation analysis (CCA) primarily. ICA
separates multichannel EEG data from several sources into independent com-
ponents (ICs). The selection of artefactual independent components is usually
done by visualising topographic maps and time series of ICs and hence is largely
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dependent on the researcher’s experience [42]. PCA is a statistical method that
uses an orthogonal transformation to turn time-domain observations of pos-
sibly correlated variables into values of linearly uncorrelated variables [42]. It
has been reported that PCA outperforms regression-based artefact reduction
[9]. In contrast to the ICA approach, which uses higher-order statistics, canon-
ical correlation analysis employs second-order statistics, requiring less process-
ing effort. CCA distinguishes components from uncorrelated sources, whereas
ICA distinguishes components from statistically independent sources. Empirical
Mode Decomposition (EMD) is well-suited for analyzing and processing EEG
signals due to its ability to handle non-stationary, non-linear, and stochastic
processes. It breaks down the signal into a series of intrinsic mode functions
(IMFs), each representing simple oscillatory modes, which facilitates the analysis
of complex EEG data [27]. In recent years, researchers have increasingly focused
on leveraging the strengths of various techniques by combining them into a sin-
gle, hybrid method for artefact detection and removal [27]. Artefact reduction
methods are manual, automatic, offline and online [36]. Manual methods often
require manual detection of artefact-contaminated EEG, typically performed by
a panel of experts. They can be challenging and time-consuming, especially for
large amounts of data [31]. Therefore, classifying independent components (ICs)
may be the most challenging step in manually removing EEG artefacts [31]. Sev-
eral methods improved this by the proposal of automatic or semi-automatic IC
classification. For example, using spectrum properties, topographic map prop-
erties, or an analysis of each IC’s contribution [38]. Offline methods are those
applied only when the whole observation dataset is available. Online methods
are more challenging because they need to denoise EEG signals in real time, thus
requiring sophisticated strategies that humans cannot supervise.

Recent advances in deep learning with applications in neuroscience and elec-
troencephalography have demonstrated how offline automatic methods can be
developed with high accuracy. These methods are like source separation methods.
They take advantage of the recorded EEG data and learn high-level represen-
tations through training neural networks similar to independent and principal
components analysis [37]. However, like source separation methods, they suffer
from the understanding of the high-level representations [35], the latent com-
ponents, and which of these are responsible for artefacts, or not [2,3]. Human
intervention is often required, and like source separation methods, such higher-
level representations require a degree of interpretation. This is also because they
can be lower in number than the number of original EEG channels. Examples
include the family of autoencoders (AEs), with variational (VAEs) being the
most adopted with EEG data [1,3,12,17,18,24,57]. Similarly, recent research on
VAE with EEG has focused chiefly on data augmentation, emotion prediction,
and feature representation. In most research, VAE is employed as an EEG data
generator and provides classification models with a substantial amount of data
[16,21,56]. VAE is also utilized in other investigations to extract features such
as influential elements from EEG data [33,55]. A VAE model gives a closed-
form latent space representation of the distribution underlying the input data,
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which is ideal for unsupervised learning to understand the impact and impor-
tance of each latent component for capturing the number of true generative
factors. Research towards establishing the ideal dimension of the latent space of
an autoencoder trained with EEG data is still in its infancy. For example, the
preliminary study conducted in [1] focused on examining various latent space
dimensions of person-specific autoencoders trained with spectral topographic
maps of different frequency bands from different overlapping EEG time windows
[1]. Similarly, research on understanding the reconstruction capacity of autoen-
coders is preliminary. For example, the analysis conducted in [22] was focused on
visualising the disentangled representation of VAE to grasp its decision towards
reconstruction capacity. The disentanglement is a condition of the latent space in
which each latent variable is sensitive to changes in only one feature while insen-
sitive to changes in the others [8]. The disentangled latent variables have been
applied successfully in various applications, including face recognition, video
prediction, and anomaly detection [26]. Here, the disentangled representations
of the VAE are mainly interpreted to determine which one helps capture data
artefacts. An example of such an interpretation method is based on determining
the latent variable’s out-of-order distribution (OOD) [43]. Employing the KL
divergence metric, the OOD latent components of a variational autoencoder’s
latent space are determined. This is the difference between the generated latent
distribution and the standard normal distribution (¢ = 0,0 = 1). Therefore,
manually adjusting the VAE’s latent space component enables a user to examine
how different latent values affect the model’s outcome. Scholars also illustrated
how a VAE model’s latent space might be more explainable by utilising latent
space regularisation to force some selected dimensions of the latent space to map
to meaningful musical qualities [6]. Similarly, a sensitivity analysis of the VAE
latent space is conducted using Receiver Operating Characteristic (ROC) curves
and Area Under the Curve (AUC) metrics to assess the discriminating perfor-
mance of individual latent components involved in capturing eye blink artefacts
[17].

Despite the increasing use of VAE with EEG signals, designing an offline and
automatic method for EEG artefact identification and reduction using the spatial
information of EEG data is not a trivial task. This is because of two main chal-
lenges. The first is determining the smallest size of topographic maps that can
preserve spatial information concerning the number of electrodes employed while
achieving maximum dimensionality reduction without losing meaningful infor-
mation. The second approach manipulates the latent space of a subject-specific
VAE, trained on spatially preserved EEG topographic maps. Boundaries for each
component can be set using the standard approach on normal distribution, since
99.7% of data in it lies within +3 standard deviations, thus identifying values
likely associated with irregularities in the data [45]. The above gaps motivated
this research study and informed the design of a VAE trained with spatially
preserved topographic maps extracted from raw signals to leverage spatial infor-
mation and mechanistic, automatic interpretation and manipulation of its latent
components for artefact reduction.
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3 Methodology

This research aims to design, develop and test an offline, fully automated, self-
supervised approach using VAEs trained with spatially preserved EEG topo-
graphic maps. This is tested against detecting and minimising artefacts, with a
special focus on blink-related artefacts in EEG signals. A high-level design of the
layers of this research is illustrated in Fig. 2, and the following sections describe
its components.
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Fig. 2. A novel fully automated method for identifying and reducing artefacts from
EEG signal based on convolutional variational autoencoders. (A) Multi-variate EEG
recordings are selected; (B) Spatially-preserved EEG topographic head maps of size
40 x 40 are formed for the entire EEG recording, at each time step; (C) A convo-
lutional, variational autoencoder architecture is trained with topographic maps; (D)
An automated analysis of the variational autoencoder (VAE)’s latent space is per-
formed after training, and a clipping strategy is implemented for anomalous input via
a sample-wise strategy; (E) A reconstruction of anomalous topographic maps and their
transformation into the time domain is performed for each original electrode record-
ing; (F) The model’s performance (EEG topomaps reconstruction capacity and signals
reconstruction fidelity) is evaluated.

The specific research hypothesis is:

IF a person-specific VAE is trained with spatially preserved EEG topo-
graphic maps, achieving a high SSIM and lower MSE, MAE, and
MAPE, AND a procedure to manipulate the latent components based
on percentile-clipping

THEN the SNRs and PSNRs of EEG channels are expected to be equal to
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or higher than the ICA-Fast (baseline), reflecting similar or improved arte-
fact suppression, especially for ocular artefacts AND the mean absolute
error (MAE), normalised root mean square error (NRMSE), and correla-
tion coefficients (Corr) are expected to have equal or higher signal fidelity
compared to the baseline, indicating effective artefact reduction without
significant distortion of the underlying EEG signals.

3.1 Dataset

The DEAP dataset was chosen to train the proposed method for detecting and
reducing artefacts because it contains multi-channel EEG recordings with many
participants and tasks. EEG data were collected from 32 people who watched
40 one-minute music video clips [30]. The 10-20 electrode position system was
applied with the following channels: Fpl, AF3, F7, F3, FC1, FC5, T7, C3, CP1,
CP5, P7, P3, Pz, PO3, O1, Oz, 02, PO4, P4, P8, CP6, CP2, C4, T8, FC6, FC2,
F4, F8, AF4, Fp2, Fz, and Cz. Data was acquired with a sampling rate of 500 Hz
and downsampled to 128 Hz for ease of subsequent computations. A low/high-
pass filter with a frequency range of 0.1 to 50 Hz was applied to remove slow
drifts and DC offsets, and average channel referencing was executed to create a
more electrically neutral reference point [40].

3.2 Spatially Preserved EEG Topographic Maps Generation

Raw EEG signals are employed to construct spatially preserved EEG topo-
graphic maps, 128 per second, as the sampling rate. Empirical evaluations were
conducted to ascertain the minimum dimension of such maps and reduce the
computational time required for model training. This preserved the spatial dis-
tance between EEG electrodes in proportion to the distance as per the 10-20
electrode position standard. In other words, the goal was to transform EEG
signals into plausible, spatially preserved topographic maps of minimal dimen-
sion. The conversion of the electrode recordings over time into topographic maps
involves, firstly, transforming 3D polar coordinates to 2D cartesian coordinates.
Such transformation can distort the original distance among electrodes as set
by the 10/20 electrode placement standard if topomps are small. Thus, a grid
search was performed among varying square-size topomaps, and the one that
minimises such size but with closer average Euclidean distances among all the
pairs of electrodes to those of the 10/20 standard was chosen. Such a grid search
indicates that the ideal resolution of a topomaps with 32 electrodes resulted in a
40 x 40 pixels topomap (Fig. 3). Subsequently, such a 40 x 40 map of initial zeros
was filled with the power magnitude of each of the 32 electrodes at their spe-
cific locations. Eventually, cubic interpolation was performed to fill all the other
empty pixels, creating the final full topographic maps as illustrated in Fig. 2, B.

3.3 Designing and Training a Variational Autoencoder (VAE)

After generating the topographic maps, a VAE is trained. This turns input data
into probability distribution parameters, including the mean and standard devi-
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Fig. 3. Electrodes placement of the 10/20 standard in the 2D coordinate space (left)
Electrodes coordinates in a topomap of 40 x 40 (middle left) Scattered power values
at each electrode position in the 40 x 40 topomap (middle right) Cubic interpolated
topomap (right).

ation of Gaussian distributions. It provides a continuous, structured latent space.
The VAE architectural design is made up of two networks. First, the encoder
is a neural network that takes an input tensor (as in Fig.2, C). It defines the
approximate posterior distribution Q(Z | z), where z is the input tensor and
Z is the latent space. The architecture (Fig.2, C) consists of four 2D convo-
lutional layers, each of which is followed by a max pooling layer to reduce the
dimensions of the feature maps. ReLU is used as the activation function in each
convolutional layer. Second, the decoder of the VAE is a generative network that
takes a latent space Z as input and outputs the parameters for the conditional
distribution P(z | Z) of the observation (as shown in the right part of Fig. 2, C).
Similarly, like the encoder network, the decoder consists of four 2D convolutional
layers, each followed by an up-sampling layer to reconstruct the data to the shape
of the original input. Such a VAE is trained using topographic maps generated
with the procedure described in Sect. 3.2, based on a randomly selected 70% (28
out of 40) of 1-minute videos from a single participant. The remaining 30% of
videos are split equally into validation and testing sets (15% each). The latent
space dimension of the VAE must be carefully tuned to maximise reconstruction
quality while capturing the true generative factors in the data. However, identify-
ing the minimum sufficient latent dimensionality remains an open challenge [34].
Following the approach in [1,11], the VAEs were trained on EEG topographic
maps to preserve spatial information, using latent dimensions ranging from 25
to 800. Reconstruction performance is measured using SSIM, MSE, MAE, and
MAPE. Findings show that such metrics improve as latent dimensionality gets
closer to 40 (with 40 x 40 images). Beyond this threshold, additional dimensions
yield minimal reconstruction improvement. Therefore, a latent dimension of 40
is selected as optimal, offering a balance between reconstruction accuracy and
preserved essential information.

3.4 Latent Space Interpretation and Update

This section details the strategy for automatically and globally interpreting the
latent space of a person-specific variational autoencoder (VAE) model. It also
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presents a percentile-based clipping strategy for EEG artefact denoising. The
goal is to understand which parts of each latent component are rare and thus
potentially corresponding to an anomalous input, and to manipulate such a
latent component accordingly.

By design, each latent space’s component is a Gaussian distribution. After
training a person-specific VAE model, the topographic maps in the training set
are re-input, and the activated latent space Z is read for each of them (Fig.2 -
D1). This leads to 40 distributions, for each latent component z;, with a mean
and standard deviation. A parametric density estimator is then used to estimate
probability distributions for each latent component, leading to 40 probability
distributions (Fig.2 - D2). For each input topographic map in the training set,
its activated latent space Z (a vector of N=40 activated z; scores) is read. The
probability of each of such z; is extracted from the related probability distribu-
tion, and inputted to a & function (Eq.1). Such a function returns the negative
log of the input z; if such negative log is above a threshold A;, otherwise zero.
This process is repeated for all the z; scores and their sum is taken to com-
pute an anomaly score AS for an input topomap (2). A threshold ); is set to
each latent component’s 98th percentile of each probability distribution. This
high percentile was chosen to ensure that only the most extreme outliers, the
tail of the distribution (anomalies), would contribute to the computation of the
anomaly score. Such a threshold is often used in outlier detection to minimise
false positives while capturing rare and potentially meaningful anomalies [52].

€(z) = {—log(zi), if —log(z;) >\ (1)

0, otherwise

The anomaly score for a given sample is then obtained by summing the
retained log-likelihood values across all N activated latent vectors (Fig.2 - D3,
equation, similarly to the approach in [39]. This method provides a cumula-
tive measure of how strongly a sample’s latent representation deviates from the
average, based on the behaviour of its individual component activations. A final
threshold +y is set to the 98th percentile to discriminate average topomaps from
those anomalous. Intuitively, the higher this percentile, the less the anomalous
topomaps, and vice versa. This threshold is fixed, and can now be used for any
input topomaps, even those from the test set (unseen).

N
AS = " &(p(2:)) (2)
=1

After identifying the anomalous topomaps via the above strategy, that means
those with an anomaly score exceeding -~y is passed through a clipping strategy.
Such a strategy is implemented, using the standard procedure of +3 standard
deviations of the distribution of the activations of each latent component. In
detail, two boundaries are set, 6% and 67, corresponding respectively to 0.03%

and 99.7%, (Fig. 2, step D1). If every component 2{“* of an anomalous topomap
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exceeds the upper boundary §Y of its latent space distribution, then it is clipped
to such boundary, otherwise is left intact. Likewise, if it falls below the lower
boundary &%, it is clipped to it. This procedure is mathematically described by
the function clip(23<t, 6L, §Y), as shown in Eq.3 (Fig. 2, D5).

SE o if 20t < 6F

clip(z{,0%,6Y) = ¢ 6V, if 20t > 6V Vzit e Z0t (3

28t otherwise

This ensures that the latent variables contributing to extreme deviations are
constrained within the boundaries established, thereby enhancing the model’s
robustness in mitigating anomalous input topomaps, likely the noisy inputs con-
taining artefacts.

3.5 Artefacts Identification and Removal Using an Automatic
Baseline

The FASTER pipeline, used primarily for ERP-based studies, systematically
identifies artefactual trials (epochs) and try to corrects, or discard EEG por-
tions containing artefacts [41]. It is built upon five data dimensions: channels,
epochs, independent components (ICs), single-channel single-epochs, and aggre-
gated datasets (for example across participants). The methodology involves com-
puting statistical parameters for each dimension and flagging artefacts based on
outlier detection, defined as a z-score beyond +3 standard deviations [41,44].
This threshold was selected after comparing several alternatives.

EEG channel artefacts often result from poor electrode contact, movement
during recording, or hardware issues like damaged wires. Such artefacts can
introduce irregularities into the signal. To detect these, three statistical features
were computed for each channel:

— Spatial Kurtosis - This metric quantifies the ‘tailedness’ of the component’s
amplitude distribution over time. High kurtosis may indicate sharp, transient
artefacts (for example, muscle bursts or eye blinks), whereas lower values
suggest more regular, brain-related activity.

— Spectral slope from Power Spectrum (SL-F) - The power spectrum is com-
puted using the real value Fast Fourier Transform (rFFT), and the spectral
slope is estimated by averaging the gradient of the resulting spectrum. This
feature captures how power decreases across frequencies. Flatter slopes may
reflect noise or artefactual components.

— Correlation with EOG - This metric assesses how strongly an independent
component (IC) aligns with eye movement activity. In the DEAP dataset,
EOG signals are estimated by combining the signals from two electrodes, one
placed above and one below the right eye (EXG3 and EXG4). Their absolute
sum provides a measure of eye activity. A high correlation between this signal
and an IC suggests that the component may represent ocular artefacts, such
as blinks or vertical eye movements.
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— Median Gradient (MG): This feature was calculated by first computing the
gradient of the component’s time series, which estimates the rate of change
between successive time points. The median of these gradient values was then
taken to summarize the typical rate of change in a way that is robust to noise
and outliers.

— Hurst Exponent - This parameter captures long-range temporal dependencies
in EEG signals. Normal EEG activity usually yields a Hurst exponent around
0.7; significant deviations suggest artefacts.

Such a baseline method, now referred to as ICA-F, was implemented because
ICA is the reference method for EEG denoising, but it requires visual human
inspection of components. However, the metrics borrowed from the FASTER
methodology fully automate artefactual component selection, thus avoiding
human intervention. In such methodology, parameters were corrected for ref-
erence offset as described [28]. Channels identified as noisy were excluded and
replaced through spherical spline interpolation (with EEGLAB), ensuring con-
tinuity and signal integrity.

3.6 Evaluating the Performance of Trained Person-Specific VAEs

The proposed training architecture is evaluated at two different stages. Firstly,
the reconstruction capacity of VAE for generated EEG topo maps is assessed
using the SSIM, MSE, and MAE metrics. SSIM is a perceptual metric that
measures how much image quality is lost due to processing, including data com-
pression. It is an index of structural similarity (in the real range [0, 1] between
two images, the topographic maps) [47]. Values close to 1 indicate that the two
topographic maps are very structurally similar, whereas values close to 0 suggest
they are exceptionally dissimilar and structurally different. MAE is the average
variance between the significant values in the dataset and the projected values in
the same dataset and is defined as the mean absolute error (MAE) [48]. MSE is
defined as the mean (average) of the square of the difference between the actual
and reconstructed values: the lower value indicates a better fit. In this case, the
MSE involves the comparison, pixel by pixel, of the original and reconstructed
topographic maps [47].

Secondly, SNR, PSNR, MAE, NRMSE, and the correlation coeflicient are
applied to the architecture’s final output (topographic maps) after being con-
verted back into the time domain (reconstructed EEG signals) for evaluation to
assess how well the reconstructed EEG signals align with the signal produced
by the baseline method. In order to identify artefactual segments containing
eye-blinks, an offline semi-automatic threshold-based approach is employed [51].
In detail, a peak detection algorithm has been adopted to identify the peak
locations of eye-blinks, which requires a threshold. This threshold value is auto-
matically computed using the algorithm described in [23]. The pseudo-code of
this approach is presented in algorithm 1. In such algorithm, the K-value is a
hyperparameter, and its tuning is required because varying it can lead to more
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or less true positives and false positives peaks. To improve the accuracy of cor-
rectly identified peak locations, another strategy is employed by computing the
Z-scores of each electrode’s values at a particular location in time, and then
ranked.

Algorithm 1. Algorithm for threshold identification for ocular artefact locations.

Require: Array of pre-processed Fpl and Fp2 EEG channels, [data)]
Ensure: Threshold for detecting the ocular artefacts

: [ data aps | < abs([ data ])

: [ data sqrt | < sqrt ([ data abs])

: [ data max] — max ([ data sqr¢ ])

std « std([ data ])

Threshold « data max — std/k

In EEG signal recordings, eye-blinks are captured primarily by the frontal
electrodes, Fpl and Fp2, due to their proximity to the eyes. If the Z-scores of Fpl
and Fp2 are top-ranked, followed by AF3 and AF4 when compared to the z-scores
of the remaining electrodes, then such location in time can be safely considered
as containing a true, plausible blink peak. In other words, this process generates
a list of locations where plausible blink peaks likely exist in the time domain.

4 Results and Discussion

This section outlines the empirical findings for hypothesis testing grouped by
the previous two stages: model reconstruction capacity and ocular artefact mit-
igation.

4.1 VAE Model’s Reconstruction Capacity

The VAE’s reconstruction capacity is evaluated based on the reconstructed topo-
graphic maps and EEG signals. Tables 1 and 2 presents the SSIM, MSE, MAE,
and MAPE scores for the both training and unseen test data. The SSIM val-
ues approach close to one, while the MSE, MAE, and MAPE values approach
close to zero. Furthermore, the evaluation incorporates an analysis focused exclu-
sively on the reconstructed topographic maps at the 32 electrode positions in 2D
space, offering additional insight into the VAE’s effectiveness. Figure 4 presents
a selection of original and corresponding reconstructed topographic maps from
the test data of a randomly chosen participant. The visual similarity between
the reconstructions and the originals demonstrates the VAE’s ability to preserve
spatial patterns effectively. Furthermore, the reconstructed EEG topomaps are
converted back into time series to evaluate the temporal reconstruction perfor-
mance of the trained VAE. As illustrated in Fig. 5 for the Fpl and Fp2 channels,
also summarized in Tables1 and 2, the reconstructed signals exhibit a perfect
positive correlation (close to 1) with the originals.



340 T. Ahmed et al.

Original EEG topo maps

Reconstructed EEG topo maps

Fig. 4. Original and reconstructed topographic maps from the VAE models trained
with topographic maps from a random participant.
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Fig. 5. The reconstruction capacity of the Variational Autoencoder model of a random
subject for Fpl and Fp2 channels.

Table 1. Reconstruction capacity of 10 Variational Autoencoder models from random
participants using SSIM, MSE, MAE, MAPE on topographic maps and 32 coordinate
values (c), and correlation coefficient (Training Data).

Part/SSIMMSE ~ MAE  MAPE SSIM (C)MSE (C) MAE (C) MAPE (C)CORR
1 0.9995.69E—095.40E—058.65E—05/1 2.26E—14 |9.81E—08 0.139 0.999
2 0.999/1.04E—08/7.71E—05401.9231 |1 3.91E—14 [1.34E—07 0.154 0.999
3 0.999/6.29E—096.14E—050.0002 |1 4.30E—14 1.58E—07 0.107 0.999
4 10.998/1.52E—084.56E—05402.0 |1 3.27E—14 7.19E—08 0.345 0.999
5 0.9997.91E—-090.002  259.13 |1 5.866E—155.98E—08 0.099 0.99
6 0.999 1.52E—085.15E—05215.95 |1 6.18E—13 3.33E—07 (0.347 0.999
7 0.9995.74E—096.66E—050.0002 |1 5.06E—14 1.89E—07 0.145 0.998
8  0.998/1.62E—089.91E—05314.007 |1 1.213E—148.791E—08/0.099 0.998
9 0.999 7.80E—095.66E—05249.163 |1 5.66E—15 5.28E—08 0.103 0.999
10 10.9911.01E—070.001  |153.565 |1 1.99E—12 8.71E—07 1.284 0.996

4.2 Identifying and Reducing the Artefacts

As mentioned in the design Sect. 3.6, this experiment specifically considered the
Fp1l and Fp2 channels, given that ocular artefacts are predominantly captured in
the frontal electrodes [20]. A random segment of EEG signals was selected for the
FP1 and FP2 channels to evaluate the impact of manipulating the VAE’s latent
space and compare it with the existing baseline approach. This included the raw



Subject-Specific VAEs for Automatic Artefacts Reduction

341

Table 2. Reconstruction capacity of Variational Autoencoder models using SSIM,
MSE, MAE, MAPE on topographic maps and 32 coordinate values, along with corre-
lation coefficient (Test Data).

Part/SSIMMSE MAE MAPE SSIM (C)MSE (C) MAE (C)MAPE (C)CORR
1 0.9995.57E—09 5.19E—05 8.30E—051 3.93E—149.48E—08/0.204 0.999
2 0.999 1.883E—088.026E—059.94E—05/1 8.17E—14/1.41E—07/0.194 0.998
3 0.9992.08E—08 7.81E—05 0.002 |1 1.74E—132.11E—070.118 0.998
4 10.999/1.78E—08 6.02E—05 0.002 |1 3.16E—134.67E—070.170 0.995
5 0.997 2.34E—08 5.31E—05 0.005 |1 2.54E—13 1.03E—07/0.096 0.999
6 |1  4.38E—09 4.09E—05 9.84E—05/1 2.16E—132.67E—07/0.270 0.996
7 0.999 1.67E—08 [7.04E—05 0.002 |1 2.78E—132.03E—07/0.126 0.999
8 0.9982.23E—08 0.001 0.001 |1 1.98E—14/9.21E—080.102 0.999
9 10.9997.91E—09 5.54E—05 0.001 |1 6.70E—155.19E—080.0712  0.999
10 10.9956.12E—08 0.001 0.005 |1 1.21E—128.02E—070.603 0.999

data, the baseline output, the modified VAE latent space (VAEm), and the stan-
dard VAE (VAE, no latent space manipulation) reconstructions, as illustrated
in Fig. 6. In contrast to the raw and regular VAE signals, both the VAEm and
the baseline’s outputs exhibit a noticeable reduction in amplitude during periods
of ocular artefacts. Outside these artefact intervals, the signals closely resemble
the original data, suggesting that latent space modification selectively targets
artefactual information while preserving the integrity of the neural signal.

Channel: Fpl

Signal Ampltude

VAE (Corr: 0.700, SNR: 47.406, PSNR: 19.321, MAE: 0.571, NRMSE: 0.033)
—— VAEm (CorT: 0.710, SNR: 52.447, PSNR: 19.764, MAE: 0.558, NRMSE: 0.033)
—— ICAF (Corr: 1,000, SNR: 42.672, PSNR: 17.054, MAE: 0, NRMSE: 0)

—— Raw (Corr: 0.630, SNR: 45.944, PSNR: 20,105, MAE: 0.684, NRMSE: 0.032)

Signal Amplitude
|

40250

40750

41000

41250
Time

Channel: Fp2

42000

42250

VAE (Corr: 0.580, SNR: 50.790, PSNR: 18.110, MAE: 0.721, NRMSE: 0.041)
—— VAEM (Corr: 0.570, SNR: 56.115, PSNR: 18.741, MAE: 0.714, NRMSE: 0.041)
—— ICAF (CorT: 1.000, SNR: 31.971, PSNR: 18.483, MAE: O, NRMSE: 0)

= Raw (Corr: 0.520, SNR: 52.194, PSNR: 18.328, MAE: 0.863, NRMSE: 0.042)

14000

14750

15000
Time

15250

15750

16000

Fig. 6. An illustration of a random segment from the Fpl and Fp2 channels and their
reconstructions by the baseline method, the VAEm, and VAE autoencoders.

Subsequently, SNR and PSNR metrics were computed individually across all
channels for the raw, baseline VAEm, and standard VAE signals to support a
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more detailed evaluation. The results, illustrated in Fig. 7, demonstrate notice-
ably higher SNR and PSNR values for the FP1, FP2, and few other channels,
while the remaining channels exhibited performance comparable to the baseline.
These findings suggest that the proposed approach effectively suppresses the
artefacts without compromising signal quality elsewhere.

SNR (Self)
-—ran  mm CAF(0, 1))

channels
PSNR (Self)

-—ran  mm CAR(0, 1)) VA vAEm

Fig.7. SNR and PSNR computed for Raw and reconstructed signals outputed from
ICA Faster, VAEm, and VAE for all channels.

Additionally, to assess the impact of latent space manipulation, MAE,
NRMSE, and correlation coefficients were computed between the original sig-
nal test data and those reconstructed using ICA-Faster, VAEm, and VAE. The
results, presented in Fig. 8, show that VAEm yields lower MAE and NRMSE val-
ues for most channels, suggesting it effectively preserves the signal while reducing
artefacts. In contrast, ICA-F reduces artefacts but also introduces distortions in
other parts of the signal, as indicated by the higher MAE and NRMSE values for
several channels. Correlation coefficients were computed for the FP1 and FP2
and the average of all channels for each combination of signals. As shown in
Fig. 9, the correlation between the raw and VAEm signals is consistently higher
than between the raw and ICA-F signals, with VAEm closely resembling the
original data. This indicates that latent space manipulation in VAEm signifi-
cantly improves signal reconstruction, maintaining more of the original content
than ICA-F, which reduces artefacts and distorts other parts of the signal. This
supports the notion that latent space manipulation enhances signal quality while
effectively reducing ocular artefacts.

Subsequently, for enhanced analysis, a specific segment of the ocular artefacts
in the Fpl and Fp2 signals, spanning from —0.2 ms before to +0.5 ms after the
blink peak, was plotted for both original and reconstructed EEG signals. This
interval captures the temporal dynamics of ocular related distortions and their
reconstruction through latent space manipulation. Figure 10 displays four rows,
each corresponding to different percentile thresholds used to define the lower and
upper bounds of each latent component distribution. In each row, the original
topographic map at blink peak (top-left) is compared with the reconstructed
map (top-right), while the corresponding original and reconstructed Fpl and
Fp2 signals are shown below. In the first row, with bounds set at the §% =
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Fig. 8. MAE, NRMSE, and correlation coefficient computed for between the original
signal and those reconstructed using ICA-Faster, VAEm, and VAE.

Correlation for Channel: Fp1 Correlation for Channel: Fp2

Correlation Between Signal Types

Fig. 9. Correlation coefficients between the raw and reconstructed EEG signals for Fpl
(left), Average of all channels (middle), and Fp2 (right), illustrating the effect of latent
space manipulation.

0.25'" and §Y = 99.75'" percentiles (approximately +3 standard deviations),
the impact of latent space modification is minimal on reducing the artefacts, as
evidenced by the near identical topographic maps and signal amplitudes. Reduc-
ing the percentile spread to 6% = 1.0°* and 6V = 99.0*" percentiles in the second
row does not introduce any noticeable changes in the reconstructed outputs,
indicating that the latent space modification has little to no effect. More pro-
nounced effects begin to emerge when narrowing the thresholds to 6% = 2.07d
and 6V = 98.0'" percentiles, where only subtle and mild changes are observed.
Further tightening to 6% = 3.0'! and 6V = 97.0*® results in noticeable alter-
ations in the reconstructed topographic maps, particularly around the frontal
electrodes, and the Fpl/Fp2 signals exhibit clearer attenuation during the blink
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interval. However, additional restriction to 6% = 4.0 and 6V = 96.0** does not
yield further improvement, suggesting a saturation point where increased latent
space modification no longer significantly enhances artefact suppression. These
findings highlight that percentile-based manipulation of the latent space can
selectively modulate reconstruction behaviour, with tighter bounds enhancing
artefact removal while preserving overall spatial and temporal signal integrity.
Changing percentile values through latent space manipulation impacts the recon-
structed signals by progressively improving artefact reduction, with a saturation
effect observed at higher constraints.

Figure 11 presents MNE topographic maps across the blink peak in six rows.
The first row displays the original maps, while the remaining five rows show
reconstructions under progressively narrower latent space percentile boundaries.
The second row, with §% = 0.25*" and 6V = 99.75*®, shows reconstructed maps
that closely resemble the originals, indicating virtually no impact from latent
space modification. Similarly, the third row (67 = 1.0%t, §V = 99.0%h) exhibits
minimal to no noticeable change. Subtle and mild changes begin to appear in
the fourth row using 0% = 2.0"! and §Y = 98.0*", suggesting a mild influence of
latent constraint. In the fifth row (67 = 3.0", 6§ = 97.0'"), the reconstructed
outputs display noticeable differences, particularly around the frontal electrodes,
with clearer attenuation in the Fpl/Fp2 signals during the blink interval. Finally,
in the sixth row (67 = 4.0t", 6V = 96.0'"), the impact is comparable to that of
the previous setting, indicating a saturation point where further tightening of
the percentile thresholds does not yield substantial additional improvements in
artefact suppression.

Table 3. Performance metrics for Raw (SNR and PSNR only), and all metrics for
ICA-F and VAEm across participants

Participant Raw ICA-F VAEm
SNR [PSNR|SNR | PSNR|Corr MAE NRMSE|SNR |[PSNR/|Corr MAE NRMSE

P1 33.07|18.26 |34.05/17.56 0.8 |0.36 [0.024 |43.48|13.66 |0.89|0.20 |0.02
P2 41.36/13.04 32.47/13.32 10.93 10.25 |0.028 |41.70/11.89 |0.98 0.10 |0.017
P3 37.60[12.14 129.12/12.71 10.92]0.22 |0.029 |37.89/11.71 |0.98]0.11 |0.019
P4 35.63/14.91 [30.09/15.58 |0.86 0.22 0.02 41.00[12.72 |0.8710.24 10.03
P5 42.68/12.91 23.46/12.75 0.97(0.12 |0.023 45.69/12.46 0.95/0.13 |0.02
P6 41.3513.81 |27.87/13.88 10.96 |0.17 |0.02 41.76/13.21 10.98 0.09 [0.01
p7 35.83|14.02 |33.45/13.570/0.90 |0.11 |0.05 37.48/13.29 10.97 0.06 [0.01
P8 39.44/14.78 (13.96/14.72 10.890.28 |0.02 40.62(13.55 10.98 0.09 |0.00
P9 38.66/13.01 |28.99/13.23 0.870.23 |0.02 39.73|12.53 (0.94/0.14 |0.01

The findings illustrate that training a person-specific VAE with (40, 40) topo-
graphic maps derived from 32 electrode values, resulting in a tensor of 1600
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Fig. 10. Original and reconstructed MNE topomaps and Fpl/Fp2 signals from —0.2
ms to 0.5 ms around the blink peak, using different percentile thresholds. Each row
shows the original (left) and reconstructed (right) data.

values, enables a significant reduction in map size—up to 99%—without losing
essential information. The VAE learns a latent space representation by encoding
1600 values into a compact form, preserving essential features. This is validated
through metrics such as MSE, MAE, RMSE, and MAPE, confirming the accu-
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Fig. 11. Original and reconstructed topographic maps from —0.2 ms to 0.5 ms around
the blink peak, using different percentile thresholds.

racy between the original and reconstructed tensors. The impact of latent space
modification is further explored using SNR, PSNR, MAE, NRMSE, and correla-
tion coefficients. The VAEm method shows higher SNR and PSNR values for FP1
and FP2 signals than ICA-F, suggesting a better reduction of ocular artefacts
while maintaining signal integrity. The correlation coefficient between the raw
and reconstructed signals further supports the effectiveness of the latent space
manipulation in artefact suppression. Data from 9 randomly selected partici-
pants were used to assess the model’s generalizability. Table 3 shows the average
channel-wise metrics across these subjects. VAEm yields higher SNR than Raw
and ICA-Faster, with a stronger correlation to the original signal. Addition-
ally, the lower MAE and NRMSE values indicate that VAEm better preserves
the non-artefactual portions of the signal, maintaining closer resemblance to
the original data. In contrast, ICA-F tends to alter other parts of the signal.
This method also offers flexibility, adapting to datasets with different electrode
configurations and generating topographic maps of various sizes. The ability to
interpret the latent space enhances understanding of the VAE’s has learnt salient
high-level representations of multi-variate EEG data, helping to identify artefac-
tual components. Importantly, the model is trained on the training data, with
distribution boundaries computed from it, ensuring robustness when applied to
unseen data. Regarding the effect of modifying latent space boundaries, Figs. 10
and 11 shows that noticeable changes in the reconstructed topomaps only occur
after reducing the distribution to 6% = 3.0'¢ and 6V = 97.0'" (fifth row). These
results highlight that tighter latent space boundaries lead to more significant
reductions in ocular artefacts.
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5 Conclusion

Electroencephalogram (EEG) recordings are often contaminated with artefacts
that hinder analysis. This study introduces a novel, subject-specific VAE-based
automated artefact identification and reduction method within a self-supervised
framework, minimising the need for human intervention. Unlike traditional
approaches relying on vector representations, this method leverages spatially
structured EEG topographic maps to retain spatial information during recon-
struction. A key approach component involves analysing the latent space after
training a VAE. Boundaries for each latent component were estimated using
percentile-based thresholds, and probability distributions from training data
were used to compute anomaly scores. Test samples were flagged as anoma-
lous if their scores exceeded the 98th percentile of training scores. These sam-
ples were then corrected by clipping and adjusting their activated latent values
within the established boundaries. Results demonstrate that person-specific VAE
models effectively reduce artefacts while preserving signal structure and spatial
integrity. Modifying latent space boundaries using percentiles further improves
artefact suppression, especially ocular artefacts, with noticeable improvements
seen at narrower thresholds. In summary, the proposed method offers a practical
and generalizable solution for EEG artefact reduction, maintaining signal fidelity
while minimising human input. Future work will aim to validate the technique
across datasets with varying electrode configurations and explore more profound
insights into latent components responsible for different artefact types, enhanc-
ing interpretability and robustness.
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Abstract. Class activation mapping (CAM) is a widely adopted class
of saliency methods used to explain the behavior of convolutional neu-
ral networks (CNNs). These methods generate heatmaps that highlight
the parts of the input most relevant to the CNN output. Various CAM
methods have been proposed, each distinguished by the expressions used
to derive heatmaps. In general, users look for heatmaps with specific
properties that reflect different aspects of CNN functionality. These may
include similarity to ground truth, robustness, equivariance, and more.
Although existing CAM methods implicitly encode some of these prop-
erties in their expressions, they do not allow for variability in heatmap
generation following the user’s intent or domain knowledge. In this paper,
we address this limitation by introducing SyCAM, a metric-based app-
roach for synthesizing CAM expressions. Given a predefined evaluation
metric for saliency maps, SyCAM automatically generates CAM expres-
sions optimized for that metric. We specifically explore a syntax-guided
synthesis instantiation of SyCAM, where CAM expressions are derived
based on predefined syntactic constraints and the given metric. Using
several established evaluation metrics, we demonstrate the efficacy and
flexibility of our approach in generating targeted heatmaps. We com-
pare SyCAM with other well-known CAM methods on three prominent
models: ResNet50, VGG16, and VGG19.

Keywords: Explainability - Class activation mappings -
Oracle-guided inductive synthesis

1 Introduction

Convolutional Neural Networks (CNNs) have enabled the development of effi-
cient solutions for a wide range of challenging vision problems, such as object
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detection in autonomous vehicles [11], facial recognition through semantic seg-
mentation [19], and medical image analysis [18,28]. Despite their advantages,
CNNs, like other neural models, suffer from an opaque decision-making process,
making it challenging to build trust in their predictions. For instance, physi-
cians using a CNN for X-ray classification require more than just a diagnosis;
they need to understand which specific part of the X-ray led to that diagnosis.
Similarly, in autonomous vehicles, debugging and employing CNN-based object
detectors requires insight into which parts of an image triggered a classifica-
tion. The growing need to explain CNN behavior has led to the development of
various explainability techniques [4,6,32,36]. However, with each new method,
it is becoming increasingly clear that more systematic approaches are needed
to generate explanations that adapt to the specific intents and needs of end
users [14].

In this paper, we address the challenge of incorporating intent by propos-
ing a metric-based approach to generating explanations for CNNs, i.e., where
explanations are optimized for a predefined metric. Specifically, we study this
problem in the context of explainability methods based on class activation map-
pings (CAM) [37]. CAM methods are one of the most adopted methods for
generating saliency maps, i.e., heatmaps that highlight the regions of an input
most relevant to the CNN’s prediction. The definition of relevance differs from
one method to another, and thus, each method may result in different heatmaps.
Figure 1, shows example heatmaps generated by a set of different CAM methods.
In the figure, the heatmaps highlight slightly different image regions across the
different techniques. Heatmaps produced by CAM are the result of computing a
linear combination of the feature maps from the convolutional layers of a CNN.
CAM methods generate heatmaps by weighting feature maps based on their con-
tribution to the class score. They differ in how they calculate the weights, each
offering a unique expression for computing them. Selecting the most appropriate
CAM method depends on the specific application and the level of detail in the
activation map.

For example, GradCAM [32] tends to favor larger activation regions in the
activation maps, highlighting the most prominent part of an image that influ-
ences classification. In an image with multiple swans (see Fig. 1, first row), Grad-
CAM primarily highlights the two more visible swans on the right. However, if
these swans are removed, the model may still classify the image correctly based
on the partial swan. In contrast, GradCAM-++ [4] incorporates all activation
regions, highlighting also the partial swans as influential in the CNN’s decision.
Depending on the user’s intent, whether they seek to understand the model’s
overall behavior or identify the most influential part of a specific image, they
may prefer one method over the other. Choosing the right CAM method is,
therefore, often a complex task, traditionally relying on human intuition and
empirical experimentation. A non-expert user may not know which CAM expres-
sion is most suitable for their application, and a systematic approach to guide
the generation of optimal CAM expressions, with respect to certain predefined
metrics, is missing.
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Fig. 1. Saliency maps generated using different CAM methods (GradCAM [32], Grad-
CAM-++ [4], ScoreCAM [36], AblationCAM [6], and one using an expression synthe-
sized by our SYCAM framework) for three models different CNNs trained on three
different data sets ImageNet [5], COVID-QU-Ex [34] and ImageNette [13]. The first
row of images shows heatmaps for GradCAM and GradCAM++. The second row of
images shows how SYCAM guided by a ground truth metric, captures the ground truth
more accurately than the other methods. The last row shows how SYCAM guided by
the insertion metric generates a heatmap that closely mimics that of the dominant
CAM method, ScoreCAM in this case.

Our framework, SYCAM, presents a metric-based framework for the auto-
matic synthesis of CAM expressions. From a given class of expressions, SYCAM
can synthesize expressions tailored to specific properties captured via a fit-
ting evaluation metric. For instance, metrics capturing the overlap between a
heatmap and the ground truth mask [33] or the pixel intensity of the heatmap
in such overlap [9] guide towards the generation of CAM expressions that gener-
ate heatmaps with higher similarity to ground truth. Metrics like the Deletion or
Insertion metrics [27] lead to CAM expressions that generate heatmaps highlight-
ing what the model is truly paying attention to (independent of the correctness
of the prediction).

Consider the heatmaps shown in the second row in Fig. 1, where different
saliency methods have been applied to explain why a CNN classified an X-ray
image as a COVID case. Here, we used SYCAM to synthesize an expression opti-
mized toward the ground truth, i.e., during synthesis, expressions are evaluated
based on whether they highlight pixels that also match the ground truth. From
the figure, we can see that the heatmap generated according to the SYCAM
synthesized expression captured the ground truth more accurately. In contrast,
all other methods failed to do so, producing significantly less accurate represen-
tations of the ground truth region.

We applied SYCAM using different metrics to study their impact on heatmap
generation. In Fig. 1, in the last row, we present another example where SYCAM
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was applied using the insertion metric [27]. The insertion metric evaluates how
the highest-scoring pixels in the heatmap influence image classification. In this
case, ScoreCAM achieved the highest score compared to GradCAM, Grad-
CAM-++, and AblationCAM. SYCAM generated an expression that closely
resembled ScoreCAM and achieved a very similar score. This demonstrates that
when a particular method outperforms others based on a given evaluation metric,
SYCAM produces expressions that align with the dominant approach.

Our results are based on an instantiation of SYCAM, adapting techniques
from the syntax-guided synthesis literature (SyGuS) [2], which searches a space
defined by a grammar of potential CAM expressions. This is done via an oracle-
guided inductive synthesis (OGIS) approach [15]. In OGIS, a learner explores
the space of possible solutions, guided by oracles that give feedback and evalu-
ate the correctness of solutions generated by the learner. Here, the learner is a
synthesis process that searches the space of possible CAM expressions, guided
by two oracles: one that can remove equivalent solutions and another that eval-
uates the candidate solution according to a given evaluation metric. We show
that, while a monolithic enumerative approach can be used to synthesize CAM
expressions, it comes with the limitation of not taking into account any of the
image properties, such as the image class. To overcome this limitation, we present
an adaptation of the synthesis approach leveraging a class-based decomposition
of the problem. Specifically, our approach allows for case splits, thereby synthe-
sizing a set of CAM expressions for each class of properties. This is showcased
in our experiments, where we use SYCAM to synthesize CAM expressions for
three prominent models: ResNet50, VGG16, and VGG19 [22], and compare them
with those of established methods like GradCAM, GradCAM++, ScoreCAM,
and AblationCAM.

In summary, SYCAM provides a general framework for the systematic gener-
ation of CAM methods, with flexibility in two dimensions: first, the user can pro-
vide an evaluation metric to suit their use case; and second, the user can provide
a syntactic template or grammar that defines the space of possible expressions,
giving the potential to provide user intuition to the search algorithm. SYCAM
will then find an expression that is dominant with respect to the given evaluation
metric. Our primary contributions can be summarized as follows:

— We introduce the problem of synthesizing CAM expressions for CNNs opti-
mized for specific evaluation metrics.

— We present a framework for solving the problem following the OGIS approach,
adapting enumerative techniques from SyGusS.

— We present a thorough experimental evaluation demonstrating the efficacy of
our framework in synthesizing CAM-expressions for the prominent classifica-
tion models ResNet50, VGG16, and VGG19.

— We evaluate our framework over a COVID-19 benchmark, where the expres-
sions incorporate metrics that favor expert knowledge.
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Fig. 2. Overview of a CNN-based model that classifies X-ray images into COVID-19
positive or negative, and a CAM-based method that explains each classification.

2 Background
2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have proven highly effective in pattern
recognition tasks, especially in image processing [11,17,19]. The typical archi-
tecture of a CNN is illustrated in Fig.2. The fundamental building blocks of a
CNN are the convolutional layers, which are used for identifying features within
an image. These layers work by iteratively applying filters, so-called kernels,
to the input image. These filters are learned during the training phase. Each
layer applies multiple filters to the output of the previous layer, starting with
the input image. The output produced by applying a filter is known as a fea-
ture map. As the network deepens, the feature maps define increasingly complex
features. While the initial layers may focus on basic elements, such as colors
and edges, deeper layers recognize larger patterns. In classification tasks, these
higher-level features are usually passed to a fully connected layer used for classi-
fying the image. To reduce the size of these feature maps while preserving critical
information, pooling layers are introduced after each convolutional layer. Com-
mon pooling methods include average pooling and max pooling, which reduce a
portion of a feature map into its average or maximum value, respectively.

2.2 Class Activation Mapping

Saliency maps are visual artifacts that highlight the regions of an image most
relevant to a model’s prediction. Class Activation Mapping (CAM) is a promi-
nent set of methods for generating these saliency maps. The core idea of CAM
is to compute a saliency map, the class activation map, via a weighted linear
combination of the feature maps of the last convolutional layer [37]. This layer
is chosen because it captures high-level features that are most relevant for the
classification. The map is always generated for a certain class and points to the
parts of an image the network focuses on when predicting that particular class.
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The general concept of CAM is illustrated in Fig. 2. Formally, for an output
class ¢ and a convolutional layer [, the saliency map L¢ can be defined as: L¢ =
Dok ag AL, where Al denotes the k-th feature map of the layer [, i.e., the two-
dimensional array resulting from applying the k-th convolutional filter of the
layer [ to its input, and the weights af depend on the CAM method chosen.

Each feature map highlights specific aspects of the image. High values in a
feature map point to the presence of a feature; low values hint at its absence.
Since each feature map contributes differently to the scores of individual classes,
the linear combination is weighted to reflect the influence of each feature map
in producing the final class activation map. These influences are represented by
the weights aq, ..., a,.

Different CAM methods are distinguished by how they calculate the weights.
In the original CAM, the weights were defined via the learned weights cor-
responding to different classes. Methods like GradCAM or GradCAM-++ [21]
compute the weights by using the gradients of the score for a specific class with
respect to the feature maps of a convolutional layer. Further gradient-based
approaches building on the latter two include SMOOTH GRADCAM-+-+ [26],
AUGMENTED GRADCAM [24], and XGRADCAM [10]. Gradient-free approaches
determine the importance of different regions in the input image for a specific
class without relying on gradients. These include perturbation-based approaches
like SCORECAM [36] and ABLATIONCAM [6], attention-based methods like
Attention-Guided CAM [20], and methods like EIGENCAM [25], that apply
principal component analysis to create the class activation map. For a compre-
hensive survey, we refer the reader to [14]. So far, no systematic approach has
been used to determine the optimal weight expression for a given task. Our
work addresses this challenge by introducing an automated approach capable of
synthesizing both gradient-based and gradient-free expressions if the grammar
allows it.

2.3 Heatmaps Evaluation Metrics

Several metrics have been introduced in the literature to evaluate saliency meth-
ods [16]. Some of these methods are perturbation-based, i.e., they evaluate the
effect of masking regions highlighted by CAM methods on the model’s perfor-
mance. Examples of such metrics include Average Drop % [4], AOPC [31], ROAD
[30], IROF [29], and the Deletion and Insertion [27] metrics. Another category of
metrics is ground-truth-based. These metrics measure the distance of the expla-
nation to the ground-truth explanation data. Some examples of these metrics are
the mgr metric defined in [33], the Segmentation Content Heatmap (SCH) met-
ric [9], CEM [7], and CLEVR-AI [3]. SYCAM is agnostic to the chosen metric,
and CAM-weight expressions can be synthesized by SYCAM with respect to any
of the aforementioned metrics. Each evaluation metric focuses on different prop-
erties of the heatmaps, e.g., similarity to ground truth, robustness, and more.
The synthesized expressions are, in consequence, based on well-founded criteria,
guided by quantitative evaluation metrics. The resulting expressions generate
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optimized saliency maps according to these metrics, thus allowing us to elimi-
nate any human biases and to select a CAM method more suitable for a given
context. An extensive study on the correctness of XAI techniques in generating
the true explanations, the so-called fidelity, can be found in [23].

In the following, we provide a detailed introduction to key evaluation metrics
that we also use later in our experiments.

Average Drop %: The intuition behind this metric is one that checks whether
removing parts not highlighted by the heatmap of an image reduces the clas-
sification confidence of the model. Removing parts of an image that are not
relevant shouldn’t heavily impact the confidence drop. To check if the most rel-
evant parts of an image i are preserved, the product of the heatmap and the
image is computed. Then, the resulting image h is classified to measure the con-
fidence drop. A low confidence drop implies that the heatmap contains the most
relevant features of the image, so the lower the metric value, the better.

Given a dataset Z, the Average Drop % is expressed as ) ;. MJOO,
where y§ is the classification score for image ¢ € 7 and class c, and h{ is the
classification score for the product of image ¢ and the generated heatmap for
such image, and class c.

Deletion and Insertion Metrics: The Deletion metric measures the drop in the
classification score when the most relevant pixels of the image are gradually
removed, while the Insertion metric measures the rise in the classification score
when they are iteratively added to a blank image. In this paper, we use modified
versions of the Deletion and the Insertion metrics. Given a model M, an image
z, a limit on the number of perturbations P, and a saliency map H over x, the
process recursively modifies the image according to the following formula:

20 — 4 V1<j<P: 2 = g(x(jfl),f,rj)

For the Deletion metric, the function g gradually replaces the most relevant
pixels r;, ordered by the saliency map L§,[e], and their neighborhoods with
the corresponding parts of a highly blurred version of x, denoted by Z. The
neighborhood of a pixel is given by the feature maps used to compute the saliency
map. If the feature maps A; have size w x h, we split the image into a grid of
w X h neighborhoods. For the Insertion metric, the process is analogous, but
the most important pixels are added to the highly blurred version of the image
instead. The metrics are then defined by:

P
1 1 )
eletion = 777 —_— M (0)yco _ M €] Co)
flactet |I|Zp+1@ (@) (=)
zel j=0
1 1 (< .
Minsertion = 777 7( M(x(]))co _ M(z(o))co)
12l

Jj=
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where ¢ is the output class of M (2(?)), M(x)% is the output score for class co,
and |I| is the number of images in the set I. Unlike for other similar metrics
[12], no artifacts are added through this procedure, and T is generated using
deterministic filters, so the influence of random perturbations over the metric is
also avoided. The purpose of using these versions instead of the originals [27] is
to avoid adding artifacts, to make sure that the computed scores are relative to
the initial score of the model M over the base image, and to make them work
so that the higher the values, the better.

Intuitively, higher values of the metrics imply higher variations in the classi-
fication score during the perturbation process, i.e., higher relevance of the pixels
highlighted by the saliency map. We may get some insights about the datasets
employed using these metrics. For example, when the confidence drop for the
Deletion metric is much lower for a subset than for the others, it means that
the model is still confident in its classification even after masking portions of
the objects. This may imply that the objects occupy most of the image or that
the model identifies the objects through the background. In such cases, it is
important to improve the dataset.

Ground Truth Similarity Metrics: Some evaluation metrics are focused on mea-
suring the similarity of the heatmap to a ground-truth mask.

Given a heatmap H and a ground-truth mask Hgp with p pixels, the mgrp
metric takes the p most relevant pixels of H and counts how many of those
pixels are part of the ground-truth mask. This is, if n of the p most relevant
pixels of H are part of the mask Hgr, then mgr(H, Hgr) = n/p. While the
mgr metric measures the similarity between a heatmap and the ground truth,
it doesn’t provide information about the intensity of the heatmap pixels. The
SCH metric, on the other hand, solves this problem. The SCH metric is given
by:

> Hij- M,
SCH(H,Hgr) = 22—
> Hi;
2,7

Intuitively, the SCH metric measures how concentrated the heatmap is in the
ground-truth mask. The more concentrated the pixels are and the higher their
relevance, the higher the metric will be, so the higher, the better.

Notice that a strong assumption of ground-truth similarity metrics is that the
models are making classifications based on the ground-truth part of the image. If
the models are not doing so, and are making decisions based on other information
found in the input data, these metrics would return low values independently of
how well the heatmaps are explaining what the models are paying attention to.

2.4 Syntax-Guided Synthesis

Syntax-Guided Synthesis (SyGuS) [2] is the problem of generating a function
that both satisfies a semantic specification and is contained within a language
described in a context-free grammar (CFG).
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Definition 1 (Context-Free Grammar). A context-free grammar G is
defined as as a set of terminal symbols T and a set of nonterminal symbols
NT, a start symbol S, and a set of production rules R C NT x (TUNT)* which
describe the way programs may be constructed iteratively from the grammar.
Definition 2 (SyGuS problems). Formally, a SyGuS problem is a 4-tuple
(T, G, ¢, F) such that T is a first-order theory, G is a context-free grammar, ¢ is
a first-order formula, and F is a function symbol that may occur in ¢. A solution
to a SyGuS problem (T,G, ¢, F) is a function f such that T = ¢[F — f] and
f € L(G), where ¢[F +— f] denotes replacing all occurrences of F in ¢ with f.

Later in the paper, we study a SyGuS instantiation of CAM expression syn-
thesis, where the specification is that the resulting CAM method must perform
better than a given threshold function. This is described in detail in Sect. 4. The
most common approach for solving SyGuS problems is Oracle Guided Inductive
Synthesis (OGIS) [15]; a family of algorithms that alternate between a learner,
which attempts to learn a solution to the synthesis problem, and an oracle, which
guides the learner via means of queries and responses, the simplest of which is a
correctness query (the learner asks “is this candidate program correct?”, and the
oracle replies with “yes” or “no”). There is a broad variety of learners in the lit-
erature, but the most common are enumerative techniques. We take inspiration
from some of the most common enumerative learners [1] when implementing our
approach.

3 CAM Expression Synthesis
3.1 Problem Statement

Let ¢[?] define an expression with holes, known as a template, where holes in the
expression are marked by the symbol ?. For an expression e, the expression t[e]
results from replacing every appearance of the symbol ? in ¢ with e. Following
the definition of CAM as given in Sect. 2.2, we define a CAM template as L°[?] =
PO Aéc. The ? is a placeholder for an expression that defines how the weights
af are computed for a class c. We refer to such expressions as CAM-weight
expressions. We refer to the set of all instantiations of L¢[?] by Feanm-

Problem 1 (CAM expression synthesis) Let M = (Z — RICl) be a
set of CNN-based classifiers defined over a space of images T and a set of
classes C. Given M € M, a set of images I C I, a threshold function
A M XZT — R, a set of CAM-weight expressions £, and an evaluation
function p: Foap X M x I — R, synthesize an expression e € & s.t.
w(Lele], M, I) > A\(M,I).

In our problem statement, the role of the threshold function A is to set a lower
bound on the quality of synthesized expressions with respect to the evaluation
function p. As we will see in our experiments, the threshold function can be given
as a fixed number or as a function of any other CAM function. The evaluation
function p defines a metric for evaluating CAM functions and can be realized
by implementing known CAM evaluation metrics from the literature.
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3.2 Oracle-Guided Synthesis of CAM-Weight Expressions

Now that we have a formally defined problem statement, we can discuss the
SYCAM framework, an oracle-guided synthesis approach for the synthesis of
CAM-weight expressions. Let us initially assume we have access to two oracles:

— an equivalence oracle: this oracle receives as input a set of expressions e,
which may contain semantically equivalent expressions, and returns a set
of expressions € C € such that no two expressions in € are semantically
equivalent; and

— a correctness oracle: this oracle receives a single CAM-weight expression as
input, and returns a boolean which is true if the CAM-weight expression
results in a saliency map that scores above a pre-defined threshold on a pre-
defined metric, for a given set of images and classification model.

We will define the SYCAM framework assuming access to these oracles, but
we should note that these oracles are performing tasks that are, in general, unde-
cidable (equivalence checking) or at least computationally expensive (evaluating
a given CAM weight expression across a large set of images). We will address
the practical implementation of each of these oracles in Sect. 4.

The general workflow of SYCAM is depicted below. SYCAM is composed
of two main procedures, the synthesis phase (which is guided by the equivalence
oracle) and the evaluation phase (the correctness oracle). Candidate expressions
produced by the synthesis procedure are generated from a space of expressions
defined by an input grammar G, as described in Sect.4. The expressions are
then forwarded one by one to the evaluation process. An expression is evaluated
using a correctness oracle, defined in terms of the given evaluation metric p
and a threshold function 7, over a set of images I. If a candidate passes the
evaluation process, it is returned as a solution to the overall synthesis process.
If the evaluation fails, another expression is selected out of the current list of
candidate expressions, and the same evaluation process is repeated for the new
expression. If all candidate expressions have been evaluated with no success, the
synthesizer is triggered again to generate a new set of candidates.

€

ECTNE -~ .
G —| SYNTHESIZE COROI:{ACCLE i solution
X

€ e

EQUIVALENCE
ORACLE

Synthesis Phase: The task of the synthesis phase is to enumerate expressions
using the feedback given by the oracles. The algorithm we use is based on a
classical program synthesis technique: the bottom-up search algorithm [1]. For
the algorithm, we require an input grammar G, which defines an initial set
of expressions (terminals) and production rules R that allow us to combine
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Algorithm 1. Bottom-up Search

function SEARCH(G, A\, M, I, u) function ExpaND(E, G)
exprs «— () E — 0
exprs’ «— G.Term for r € G.R do
while True do if r is 1-ary then
solution «— EvVAL(exprs’', \, M, I, j1) for e; € E do
if solution # nil then E' — E'Ur{e}
return solution else if r is 2-ary then
exprs «— exprs U exprs’ for e1,es € PrOD(E, E) do
exprs’ « EXPAND(ezpr, G) E — E'Ur{e1, ez}

exprs’ «— ELIMEQUIV (exprs, exprs’, ) return E’

expressions to synthesize new ones (synthesize block). The synthesis phase calls
the equivalence oracle, ELIMEQUIV, in order to reduce the exponential growth
in expressions. This bottom-up search algorithm is shown in Algorithm 1.

Initially, we populate exprs with all expressions for Term. At each iteration
of the Algorithm 1, the search process deploys the EXPAND function to iter-
ate through the production rules of the grammar, and generates all possible
new expressions that use the elements in exprs to replace the non-terminals in
each production rule and adds them to exprs. We use r{eq,...,e,} to indicate
the result of taking the rule r € R and replacing the first nonterminal symbol
occurring in r with ey, the second with e, and so on.

Oracles: The equivalence oracle ELIMEQUIV then reduces the set of expressions,
by removing all semantically equivalent expressions. At each iteration, the cor-
rectness oracle EVAL checks the current list of programs to see if it contains
a program that it deems correct (i.e., a program that performs above a given
threshold on the evaluation metric). If so, the program is returned as a solution.

4 An Instantiation of SyCAM

Our approach is customizable to any grammar. In this section, we give an instan-
tiation of our framework for a grammar defining gradient-based expressions, and
expressions based on ScoreCAM and AblationCAM. We use a grammar with
non-terminals NT = {Expr, Term, Grads}, and starting category S = {Expr}.
The set of production rules R is defined as follows:

Exzpr := Term | Expr + Exzpr | 2 - Expr + Ezpr | Expr - Expr | ReLU (Expr)
Term := Grads | tops;(Grads) | top,,(Grads) | top,o(Grads) | topg,(Grads)
| CICScores | AblScores

c

Grads := GP( 3}'
k

) for any c€ C and k € K.

where ReLU is the element-wise function max{-,0}. Inspired by algorithms like
GradCAM, we use as terminals the gradients, denoted by Grads, of the score for
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the predicted class ¢ with Y¢ = M (x) with respect to the feature map activations
Ay, of the last convolutional layer, i.e. GP(SAL,:) where GP denotes the global
average pooling operation, for each feature map k in the set of feature maps K
and for each class ¢ in the set of classes C. We also include as terminals the
functions top,,(Grads) that nullify all but the highest n elements of Grads and
are denoted by top,,.

Inspired by ScoreCAM, we include as terminals (CICScores) the channel-
wise Increase of Confidence (CIC) [36]. For each feature map k, each image x, a
baseline input image x5, and a model M, the CIC is defined as CIC(A*F) = M(zo
H*) — M(xp) where H* = s(Up(AF)), Up denotes the upsample operation that
upsamples A* into the input image size, and s(-) is a normalization function to
the range [0, 1]. We assume that 3z, : M(z3) = 0, and use C(A¥) = M(z o HF).

AblScores represent the weights used in the definition of AblationCAM [6].
For each feature map k of a model M, and each image z, these weights w are
defined by w§ = ycy_cy’i, where y© = M(z) and yj, is the result of setting all the
activation cell values of Ay to zero and classifying again the z.

Notice that the terminals of the grammar are vectors with number of elements
equal to feature maps in the last convolutional layer of M, and every expression
generated by this grammar produces vectors with the same size as the terminals.

4.1 Equivalence Oracle

In general, determining the equivalence between two expressions is undecidable.
We thus use an approximation, referred to as observational equivalence.

Definition 3 (Observational Equivalence). Formally, two expression e; and
eo are observational equivalent on a finite set of images I, according to an eval-

uation metric u and a model M iff w(L¢[e1], M,I) = pu(L¢[es], M, I).

If two expressions are observationally equivalent, we can remove one of these
expressions from the pool of expressions used to build subsequent programs
provided the semantics of the program fragment do not depend on context. That
is, given two expressions e; and ey, and a set of images I, if e; and ey give the
same result on the set of images, then so will Cle;] and C[es] where Cleq] is
a program that uses e; as a subexpression, and Cles] is the same program but
with es in place of e;.

CAM-weight expressions are arithmetic expressions so this property is true,
for the set of images I. However, since evaluating the expression on all the images
in our dataset is time-consuming and impractical, our observational equivalence
oracle uses a smaller subset of the full dataset. Thus, if this set is not repre-
sentative of the full dataset, the observational equivalence oracle may remove
expressions that we subsequently may need. As a consequence of this approxi-
mation of equivalence, SyCAM may fail to find some possible solutions, but this
trade-off is worth it to prune the exponential growth of the search space.
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4.2 Correctness Oracle

Recall that we wish to synthesize an expression e such that the following is
true; p(Léle], M,I) > AM,I), for a given I and M. Unlike many domains
where OGIS is used, it is not possible for us to reason about this expression
symbolically using techniques like SMT solvers, since this would require us to
reason about the weights of the model and the pixels of each image. We must
therefore use testing, executing each generated CAM method on the images in
the set I. Expressions are then checked one by one for their correctness. If an
expression passes the correctness test, the overall synthesis process terminates,
returning this expression as a solution. As we will see in the experiments, this
process is modified to run for a fixed amount of time and then return the best
expression synthesized instead.

4.3 Class-Based Decomposition

A limitation of the algorithm presented in the previous section is that the gram-
mar we use does not contain any expressions that can perform case splits, e.g.,
an “if” expression, or any logical expressions that can define when to apply a
specific CAM method to a particular image. This means that the function we
synthesize is applied uniformly to all images, regardless of the properties of that
image. In this section, our goal is to extend this grammar to permit case splits.
One obvious way of doing this would be to introduce an “if-then-else” statement
into the grammar G, as well as expressions for identifying features or charac-
teristics of different images. This, however, results in a significantly expanded
search space, and an intractable synthesis problem. In this section, thus, we
break down the synthesis method into two parts: a classification model M, and
a set of CAM-weight expressions, synthesized using the enumeration approach
described previously, that should be applied to each class. Thus, for a given set
of classes, the end CAM-weight expression will be an expression in the grammar
given by G extended with the following production rule:

Ezpr .= (Y = max(Y,...Y))? Expr : Expr

where Y% is the confidence score for class ¢;, and {c1,...c,} is the set of classes
generated by the model M. It would be possible to use any classifier in this step,
but we take advantage of having a classifier that can choose the expression for
each image: the model M.

One advantage of this approach is that it prevents the rejection of good
expressions that do not perform well only for small subsets of images. However,
an important disadvantage is that the algorithm has to be executed once for
each output class. If the number of output classes of a model is in the order of
thousands, this method requires considerable computing power.

5 Experiments

In this section, we present three sets of experiments that show the efficacy of
SYCAM:
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— E1 - Sanity check: We show the ability of SYCAM to synthesize known
dominant CAM expressions for a given metric, or better ones if the grammar
allows for more expressive expressions. We apply SYCAM to one Pytorch
model, VGG16 trained over the PASCAL VOC 2007 dataset [8].

— E2 - Enumeration vs class-based decomposition: We compare SYCAM
to the classical approaches of GradCAM, GradCAM-++, ScoreCAM, and
AblationCAM. Here, we particularly compare the enumerative and class-
based decomposition approaches and show how the latter improves over the
former. SYCAM is applied to three PyTorch models: ResNet50, VGG16, and
VGG19, trained over the Imagenette dataset [13].

— E3 - Incorporating ground truth: This experiment is an application of
SYCAM to show that, in contrast to standard methods, SYCAM allows us to
incorporate expert knowledge into the generation of saliency maps, resulting
in better saliency maps. SYCAM is applied to a ResNet50 model trained over
COVID-19 X-ray images from the COVID-QU-Ex dataset [34].

All experiments were run using an NVIDIA T4 with 16 GB RAM. The code
used can be found in https://github.com/starlab-systems/SyCAM. The compu-
tations were enabled by resources provided by the National Academic Infrastruc-
ture for Supercomputing in Sweden (NAISS), partially funded by the Swedish
Research Council through grant agreement no. 2022-06725.

5.1 Experimental Setup

As established in Sect.3.1, the goal is to find an expression e such that
w(Lle], M, I) > A(M,I), for a given image set I and a model M by follow-
ing Algorithm 1. We adapt Algorithm 1, to one that instead of stopping the
computation the moment we find an expression e that beats a threshold A, to
one that continues the search, always saving the so-far best expression found,
and taking the value p(L¢[e], M, I) for the best expression as the new threshold
A. We start with A = 0. We let the experiments run for a fixed amount of time
and return the best expression synthesized during that time.

Grammar: The grammar used for the experiments is defined in Sect.4. Com-
puting the weights generated by terminals CICScores and AblScores is compu-
tationally expensive. In the case of ResNet50, VGG16, and VGG19, they are
required to compute 512 classifications per image. To reduce the computation
overhead, for each dataset and evaluation metric, we precompute the weights
produced by these terminals beforehand for each image in the dataset.

Synthesis Phase: The set of expressions generated grows exponentially. Because
we have 7 terminals in the grammar, and we are enumerating solutions that can
be produced with the rules defined, more than 1000 expressions were generated
in only three applications of the EXPAND function (see Algorithm 1) even after
discarding equivalent expressions using observational equivalence (Sect.4.1). By
the fourth application of the EXPAND function, we would generate more than
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10% expressions. To prevent spending too much time just discarding equivalent
expressions without evaluating them, instead of generating a whole new set of
expressions with EXPAND before evaluating, we generate and yield expressions
one by one. Each expression is evaluated just after being generated by the equiv-
alence oracle and, if not discarded, by the correctness oracle.

Equivalence Oracle: The function ELIMEQUIV of Algorithm 1 employs a subset
with 10 images, one of each class of the dataset, to ensure this subset is as repre-
sentative as possible. We also tested subsets of size 20 and 30 of the Imagenette
dataset, and we confirmed that the number of expressions discarded decreases
(by 1.5% and 7.2%, respectively) with the number of images in the subset. How-
ever, the expressions synthesized were the same, and there is a trade-off with
the computation time dedicated to generating expressions and discarding those
equivalents, so we maintained the original size of 10 images.

Correctness Oracle: It would be time-consuming to test every generated CAM
method on every image in the dataset I. For example, it takes around 18 min to
compute the Deletion metric for ResNet50 and a single expression over a dataset
of 4000 images. To overcome this computation overhead, we implement the cor-
rectness oracle as follows, aiming to discard expressions as early as possible.

The evaluation is done by applying an evaluation procedure on the candi-
date expression defined in terms of an evaluation metric u and over increasingly
large sets of images Iy C I C ... C I. If a candidate expression e is evaluated
over the set I; and results in a score larger than that computed by a threshold
function A\ over at least half of the images in I;, and the average score is better,
ie. u(LCle], M, ;) > MM, I;), it is then evaluated over the next largest set of
images, I; 1. Otherwise, the candidate is discarded. If a candidate expression
e is evaluated on the set I and achieves a score higher than that computed by
the threshold function over at least half of the images, and the average score
is higher, then e is the best expression found, and A is updated with the new
threshold defined by e. With this multi-layered approach, we can quickly elimi-
nate programs that already fail evaluation on smaller sets of data, thus speeding
up the search for solutions. It is possible that a candidate may perform poorly
on a subset I; and then perform better than the threshold function on a subset
I;1+1, and thus be discarded early. This risk is small since our subsets are rela-
tively large and are uniformly sampled from the full set of images, so likely to
be representative.

The oracle checks if the candidate expression e is better than the best solution
found for at least half of the images because the goal is to find an expression
that works well for as many images as possible, i.e., that generalizes well, and
at the same time has a higher score.

Lastly, we set a timeout of 6 h for experiment E1 and 24 h for E2 and E3, i.e.,
the returned expression is the best expression found within these time bounds.
We note that within this timeout, we were able to reach the fourth iteration
of the algorithm, but despite the optimizations, we are not able to cover all
the 10% expressions of that iteration. This results in a limitation on the size of
the expressions that can be synthesized. However, we show later that SYCAM
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manages to synthesize better expressions than widely known CAM methods.
Furthermore, once the SYCAM expression is synthesized, the computational
cost of generating saliency maps is similar to that of other CAM expressions, so
it is reasonable to spend time on generating the best possible expression. The
cost depends on the terminals used. For example, the cost of generating saliency
maps for an expression that computes the CICScores as part of the expression
is similar to the cost of ScoreCAM.

5.2 Experiments El: Sanity Check

“Show the ability of SYCAM to synthesize known CAM expressions if they are
dominant for a given metric, or even better ones if the grammar allows for more
expressive erpressions”

In this experiment, we applied SYCAM to a VGG16 model trained over the
training subset of the PASCAL VOC 2007 dataset, and using the Average Drop
% metric: one of the settings described in the original GradCAM++ paper [4].
The dataset I contains 2510 images distributed in 20 classes. For the correctness
oracle, we use three subsets of images, I O Is D I;. The set Iy is a subset of
1000 randomly chosen images, and I; contains 100 randomly chosen images.

We applied SYCAM using two grammars for a fixed time of 6 h each:

— G1: A grammar defined by:

Expr := Term | Expr + Expr | 2 - Expr + Ezpr | Ezpr - Expr | ReLU (Ezpr)
Term := Grads | top;(Grads) | top,,(Grads) | topy,(Grads) | top,,(Grads)

Grads := GP(BAY

) for any c € C and k € K.

k

— G2: The grammar G1 adding the terminals CICScores and AblScores. This
is, the grammar described in Sect. 4.

Using grammar G1, SYCAM can only synthesize expressions that employ gra-
dients, so SYCAM can’t synthesize ScoreCAM, AblationCAM, or other similar
expressions. By incorporating the CICScores and AblScores terminals into G2,
SYCAM can generate more diverse expressions. Figure 3 illustrates the results
obtained by SYCAM using both G1 and G2. When G1 was used, SYCAM man-
aged to synthesize GradCAM++, represented by ReLU(Grads) [21], guided by
the Average Drop % metric, and did not synthesize a better expression before
the timeout. However, when G2 was used, SYCAM was able to synthesize
even better expressions, with a reduction of the Average Drop % metric of 5%.
This shows that SYCAM can synthesize the dominant known expression, or
even better expressions if there is a possibility of doing so, and the grammar
allows it.
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Fig. 3. SYCAM application to a VGG16 model trained over the PASCAL VOC 2007
dataset and the Average Drop % metric (lower is better). If only gradients-related
terminals are included in the grammar, SYCAM synthesizes GradCAM++. Better
CAM expressions are synthesized for an expanded grammar.

5.3 Experiments E2: Enumerate & Class-Based Decomposition

“Show the efficacy of SYCAM, and that the class-based decomposition approach
can perform better than the enumerate approach.”

We use this set of experiments to show the efficacy of SYCAM in comparison
to other well-known CAM methods: GradCAM, GradCAM++, ScoreCAM, and
AblationCAM. We also show how the class-based decomposition allows us to
obtain better results than the simple enumerative approach.

In general, whilst the average value-wise improvement in the score obtained
by SYCAM in each experiment may look only marginally better than the base
methods, this marginally better score already results in more targeted saliency
maps for a significant number of images. In Fig. 4, while the SYCAM score shows
minor improvement, SYCAM gets a better saliency map that does not highlight
the right dog as GradCAM and GradCAM++ do and highlights the body of the
left dog more than ScoreCAM and AblationCAM. This implies that the model is
making the classification of the image mostly based on the left dog, specifically
the head and the upper body.

In the following, we give more details about our findings for both the enu-
merative and class-based decomposition approaches.

Results for the Enumerative Approach. We use a reduced version of ImageNet,
namely the Imagenette dataset [13] that includes images for 10 classes out of the
1000 classes of ImageNet. Specifically, we use the validation dataset, with 3925
images distributed evenly into the 10 output classes. The evaluation metric in
all the experiments is the Deletion or the Insertion metric. The experiments run
for a fixed time of 24h. Then, they return the best expression found. For the
correctness oracle, we use three subsets of images, I O Iy D I;. The set I3 is a
subset of 1000 images: 100 from each class. I; contains 100 images: 10 per class.

As explained in Sect.5.1, the evaluation of each candidate over the whole
dataset can lead to scalability issues. Around 1020 candidate expressions are
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GradCAM GradCAM++ ScoreCAM

Original

Fig. 4. Saliency maps generated by GradCAM, GradCAM++, ScoreCAM, Ablation-
CAM, and the SYCAM expression for ResNet50, the class “2. English springer”; and
the Deletion metric (P = 30, higher is better). The scores for each method are 0.2141,
0.2414, 0.2419, 0.2343, and 0.2441, respectively. SYCAM gets a better score and a
saliency map that does not highlight the right dog as much as GradCAM and Grad-
CAM++ do and highlights the body of the left dog more than ScoreCAM and Abla-
tionCAM.

generated in three iterations of Algorithm 1, and it takes ~0.3s to evaluate the
Deletion or the Insertion metric (P = 10) over a single image. The computation
time of the evaluation of a candidate expression over each subset for the Deletion
and Insertion metrics (P = 10) is ~18 m, ~5 m, and ~27s, respectively.

In Table 1, we present our results for all three models. We show the expres-
sions synthesized by SYCAM, and provide a comparison with GradCAM, Grad-
CAM++, ScoreCAM, and AblationCAM, showing the average scores for each
method when evaluated using the Deletion and the Insertion metrics. In general,
SYCAM synthesizes expressions better than the base methods. In some cases,
SYCAM synthesizes GradCAM (Grads), ScoreCAM (CICScores), or Ablation-
CAM (AblScores). We point to the fact that AblationCAM performs better than
the rest of the base methods for the Deletion metric, but not for the Insertion
metric, for which it is almost always surpassed by ScoreCAM. This emphasize
the necessity of using a framework like SYCAM to synthesize the best expression
for each context. For P = 15 and P = 30, the computation time grows propor-
tionally to P. There are some exceptions because of the correctness oracle. In the
worst case, every expression is better than the threshold for I; and I but worse
than I and must be evaluated over the three sets. Note that both metrics depend
on the ratio between P and the size of the feature maps in the last convolutional
layer. Because the feature maps are bigger in VGG-16 and VGG-19 (14 x 14)
than in ResNet50 (7 x 7), this dependency makes the values obtained by both
metrics larger for ResNet50 than for VGG-19 and VGG-16 when comparing the
same CAM methods. Larger values of P are correlated with better metric scores
when comparing the same CAM methods.

Results for the Class-based Decomposition Approach. For each of the ten classes,
the correctness oracle will use a subset I, which contains approximately 390
images each, and I; C I, which contains 100 images each. The time needed for
evaluating an expression over each subset is ~2 m 10 s and ~30 s, respectively.

To make a fair comparison between the enumerate and the class-based decom-
position approach, we established a timeout of 2.4h per class. Although this
limits the size of the expressions synthesized for each class, we can see in Table 2
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Table 1. Enumerative approach for the models ResNet50, VGG-16, and VGG-19 over
the Imagenette dataset using our variants of the Deletion and Insertion metrics (higher
is better). G=GradCAM, G+=GradCAM++, S=ScoreCAM, A=AblationCAM.

Deletion metric (P=10) Insertion metric (P=10)
Model G G+ S A SYyCAM SYCAM Exp. G G+ S A SYCAMSYCAM Exp.
5 Grads
+ topsg topsg
ResNet500.35590.34790.35230.3601 0.3619 0.22870.2204 0.2243 0.2219 0.2296
+ ReLU(Grads) x CICScores
+ AblScores
2 - Grads
VGG-16 0.17220.17180.17270.1836 0.1883 + tops 0.01670.01850.03200.0204 0.0320 CICScores
+ CICScores
+ AblScores
t
VGG-19 0.17360.17130.17440.1824 0.1825 P10 0.02600.02100.0346 0.0237 0.0346  CICScores
+ AblScores
Deletion metric (P=30) Insertion metric (P=30)

Model G G+ S A  SyCAMSYCAM Exp. G G+ S A SyCAM SyCAM Exp.
Grads

ResNet500.60750.60100.6017 0.6049 0.6079 . 0.54350.5289 0.5349 0.5402 0.5435 Grads
+topyg
4 - Grads
tops
VGG-16 0.33440.33820.3385 0.3523 0.3579 + tobs 0.0957 0.10750.14220.1160 0.1422 CICScores
+ CICScores
+ AblScores

2 - Grads
VGG-19 0.33370.33640.33400.3454 0.3454  AblScores  0.0996 0.1105 0.1422 0.1146 0.1424 + ReLU(Grads)

+ CICScores

that, for ResNet50, the average scores of SYCAM per class show improvement
over the enumerative approach except for the Deletion metric for L = 10 case.
For certain images, SYCAM resulted in scores higher than those of GradCAM,
GradCAM++, ScoreCAM, and AblationCAM. In other cases, SYCAM was out-
performed. This is because other methods may get much higher scores for a small
subset of the data, but not for the rest. As explained in Sect. 5.1, our goal is to
find expressions that are better than the best one found in at least half of the
images and that have a higher average score.

5.4 Experiments E3: Incorporating Ground Truth

“Show how to incorporate expert knowledge into the generation of saliency maps.”

We use the COVID-QU-Ex dataset [34], which consists of 5826 chest X-
ray images with infection segmentation data distributed between 1456 normal
(healthy) images, 2913 COVID-19 images, and 1457 non-COVID images with
other diseases. Ground-truth COVID-19 segmentation masks are provided. We
fine-tuned a ResNet50 model to correctly classify the test dataset with accuracy
higher than 95%, and precision and recall higher than 92% for each class.

We consider a set I with only the 2913 COVID-19 X-ray images and the asso-
ciated ground-truth COVID-19 segmentation masks. For the correctness oracle,
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Table 2. Class-based decomposition approach for ResNet50 over the Imagenette
dataset using the Deletion and Insertion metrics (higher is better). G=GradCAM,
G+=GradCAM-++, S=ScoreCAM, A=AblationCAM.

Deletion metric (P=10) Insertion metric (P=10)
Model G G+ S A SYCAMSYCAM Exp. G G+ S A SYCAMSYCAM Exp.
. . ; Grads ; o CICScores
1.Tench 0.43290.4286 0.4203 0.4258 0.4358 0.2307 0.2209 0.2188 0.2346 0.2367
~+tops *AblScores
Grads®
2.English springer 0.42930.4193 0.4413 0.4513 0.4406 +topsg 0.1741 0.16390.1786 0.1706 0.1741 Grads
+*CICScores
3.Cassette player 0.27550.2719 0.2698 0.2577 0.2766 topsg 0.1584 0.1517 0.1514 0.1201 0.1663 top,q
4.Chain saw  0.43600.43010.4439 0.4432 0.4404 top,g 0.2524 0.24250.2536 0.2327 0.2524 Grads
5.Church 0.26340.2468 0.2505 0.2799 0.2640 2+fG0:zfs 0.0859 0.0803 0.08380 0.0862 0.0891 top,y
6.French horn 0.38910.3849 0.3831 0.3972 0.3891 Grads 0.2550 0.2441 0.2460 0.2693 0.2550 Grads
Grads
7.Garbage truck 0.37570.3643 0.3650 0.3779 0.3757 Grads 0.2411 0.2390 0.2412 0.2328 0.2438 +topyg
+Grads®

8.Gas Pump  0.34050.3262 0.3369 0.3470 0.3405 Grads 0.0508 0.04720.0570 0.0464 0.0508 Grads
9.Golf ball 0.33090.3272 0.3206 0.3279 0.3356 top g 0.4149 0.4047 0.3953 0.4200 0.4167 topsg

10.Parachute  0.28550.28050.2918 0.2897 0.2858 QJ'rtGmds 0.43430.4205 0.4231 0.4120 0.4343  Grads
P19
Average  0.35590.3480 0.3523 0.3598 0.3584 0.2287 0.2215 0.2253 0.2226 0.2308
Deletion metric (P=30) Insertion metric (P=30)
Model G G+ S A SYCAMSYCAMExp. G G+ S A SYCAMSYCAM Exp.
tops
LTench  0.72150.7170 0.7120 0.7148 0.7236 P50 0.64150.63100.6297 0.6398 0.6415  Grads
*CICScores
tops,
2 English springer 0.63600.6290 0.6365 0.6447 0.6416 P50 (48150.46720.47460.4855 04815  Grads
*CICScores
Grad
3.Cassette player 0.43740.4336 0.4323 0.4169 0.4385  top,,  0.34040.32560.3324 0.2032 0.3427 +:“ g
0p5
4.Chain saw  0.67110.6667 0.6694 0.6504 0.6730  fop;,  0.58960.56080.5863 0.5678 0.5896  Grads
5.Church  0.46770.4548 0.4580 0.4755 0.4692 2 % 03488033100.34420.3632 03501 2 T
+topy, +topsg
6.French horn  0.64640.6412 0.6363 0.6527 0.6476 tops,  0.59680.58160.58670.6126 0.5968  Grads
7.Garbage truck 0.66760.6619 0.6622 0.6681 0.6676  Grads  0.60720.59720.60300.6091 0.6072  Grads
> Grads
8.Gas Pump  0.62860.6223 0.6288 0.6341 0.6286  Grads  0.40490.38620.4008 0.4045 0.4050 ijdb
ops

9.Golf ball  0.58650.5791 0.5649 0.5875 0.5895 top g 0.71580.70720.69870.7224 0.7158 Grads
10.Parachute  0.60410.59720.6090 0.5930 0.6041 Grads 0.70840.69240.6928 0.6982 0.7084 Grads
Average 0.60750.6010 0.6017 0.6049 0.6091 0.54350.52890.5349 0.5402 0.5438

we use three subsets of images, I O Iy D I;. The set I is a subset of 1000 images,
while I; contains 100 images. We apply SYCAM using two metrics: the mg7 and
the SCH metrics defined in Sect. 2.3. Because these metrics give importance to
the ground truth COVID-19 masks, the SYCAM expressions incorporate expert
knowledge into the saliency maps generated. Since we are only considering a
binary classification, we employ the enumerative approach. For both metrics
defined above, we let the experiments run for 24 h. In this experiment, evaluat-
ing mgr or SCH takes around 0.05s per image.

The results are presented in Table 3. We can observe that, for both metrics,
SYCAM synthesizes expressions whose basis is of the form exp™, with exp a
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terminal and n € N: CICScores* for the mqr metric, and Grads® for the SCH
metric. This may indicate that dominant expressions have this form, which highly
reduces the values lower than 1 and gives more importance to the high values.

Examples of saliency maps generated by SYCAM are included in Figs. 1,
5a and 5b. We can observe in the X-ray images of Fig.1 that the saliency map
generated by SYCAM is more concentrated on the ground-truth mask, while the
rest of the CAM methods fail to do so. In fact, we can see that GradCAM++ and
ScoreCAM give high importance to a region outside of the body in the bottom
right. Something similar happens in Fig.5a. In Fig.5b, because the SYCAM
expression is 2 - Grads®, the heatmap obtained is a more compact version of the
GradCAM heatmap. This reduces the importance of areas outside of the ground
truth, achieving a higher SCH score.

Table 3. Enumerative approach for the fine-tuned model ResNet50 over the COVID-19
benchmark. The metrics used are the mgr and the SCH metrics (higher is better).

Metric|GradCAM|Grad CAM-++|ScoreCAM Ablation CAM|SYCAM|SYCAM Exp.
magr (0.1861 0.1712 0.1512 0.1876 0.1972 |Grads *top,, *CIC*
SCH |0.1567 0.1491 0.1458 0.1524 0.1610 2- Grads®

GradCAM GradCAM++ ScoreCAM AblationCAM Ground truth

[aldlAlala]

a) Heatmaps generated for the mgr metric (higher is better). The
score for each method is 0.0 for every method except for SYCAM for
which it is 0.3389. The SYCAM heatmap is more concentrated on the
ground truth mask.

GradCAM GradCAM++ ScoreCAM AblationCAM SyCAM Ground truth
3 \Z o \Z T B - \Z 2 \2

(b) Heatmaps generated for the SCH metric (higher is better). The
scores for each method are 0.3474, 0.2874, 0.2650, 0.3377, and 0.3803,

respectively. The SYCAM heatmap is a more compact version of
GradCAM.

Fig. 5. Saliency maps generated by GradCAM, GradCAM++, ScoreCAM, Ablation-
CAM, and the SYCAM expression synthesized for ResNet50.
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6 Discussion and Future Work

We presented SYCAM, a metric-based synthesis framework for automatically
generating CAM expressions. SYCAM offers advantages in tailoring CAM
expressions to specific syntactic restrictions, datasets, and evaluation metrics.
However, our approach still has limitations that we plan to address in future
work. One key limitation is the high computation time required to gener-
ate expressions, which stems from the complexity of the synthesis algorithms.
Improvements in synthesis methods will directly enhance our approach. However,
we emphasize that generating a SYCAM expression is a one-time process, and
the computation time for generating saliency maps remains reasonable. Addi-
tionally, the SYCAM framework relies on enumerating expressions and verifying
their validity. Future work will explore ways to guide this search process more
efficiently, thereby reducing computation time. Lastly, we also aim to extend our
study to multi-objective settings [35], incorporating multiple evaluation metrics
simultaneously and identifying Pareto-optimal expressions as solutions.
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Abstract. Self-Supervised Learning (SSL) for Vision Transformers
(ViTs) has recently demonstrated considerable potential as a pre-training
strategy for a variety of computer vision tasks, including image classifica-
tion and segmentation, both in standard and few-shot downstream con-
texts. Two pre-training objectives dominate the landscape of SSL tech-
niques: Contrastive Learning and Masked Image Modeling. Features (or
tokens) extracted from the final transformer attention block —specifically,
the keys, queries, and values— as well as features obtained after the
final block’s feed-forward layer, have become a common foundation for
addressing downstream tasks. However, in many existing approaches,
these pre-trained ViT features are further processed through additional
transformation layers, often involving lightweight heads or combined with
distillation, to achieve superior task performance. Although such meth-
ods can improve task outcomes, to the best of our knowledge, a compre-
hensive analysis of the intrinsic representation capabilities of unaltered
ViT features has yet to be conducted. This study aims to bridge this
gap by systematically evaluating the use of these unmodified features
across image classification and segmentation tasks, in both standard and
few-shot contexts. The classification and segmentation rules that we use
are either hyperplane based (as in logistic regression) or cosine-similarity
based, both of which rely on the presence of interpretable directions in
the ViT’s latent space. Based on the previous rules and without the use of
additional feature transformations, we conduct an analysis across token
types, tasks, and pre-trained ViT models. This study provides insights
into the optimal choice for token type and decision rule based on the
task, context, and the pre-training objective, while reporting detailed
findings on two widely-used datasets.
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1 Introduction

Vision transformers [14,18,21,23,37], have shown exceptional performance in
addressing complex computer vision and multi-modal tasks [8,32,39,40|. How-
ever, their effectiveness is highly dependent on the size of the training dataset,
requiring an extensive amount of data to generalize effectively and avoid over-
fitting. Training these models from scratch is resource-intensive, both in terms
of computational power and processing time. Given that related tasks, such as
classification and segmentation, often share foundational knowledge, training
separate models for each task from scratch is inefficient. Therefore, it has been
proposed to train a large model once, using substantial data and resources to
capture general knowledge, and then specialize or distill this model for specific
downstream tasks by leveraging the knowledge acquired during the initial train-
ing phase.

Self-supervision, based on Masked Image Modeling (MIM) [2,7,19] or Con-
trastive Learning (CL) [6,7,11], has been proposed as a way for ViTs to capture
this general knowledge from large datasets without the need for explicit labels.
However, to achieve top performance, in most approaches [17,20,42,43] the pre-
trained ViT features undergo further transformations before the final prediction,
in order to align the feature representations with the solution of the downstream
task. Moreover, different methods utilize various feature types —such as query-
key-value pairs from the last attention block, or the output tokens of the final
feed forward layer— and employ diverse decision rules, being either hyperplane-
based or direction similarity-based. Even though these approaches have demon-
strated their effectiveness in solving downstream tasks, yet to our knowledge, a
comprehensive evaluation of the intrinsic representation capabilities of unaltered
self-supervised ViT features is missing from the literature.

In this work, we present a comprehensive analysis of the representational
power of unaltered features from two self-supervised ViTs, pre-trained on a large
dataset [35] using the previously mentioned self-supervision objectives [6,19]. To
the best of our knowledge, this is the first study to examine all of the following
aspects simultaneously: a) two ViTs pre-trained with different self-supervised
objectives b) the five possible token types from the last transformer layer —
keys, queries, values, and features before and after the final feed-forward block—
c¢) two downstream tasks: image classification and segmentation, across both
standard and 1-way-k-shot contexts and d) two commonly used prediction
methods (or, as otherwise mentioned, decision rules), based on either hyper-
plane separation (linear probing) or cosine similarity.

We find that the hyperplane decision rule is more effective in semantic sep-
arability across most experiments, indicating that the cosine similarity between
the tokens of these pretrained models is a suboptimal semantic proximity met-
ric. Furthermore, our experiments indicate that the optimal token type depends
heavily on the pre-training objective, task, context and decision rule —with some
previously overlooked tokens proving to be the most effective. Beyond practical
guidelines, our work challenges existing intuitions about ViT token interpreta-
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tions and underscores the need for a deeper understanding of the role of each
computational block within ViT layers.

2 Related Work

Self-Supervised Pre-Training. Self-supervised pre-training [44] stands out
as the leading method towards developing vision, vision-language, and various
multi-modal foundation models [5,39,48]. The core strategies in this field involve
CL, MIM, or an integration of both. On the one hand, CL methods [7,10,11,
41] utilize image augmentation techniques to generate views with similar or
dissimilar semantic content, which, in turn, are considered for feature alignment.
On the other hand, representation learning in MIM methods [2,30,40] is driven
by masking patches and then reconstructing pixels or features.

Within ViTs, MIM approaches, largely represented by Masked Autoencoders
(MAEs) [19,45], typically require supervised fine-tuning to achieve compet-
itive performance on downstream tasks [2,19,27,45,50,53]. These models tend
to exhibit narrow self-attention receptive fields [49] and capture texture-based
features, making them best suited for dense prediction tasks such as object
detection [29]. They also tend to exhibit great scaling with an increasing num-
ber of parameters which can be attributed to the high attention-map variance
between transformer heads, meaning that a larger portion of the network can
being utilized during fine-tuning [29].

ViTs trained with a CL framework, such as DiNO [6], generate semantic-level
feature representations [1], allowing them to serve as universal feature extractors
without further fine-tuning [38]. Similar to other contrastive learning meth-
ods, the self-attention maps of a ViT pre-trained with a DiNO objective, have
a broad receptive field, effectively capturing global patterns, but CL also faces
the challenge of collapse into homogeneity [29], leading to similar self-attention
maps for all heads. This limitation has motivated the development of hybrid
SSL techniques that combine MIM and CL learning objectives to address their
respective limitations [24,28,29,31].

Transfer-Learning Self-Supervised ViTs on Downstream Tasks. In dense
prediction tasks, the patch tokens of the final encoder layer are commonly used
as regional embeddings [19,39,47], while the corresponding class token ([CLS])
remains the standard representation for image classification [6,14,50]. The ability
of DiNO to induce discriminative saliency maps in the self-attention mechanism
of ViTs [6] has inspired the extraction of features directly from the self-attention
blocks. Beyond the vanilla approach that uses the class token for image classifi-
cation tasks, various techniques have been explored that leverage the key tokens
in the self-attention block of a frozen DiINO backbone (a ViT pre-trained with
the DiINO objective), to tackle unsupervised segmentation and localization tasks
[36,42,43], often employing a cosine similarity-based signal. Alternative methods
that utilize a similar backbone seek to distill its knowledge in both standard [17]
and few-shot [20] contexts through lightweight heads, using the backbone as a
means to detect semantic similarities within the data.
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Unlike CL which is able to build strong frozen backbones, MIM pre-training
is best capitalized with task-specific fine-tuning. In [50], a MAE is pre-trained on
a face dataset and subsequently fine-tuned on a dataset with facial expressions
for facial affective analysis. In the medical domain, where annotated data are
more scarce, self-pre-training [53] has been proposed as the paradigm of pre-
training a MAE directly on the data of the downstream task. Subsequently, the
learned encoder can be combined with a trainable linear head or a convolutional
decoder to demonstrate superior performance compared to supervised baselines
or baselines pre-trained on out-of-domain data. Beyond masking pixels, the MIM
objective can be utilized to train lightweight student models that learn to recon-
struct masked features from a larger state-of-the-art teacher, providing efficient
solutions to solve the downstream segmentation task [46].

Relation to the Present Work. In contrast to other studies that shed light
on self-supervised ViTs from varying perspectives [11,26,29,33,49], our research
adopts a latent space probing approach, regularly explored in mechanistic inter-
pretability [13,15,16,34,51]. To our knowledge, this study is the first to rigor-
ously evaluate the effectiveness of tokens derived from a frozen MAE to solve
downstream tasks. This is even without taking into account the extensive breadth
of this study on variation in token types, decision rules, and downstream tasks
and contexts. Instead, previous work tends to prefer DiNO features for seg-
mentation tasks with works considering frozen MAE features being almost non-
existent, possibly due to the known fact that MIM works better when fine-tuned.
Yet, a quantitative evaluation of the effectiveness of MAE’s features compared
to DINO’s is currently missing, and our work addresses this gap with a detailed
analysis. Our findings suggest that for semantic segmentation, while the down-
stream performance of MAFE’s features is inferior to DINO’s, in some aspects the
gap between them is not as large as one might initially believe.

Regarding DiNO, methods such as [1,17,20,36,42,43] address the unsuper-
vised segmentation task using token feature transformations derived from a
frozen backbone. In our work, we differentiate and take a step back to meticu-
lously assess the effectiveness of DINO’s vanilla tokens (without any transforma-
tions or extra processing) on downstream tasks using annotations, revealing to
some extent the best starting point of those previous approaches. Furthermore,
many previous approaches [17,20,36,42,43] have applied the cosine similarity
rule to the tokens of a frozen DINO backbone, utilizing it as an implicit super-
visory signal for semantic similarities. However to our knowledge, a rigorous
assessment of its potential is missing from the literature and our work aims to
address this, by being the first to assess the effectiveness of DINQO’s features
with the cosine rule on semantic tasks with ground-truth labels. Our work is
also unique in providing a thorough study over the representation power of dif-
ferent token types, being either the attention layer’s queries, keys, values, or
tokens from either side of the final feed forward transformer block, expanding on
the shallow analysis of [6]. In principle, our findings are aligned with previous
work that prefers to use the attention layer’s key tokens for semantic segmenta-
tion [1,36,42,43] but also highlights a detailed comparison with the alternative



380 Y. Kaltampanidis et al.

tokens. Finally, image classification based on the two SSL approaches is also less
explored in the literature [6,20], and our work provides a detailed analysis, in
terms similar to the segmentation task.

3 Approach

As briefly stated in the preface, our work aspires to address the following ques-
tions that innately arise when employing pre-trained ViTs in downstream tasks:

— Which self-supervised pre-training objective (MIM, CL, implemented by
MAE and DiNO respectively) produces frozen backbones, which are more
aligned to each downstream task (classification, segmentation)?

— Which ViT token types (queries g, keys k, values v from the final ViT’s
self-attention block or tokens @1, xs from either side of the transformer feed
forward block) provide semantically meaningful representations?

— Which decision rule (hyperplane based, cosine similarity based) should be
utilized to separate the feature space into semantic regions?

Additionally, we also consider two downstream contexts: standard (where a
plethora of labeled examples are available for learning a decision rule) and few-
shot (where only a limited number of samples are available for the same purpose).
In the following subsections, we aim to clarify these research questions by con-
ducting experiments with combinatorial variability across pre-trained models,
tasks, contexts, decision rules, and token types.

3.1 Self-supervised Pre-Training Objectives

This study concentrates on two well-known SSL ViT architectures: MAE [19]
and DINO [6]. MAE is part of the group of pre-training techniques focused on
masked image modeling, whereas DiNO aligns with self-distillation and con-
trastive learning approaches. For the sake of computational efficiency, we opted
for the smallest pre-trained ViT models accessible to the public (DiNO: ViT-S/8
21M parameters, MAE: ViT-B/16 86M parameters).

3.2 Downstream Tasks

We investigate the semantic representation power of ViT tokens in two exem-
plary downstream tasks: image classification and semantic segmentation. In the
context of image classification, we develop a subset of ImageNet [35] resembling
ImageNet-Tiny [22], constructed by randomly selecting 550 samples for each
of ImageNet-Tiny’s 200 classes. For image segmentation, we utilize the Bro-
den dataset [3], which consolidates multiple datasets that are densely annotated
[4,9,12,25,52]. Broden encompasses 1197 concepts distributed across approxi-
mately 63K images within 5 distinct concept categories (object, part, material,
texture, color). In this research, we have excluded the color category to focus
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on the remaining categories which are deemed to hold greater semantic signifi-
cance. Figure 1 demonstrates the extensive annotations present in Broden, which
incorporate low-level concept categories, such as material and texture, alongside
high-level concepts, such as object and scene.

Fig. 1. Broden samples. Each image in the dataset is associated with multiple segmen-
tation maps, covering six primary categories (color, object, part, material, scene, tex-
ture). For instance, the image in the left has a color and a material category-mapping
whereas the image on the right a color and an object segmentation map.

We address both tasks through a unified binary classification framework, tak-
ing inspiration from [51]. Using independent binary classifiers offers a straight-
forward yet effective learning scheme suited for Broden’s multilabel annotation
structure. For image classification, we use the [CLS] token as a global feature rep-
resentation of the entire image, whereas for semantic segmentation, we leverage
the corresponding patch tokens to represent individual regions. Consequently,
each object —whether the entire image for classification or an image-region for
segmentation— is represented by a single feature vector, which serves as input to
a set of binary classifiers. In other words, beyond the typical image classification
task, the segmentation task is tackled by treating it as a patch classification
problem.

3.3 Token Types

In our analysis we account for various token types derived from the final trans-
former layer to address the downstream tasks. We consider the query g, key k,
and value v tokens of the self-attention block (Fig.2 top), the output of the
self-attention block, denoted as x; and the output tokens of the feed forward
block (MLP), referred to as x5 (Fig. 2 bottom).
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Fig. 2. (Top) Multi-head attention schematic diagram. ¢, k, v € RP depict the queries,
keys, values tokens respectively, with D representing the ViT’s embedding dimension.
(Bottom) Schematic diagram of the transformer’s final layer, where LN denotes layer
normalization and SA represents the multi-head self-attention mechanism. Note that
the final normalization layer (LN) is applied exclusively at the last transformer layer.
We denote 1 € R” the transformer tokens prior to the MLP and the second layer
normalization layer, while 22 € R? the output-tokens after the MLP (layer output).

3.4 Classifier Decision Rules

We examine the semantic separability of ViT tokens using two different decision
rules: hyperplane-based and cosine similarity-based. As illustrated in Fig. 3, each
classification rule is associated with a distinct decision boundary, dissecting the
feature space into two disjoint subspaces.

Specifically, the hyperplane rule is comprised of a normal vector w and a
bias term b, defining the orientation and position of the hyperplane respectively.
A feature vector z is classified positively if w?z — b > 0. In contrast, the cosine
decision rule defines a convex cone via a conical axis vector v and an angular
threshold 6, such that z is positively classified if arccos(m . m) < 0, with -
denoting the dot product.

> £ >
> >

Fig. 3. Classifier decision rules. (Left) Hyperplane classifier (w,b). (Right) Cosine sim-
ilarity classifier (e, 0). Each classifier dissects the feature space into two disjoints sub-
spaces. Positively classified samples are depicted in blue, while negatively classified
samples are illustrated in red. (Color figure online)
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Concept Templates: Both decision rules are associated with a class-specific (in
image classification) or concept-specific (in semantic segmentation) directional
vector, a threshold and a projection function, which altogether may be utilized
to classify a feature vector for the downstream task. We use the term concept
template to encompass these attributes and also refrain from making explicit dis-
tinction regarding the label type of each downstream task (image class vs patch
concept) as we treat both tasks within a common framework of similar princi-
ples. In the rest of the paper we will mostly refer to the downstream task’s labels
as concept labels, when in fact for image classification these labels correspond to
image classes.

segmentation

? [PATCH]
M 4
[PATCH]

Fig. 4. Hyperplane decision rule: The class token represents the global image content,
while individual image regions are represented by their corresponding patch tokens. A
hyperplane is learned for each image class or semantic concept to distinguish positive
samples from negative ones.

Formally, given the dimensionality of the embedding space D, a feature vector
z € RP and a concept ¢ € N, the concept template is a triplet 7. = (d,t, f),
where d € RP is the directional vector, t € R is the threshold and f(z;d) :
RP — R is the projection function.

The concept template 7. detects the existence of concept c¢ in the feature
vector z (positive classification) if:

f(zd) >t (1)

In the case of a hyperplane decision rule: d := w,t := b and f(z;w) = w?z,
while for a cosine decision rule: d := a, t := cos(f) and f(z; ) = maTz.
Based on the underlying decision rule, we distinguish two cases of concept tem-

plates: hyperplane-templates and cosine-templates.

3.5 Analysis Framework

This section provides details on how we learn the concept templates. In this and
the rest of the sections, we often use the terms concept template and classifier
interchangeably, preferring the former to emphasize its geometric interpretation
and the latter to focus on its functional application.
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few-shot classification / segmentation
[CLS}/[PATCH] [CLS]/[PATCH]

support set query image

Fig. 5. Cosine similarity decision rule: In the few-shot context, the concept template’s
direction is derived by averaging intra-class token representations extracted from the
support set. Specifically, a token originating from the query image set is classified
positively if the cosine similarity between the token and the template’s direction exceeds
a threshold 6.

Hyperplane Templates: To compute hyperplane templates, for each concept,
we learn a hyperplane classifier (w,b) with the process illustrated in Fig.4.
Given a training feature dataset Dy : {(z;,¢;),i = 1,..., N}, where z; € RP
represents the feature vector of an object (image/image-region) and ¢; € N
represents its ground-truth label, we construct a positive sample pool for each
concept ¢, denoted as D} = {z; | (2;,¢;) € Dy, ¢; = ¢}, and a corresponding
negative sample pool, D, = {z; | (zi,¢;) € Dy, ¢; # ¢}, where |D_ | > |D}|. In
semantic segmentation, when forming the negative sample pool for a concept c¢;,
we only consider concepts within the same primary category as ¢;. To manage the
significant class imbalance between the two sample pools, we initially limit the
size ratio of D : D} to be no more than 20 : 1 by random subsampling. During
template learning, we conduct five rounds of hard negative mining, following
[51]. In each of these rounds, the hyperplane template is fitted to the mined
dataset over 3 epochs, ensuring a positive-to-negative sample ratio of 1 : 2.
The evaluation of each learned template is performed on a reserved test-set
(approximately 10K image samples for ImageNet and 18K image samples for
Broden from its validation split) via a set of balanced binary classification
metrics.

Cosine Templates: Since the cosine decision rule is frequently utilized in unsu-
pervised settings [17,20,36,42,43] including few-shot contexts, we explicitly
consider learning cosine-templates in a few-shot regime by constructing support-
query image sets for template learning and evaluation. The directional vector «
and similarity threshold ¢ = cos(f) of cosine templates, are computed in a non-
parametric 1-way-k-shot setting. For a concept ¢ € N, we construct a support
image set Scj by randomly sampling £ training images that contain c. S¢
is further processed to construct the respective positive and negative support
feature pools DC k> D. > Notice that for image classification D~ ok = = (), as every
image in the support set is mapped to a single feature Vector ([CLS] token).
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The cosine template’s directional vector « is then computed by averaging the
positive support features:
1
- Y 2 (2)
+
|Dc,k|

zGD:r),C

while the angular threshold 6 is computed by maximizing the Fl-score of the
classifier 7. on the support feature set:

0 = argmax(F1(0, Deg; v, f)) (3)
0

where F'1 is the F1 score of a classifier 7. = (e, t, f) computed on the support
feature set D.j = D:k U D_, given the directional vector e and the cosine-
similarity projection function as f. Due to the fact that we use an empty D_
for image classification, in Eq. (3) we consider the smallest possible angle 6 that
maximizes F1 score. The overall process is illustrated in Fig. 5. Furthermore, we
vary k € {1,5,10,50, 100,500}, leveraging different proportions of the available
data. Finally, the templates are evaluated on a balanced randomly sampled query
test set of 50 positive and 50 negative images using the same set of balanced
binary classification metrics as in the hyperplane templates. Due to the stochastic
nature of this 1-way-k-shot setting, we average and present the results from
N =10 independent trials reporting mean scores and their standard deviation.

4 Experimental Results

The subsequent subsections detail the outcomes of our comprehensive exper-
imental evaluation, structured by downstream task and decision rule. In our
analysis, the term token performance is used to denote the efficacy of concept
templates that incorporate a particular token. It is important to highlight that
for image classification tasks, the mentioned tokens refer to the [CLS] tokens,
while for image segmentation, they pertain to patch tokens. Lastly, we underline
that all the binary performance metrics presented in this work are balanced.

4.1 Task: Classification. Rule: Hyperplane

TLDR: We observe a substantial disparity in the classification performance of
the hyperplane template between the pre-trained MAE and DiNO models. While
MAE tokens resemble the performance of random classifiers, DINO demonstrates
exceptional classification capacity. Specifically, DiNO’s x5 token is particularly
well-suited for classification tasks via linear probing, while MAE should not be
considered in this context.
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Fig. 6. Hyperplane-template classification: (Left) Accuracy between DINO and MAE
tokens. (Right) Precision, recall and F1 metrics for DINO tokens.

Details: Figure 6 (Left) compares MAE and DiNO tokens in terms of accuracy.
Most of MAE tokens approximately score an accuracy of 0.5, which is equivalent
to a random classifier. This may be attributed to the fact that the [CLS] token
is not participating in the MAE’s loss function. In contrast, DINO attains its
maximum accuracy with o (0.946). A detailed analysis of DiNO’s token per-
formance is presented in Fig.6 (Right). We observe near-perfect precision for
g, k, v, and x> (> 0.99), while @; achieves a precision of 0.96. This enables
the construction of a hyperplane with minimal false positives (FP) across all
tokens. Furthermore, x5 exhibits the highest recall (0.89), followed by v (0.80),
q (0.72) and k (0.65). These results indicate that x2 provides the optimal linear
separability of semantic concepts.

Notably, 7 demonstrates the lowest performance across all evaluated met-
rics. To better understand this phenomenon, we also assess the performance of
a1 after layer normalization, which we denote as x,,. Table 1 presents the impact
of the normalization layer on DiNO’s 1 hyperplane classification metrics. Layer
normalization positively affects the semantic linear separability of the feature
space. However, a more detailed analysis of the effects of layer normalization is
beyond the scope of this work.

Table 1. Layer normalization effects on DiNO’s &1 performance metrics.

DiNO | Accuracy | Precision | Recall | F1

T 0.714 0.959 0.427 |0.550
Ty 0.940 0.997 0.884 |0.935
To 0.946 0.997 0.894 | 0.941

4.2 Task: Classification. Rule: Cosine

TLDR: Similar to hyperplane-based classification, DINO outperforms MAE
under the cosine similarity decision rule. Notably, DINO’s x; token achieves the
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highest accuracy and F1 scores. Furthermore, MAE shows substantial improve-
ment with cosine templates compared to the hyperplane decision rule, with its k
token yielding the highest accuracy and F'1 score in this context. Finally, increas-
ing the support set size beyond 50 samples results in diminishing gains in average
accuracy and F1 scores for both models.
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Precision Recall Accuracy F1Score
DIiNO - MAE DIiNO - MAE

Fig. 7. Cosine-template classification with k£ = 500 support samples per concept. (Left)
Precision and recall comparison between MAE and DiNO tokens. (Right) Accuracy
and F1 score comparison. The error bars denote the standard deviation across 10
independent trials.

Details: Figure7 shows the classification metrics for DINO and MAE tokens
using the cosine decision rule, averaged over 10 independent trials with & = 500
support images per concept. DiINO’s x; emerges as the optimal token, achiev-
ing the highest accuracy (0.958 + 0.01) and F1 score (0.958 + 0.01), while ¢
and k perform similarly. Although all DiNO tokens demonstrate high precision,
v and @ exhibit the lowest recall in this setting. For MAE, k achieves the
highest accuracy (0.812 £ 0.03) and F1 score (0.824 £ 0.02), while ¢ and v
demonstrate similar performance. Notably, x5 exhibits the highest recall (0.929
+ 0.02), making it particularly well-suited for critical risk detection applications
where minimizing false negatives (FN) is essential.
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Fig. 8. Cosine-template classification accuracy for k € {1,5, 10, 50,100,500} support
samples per concept, for DINO (Left) and MAE (Right). Error bars denote standard
deviation across 10 independent trials.
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Figure 8 illustrates the impact of k¥ (number of support samples used to com-
pute cosine-templates) on model accuracy. Notably, performance gains diminish
significantly beyond 50 samples. However, increasing the number of support sam-
ples leads to a more representative support set, thereby reducing the standard
deviation across trials.

4.3 Task: Segmentation. Rule: Hyperplane

TLDR: Both MAE and DINO demonstrate strong and comparable hyperplane-
template accuracy, yet inferior to the scores for image classification. Between the
two pre-trained models, DINO achieves a higher overall F1 score. Notably, k is
the optimal token in terms of overall accuracy and F1 score for both models.
However, while k consistently yields the highest F1 score across all concept cat-
egories in DINO, MAE shows a slight advantage for x5 over k when considering
textures, objects, or scenes.
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S04 304
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qg k v x x qg k v x x q k v x x q k v x x
Precision Recall Accuracy F1Score
DIiNO * MAE DIiNO - MAE

Fig.9. Hyperplane-template segmentation: (Left) Precision and recall comparison
between MAE and DiNO tokens. (Right) Accuracy and F1 score comparison between
MAE and DiNO tokens.

Details: Figure 9 presents the overall hyperplane-template segmentation perfor-
mance of DINO and MAE tokens. Among DiNO tokens, k achieves the highest
accuracy (0.721) and F1 score (0.684), while v attains similar accuracy (-0.001)
but a slightly lower F1 score (-0.01). DiNO’s x5 exhibits the highest preci-
sion (0.899) making it particularly well-suited for quality assurance applications
where minimizing false positives (FP) is essential. MAE’s k achieves the highest
accuracy (0.721), while @y attains the highest F1 score (0.645). Comparing the
two, k appears to be the optimal choice, with a significantly higher accuracy
(40.07) and only a slight reduction in F1 score (-0.01). On the other hand,
v demonstrates the highest precision (0.899), while x5 excels in recall (0.716).
Notably, €5 shows a substantial precision drop compared to x; (—0.24), coupled
with a significant recall increase (+0.27). This suggests that critical semantic
information may be lost in 9, likely in favor of low-level textural patterns, as
x5 tokens are processed through a decoder for masked patch reconstruction.
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Figure 10 presents the F'1 scores of hyperplane templates, grouped by seman-
tic category. DINO’s k token consistently outperforms others regardless of the
semantic category. Among all concept categories, DINO performs better in part
(0.817), material (0.786), and texture (0.765) but is less effective in object (0.682)
and scene (0.637) categories. This pattern suggests that DINO’s k token excels at
segmenting fine-grained semantic concepts, aligning with prior findings [1]. For
MAE, the k token achieves the highest F1 scores in part (0.734) and material
(0.727), whereas x5 leads in object (0.606), scene (0.676), and texture (0.734).
Notably, the most significant disparity occurs in the part category, where k sig-
nificantly outperforms o (+0.08). Interestingly DiNO achieves higher F1 score
compared to MAE, in all categories except for scene (—0.13).

DIiNO MAE
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q k v x x q "k v x x,

Fig.10. F1 score for DINO (Left) and MAE (Right) templates, grouped by label
category. The scores for each concept template, are grouped and averaged according
to their Broden primary semantic category (material, object, part, scene, texture).
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Fig. 11. Precision (Top) and recall (Bottom) for DINO (Left) and MAE (Right) tokens,
grouped by label category.
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Figure 11 further examines precision and recall across concept categories. In
terms of precision, DINO’s x5 token achieves the highest overall score (Fig.9), a
trend that persists across most categories, except for texture, where &, exhibits
superior precision (-+0.09). For MAE, v achieves the highest precision in object
and part categories, while @, is the most precise in material, scene, and texture.
Notably, MAE’s x; consistently outperforms xs in precision across all Broden
categories. When analyzing recall, DiNO’s k token demonstrates the best per-
formance in material, object, and part categories, whereas q and v emerge as
the top-performing tokens for scene and texture, respectively. Regarding recall
for MAE, x5 consistently performs best across all categories.

Cross-model comparisons reveal that MAE’s v or x; tokens achieve higher
precision than DiNO in part, scene, and texture categories, while DINO tokens
exhibit superior precision in material and object categories, reinforcing its
strength in segmenting individual structures.

4.4 Task: Segmentation. Rule: Cosine

TLDR: For both MAE and DiNO, the utilization of the cosine-decision rule is
evidently inferior to hyperplane-templates, as their overall accuracy across all
concepts is not significantly superior to a random-classifier (= 0.6). However,
both models can achieve notable accuracy and F1 scores for textural concepts.

Details: Figure 12 presents the overall segmentation metrics for DINO and MAE
tokens under the cosine decision rule, averaged over 10 trials with k = 500 sup-
port images per concept. In both models, g tokens achieve the highest accuracy
(DINO: 0.574, MAE: 0.622) and F1 scores (DiNO: 0.419, MAE: 0.464). While
MAE outperforms DiNO, both models perform significantly worse compared to
the hyperplane decision rule, highlighting the limitations of the cosine decision
rule in this setting.
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Fig. 12. Cosine-template segmentation with & = 500 support samples per concept.
(Left) Precision and recall comparison between MAE and DiNO tokens. (Right) Accu-
racy and F1 score comparison. The error bars denote the standard deviation across 10
independent trials.
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Figure 13 shows the accuracy and F1 scores for cosine templates, grouped
by semantic category. Notably, both models perform well on textural concepts,
and partially well (low accuracy, but higher F1 score) on scenes. MAE’s q token
achieves an average accuracy of 0.840 and an F1 score of 0.844, while DiNO’s x4
token reaches an average accuracy of 0.744 and an F1 score of 0.765. Figure 14
illustrates the impact of k& (number of support samples used to compute cosine-
templates) on model accuracy. Similar to cosine-template classification, perfor-
mance gains diminish significantly beyond 50 samples.
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Fig. 13. Cosine-template segmentation with £ = 500 support samples per concept.
(Top) Accuracy for DINO (Left) and MAE (Right) tokens, grouped by label category.
(Bottom) F1 score for DINO (Left) and MAE (Right) tokens, grouped by label category.
The error bars denote the standard deviation across 10 independent trials.
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Fig. 14. Cosine-template segmentation accuracy for k € {1,5,10, 50,100,500} sup-
port samples per concept, for DINO (Left), MAE (Right). Error bars denote standard
deviation across 10 independent trials.
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4.5 Qualitative Results

In the following subsection, we qualitatively examine the segmentation capa-
bilities of learned concept templates on unseen image samples. Based on our
previous analysis, we use the k tokens for hyperplane templates and the g tokens
for cosine templates for both DiNO and MAE.

Image GT Mask DINO-H DINO-C MAE-H MAE-C Image GT Mask DiNO-H DlNOC MAE-H MAE-C

Sky

Board B.board Hovel

Mill

Cardb. Fabric Paper Leather Skin

(a) Material: Skin, leather, paper, fabric, card- (b) Object: Sky, hovel,

board. windmill.

O

Imaue GT Mask DINO-H DINO-C  MAE-H MAE- Image GT Mask DIiNO-H

3 x
.2 2
© =
& =
> 3
[ 2
M <
1

= g
[ k]
8 2}
" v
£ £
3 S
=9 wn
& g
g =
A &%

(C) Part: Cloud, keyboard, button-panel, foot- (d) Scene: Snowy mountain, cottage garden,

board. stretcher kitchen, liquor store, signal box.
, S .

<
5]
c
O
“
o}
-
>
IS
=
3
o]

(e) Texture: Chequered, knitted, honeycombed,
perforated, gauzy.

Fig.15. Segmentation visualizations for DINO and MAE templates using cosine
(DINO-C, MAE-C) and hyperplane (DiNO-H, MAE-H) decision rules. Each figure
showcases five unseen images from a specific concept category (material, object, part,
scene, texture).
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In Fig. 15, we present image samples organized by their primary category
(material, object, part, scene, texture). Within each category, we select five rep-
resentative concepts, and examine one image sample per concept. The selected
concepts are chosen to ensure a balanced representation of DINO hyperplane
template performance, incorporating both the highest and lowest F1 scores. To
improve visualization clarity, the representative image is selected from the test
set based on the largest area coverage of the corresponding concept. Addition-
ally, for each image sample, we provide its ground truth segmentation mask (GT
Mask) alongside the predicted masks generated by hyperplane-based (DiNO-C,
MAE-C) and cosine decision rule-based (DiNO-C, MAE-C) template models.
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Hair Flower Airpl.
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(a) DiNO hyperplane rule: Train, airplane, (b) DiNO cosine rule: Zigzag, chequered, sky,
flower, hair, skin. farm, mountain
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(C) MAE hyperplane rule: Cloud, wheel, person, (d) MAE cosine rule: Chequered, honeycombed,
horse, motorcycle. dotted, mountain, forest road

Fig. 16. Segmentation visualizations for DiNO and MAE utilizing cosine and hyper-
plane decision rules. Each figure presents segmentation masks of unseen samples, pro-
duced by a particular model (DiNO, MAE) and decision rule (cosine, hyperplane). We
showcase five samples per concept, highlighting the top five concepts with the highest
F1 scores.

In Fig. 16, we present segmentation visualizations for the concept labels with
the highest F1 scores. Specifically, for each model (DiNO, MAE) and decision
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rule (hyperplane, cosine), we identify the top-five concept labels based on their
F1 scores. For each selected concept, we showcase segmentation masks for five
image samples where the template achieves the highest intersection over union

(IoU).

4.6 Summary

Our post-hoc concept direction analysis provides insights into the representation
power of pretrained DINO and MAE models, offering guidelines for practical
applications while raising questions for future work. A key observation is that the
hyperplane classification rule consistently delivers better semantic separability
than the cosine counterpart in both classification and segmentation downstream
tasks. While MAE’s [CLS] tokens seem to be an exception to this finding, we
demonstrated that cosine distance between tokens is a suboptimal intra-class
similarity metric.

Additionally, we showed that depending on the downstream task, context,
and pretraining objective, different ViT tokens —some of which had not been
extensively explored in the literature— yield better semantic separability. This
challenges current intuitions regarding the interpretation of query, key, and value
tokens within transformer architectures and highlights the importance of under-
standing the role of each block within a transformer layer.

Furthermore, when utilizing pretrained DINO and MAE models in down-
stream tasks, the following observations should be mentioned: For image clas-
sification, DINO’s x5 token combined with the hyperplane classification rule
results in optimal classification results. Respectively, MAE’s tokens should not
be considered in this context as they produce random image classifiers. When
labels are sparse and a few-shot context is required, DiINO’s x; is better aligned
with the cosine classification rule compared to other token types. We also observe
that a support set size of 50 samples represents the point at which performance
gains begin to significantly diminish.

For semantic segmentation tasks, the models achieve their highest scores
when leveraging their respective k tokens and the hyperplane decision rule.
While DiNO outperforms MAE, the latter’s strong performance in this con-
text highlights that masked image modeling could serve as an important pretext
(sub)task in the development of foundational vision transformers. Furthermore,
DiNQ'’s k tokens achieve the highest performance across all object categories, a
trend that’s not evident in MAE. Finally, in a few-shot context, both models’
overall performance across all concept categories is inadequate. However, the
q token for both DINO and MAE provides excellent separability for textural
concepts.

5 Limitations

While our study provides a thorough analysis of self-supervised ViT properties
across various pre-training objectives, token types, decision rules, downstream
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tasks, and contexts, it has certain limitations. A primary constraint was compu-
tational resources, which restricted our evaluation solely to ViT tokens extracted
from the final transformer layer. Additionally, we treat image segmentation as a
non-overlapping patch-level classification rather than pixel-level classification.
Since ViT-based segmentation methods using frozen backbones [17] perform
spatial interpolation of the feature maps to restore the spatial dimensionality
of the input space prior to classification, our approach does not significantly
deviate from this norm. Finally, regarding classification via the cosine decision
rule, we did not account for feature-space centering prior to the computation of
cosine-similarity between features. While it would be interesting to investigate
its effects, we will consider it in future works.

6 Conclusion

Our work conducted an in-depth post-hoc concept direction analysis to evaluate
the representational power of pretrained DiNO and MAE token types in classifi-
cation and segmentation downstream tasks. We examined their performance in
both standard and few-shot learning contexts, utilizing hyperplane and cosine-
similarity decision rules. Our findings show that the cosine decision rule —often
used in unsupervised learning approaches— consistently results in inferior seman-
tic separability compared to its hyperplane counterpart. We also demonstrate
that the optimal token type selection is highly dependent on these factors, while
confirming that masked modeling effectively constructs competent backbones for
image segmentation tasks.

Future research toward the development of foundational vision architectures
should focus on deepening our understanding and interpretation of ViT tokens
(arising from the unintuitive and possibly unexpected efficiency of key and
query tokens, disproving the hypothesis that value tokens possess superiority),
as well as assessing the efficacy of transformer layers, particularly under self-
supervised pretraining objectives. Additionally, in unsupervised learning appli-
cations —where the cosine distance between ViT tokens is commonly used as
an intra-class similarity metric— exploring semantic proximity metrics beyond
cosine similarity could enhance downstream task performance. Alternatively, a
possible future research direction could be to work towards pre-training meth-
ods that will enforce interpretable concept alignment through the cosine rule,
offering imminent enhancement of many existing unsupervised works that rely
on a self-supervised backbone.
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Abstract. In recent years, Explainable Al (XAI) methods have facil-
itated profound validation and knowledge extraction from ML mod-
els. While extensively studied for classification, few XAI solutions have
addressed the challenges specific to regression models. In regression,
explanations need to be precisely formulated to address specific user
queries (e.g. distinguishing between ‘why is the output above 02’ and ‘why
is the output above 507’). They should furthermore reflect the model’s
behaviour on the relevant data sub-manifold. In this paper, we introduce
XpertAl a framework that disentangles the prediction strategy into mul-
tiple output range-specific sub-strategies and allows the formulation of
precise queries about the model as a linear combination of those sub-
strategies. XpertAl is formulated generally to work alongside popular
XATI attribution techniques, based on occlusion, gradient integration, or
reverse propagation. Qualitative and quantitative results demonstrate
the benefits of our approach.

Keywords: XAI - Post-hoc attributions - Regression - Mixture of
experts + Contrastive explanations

1 Introduction

Machine learning has provided powerful predictive models for numerous scien-
tific and industrial applications. As the use of ML models for critical autonomous
decisions increases, there is a growing demand for establishing trust while main-
taining their predictive capabilities. Explainable artificial intelligence (XAI) has
emerged as a step towards enhancing transparency and allows for insights into
the inner workings of these highly complex AT models [5,40]. XAT can be utilized
for both, model validation against expert intuition as well as for obtaining new
insights into the data-generating processes under investigation [23,24].

© The Author(s) 2026
R. Guidotti et al. (Eds.): xAI 2025, CCIS 2578, pp. 400-423, 2026.
https://doi.org/10.1007/978-3-032-08327-2_19


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-08327-2_19&domain=pdf
http://orcid.org/0000-0003-0044-8959
http://orcid.org/0000-0002-3861-7685
http://orcid.org/0000-0001-7243-6186
https://doi.org/10.1007/978-3-032-08327-2_19

XpertAl: Uncovering Regression Model Strategies for Sub-manifolds 401

XpertAl Inference
S T Tt N 1.0
1 Experto.. \
] 0 H 0.8
\ YXpertAl |
i Expert.; —~ 13 o0s
: . _/_ ZXJ : i 04
: Expert,., = H Z
! / ! 0.2
MY = 0.0 T 2t
) 00 02 04 06 08 10
Unaive
Model to be |/ Ynaive
explained /] / Explaining

OO—C

Va /

Input

“Why is this an
excellent wine?”

“Why does the turbine
produce x kW?”

vs.
vs.

“Why does a turbine

“Whats sets apart /i# produce less than

a good and an
excellent wine?”

expected?”

o
¥ Naive XpertAl
price Yall others

Fig. 1. Top: Conceptual overview of our proposed XpertAI approach. We add a layer
of range expert neurons, each responsible for mimicking the original model behaviour
on a range-specific sub-manifold of the data. During inference, the outputs of all range
experts are added up and result in the original model output. When explaining, we
isolate output-range-specific effects by querying only the respective or a combination of
range experts. Bottom: While the naive application of attribution methods typically
answers questions from a generic point of view (grey) our approach enables answers
to more nuanced questions as defined by the user (red). For the tasks of wine quality
prediction and attributing losses of a wind turbine, we see significant structural changes
in the explanations. For details see Sects. 4.2 and 4.3. (Color figure online)

So far, the predominant focus within XATI has been placed on understanding
the decisions made by classification models [6,7,38,49,51]. The widely used fam-
ily of post-hoc attribution methods aims to achieve this by allocating evidence
for a particular class across the corresponding input features. In doing so, they
indicate the extent to which each feature has contributed to the model output.
In this process, the model’s decision boundary serves as a natural point of refer-
ence for the explanation. In regression, on the other hand, the equivalent to the
decision boundary needs to be defined for every single query, since it is a priori
unknown which of the two questions ‘why is the output above 507’ or ‘why is
the output above 07’ is most relevant for the user [26]. Moreover, in non-linear
problems, sub-manifolds on which the model builds specific responses are to be
expected, for example, for different output values.
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To address these challenges, we propose our XpertAI framework. The basic
idea is to decompose the output of the regression model into a set of additive basis
functions, the so-called range experts (compare Fig. 1, top). Each range expert
is dedicated to capturing the model behavior within a specific, output-range-
dependent sub-manifold. Subsequently, the user can query the range experts
with any state-of-the-art attribution method to obtain explanations that are
contextualized to the individual explanatory needs. We demonstrate the bene-
fits of our method on several (controlled and real-world) problems (see Fig. 1,
bottom). We, for example, find that a model considered the price the most impor-
tant input feature to distinguish an excellent wine from a bad one. But when
explaining with respect to decent alternatives (close-by-reference values), other
quality-related features become much more important. In another case study, we
used attributions to monitor the performance of a wind turbine. There, we find
that our contextualized explanations more faithfully capture the performance
losses, which enables better maintenance decisions in practice. In addition to
these qualitative insights, we report improved faithfulness through better con-
textualization with XpertAL An implementation is available online.!

2 Related Work

Our proposed method relates to several specific areas of XAI, which we will
briefly discuss within this chapter (see e.g. [5,40] for XAI reviews).

2.1 Mixture of Experts

The Mixture of Experts (MoE) framework [14,20,35] follows a divide-and-
conquer strategy, commonly used to enhance model performance. Recent work
has applied MoEs for transparency by combining interpretable linear experts
[19]. In contrast, our approach utilizes MoEs for explaining models in a post-
hoc manner, without restriction on the structure of the model, and steering
the expert to become ‘range experts’ focusing on specific value ranges. This is
achieved by dividing the data into sub-manifolds according to the output range
of a regression model, a way of domain-informed gating, and explaining the
model strategy within these specific regions.

2.2 Context in XAI Attribution Methods

Generally speaking, every explanation requires context to be meaningful. When
explaining the outcome of a classification model, the decision boundary serves
as a natural point of reference. Contrastive explanations have been proposed
to better incorporate user-specific context into the explanation [21,28,43]. For
regression models, on the other hand, explanations depend on the reference out-
put relative to which we seek an explanation [26]. XAI attribution methods

! https://github.com/sltzgs /Xpert AL
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allow for the incorporation of context through baselines, which depending on
the method have to be chosen in input space [29,45] or latent space [26,31,41].
Each baseline then corresponds to a respective reference value (). In practice,
the choice of baselines represents a challenge with fundamental impact on the
outcome of the explanation. In this work, we therefore propose a practical solu-
tion that ensures contextualization by design for regression models and, as a
result, increases robustness against suboptimal baseline choices.

2.3 Disentangled XAI and Virtual Layers

While refining the question to be asked is essential in a regression setting, many
works have focused on independently refining the explanation itself (mainly in
a classification context). Specifically, enriching explanations by identifying its
multiple components, associated with distinct abstract concepts. These can be
obtained in a supervised manner [22,50], in an unsupervised manner [9,46], or
by directly inspecting neurons [2,49,51]. This kind of analysis often involves
an informed transformation of latent representations to obtain a meaningful
or relevant ’concept space’, followed by the inverse transformation to leave the
overall model behaviour intact [48]. Therefore, these approaches are referred to as
virtual layers. [9], for example, extract sub-concepts that jointly contribute to the
explanation of an overall class concept. Likewise, [47] generates a Fourier basis
on which the prediction of speech samples can be analyzed more efficiently, and
[27] introduces a virtual PCA layer, which disentangles verified from unverified
factors of variation and subsequently prune the latter for increased robustness.
We extend these efforts to the broad domain of regression, by introducing a
novel technique that aims to disentangle global phenomena that exert influence
consistently across the entire range of potential regression outputs from more
localized context-specific patterns (see Fig. 1, top).

3 Our Method: XpertAl

In the following, we introduce our novel method, called XpertAI for explaining
neural network regression models. Our approach is inspired by the MoE concept
and consists of appending range experts to a given ML model, thus allowing the
user to formulate precise queries for which range they need an explanation. This
appendage can be seen as a virtual layer inserted in the neural network, which
— while leaving the overall prediction function intact — enriches it by providing
the basis for query formulation and explanation. Figure 2 conceptually depicts
the method and its notation, with details in the following sections.

3.1 Adding Range Experts

We abstract the ML model as a function f mapping the input z to a real-
valued output y. The model may either be a pure black-box or a neural network
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Fig. 2. Diagram of our two-step approach for obtaining fine-grained explanations from
an existing regression model. The first step consists of adding a collection of range
experts to the model. The second step synthesizes a query g from those range experts
and produces a corresponding explanation (the exemplary query on the right is sig-
moidal with the ML model’s output but linear with the experts).

with multiple layers. We define the range experts as the following collection of
functions building on the output of the ML model:

po,(y)
pO,‘r(y - T)
2= po.(y—27) 1)

where pg ,(y) = min(max(y,0),7) clips the input to the interval [0,7]. A low
7 corresponds to more specialized experts. The kind of transformation in Eq.
(1) is also known as thermometer coding. The architecture that results from
appending these experts is shown in Fig. 2. Assuming the values of y are always
positive (which we can ensure through offsetting) we can reconstitute the output
prediction by summing the experts’ outputs:

Y=> . %m (2)

The mapping from y to z and back to y can be seen as a virtual layer which does
not affect the input-output mapping, but that provides additional functionality.
Uunlike previous formulations of virtual layers [47], ours is placed at the output,
enabling a disentanglement of the explanation in terms of output ranges.

Consider now the task of attribution. Classical explanation techniques would
attribute y to the features of = (something we denote by £(y,x)). The virtual
layer allows us to compose two attribution steps:

R, = 5(ya Z)m
Rim = 5(Rmal‘)z
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where R,,, denotes the contribution of expert m to the output y (in our case we
simply have R,, = z,), and R, can be interpreted as the contribution of input
feature i through expert m. The overall explanation can be seen as a matrix
of size # features - # experts, from which it will be possible to formulate and
answer precise user queries.

3.2 Querying/Explaining

Whereas the disentanglement performed above provides a more detailed view of
the prediction behaviour than a simple explanation, the user is often interested
in particular aspects of it. Our approach lets the user formulate a query (or
‘explanandum’) as a linear combination of the range experts:

q=20n WmZm (3)

An example of such a query is given in Fig. 2 (right). For example, if the user
is interested in what makes a prediction y = 60 larger than a reference value of
50, the query ¢ can be shaped in the form of a sigmoid centred at the reference
value 50.

Once a query has been prepared (i.e. once the weights w,, have been defined),
an explanation to that query (g, z) can be generated by any state-of-the-art
attribution method:

E(g,2) = E( X, Wmzm, @) @)

Note that for explanation techniques that fulfil the linearity axiom w.r.t. the last
layer of representation, we can further develop the expression of the explanation
as:

E(q.x) =Y wmé(2m, ) (5)

It shows that the explanation is a linear combination of the explanations of all
basis elements z,,. This formulation can be advantageous when the explanation
is associated with many different queries or when the query arrives in real-time,
in which case the explanation basis can be pre-computed. We note that our
approach satisfies some key desirable properties of an explanation:

Proposition 1 (Conservation). If V,, : > ,&(zm,2)i = 2m, then
> :€(q,x); = q, in other words, if each range expert z,, can be attributed to
iput features in a comservative manner, then explanations of any query q are
also conservative.

Proposition 2 (Irrelevance). IfV,, : E(zm,x); = 0, then £(q,z); = 0, in
other words, if we verify that for a given data point, the feature is irrelevant for
all range experts, then it is also irrelevant for any query built on those experts.

These two results are easily retrievable by observing the specific structure of
the explanation given in Eq. (5). Proofs can be found in Appendix A.
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3.3 Structural Disentanglement

When the underlying explanation method relies not directly on the ML model’s
output but on its computational graph (e.g. LRP), the latter must be disen-
tangled. Clearly, such a structural disentanglement is missing as the mapping
from activations a to the expert’s outputs z passes through a one-dimensional
bottleneck y (the original real-valued output). We propose to replace the original
mapping @ — (2, )m by a learned surrogate model (s,,):

a’ ($m)m = Gm)m

where the second part of the mapping is given by 2, = po,-(Sm ), a hard-coded
saturation forcing the surrogate and true experts to produce outputs in the same
range. We then build for each expert the loss function:

max (0, $p,) zZm <0
Sy 2m) = |Sm — Zm] 0<zm<T
max(0,7 — $p) 2m > T

which encourages that the surrogate’s output is correct within-range and on the
correct side outside-range. We then solve ming E[> " £(sy, 2mm)] with E[-] denot-
ing the expectation over the training data. To preserve not only the prediction
output of the original model but also its prediction strategy (i.e. the feature
it uses) further steps are needed. One approach is to enforce the loss function
not only on the data but also on perturbations of the data [44]. For example,
activations can be randomly turned off (with a probability chosen between 0
and 1). This perturbation scheme ensures in particular that the Shapley value
explanations of the original and disentangled models become similar (i.e. that
they predict the same for the same reasons). Furthermore, we find that freez-
ing the bias in the output layer is important to achieve the desired structural
disentanglement.

3.4 XpertAl Evaluation

We evaluate our proposed approach qualitatively (Sect.4) and quantitatively
(Sect.5). In both cases we rely on either a (constructed) problem that allows
for validation against some sort of ground truth, or the observation of model
behaviour under attribution-guided, meaningful input perturbations. [13] pro-
posed a regression-specific metric called the area between the curves (ABC).
The ABC is defined as the area between the model output when occluding a
sample’s features in the order of attribution magnitudes and a straight line con-
necting f(x) and f(z') (which corresponds to random sorting). Since sorting
ascending and descending can result in asymmetrical curves, we sum over both
areas [8]. For a balanced result, we normalize by the distance between the sample
and the baseline when averaging. Higher values of ABC are better.
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Furthermore, the challenge of including context in attribution methods
(Sect. 2.2) naturally extends to occlusion-based evaluation (ergo, what to occlude
with?). To ensure that we evaluate attributions within the relevant output range
of function f(z), where we account for context-specific (local) effects, we occlude
with a domain-specific counterfactual [3,13]. Therefore, we sample conditional
' = D(z|y = ) from the available data set D with which we then occlude and
average the respective ABCs over multiple draws.

4 XpertAI-Opinion: Insights Into Model Behaviour
on Sub-manifolds

We now demonstrate how our XpertAI approach can help users disentangle
local and global effects for meaningful insights in different case studies. First,
we uncover output-scale-specific strategies for image regression problems (4.1).
Then, we explain the quality of red wine (4.2) and the production losses of a
wind turbine due to a technical malfunction (4.3). For each of the problems, we
briefly introduce the dataset, model and XpertAI setting, before presenting the
insights. We present results from using both, Integrated Gradients and Layer-
wise Relevance Propagation (LRP). Details on all case studies can be found in
Appendix C.

Class. MNIST Regression MNIST

~——
. edding =

V] 0.33 0.66 1

Discrete class labels Continous, real-valued target

Fig. 3. Examples from three classes of the MNIST dataset for handwritten digit recog-
nition (left) mapped to a real-valued scale with the help of a one-dimensional t-SNE
embedding (right). Digits populate continuous ranges of the new target, and sorting
within the digit ranges corresponds to digit rotations.

4.1 Uncovering Output-Scale-Specific Strategies

First, we adopt the well-known MNIST [11] dataset and transform it into a
regression problem (rMNIST). For simplicity, we take the subset of only three
digits (4,5, and 6) and calculate a one-dimensional t-SNE representation [30],
which henceforth serves as a new label for each sample. Additionally, we ensure
labels are distributed uniformly between values of zero and one. As a result, the
individual digits populate continuous parts of the output dimension (in our case



408 S. Letzgus et al.

sorted by digit magnitude, which facilitates interpretation) while sorting within
each digit bin is based on the respective digit’s rotation (compare Fig.3). We
now train a vanilla CNN model architecture to learn this mapping from image to
output scale. For contextualized insights, we train three range experts (one for
each digit range). We first discuss qualitative results and present its quantitative
evaluation in Sect. 5.

LRP IG

Expert
e

BASIS

Original

2 2
> 2B JR” MR- R
> Cohort ° °

Fig. 4. Mean attributions over different cohorts of samples (columns) and basis func-
tions (rows). The bottom row represents naive attributions. The top row corresponds
to the respective range-specific expert XpertAI bases. Note, how only the latter exposes
the digit rotation within the digit ranges (orange/blue). (Color figure online)

Figure 4 shows a comparison between the standard and the XpertAI expla-
nations for both, LRP and IG. We contrast the average naive attributions over
all samples within the respective output range (bottom row) with the explana-
tions obtained with the respective range experts (top row). The explanations
for the digit range 4 remain the same since both implicitly assume the same
reference value (zero on the output scale). The expert attributions for the upper
digit ranges (marked in orange and blue), enable more granular insights. It is
visible how the range experts focus specifically on the rotation of the digit: a
rotation to the right is associated with lower values (negative attribution, blue)
and vice versa. See [Fig. 10] (Appendix C) for more basis functions. In Sect. 5, we
will see that these qualitative differences in attributions also result in improved
quantitative evaluation scores for attribution faithfulness.

Now, let’s consider an illustrative regression task closer to real-world applica-
tions: biological age estimation from facial images [1,4,15] (see Fig. 13 Appendix
C) for model and data set details. Intuitively, the explanation for a person with
a high age should be structurally different when being contrasted with a much
younger age or an only slightly younger one. We, therefore, focus on a high-
age cohort (individuals predicted to be above 77years) and train three range
experts (7 = 38.5years). Figureb, left, shows LRP attributions for the origi-
nal model, averaged over the respective samples. Our proposed approach now
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allows us to disentangle these further using the respective age-specific basis func-
tions. As expected, the explanation relative to the ’young’ basis (centre) overall
contains much more positive evidence than the one with respect to the closer
reference value of 77 years (right). Additionally, we can see that the latter is more
fine-grained with a remaining focus on the person’s eyes and, surprisingly, we
discovered a sign-flip for the oronasal region with a particular focus on lips and
teeth. While the mouth has been reported to be an area particularly vulnerable
to biases in age estimation from facial images [12], we put the faithfulness of
these particular explanations to the test.

Original Basis XpertAI Basis
¥ = 0 yrs ¥ = 77 yrs
—~

Fig. 5. Comparison of average attributions for standard LRP (left) and two different
XpertAl basis functions. Red indicates positive, and blue negative evidence. We can
see that the disentangled explanations allow for much more fine-grained conclusions.
Interestingly, the sign flip of the mouth area was masked by the strong attributions
with respect to the original basis. We test for its faithfulness in Fig.6 (Color figure
online).

In Fig. 6, we compare the effect of occluding the respective parts (eyes and
mouth) of people’s faces with a generic average over all images. One example
of each is shown at the right of the figure. Recall that this means we mask the
eyes and mouth section with a relatively ’younger’ version. The chart shows the
respective change in the model’s output. In line with intuition, and the expla-
nations, age is indeed consistently decreased when occluding the eyes. Masking
the mouth area with relatively ’younger’ mouths, however, indeed results in an
increase of the model’s average prediction in many cases. The XpertAlI-basis
therefore constitutes the more faithful explanation since the attributions cor-
rectly captured the sign flip in model behaviour.

In conclusion, the disentangled basis explanations enabled more detailed
insights into the model’s inner workings for both, the rMNIST and the age-
prediction cases. They revealed effects that were not apparent from the naive
explanations of the original model, since their highly aggregated nature did not
allow for more fine-grained insights.
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Fig. 6. Validation of findings from disentangling age prediction (compare Fig.5). We
occlude relevant parts of the image according to the disentangled explanations (eyes
and mouth) with the dataset-wide average face (two examples on the right). We then
observe the effect on the model output relative to the original model prediction. For
the high-age cohort, the two areas have distinctly different effects. Occluding the eyes
with a relatively younger pair results in a consistent decrease in the predicted age.
Occluding the mouth region, however, results in an increase for many of the samples.
This model behaviour is in line with our insights from the disentangled explanations.

4.2 What Sets Apart a Good Wine from an Excellent One?

As noted in the introduction, we now explore a more hedonistic and tangible
example - red wine quality. We utilize Kaggle’s Spanish red wine dataset? which
contains several thousand wine samples. They are described by five numerical
(year, price, as well as body, acidity, and quality scores) and four categorical
(name of the winery and the wine, grape, region) features. The quality score,
which is an ‘average rating’ given by thousands of testers (rating binned into
8 discrete quality levels), is our regression target. After data-pre-processing
around 1700 samples are left. We have trained a small fully-connected ANN
which achieved an R? of around 0.7.

We now want to learn what, according to the model, sets apart a good wine
from an excellent one. We define wine as good when it belongs to the top 10%
and excellent when it belongs to the top 1.5 % of the model output range. We
train three range experts (7 = 0.33) and compare the respective attributions
obtained from standard IG with its application within the XpertAl framework.
Figure 7 shows the decomposition of the excellent wine attributions into the

2 https:/ /www.kaggle.com/datasets,/fedesoriano/spanish-wine-quality-dataset.
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respective expert bases. Aside from the natural change in attribution scales, the
most prominent difference in the explanations is the contribution of the price
to the model outcome. For the naive IG attributions, the price is the by far
most important feature (meaning high prices alone are the main indicator for
excellent wines). The contextualized XpertAI attributions, on the other hand,
give a much more balanced picture. Here, the outcome suggests that the price
is the most important feature only for the low-quality range expert (meaning
what distinguishes an average from a poor wine, blue). The relative importance
of the price, however, is significantly reduced when compared to average wines
(orange) and almost vanishes when compared to good wines (green). There, the
sum of all other quality criteria is much more important than the price of the
wine itself. This directly translates to some actionable (and intuitive) insight: if
you next time buy a wine in the supermarket, don’t go cheap to ensure you buy
a decent wine. When looking for an excellent one though, you might be better
off with the expert judgement of your local wine seller.
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Fig. 7. Decomposition of naive explanations (grey) for samples from the high output
range (’excellent’ wines) with respect to low, medium and high-quality reference values
(colourful). The XpertAl explanations allow for nuanced insights into what makes
an excellent wine better than the worst (blue), a decent (orange) or a good (green)
alternative. (Color figure online)

To make sure, our insights are not based on intuitive but unfaithful attribu-
tions, we also compare quantitative faithfulness for the and observe an average
increase in the ABC metric by more than 10 % (see Sect. 5).

4.3 Why Does the Wind Turbine Produce Less Than Expected?

Wind power is one of the pillars of decarbonizing energy systems around the
world. Wind turbines are often placed in remote locations and need to be oper-
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ated and monitored from a distance, using data from their Supervisory Con-
trol and Data Acquisition (SCADA) system. Effectively leveraging this data is
an active area of research [18], with the primary focus on detecting and diag-
nosing underperformance as the central challenge [33]. However, the detection
of underperformance is always context-specific since the implicit question is:
‘underperformance relative to what operational state?’ In the wind turbine case,
it is the condition without the presence of a malfunction, given the context of
prevailing ambient conditions.

We utilize data from a 2 MW wind turbine and a meteorological met-mast
from an onshore wind farm on the Iberian peninsula®. SCADA data is available
for two years and includes ambient conditions as well as technical turbine param-
eters as 10-minute averaged values (50,000 data points after pre-processing). We
have trained a small fully-connected MLP to predict the turbine output from
wind speed, air density, and turbulence intensity. The model achieves a compet-
itive RMSE of less than 36 kW. Additionally, we have augmented the data with
so-called yaw-misalignment losses. They occur when a turbine does not perfectly
face the incoming wind direction, which reduces the effective area of the rotor.
Detecting yaw-misalignment is an ongoing field of research [34,37] and attribut-
ing it by XAI methods has recently been proposed as an effective solution [25].
For such an approach to work, we need our XAI methods to faithfully attribute
the losses induced by yaw-misalignment to the respective feature (difference of
nacelle and wind direction). In our setup, we can directly compare attributions
with the respective ground-truth-losses.
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Fig. 8. Quantitative faithfulness when attributing yaw-misalignment losses to the
respective feature with standard LRP (grey) and XpertAI-LRP (red) against the true
losses (dashed line). (Color figure online)

We trained three range experts across the different operational regions of the
turbine (see Fig. 13, Appendix C). Figure 8 shows the comparison of attributing
the yaw-misalignment induced losses to the respective yaw-feature with standard

3 https://opendata.edp.com.
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LRP and our XpertAI-LRP variant. We can observe that the naive LRP appli-
cation attributes exhibit a systematic overestimation (larger negative values) of
losses caused by incorporating phenomena from outside the respective opera-
tional regime. Our proposed novel attributions obtained from the range-experts,
on the other hand, are on average much closer to the ground truth. For turbine
operators, this directly translates to better operation and maintenance decisions
and therefore highlights the benefit of using sub-manifold-specific explanations
in industrial or engineering applications.

5 Quantitative Evaluation and Sanity Checks
of XpertAl-Faithfulness

After having presented some intriguing insights enabled through our XpertAI
approach in the previous chapter, we now conduct a systematic evaluation of
explanation faithfulness. Details on the respective experiments and additional
insights for obtaining faithful range experts can be found in Appendix B and C.

5.1 Are XpertAlI Attributions Faithful?

To answer this question quantitatively, we utilize the ABC score as introduced
in Sect.3.4. Table1 reports the ABC scores of our XpertAl approach relative
to a naive application of LRP and IG on the previously introduced data sets as
well as several popular regression benchmarks [36]. For each of them, we trained
three range experts and evaluated samples from the top range (see Appendix C).
Overall, we see consistent improvements in ABC scores across all settings which
means that our approach indeed can generate more faithful attributions with
respect to a user-specific query. Note, that the advantage is significantly larger
for LRP where our approach corresponds to a data-driven root-search strategy
whereas naively, there is no such option. For IG we have already leveraged its
inherent contextualization capability to some extent by utilizing the mean over
all input samples as a starting point for the integration path. Our approach is
still able to further refine the attributions towards a better contextualization.

Table 1. Comparison of faithfulness for different attribution methods applied naively
and within the XpertAI framework. Relative improvement of ABC over naive applica-
tion. Standard deviation over 5 different retraining runs for LRP.

dataset LRP I1G
rMNIST +50.7 % 301472 %
WINE +19.8 % T12+10.6 %

FRIEDMAN |4+12.6 % *°4+1.9 %
CALIFORNIA|+2.5 % *°° |49.7 %
DIABETES |4+3.8 % *'6 |+4.4 %
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5.2 How Many Range Experts?

One practically relevant question is, how many range experts to train, which
includes the choice of their respective ranges (7). Conceptually, the method
works best if every distinct sub-region of the output is covered by at least one
range expert. In practice, these can either be domain-informed and therefore
known apriori, or inferred by analyzing activation patterns (from an activation
vs. f(z) scatter plot, for example). In the context of our rMNIST case, selecting
one range expert for each digit range, therefore three range experts in total
appears to be the most intuitive choice. Since in practice, we might not know
where exactly these boundaries lay, we compare settings for three, five, six, and
nine equally spread range experts.

Table 2. Results for pixel flipping experiments for regression MNIST. Results within
ranges: sample-flipping baseline pairs are within one expert range. ABC values are
normalized by flipping distance. Values for naive methods differ because of the normal-
ization. High values are better.

# LRP [LRP 1G 1G
experts|Naive XpertAI  |Naive XpertAl

3 0.40 10.56 £+ 0.02/0.93 [1.00 + 0.05
5 0.47 10.70 £ 0.01/1.16 |1.20 + 0.01
6 0.46 |0.75 4+ 0.01/1.22 [1.23 + 0.01
9 0.49 10.78 £ 0.01/1.32 1.36 4+ 0.01

In Table 2 we see that our approach improved the ABC score across all set-
tings. Also, we can see that LRP benefits in particular from adding extra range
experts while IG results are more consistent across the number of experts. Note,
that this also holds if the expert ranges are not aligned with known sub-concept
ranges (as is the case for 5 equally distributed experts). In practice this means
that the limit for the number of experts depends on the specific problem, com-
putational considerations as well as the resolution of the available data.

5.3 (Diss-)aggregate XpertAl-Attributions

From Proposition 1, we can in principle derive an alternative way to obtain dis-
entangled and contextualized attributions with respect to 3. Instead of adding up
the respective expert attributions, we subtract them from the original explana-
tion in reverse order. Intuitively, only information relevant to higher-range bins
should remain. We test this hypothesis empirically on the rMNIST dataset.
We flip pixels to zero according to the order of the difference of attributions
E(y,x)=>",, E(2m, x). Intuitively, the more evidence associated with lower-range
concepts we subtract, the more evidence for higher values should remain, and
therefore the flipping curve should decrease more slowly. In the ideal case, the
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only information with positive attributions is the one relevant for values larger
than y; and the flipping curve should therefore remain around that value for as
long as possible. When testing this empirically, we indeed see such a behaviour
(Fig.9). Note also, that the plateaus of the different range experts do not clus-
ter around the digit-transitions (0.33 and 0.66). This means, that despite the
strong global concept shifts present in the data, the range experts were able to
capture more subtle, local effects that guide f(z) in the context of the respective
reference values.
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Fig. 9. Mean occlusion curves over all samples from the top bin of a six-expert-basis.
When successively subtracting range-expert attributions from the original explanation
and flipping pixels according to the remaining explanations, the flipping curves saturate
in the proximity of the respective reference values.

6 Discussion and Conclusions

In this paper, we have proposed the XpertAI framework to achieve contextual-
ized and disentangled attributions when explaining regression models. Inspired
by the MoE approach, the framework divides the data into sub-manifolds, each
of which corresponds to a certain predicted output range. Such a division is
achieved by building a collection of range experts, which we equip with explain-
ability. It enables for the first time a disentanglement along the output of the
prediction strategy and the resolution of specific user-defined queries.

Empirically, we find that our XpertAl framework can distill locally relevant
explanations from highly aggregated global standard attributions, as demon-
strated by several quantitative experiments based on occlusion tests. Explana-
tions associated with each expert range can be precomputed, so that exact user
queries can be answered very quickly as a linear combination of the precomputed
explanations.
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Our approach can be interpreted within the framework of virtual layers,
which has been instrumental in achieving various forms of explanation disentan-
glement. Furthermore, our approach provides an alternative to the more common
approach of extracting reference points or counterfactuals and bypasses some
of the challenges , such as their multiplicity and the need to search for them.
Also, our approach differs from self-interpretable generalized additive models,
by remaining applicable to a broad range of ML models, including deep neural
networks.

We have demonstrated that our method can work alongside various expla-
nation techniques, in particular, gradient-based techniques such as Integrated
Gradients, or propagation-based techniques such as LRP. While this enables a
seamless integration into existing explanation pipelines our approach naturally
inherits potential shortcomings of these methods. Furthermore, it is necessary
for propagation-based techniques to structurally disentangle the range experts.
While we have proposed a surrogate modeling approach for this step, these sur-
rogates need to be carefully trained and regularized to maintain the original
model’s prediction output as well as its prediction strategy. Also, retraining
implies additional computational cost. Hybrid approaches, with the top layers
handled by perturbation-based techniques and the lower layers with propagation,
may eliminate the need for structural disentanglement while at the same time
retaining high accuracy and computational efficiency. Enhanced approaches,
inspired by model distillation or formally equivalent neural networks, could also
be considered.

Overall, our work has highlighted the need to precisely formulate “what to
explain” (the explanandum) and proposed a practical and flexible solution in the
context of regression. The MoE idea our method builds upon, however, is more
general, and our framework could be extended in the future to other decom-
position of the predicted output, e.g. for structured output tasks such as time
series prediction. Additional future work could furthermore focus on automating
the optimal number of experts in a data-driven way. While we have shown that
for sufficiently populated ranges of the output adding more experts improves
contextualization, there certainly are limitations arising from data availability
and computational constraints. Lastly, the application and evaluation to more
complex models, such as regression foundation models [16], should be considered
in the future.
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A Proof of Propositions 1 and 2

Proposition 1 stating the conservation property of the proposed query explana-
tion can be demonstrated through the chain of equations:

2 8@ )i =32, 30, W€ (2m, @)i (
= 2 Wm 2 E(zZms )i (
=q (

where in (6), we have injected the expression of the explanation in (5). From (6)

to (7) we have permuted the sums. From (7) to (8), we have used the conservation

property of the explanation of z,,. From (8) to (9) we have identified the weighted

sum as being the query. Likewise, for Proposition 2, if some feature ¢ satisfies
Vo 2 E(Zm, x); = 0, then

= Zm Wy, - 0 (11)
=0 (12)

B How to Train and Select Good Range Experts?

In practice, we need to select appropriate range experts for the XpertAl approach
to enhance contextualization. This process may vary based on the respective XAl
attribution method being employed. For occlusion- and gradient-integration-
based methods, which do not require additional structural disentanglement (see
Sect. 3.3), a simple shift-and-clip strategy is sufficient. For propagation-based
methods, however, we need to learn the surrogate a — (2, )m (see Sect. 3). Here,
we want to highlight the need for appropriate regularization to avoid overfitting,
which in the case of range experts would result in unfaithful model attributions.
Analogously to regular model selection, we aim to choose the least complex range
expert, that can sufficiently learn the respective mapping.

In case the latent representation a is already adequately disentangled, it is
sufficient to fit a linear range expert (without bias term). We have observed
this to work well for some of our low-dimensional benchmark datasets. Other-
wise, we need to gradually increase range-expert complexity (adding neurons and
reducing L2-regularization) until the mapping is learned sufficiently. Moreover,
we have observed that instead of additional layers, (copying and) fine-tuning
the top layer(s) on the range-expert targets z, with small learning rates is a
good strategy since it ensures the solution lays in relative proximity to the orig-
inal model. If a new layer is added, initializing the weights with a projection
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to the latent principal components conditioned on the respective output range
(PCA(X|zm)) was found to speed up training and ensure good results. Fur-
thermore, the Shapley-style data augmentation (cf. Sect.3) is another crucial
ingredient to prevent our experts from adhering to spurious correlations (that
our original models did not use). This can be conveniently implemented with
the help of a dropout layer on the surrogate input a. Lastly, we can enforce the
saturation of range experts outside their area of expertise by adding an explicit
combination of ReLU functions that clip s,, to the desired range. These measures
together ensure faithful and computationally efficient range experts.

C Details on Evaluation (Sect.4 and 5)
C.1 Details Face-Age Regression Example

For this analysis, we have made use of a dataset containing ~ 20k facial images
associated with biological age? (biased toward younger ages). Each image is pre-
processed so that all of them have the same size (200 x 200) and the faces are
aligned and centred. We used a VGG-16 [42] model pre-trained on ImageNet
[10,39] as a feature extractor followed by one ReLU layer with 256 neurons, a
dropout-layer, and a final linear layer mapping the 256 neurons to a real-valued
age prediction. In all cases we used LRP-a; 0y rule [6,32] in the convolutional
layers and LRP-€ rule [6] (where biases are ignored) for the fully connected layers.

C.2 Details Quantitative Evaluation

Here, we describe the details of our quanitative experiments. For the rMNIST
experiments, we utilized a vanilla CNNs with two convolutional, ReLLU and pool-
ing layers, followed by three fully connected layers. The convolutional blocks
were kept frozen, and only the fully connected layers were re-trained as experts,
starting from their original model weights. The other problems (Wind, Wine,
California and Diabetes) are based on tabular data. Here, we utilize a 4 layer-
MLP with 20 neurons in each hidden layer. The last two were re-trained for
each expert. Moreover, we utilized the PCA initialization trick, described above
(Appendix B). w,, was selected to be 1 for all expert ranges between reference
value and sample output, and 0 otherwise. More specific information on the
implementation can be found in the published code repository®. Details, such as
target distributions, model performance, and range-expert-performance across
experimental setting can be found in Figs. 10, 11, 12 and 13.

C.3 Augmenting Wind Turbine SCADA Data with Yaw-
Misalignment

We randomly add yaw misalignment of up to 15° to our data SCADA set, and
adjust the respective targets (turbine output) with a yaw misalignment factor

* https://www.kaggle.com /frabbisw /facial-age.
5 https://github.com /sltzgs /Xpert Al


https://www.kaggle.com/frabbisw/facial-age
https://www.kaggle.com/frabbisw/facial-age
https://www.kaggle.com/frabbisw/facial-age
https://www.kaggle.com/frabbisw/facial-age
https://www.kaggle.com/frabbisw/facial-age
https://www.kaggle.com/frabbisw/facial-age
https://www.kaggle.com/frabbisw/facial-age
https://github.com/sltzgs/XpertAI
https://github.com/sltzgs/XpertAI
https://github.com/sltzgs/XpertAI
https://github.com/sltzgs/XpertAI
https://github.com/sltzgs/XpertAI

XpertAl: Uncovering Regression Model Strategies for Sub-manifolds 419

LRP

o

/
v | e
v - -
2 ;. b - -’
i = :) - -
Y 1 - 2| &~ -
A1k B I R

Sample cohort

Fig. 10. Mean attributions over different cohorts of samples (columns) and basis func-
tions (rows). Equivalent plot to Fig.4 but for six range expert basis functions.
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Fig. 11. Overview of model performance on the rMNIST problem for 3, 6 and 9 range
experts (top to bottom).
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California Houseprice Problem
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Fig. 12. Overview model performance for the regression benchmarks (Sect. 5).

Wind Regression Problem

Target distribution Model performance (R2=1.0) XpertAl-head performance
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y (power output) y (power output)

Fig. 13. Overview model performance wind turbine example (Sect. 4.3).
Cymis,i = 0033(Ayaw), if vy ; < Va,rated- This approximation can be easily derived
from static flow equations and geometric considerations, for more details on how
yaw misalignment affects turbine output see [17]. After training and evaluation of
the model on the augmented data, we can compare the magnitude of attributions
to the ground truth.



XpertAl: Uncovering Regression Model Strategies for Sub-manifolds 421

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Abdolrashidi, A., Minaei, M., Azimi, E., Minaee, S.: Age and gender predic-
tion from face images using attentional convolutional network. arXiv preprint
arXiv:2010.03791 (2020)

Achtibat, R., et al.: From attribution maps to human-understandable explanations
through concept relevance propagation. Nat. Mach. Intell. 5(9), 1006-1019 (2023)
Albini, E., Long, J., Dervovic, D., Magazzeni, D.: Counterfactual shapley additive
explanations. In: ACM Conference on Fairness, Accountability, and Transparency,
pp- 1054-1070 (2022)

Angulu, R., Tapamo, J.R., Adewumi, A.O.: Age estimation via face images: a
survey. EURASIP J. Image Video Process. 2018(1), 1-35 (2018). https://doi.org/
10.1186/s13640-018-0278-6

Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies,
opportunities and challenges toward responsible Al Inf. Fusion 58, 82-115 (2020)
Bach, S., Binder, A., Montavon, G., Klauschen, F., Miiller, K.R., Samek, W.: On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PLoS ONE 10(7), Art. no. e0130140 (2015)

Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Miiller,
K.R.: How to explain individual classification decisions. J. Mach. Learn. Res. 11,
1803-1831 (2010)

Bliicher, S., Vielhaben, J., Strodthoff, N.: Decoupling pixel flipping and occlusion
strategy for consistent xai benchmarks. arXiv preprint arXiv:2401.06654 (2024)
Chormai, P., Herrmann, J., Miiller, K.R., Montavon, G.: Disentangled explanations
of neural network predictions by finding relevant subspaces. IEEE Trans. Pattern
Anal. Mach. Intell. 46(11), 7283-7299 (2024)

Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: Imagenet: a large-scale hier-
archical image database. In: CVPR, pp. 248-255. IEEE Computer Society (2009)
Deng, L.: The mnist database of handwritten digit images for machine learning
research. IEEE Signal Process. Mag. 29(6), 141-142 (2012)

Ganel, T., Sofer, C., Goodale, M.A.: Biases in human perception of facial age are
present and more exaggerated in current ai technology. Sci. Rep. 12(1), 22519
(2022)

Hama, N., Mase, M., Owen, A.B.: Deletion and insertion tests in regression models.
J. Mach. Learn. Res. 24(290), 1-38 (2023)

Hampshire, J., Waibel, A.: The meta-pi network: building distributed knowledge
representations for robust multisource pattern recognition. IEEE Trans. Pattern
Anal. Mach. Intell. 14(7), 751-769 (1992)

Han, H., Otto, C., Jain, A.K.: Age estimation from face images: human vs. machine
performance. In: 2013 International Conference on Biometrics (ICB), pp. 1-8. IEEE
(2013)

Hollmann, N., et al.: Accurate predictions on small data with a tabular foundation
model. Nature 637(8045), 319-326 (2025)

Howland, M.F., et al.: Influence of atmospheric conditions on the power production
of utility-scale wind turbines in yaw misalignment. J. Renew. Sustain. Energy
12(6), Art. no. 063307 (2020)

Innes Murdo Black, M.R., Kolios, A.: Condition monitoring systems: a systematic
literature review on machine-learning methods improving offshore-wind turbine
operational management. Int. J. Sustain. Energy 40(10), 923-946 (2021)


http://arxiv.org/abs/2010.03791
https://doi.org/10.1186/s13640-018-0278-6
https://doi.org/10.1186/s13640-018-0278-6
https://doi.org/10.1186/s13640-018-0278-6
https://doi.org/10.1186/s13640-018-0278-6
https://doi.org/10.1186/s13640-018-0278-6
https://doi.org/10.1186/s13640-018-0278-6
https://doi.org/10.1186/s13640-018-0278-6
https://doi.org/10.1186/s13640-018-0278-6
https://doi.org/10.1186/s13640-018-0278-6
http://arxiv.org/abs/2401.06654

422

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

S. Letzgus et al.

Ismail, A.A., Arik, S.O., Yoon, J., Taly, A., Feizi, S., Pfister, T.: Interpretable
mixture of experts. Trans. Mach. Learn. Res. (2023)

Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local
experts. Neural Comput. 3(1), 79-87 (1991)

Jacovi, A., Swayamdipta, S., Ravfogel, S., Elazar, Y., Choi, Y., Goldberg, Y.:
Contrastive explanations for model interpretability, pp. 1597-1611 (2021)

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., et al.: Inter-
pretability beyond feature attribution: quantitative testing with concept activation
vectors (tcav). In: International Conference on Machine Learning, pp. 2668-2677
(2018)

Klauschen, F., et al.: Toward explainable artificial intelligence for precision pathol-
ogy. Annu. Rev. Pathol. 19, 541-570 (2024)

Krenn, M., et al.: On scientific understanding with artificial intelligence. Nat. Rev.
Phys. 4(12), 761-769 (2022)

Letzgus, S., Miiller, K.R.: An explainable ai framework for robust and transparent
data-driven wind turbine power curve models. Energy AI 15, 100328 (2024)
Letzgus, S., Wagner, P.; Lederer, J., Samek, W., Miiller, K.R., Montavon, G.:
Toward explainable artificial intelligence for regression models: A methodological
perspective. IEEE Signal Process. Mag. 39(4), 40-58 (2022)

Linhardt, L., Miiller, K.R., Montavon, G.: Preemptively pruning clever-hans strate-
gies in deep neural networks. Inf. Fusion 103, Art. no. 102094 (2024)

Lucic, A., Haned, H., de Rijke, M.: Why does my model fail? contrastive local
explanations for retail forecasting. In: Proceedings of the 2020 Conference on Fair-
ness, Accountability, and Transparency, pp. 90-98 (2020)

Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
Adv. Neural. Inf. Process. Syst. 30, 4765-4774 (2017)

van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res.
9(86), 2579-2605 (2008)

Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Miiller, K.R.: Explaining
nonlinear classification decisions with deep taylor decomposition. Pattern Recogn.
65, 211-222 (2017)

Montavon, G., Samek, W., Miiller, K.R.: Methods for interpreting and understand-
ing deep neural networks. Digit. Sig. Process. 73, 1-15 (2018)

Pandit, R., Astolfi, D., Hong, J., Infield, D., Santos, M.: Scada data for wind
turbine data-driven condition/performance monitoring: a review on state-of-art,
challenges and future trends. Wind Eng. 47(2), 422-441 (2023)

Pandit, R., Infield, D., Dodwell, T.: Operational variables for improving industrial
wind turbine yaw misalignment early fault detection capabilities using data-driven
techniques. IEEE Trans. Instrum. Meas. 70, 1-8 (2021)

Pawelzik, K., Kohlmorgen, J., Miiller, K.R.: Annealed competition of experts for
a segmentation and classification of switching dynamics. Neural Comput. 8(2),
340-356 (1996)

Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. J. Mach. Learn.
Res. 12, 2825-2830 (2011)

Qu, C., Lin, Z., Chen, P., Liu, J., Chen, Z., Xie, Z.: An improved data-driven
methodology and field-test verification of yaw misalignment calibration on wind
turbines. Energy Convers. Manage. 266, 115786 (2022)

Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: Explaining the
predictions of any classifier. In: International Conference on Knowledge Discovery
and Data Mining, pp. 1135-1144 (2016)



39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

XpertAl: Uncovering Regression Model Strategies for Sub-manifolds 423

Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211-252 (2015)

Samek, W., Montavon, G., Lapuschkin, S., Anders, C.J., Miiller, K.R.: Explaining
deep neural networks and beyond: a review of methods and applications. Proc.
IEEE 109(3), 247-278 (2021)

Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences. In: International Conference on Machine Learn-
ing, vol. 70, pp. 3145-3153 (2017)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015)

Stepin, I., Alonso, J.M., Catala, A., Pereira-Farina, M.: A survey of contrastive
and counterfactual explanation generation methods for explainable artificial intel-
ligence. IEEE Access 9, 11974-12001 (2021)

Stutz, D., Hein, M., Schiele, B.: Disentangling adversarial robustness and gener-
alization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp.
6969-6980, June 2019

Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In:
International Conference on Machine Learning, vol. 70, pp. 3319-3328 (2017)
vielhaben, J., bluecher, S., strodthoff, N.: Multi-dimensional concept discovery
(mcd): a unifying framework with completeness guarantees. Trans. Mach. Learn.
Res. (2023)

Vielhaben, J., Lapuschkin, S., Montavon, G., Samek, W.: Explainable ai for time
series via virtual inspection layers. Pattern Recogn. 110309 (2024)

Wang, X., Chen, H., Wu, Z., Zhu, W., et al.: Disentangled representation learning.
IEEE Trans. Pattern Anal. Mach. Intell. (2024)

Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: European Conference on Computer Vision, pp. 818-833 (2014)

Zhao, X., Broelemann, K., Kasneci, G.: Counterfactual explanation for regression
via disentanglement in latent space, pp. 976-984 (2023)

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep fea-
tures for discriminative localization. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2921-2929 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

l‘)

Check for
updates

An XAI-Based Analysis of Shortcut
Learning in Neural Networks

Phuong Quynh Le!®)®, Jorg Schlotterer2®, and Christin Seifert!

! University of Marburg, Marburg, Germany
{phuong.le, joerg.schloetterer,christin.seifert}@uni-marburg.de
2 University of Mannheim, Mannheim, Germany

Abstract. Machine learning models tend to learn spurious features —
features that strongly correlate with target labels but are not causal.
Existing approaches to mitigate models’ dependence on spurious features
work in some cases, but fail in others. In this paper, we systematically
analyze how and where neural networks encode spurious correlations. We
introduce the neuron spurious score, an XAl-based diagnostic measure to
quantify a neuron’s dependence on spurious features. We analyze both
convolutional neural networks (CNNs) and vision transformers (ViTs)
using architecture-specific methods. Our results show that spurious fea-
tures are partially disentangled, but the degree of disentanglement varies
across model architectures. Furthermore, we find that the assumptions
behind existing mitigation methods are incomplete. Our results lay the
groundwork for the development of novel methods to mitigate spurious
correlations and make Al models safer to use in practice.

Keywords: vision models - spurious correlations - disentangled
feature learning - debugging models

1 Introduction

Machine learning models in classification tasks tend to learn spurious features
that have strong relationships with the target labels are not causal. Models that
rely on spurious correlations for their predictions would, for example, classify a
bird as landbird based on the background feature, fail to recognize a cow on the
beach, or predict the presence of pneumonia based on background features (see
Fig.1 for some examples). Especially in high-risk domains, such models could
have serious consequences: a CNN predicting skin cancer using the presence of
a color calibration patch (see Fig. 1, rightmost image) as a spurious feature fails
to detect 68% of malignant cases when the color patch is absent [19].

During training, models heavily influenced by spurious correlations tend to
learn these relationships and memorize samples from so-called minority groups
where the spurious correlation is not present or which have inverse relation-
ships [26]. This mechanism helps the models to achieve high average perfor-
mance during training but leads to poor generalization on the minority group.
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R. Guidotti et al. (Eds.): xAI 2025, CCIS 2578, pp. 424-445, 2026.
https://doi.org/10.1007/978-3-032-08327-2_20


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-08327-2_20&domain=pdf
http://orcid.org/0000-0001-7658-0599
http://orcid.org/0000-0002-3678-0390
http://orcid.org/0000-0002-6776-3868
https://doi.org/10.1007/978-3-032-08327-2_20

An XAI-Based Analysis of Shortcut Learning in Neural Networks 425

Background Texture Artifact

gL

Fig. 1. Examples of variety shortcut types including backgrounds, texture and artifacts.
The leftmost image is from the WATERBIRDS dataset, the three center images are from
[7], and the rightmost image is from the ISIC dataset.

Therefore, the key objective of methods that mitigate spurious correlations is to
improve the performance of minority groups.

Methods such as deep feature re-weighting (DFR) [11] and others [9,21] have
successfully improved the performance of minority groups without extensive
training to minimize group loss, even when models are trained in the presence of
spurious correlations. These approaches assume that machine learning models
are able to learn sufficient information about all features. Thus, by adjusting
only the weights of the classification layer while leaving the learned represen-
tation unchanged, the performance of the minority group can be improved. On
the other hand, other work [12] shows that DFR [11] works similarly to a last-
layer pruning method, removing a large fraction of neurons that encode spurious
features. However, even after re-weighting the classifier weights through DFR,
the model still retains spurious information. The analysis in [12] provides some
initial evidence that spurious features are not completely disentangled in the last
layer, but a systematic analysis of how and where spurious features are encoded
within models is still lacking.

In this work, we complete the investigation of the learning of spurious features
in vision models by analyzing the phenomenon in both CNNs and ViTs mod-
els. We re-confirm the influence of spurious correlations and imbalanced data
distribution. Further, we investigate the influence of spurious features within
the networks, starting from the learned representation space and going deeper
into the neurons and components of the models. We show the limitations of the
underlying assumptions of existing spurious mitigation work and explain why
they work and how they might fail. Specifically, our contributions are:

1. We show that both ViTs and CNNs learn spurious features and that this
behavior can be explained by the representations in latent space (Sect. 4).

2. We introduce the neuron spurious score (s-score), an XAl-based metric to
measure a neuron’s reliance on spurious features (Sect. 3).

3. We show that the level of spurious feature disentanglement in neurons within
the latent space differs between CNNs and ViTs. In CNNs, some neurons
exclusively encode spurious features, while others encode both spurious and
core features (Sect.5). In contrast, in ViTs it is more difficult to find a clear
set of neurons only encoding spurious features (Sect. 6).
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4. We show that spurious features are encoded in different parts of the network,
and that these neurons are not only located in the last layer but also in com-
ponents of the neural network comprising multiple layers (Sect.5 for CNNs
and Sect. 6 for ViTs).

Our results provide evidence that unlearning spurious correlations is a com-
plex task. While identifying and pruning spurious encoding components can be
effective, it may not be sufficient due to the entangled nature of learned represen-
tations. Furthermore, pruning methods need to account for architecture-specific
aspects, as spurious features are encoded differently in CNNs and ViTs.

The structure of this paper is as follows. First, we introduce the notion of
spurious features (Sect.2). We then describe the general setup of our experi-
ments to analyze spurious correlations and introduce the s-score as an XAI-
based inspection criterion (Sect.3). Section4 empirically shows that CNNs and
ViTs are prone to learning spurious features and provides evidence that this is
due to data manifold in representation space. Section 5 and Sect. 6 extend the
analysis of representation space to all layers of neural networks using inspection
techniques specific to CNNs and ViT, respectively. We discuss the main results
in Sect. 7, review related work in Sect.8 and conclude in Sect. 9.

2 Background

Spurious features S refer to statistically informative features that do not have
a causal relationship with the target labels ) [7,25]. Models that learn spurious
features often achieve impressive accuracy on the training dataset by exploiting
spurious correlations present in the training data. In a dataset containing target
labels Y and spurious features S, we partition the data into groups based on the
combination of labels and spurious features, denoted as G = ) x S. In general,
within G of the training set, there exists at least one group that significantly
has smaller size than others and does not contain the corresponding spurious
features to the label, referred to as the minority group. Models that learn spu-
rious correlations usually fail to predict this particular group during test time.
For example, in the task of classifying bird types, where bird types are highly
correlated with the background scene in the images, models tend to learn eas-
ier background features rather than bird characteristics (cf. Figurel, leftmost
image). A model that predicts based on background features performs well on
the training (and i.i.d. test) data since most labels align with the background,
and the model only needs to ignore or memorize a few remaining samples from
minority group [26]. However, such models fail to generalize to birds on other
backgrounds during test time.

Some types of spurious features can be easy to detect for humans, such as
background and color [25], or artifacts in domain-specific settings [19]. However,
some spurious features, such as texture or frequency patterns, may be impercep-
tible to the human eye [8,14]. Figure 1 shows examples of shortcuts!.

! Following related work, we use the terms ‘spurious features’ and ‘shortcuts’ inter-
changably.
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Table 1. Overview of the WATERBIRDS and ISIC datasets. Percentages in # Train
presents the proportion of that group within the class ).

WATERBIRDS Go G1 Ga Gs3

Yy landbird landbird waterbird waterbird
S land water land water
# Train 3,518 (95%) 185 (5%) 55 (5%) 1,037 (95%)
# Test 2,255 2,255 642 642
ISIC BwoP BwP MwoP MwP
A X
o
P
Yy benign benign malignant malignant
S no patch patch no patch inserted patch

# Train 6,314 (53%) 5,526 (47%) 1,571 (100%) 0 (0%)
# Test 3,158 2,763 821 821

3 Experimental Setup

In this study, we analyze the robustness of various models to spurious correla-
tions. In this section, we provide details on the datasets, the vision models, and
the evaluation metrics.

3.1 Datasets

We consider two datasets: WATERBIRDS [25] and ISIC [3]. Examples and data
distribution for both datasets are presented in Table 1.

WATERBIRDS is a benchmark dataset for studying spurious correlations in
learning. The task is to classify birds as either water birds or land birds. It is
an artificially constructed dataset where bird images from the CUB dataset [29]
are placed onto backgrounds from the PLACES-365 dataset [32]. To introduce
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spurious correlations, in the original training set, 95% of water birds are placed
on water backgrounds, and 95% of land birds are placed on land backgrounds.
However, in the test set, this ratio is balanced to evaluate model generalization.
The four groups of the dataset are denoted as Gy, G1, Go and G3 with two minority
groups G; and G as in Table 1.

ISIC is a real-world data set for skin cancer detection. The data are obtained
from the official website? and labeled as either benign or malignant. Prior stud-
ies [22] suggest that the dataset may contain several spurious correlations, such
as color patches, rulers or surgical marks, black borders, etc. In this work, we
focus on the color patch feature, which appears exclusively in the benign class in
nearly 50% of cases. For evaluation, we construct an artificial test set where color
patches are inserted to balance the spurious correlation. The four groups of the
dataset are denoted as BwoP (benign without patch), BwP (benign with patch),
MwoP (malignant without patch) and MwP (malignant with patch), with MwP
representing the minority group.

3.2 Models and Hyperparameters

We evaluate both convolutional neural networks (CNN) and Vision Transformer
(ViT) models. As representatives for CNNs, we use differently sized Resnet mod-
els, namely ResNet-18, ResNet-50 [10], and ResNeXt [30]. We evaluate two differ-
ent ViT, namely ViT-B/16 [6], and DeiT [28]. All models use pre-trained weights
from ImageNet-1K [24]. We do not adjust the hyper-parameters to optimize the
worst-group accuracy. We follow the finetuning method of previous work [11,25]
and use the following hyperparameter settings: each model is trained for 100
epochs with learning rate 0.001, weight decay 10~* and SGD optimizer [23]. We
adapt the batch size to the image input size to accommodate memory size and
use 32 for WATERBIRDS and 64 for ISIC.

3.3 Evaluation Metrics

In our experiments, we use the standard metrics for evaluating reliance on spu-
rious correlation: average accuracy and worst-group accuracy. To quantify the
reliance of single neurons on a spurious input feature, we introduce the s-score.

Worst-group and Average Accuracy. In general, a model’s robustness is mea-
sured by average accuracy—the proportion of correct classifications out of all
predictions. Models that exploit spurious correlations often achieve high average
accuracy (AVG) but perform significantly worse for a particular group within
G. The accuracy of this group is called worst group accuracy (WGA). Addition-
ally, we denote the difference between AVG and WGA as GAP. A smaller GAP
indicates greater robustness to spurious correlations.

2 https://www.isic-archive.com.
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Fig. 2. Visualization of the s-score derivation by examples on ISIC dataset (left) and
WATERBIRDS (right). A binary mask of the spurious feature (color patch or background)
is obtained from the annotations in the training data set (top row). We use GradCam to
obtain a feature attribution heatmap from a neuron and intersect its binarized version
with the segmentation map (bottom row).

Neuron Spurious Score. In Sect. 5 and Sect. 6, we investigate whether there exist
neurons in the penultimate layer that purely encode the spurious features. To
measure the extent to which a neuron focuses on the spurious region in the
input, we introduce the s-score. We consider a model f constructed by a feature
extractor fene : X — R? and a linear classification layer h : R¢ — ). Given the
input x;, its corresponding penultimate representation fenc(z;) = 2; € R? and
the spurious segmentation m; given by a binary matrix (e.g., patch segmentation
in ISIC), we use GradCAM |[27] to compute the heatmap attribution over input,
denoted as a;'., from neuron ¢ of z;. To emphasize the highly focused region
identified by neuron i, we set a threshold « and binarize the heatmap a§» into
bz The neuron spurious score, s-score, measures the proportion of the neuron’s
focusing region that corresponds to the region of the spurious feature. The s-score
of neuron 14 is calculated by averaging over N samples

The neuron s-score s’ ranges between [0, 1], where s° = 0 indicates that either the
neuron does not activate any input region or none of the focus regions overlap
with the spurious segmentation. We consider a neuron with a high s-score a
spurious feature-encoding neuron in the representation space. Examples of the
input image, the segmented mask, the heatmap of a neuron and the s-score
attribution of a single neuron are shown in Fig. 2.
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4 Learning Spurious Features

In this section, we investigate the extent to which convolutional neural networks
(CNNs) and vision transformers (ViTs) are susceptible to learning spurious cor-
relations. First, we analyze the performance of the models for different groups
in the data and with varying ratios of spurious correlations (Sect.4.1). Second,
we investigate whether this behavior can be explained by the representations in
latent space (Sect. 4.2).

4.1 Performance on Groups

We fine-tune pre-trained CNNs and ViTs models on two datasets: WATERBIRDS
and ISIC. The effect of spurious features is shown by the difference between the
worst-group accuracy and the average accuracy during test time. Table 2 shows
the testing performances across different models. Overall, all vision models tend
to learn spurious correlations as shown by the significant gap (GAP) between
the average accuracy (AVG) and the worst-group accuracy (WGA).

Table 2. Average (AVG) and worst-group accuracy (WGA) across 5 different runs on
the test set for both CNN and ViT models trained on WATERBIRDS and ISIC. Showing
mean and standard deviation.

WATERBIRDS ISIC
AVG WGAT GAP| AVG WGAT GAP|
ResNet1l8 0.83 £o0.01 0.46 002 0.37 0.84 £o001 0.37 001 047
ResNet50 0.88 +0.00 0.63 002 0.25 0.83 £001 0.22 001 0.61
ResNeXt 0.89 +o0.00 0.70 £ 002 0.19 0.86 +o0.01 0.42 + 001 0.44
ViT-B/16 0.87 +o0.01 0.65 + o001 0.22 0.83 o001 0.16 + 001 0.67
DEiT 0.88 £ 000 0.66 £o001 0.22 0.83 001 0.12 £o001 0.71

To analyze the extent to which models react to the presence of spurious
correlations, we train a ResNet18 by varying the proportion of minority groups
in the WATERBIRDS dataset during training (cf. Table3). A minority ratio of
50% means that there is no spurious correlation in this modified dataset, and a
ratio of 0% means that there is no minority sample in the training set. In the
test set, we take the same number of samples from each group (i.e., a balanced
subset). The two groups with an identical class label share the same foreground
images, while the background is either water or land. Table3 shows that the
performance of the minority group gets worse as its proportion in the training
data decreases (cf. G; and Go), while the majority group performance remains
nearly unchanged and consistently high-—above 90% and even higher than when
training without spurious correlations. However, even in the worst-case scenario
(0% minority groups in the training set), the models can still correctly predict
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Table 3. Influence of the correlation ratio of the spurious feature. ResNet18 on WATER-
BIRDS. We keep the number of samples in the training set fixed (same as in the original
dataset) and vary the percentage of the minority groups Gi and Gs within its corre-
sponding class (originally 5%). In the test set, the two groups in each pair (Go, G1)
and (G2, G3) share the same foreground images (the birds) while adapting to different
backgrounds (water or land).

Minority Ratio Go Gi G2 Gs3 AVG GAP|

50% 0.98 0.98 0.84 0.83 091 0.08
25% 0.99 095 0.74 0.90 094 0.20
5% 0.99 0.78 0.46 0.91 0.84 0.38
0% 0.99 0.34 0.22 0.94 0.65 0.43

out-of-distribution (0.0.D.) samples in the test set, though with less than 50%
accuracy. This shows that models not only learn spurious features but also cap-
ture core features.

Takeaways. Vision models are susceptible to spurious correlations but still retain
generalization ability.

4.2 Analyzing Latent Space

We analyze the feature representations from the penultimate layer of the train-
ing data set of both CNN (ResNet18) and ViT (ViT-B/16). To visualize all data
points, we show a t-SNE [16] projection of the output from the feature extrac-
tor fene of each model. In the ViT visualizations (Fig.3, right column), both,
ISIC and WATERBIRDS show a clear trend that samples with the same spurious
features across classes blend in the representation manifold (BwoP and MwoP
in ISIC; waterbird on water and landbird on water in WATERBIRDS). In the
ResNet18 representation, we observe that even the boundaries between classes
are separated in both cases, within each class, the data clusters according to spu-
rious features. Note that in all cases, the models achieve close to 99% training
accuracy. We hypothesize that depending on the model architecture, the spuri-
ous features are learned differently, however, in all cases, those features are well
recognized and have a high impact on the classification result.

Takeaways. In both ResNetl8 and ViT-B/16, we observe an identical phe-
nomenon that samples with the same spurious features tend to lie closer to
each other in the representation space, even with high training accuracy.

5 Encoding of Spurious Features in CNNs

In Sect. 4 we showed that the latent representations in the last layer of ViT and
CNNs are governed by spurious features, i.e., clusters in latent space are defined
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Fig. 3. Visualization of representation of last layers. Clusters are mainly defined by
the spurious attribute (patch for ISIC, land/water for birds) and not by the classes
(malignant /benign for ISIC and landbird /waterbird for birds).

more by the spurious features than by the target labels. In this section, focusing
on CNNs, we analyze the extent to which this behavior can be attributed to
individual neurons in different neural network layers. We begin by examining the
disentanglement and entanglement of neurons in the penultimate layer (Sect. 5.1
and Sect. 5.2). For CNN-based models, we we investigate whether models learn
disentangled information for different data groups (Sect.5.3) using techniques
for subnetwork extraction (so called network modulars) [5].

5.1 Neuron Disentanglement

We analyze single neurons in the last layer to test whether any of them are
highly related to the spurious region. In each dataset, we compute the neuron
spurious score s-score (cf. Section 3) over 50 random training samples.

On ISIC, the s-score of neurons ranges from 0.0 to 0.8. Visualization of
three neurons from different score ranges is shown in Fig.4. We determine the
s-score ranges based on the proportion of the heatmap that overlaps with the
mask segmentation of spurious features. A neuron receives a low s-score if on
average less than 20% of the heatmap overlaps with the spurious mask (s-score
< 0.2), and a high s-score if more than 70% of the heatmap focuses on the
spurious region (s-score > 0.7). Otherwise, the neuron receives a mid-range
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Fig. 4. Neuron heatmaps overlaid with original images, illustrating the activation of
three different neurons (rows) across five sample images (columns).

s-score. For neurons with high or low s-score, the main focus region (more red
areas) consistently highlights either the patch (spurious feature) or the lesion
(core feature). Meanwhile, the neurons in mid-range s-score shift their focus
between spurious and core features depending on the sample.

Table 4. Group accuracy of ISIC after pruning some sets of neurons in the last layer
based on the neuron spurious score (s-score).

BwoP BwP MwoP MwP AVG
ResNet18 0.92 099 057 037 084
Pruning (s-score > 0.7) 090 1.00 0.59 0.40 0.85
Fine-tune last-layer weights with group balanced set
ResNet18 0.81 099 0.75 0.51 0.84
Pruning (s-score > 0.7) 0.81 0.99 0.77 0.56 0.85

Influence of Spurious-Encoding Neurons. By setting the weights connecting
spurious-encoding neurons to the classes to zero, we observe a slight improve-
ment in the WGA (Table4, rows 1-2).> To reduce the influence of a highly
imbalanced data distribution on the classifier, we additionally fine-tune the lin-
ear classifier using a group-balanced dataset in two cases: baseline ResNet18
and ResNet18 with spurious-encoding neurons deactivated (Table4, rows 3-4).

3 Here, we set the weights to zero without any retraining.
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Table 5. Performance of applying DFR on ResNetl8 for two datasets ISIC and
WATERBIRDS. Prune;, denotes the pruning ratio of the classification layer weights.

Model WGA AVG Prune, Avg. s-score

ISIC Baseline 0.37 0.85 - 0.40
DFR 0.71  0.79 80% 0.39
Baseline 0.46 0.83 - 0.45

WATERBIRDS
DFR 0.82 0.87 52% 0.42

Fine-tuning after pruning some spurious-encoding neurons results in a slightly
higher improvement in WGA compared to fine-tuning the baseline, indicating
that the pruned representation better captures invariant features. From these
experiments, we conclude that even though we can find some critical neurons
(using labels and annotations of the spurious feature), we do not know how
neurons interact with each other and, therefore, can not find a complete set of
neurons that encode spurious features.

Takeaways. Our analyses in this section show that spurious features are repre-
sented and to some extend disentangled in the representation space and simply
turning off those neurons improves robustness to spurious correlations.

5.2 Neuron Entanglement

Also in the direction of not retraining feature extractor fen., deep feature re-
weighting (DFR) method [11] and the subsequent analysis [12] suggest that
using a group-balanced dataset to select essential neurons in the representation
space and disabling all other neurons might make models more robust to spurious
correlations.

DFR Method. DFR keeps the learned representation of trained models
unchanged, retraining only the classification layer with a group-balanced val-
idation set using logistic regression. The logistic regression hyperparameters are
optimized for group performance with another group-balanced dataset. Under
the assumption that trained models learn sufficient information despite the exis-
tence of spurious correlations, this approach uses a group-balanced set to seek
the optimal neuron combination that is not influenced by spurious correlations.

Table 5 shows the effectiveness of the DFR method on CNN models trained
with ISIC. DFR significantly improves the WGA while zeroing a large number
of weights in the classification layer. This means that there is only information
encoded in a small number of neurons of the embedding layer that is necessary
for classification, and removing them makes models more robust. However, con-
trary to the naive approach of eliminating neurons that are strongly focused
on spurious regions (cf. Table4), our analysis shows that DFR removes a large
number of unnecessary neurons while maintaining the same s-score distribution
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Fig. 5. Average s-score of ResNet18 and DFR trained on ISIC (left) and WATERBIRDS
(right).

(cf. Table 5 and Fig. 5). This indicates that DFR does not change the diversity of
the learned features, whether they are spurious or not. With a similar underlying
hypothesis, the method of [9] also uses both learned core and spurious features
in the latent space. This approach succeeds in improving the WGA by searching
for a single weight of the classification layer that most activates for the minority
group and editing only that weight.

We hypothesize that instead of genuinely selecting core features encoded in
the representation space, the effectiveness of these classifier adaptation meth-
ods comes from learning new classifier weights to fit the new non-spurious
data (group-balanced). This suggests that interactions between neurons strongly
influence classification and that optimizing a subset of neurons and connection
weights can improve group-specific performance. However, in alignment with the
findings in [12], we conclude that these approaches do not truly eliminate the
learned spurious correlations.

Takeaways. Without adapting the learned information, but the interaction
between the representation neurons, we can significantly improve the perfor-
mance of a particular group. However, there is no guarantee that the spurious
correlations learned by the models will be completely eliminated.

5.3 Disentangled Components

As we showed in Sect. 5.2, retaining neurons with medium or high s-score while
adjusting their influence on the classifier can reduce the impact of spurious fea-
ture learning. Therefore, we hypothesize that there are additional conditions or
signals earlier in the network that allow the model to use these neurons more
effectively in certain cases. In the following, we apply pruning and subnetwork
learning to analyze their effect on spurious correlations.

Task-Oriented Pruning. We investigate whether pruning neurons in deeper
network layers can help reduce reliance on spurious features. PruSC [13] and
DCWP [20] are two pruning methods designed to mitigate spurious correla-
tions. Notably, both methods prune neurons based on frozen trained weights by
learning a mask on the weights, i.e., they refine the learned features instead of
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re-learning from scratch. Applying PruSC to ResNet18 with the ISIC dataset
results in pruning 65% of the neurons in the last layer and 48% of the neurons
across the entire model. Comparing the average s-score before and after prun-
ing (cf. Figure 6), we observe that pruning effectively reduces the connections to
spurious features. While improving performance for the worst-case group, PruSC
yields a significantly lower average s-score, indicating a shift toward using less
spurious features.

0 — Resnetls
- s

ResNet18 PruSC

WGA 0.37 0.73 fu
Avg. s-score  0.40 0.18 Ew
Pruney, - 65% N
Pruney - 48%

04
0.0 0.1 02 03 0.4 05 0.6 07 0.8

Fig. 6. s-score distribution. Prune, denotes the pruning ratio of the classification layer
weights, Prune; denotes the pruning ratio of the entire model.

Group-Specific Components Learning. We further investigate how the relation
between core and spurious features is encoded and whether those spurious fea-
tures are learned and disentangled within the network. The ISIC dataset with
training set D contains three groups: BwoP, BwP, and MwoP. We train model
f fully on D.

Applying a similar technique as [5], we freeze all the weights of f, and train
a binary mask on each weight of f with a subpopulation of the training data. To
avoid trivial results in a binary classification task, we can not remove an entire
class as in the original paper. However, we hypothesize to obtain a subnetwork
that removes all the relevant components that are purely responsible for a specific
group. We conduct the study on two sub-dataset: D\ {BwP} and D\ {BwoP} by
removing the group data BwP and BwoP from the training respectively. After
pruning the model to 80% of the total number of weights*, we evaluate the
resulting model with the official test set. The results are shown in Fig. 7.

Case 1: Removing purely benign cases. By removing the entire group BwoP, the
accuracy of this group drops significantly from 92% to 18%, while the perfor-
mances of other groups are unchanged or increased. It proves that the group
BwoP or the features belonging to the benign class are encoded and disentan-
gled within the network, forming a benign-encoding component. Thus, deleting
this component can lead to a significant drop in the performance of a particular

group.

4 We ensure that no layer is entirely pruned.
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Fig. 7. Group accuracy of a subnetwork trained with D\ {BwP} and D \ {BwoP}.

Case 2: Removing patches-containing cases. By removing the group BwP, we
systematically test whether we can eliminate all the patch-encoding components
within the trained network. The resulting performance after pruning is nearly
identical between the two groups within a class (both groups of the benign class
obtain 99% accuracy, and both groups of the malignant class obtain approxi-
mately 49% accuracy). This suggests that the removed connections are indeed
responsible for encoding the existence of feature patches. However, we observe
that when these connections encoding patches are removed, the performance
of group MwoP drops. This means that the removed patch-encoding compo-
nent not only contains information about the patches feature but also important
information for predicting the malignant class.

Notably, the group BwP can be predicted by using either the patch-encoding
or the benign-encoding component, and therefore, the group accuracy remains
high in both cases.

Takeaways. We conclude that i) task-oriented pruning is a promising approach
for mitigating spurious correlations by turning off connections that contribute to
the spurious features, and ii) pruning methods are most effective when models
learn features in disentangled subnetworks.

6 Encoding of Spurious Features in ViTs

In this section, we focus on analyzing the entanglement learning of spurious
features in ViT models. Following a similar approach to CNNs, we begin by
examining neurons in the penultimate layer (Sect.6.1). Next, due to the unique
multi-heads self-attention learning mechanism in ViTs, we focus on analyzing
spurious features learned in attention heads (Sect. 6.2).
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6.1 Last-Layer Representation in ViTs

In this section, we present the results of the analysis of whether there are
spurious-encoding neurons in the representation space of ViTs. Figure8 shows
some examples of neuron heatmaps visualized with GradCam [27] (left) and the
distribution of s-score averaged over 50 training inputs (right). We observe that
even though there are some cases where the neuron focuses more on the core
or spurious feature (more red region), the focus region of neurons in ViTs tends
to be more distributed when projecting to the input. This leads to low over-
all s-score, i.e., 0.23 for ISIC and 0.14 for WATERBIRDS (cf. Table6) - which
are both in low-range s-score. We hypothesize that this phenomenon is due to
the ability of global learning from the multi-heads self-attention of ViTs. This
mechanism allows the model to simultaneously attend to both core and spu-
rious features across the entire input, distributing the learned representations.
In Sect. 6.2, we present an example in ISIC that under the influence of highly
spurious correlations, ViTs show a clear entangled relationship between core and
spurious objects in some particular attention head.

On the other hand, in alignment with the conclusion for mitigation methods
that leave the latent space unchanged in CNNs (cf. Section 5.2), DFR [11] works
well with ViT-B/16 (cf. Table6). While significantly improving WGA in both
ISIC and WATERBIRDS, the average s-score of models before and after applying
DFR are nearly identical. This again confirms that DFR indeed changes the
way neurons interact with each other to improve the performance of a particular
group rather than truly eliminating the learned spurious features.

Table 6. Application DFR on ViT-B/16

Model WGA Prune; Avg. s-score

ISIC Baseline 0.16 - 0.23
DFR 0.76 89% 0.26
Baseline 0.66 - 0.14

WATERBIRDS
DFR 0.86 37% 0.14

Takeaways. With ViTs, we can not find a similar phenomenon of clear spurious-
encoding neurons in the last layer as in CNNs. However, adapting neuron interac-
tions works, suggesting the group-beneficial patterns when re-combining neurons
in its representation.

6.2 Spurious Features in Attention Heads

The multi-head attention mechanisms in ViTs are designed to capture global
information more effectively. We, therefore, investigate whether spurious and
core features are disentangled in ViTs’ attention heads.
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Fig. 9. Attention scores in ViT-B/16 of image patches corresponding to a) a spurious
input feature and b) a core input feature. The feature maps in the middle show the
scores per layer averaged over all attention heads. For the spurious patch (b), the
highest average attention scores are from other spurious patches, making the outline of
the spurious input part visible in the attention map. For an image patch from a lesion
(a), the highest average attention scores are from image patches representing skin or
lesions. However, there are layers that encode both core and spurious features because
some attention heads are focused on the spurious feature (e.g., attention heads 4,5,6,
and 12 in layer 9, highlighted with a red border). (Color figure online)
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We analyze how much influence each image patch has on the encoding of one
specific image patch, which either encodes a spurious (Fig.9a) or a core feature
(Fig. 9b). To visualize the attention map for a specific patch, we compute the
attention weights in the transformer layers (averaged over multi-attention heads)
when forwarding the input image through the model. From the attention weight
matrix, we take the target row (indicating the target input patch) and visualize
it as a heatmap. Figure9 shows the visualizations across all transformer layers
and single heads for a core feature in layer 9. We observe that even though the
target patch is a core feature (see Fig.9 a), some specific layers of ViT-B/16
show high attention to the spurious region (e.g. layer 8, layer 9) and that some
neurons focus on the spurious region (e.g., attention heads 4, 5, 6, 12).

Takeaways. Under the influence of spurious correlations, we observe that ViT
jointly encodes information of core and spurious features.

7 Discussion

This section summarizes and discusses our findings from the experiments in
Sects. 4 to 6; a concise overview is given in Table 7.

Vision Models Exploit Spurious Correlations. We find that both CNNs and
ViTs are susceptible to learning spurious features, and the ratio of minority and
majority groups also affects the worst group accuracy. We also found that the
spurious features can strongly define the representation space.

To Some Extent, There Are Disentangled Spurious-Encoding Components. In the
representation layer, s-score can be used to determine whether neurons in the
penultimate layer of the models can be separated into highly spurious-encoding
neurons. Considering the deeper layer of the models, previous work [5] proves
that within a trained model there are sets of neurons that are solely responsible
for a specific class of data. Using a similar technique, our result shows that it
is possible to extract components (in CNNs) that are responsible for specific
groups or features. Therefore, with a careful experimental design, we can find a
component that, when removed, mainly eliminates the effect of spurious features.
In ViTs, due to the lack of an equivalent technique, we cannot further analyze
whether there really exist spurious-encoding components. The existence of dis-
entangled spurious-encoding components leads to a simple pruning approach to
eliminate the learned spurious correlations.

Without Removing Spurious-Encoding Neurons, Adjusting The Interaction
between Neurons Can Effectively Improve Performance. We found that the effec-
tiveness of last-layer re-weighting methods does not come from really eliminating
the learned spurious features, but from reconstructing the interaction between
neurons. These methods may remove unnecessary neurons, but not necessar-
ily spurious-encoding neurons. This leads to the assumption that the way neu-
rons are combined during learning and predicting is important for generalization
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Table 7. Overview of shortcut learning in CNNs and ViT.

CNNs ViTs

Prevalence of shortcuts
Learn spurious correlations, shown by a large gap between
worst-group and average accuracy.

Shortcut features in latent Classes separate clearly, but Latent space is more defined by

space minority groups are clustered. spurious features than classes.

Last-layer spurious-encoding Neurons show a wide range of Spurious-encoding neurons are

neurons s-score, making harder to detect, with average
disentanglement easier. low s-score.

Spurious neuron combinations
in last layer Adapt neurons interaction, not necessarily remove

spurious-encoding neurons, can form a more robust combination
against spurious correlation.

Disentanglement in earlier Exist components encoding Exist attention heads show high
components both spurious feature and attention score between core
uncorrelated class. and spurious patch regions.

ability. However, we do not yet fully understand the patterns when combining
neurons.

There are also Components that Encode Multiple Features and Cause Models to
Mis-learn. In the representation space, there is a large proportion of neurons
with mid-range s-score. While this may be due to the limitations of the XAI-
based technique (cf. Appendix A), previous work [12] has presented a qualitative
example. In deeper components within CNNs, we find that removing spurious-
encoding components also decreases the performance of the uncorrelated class. In
multi-headed self-attention mechanisms, we find explicit cases where models fail
to distinguish between core and spurious features. This suggests that in addition
to a disentangled set of neurons encoding only core or spurious features, there
are still neurons that activate both patterns.

Limitations of Existing Methods for Mitigating Spurious Feature Learning. Con-
sidering existing post-hoc spurious reduction methods, we hypothesize that: (i)
last-layer re-weighting methods could prune a large fraction of neurons, but
in fact still need information from all types of encoded features, such as core
and spurious. Therefore, these methods would fail in the severe case that models
under-learn information, which is hard to detect when the overall performance is
still high based on learning spurious features. Furthermore, unmodified represen-
tation learning is ultimately not optimal because these methods cannot correct
the earlier disentanglement of the model. (ii) For post-hoc pruning methods, we
might prune some components or connections that are important for both core
and spurious features. This could lead to the trade-off of improving WGA by
reducing sensitivity to spurious features, but degrading performance for other
groups by removing neurons that contribute to invariant features.



442 P. Q. Le et al.

8 Related Work

A large body of work is based on the hypothesis that machine learning models
tend to learn spurious features while under-learning invariant features. There-
fore, a straightforward direction to mitigate the spurious correlations in learn-
ing is to focus on training group-robust models. Multiple approaches rely on
human-annotated group labels and train models to minimize group loss [1,2,25].
To reduce the cost of collecting human-annotated group labels, many stud-
ies propose estimating pseudo-group information using predictions from early-
stopped ERM models, followed by training a second robust model with pseudo-
group labels [4,15,17,18,31]. Those methods assume that samples mis-classified
by early-stopped ERM models are not holding spurious features. While these
methods effectively improve the group-specific accuracy, they require expensive
retraining, particularly when the existence of spurious information is unknown
beforehand.

Recent studies have shown that despite the strong correlation between spu-
rious features and target labels, machine learning models can successfully learn
high-quality spurious and core features [11]. Therefore, post-hoc spurious miti-
gation or eliminating spurious correlations of trained models without extensive
feature learning can be sufficient. Leaving the learned representation unchanged,
existing work re-weights the classifier weights based on a group-balanced held-
out dataset [11] or searches for and only adjusts a single weight that affects the
minority group most [9]. Alternatively, it is possible to extract a subnetwork
from a trained model that is more robust to spurious correlations [13,20]. These
works empirically demonstrate the potential of models to learn both core and
spurious features. However, it remains unclear whether these features are truly
disentangled and to what extent the underlying assumptions hold.

9 Conclusion

In this paper, we showed that both CNNs and ViTs are susceptible to spurious
correlations. We provide evidence that models can learn to disentangle spurious
features, allowing us to extract neurons or subnetworks within a trained net-
work that are specifically responsible for these features. However, models may
also encode a mixture of core and spurious features or fail to learn perfect dis-
entanglement. Based on the results, this paper shows how and why methods
mitigating spurious features that either leave the representation unchanged or
extract only subnetworks from frozen trained weights may fail.



An XAI-Based Analysis of Shortcut Learning in Neural Networks 443

A Limitation of s-score

In this section, we discuss the lim-
itations of using post-hoc explain-
able AI methods to calculate s-score.
Explanation methods sometimes fail
to capture fully what models are truly
encoding. While heatmap attributions
can visualize where the model is focus-
ing within the input, they do not
reveal what features the model is

Fig. 10. Neuron with low score but poten- learning. For example, in Fig. 10, the
tially high spuriousness. s-score is low because the neuron’s

focus region has little overlap with
the patch itself. However, to a human

observer, it seems that the neuron is actually focusing on the edge of the patch.
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