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Preface 

Over the last decade, Explainable Artificial Intelligence (XAI) has developed into an 
ever-growing research field dedicated to approaches that make AI systems—especially 
those based on machine-learned black box models—more transparent, interpretable, 
and comprehensible to humans. The demand for XAI methods rises with the growing 
number of application areas for AI methods, from image-based medical diagnostics 
to personalised recommenders to scientific discovery. In the context of the European 
AI Act, requirements for trustworthy AI systems have been defined, including human 
agency and oversight, robustness, fairness, and transparency. Trustworthiness is crucial 
for critical application domains, such as healthcare, industrial production, and finance. 
XAI methods can help meet these requirements. 

A growing variety of XAI methods has emerged over the last decade. Initially, a 
strong focus has been placed on feature relevance methods for classification models 
applied to images and tabular data. These methods are beneficial for model developers 
to assess the quality of learned models, particularly in addressing issues such as overfit-
ting to training data or unwanted biases. Soon, the importance of non-expert users of AI 
systems was recognised, especially professionals in the respective application domain 
of an AI system and end-users who interact with AI systems in a private context. Con-
sequently, the need for XAI methods that consider the specific information needs of 
these user groups has been recognised. This has resulted in a rich set of XAI methods, 
including counterfactual or contrastive explanations, prototype-based explanations, and 
concept-based explanations. Furthermore, it has been recognised that XAI must be an 
interdisciplinary endeavour to consider the cognitive demands of the explainees and 
design helpful human-AI interfaces. 

While most XAI research has focused on local, post-hoc explanations for classifiers, 
XAI methods have expanded to unsupervised learning and generative AI approaches. 
Additionally, methods for explaining inherently interpretable AI models and provid-
ing global explanations are investigated. Methods of explanatory interactive learning 
broaden the scope of XAI research, shifting from explanation to understanding and 
revision. Over recent years, the need to systematically evaluate XAI methods has been 
recognised. To support understanding the output of a model, an explanation needs to be 
faithful concerning its inferential mechanisms. 

To bring together the growing number of researchers dedicated to developing and 
evaluating XAI methods, the World Conference of Explainable Artificial Intelligence 
(xAI) was established in 2023. This conference aims to connect researchers from AI, 
computer science, cognitive science, human-computer interaction, social sciences, law, 
philosophy, and practitioners from all continents to share and discuss knowledge, new 
perspectives, experiences, and innovations in XAI. The Third World Conference on 
Explainable Artificial Intelligence (xAI 2025) took place in Istanbul, Turkey, from July 
9 to 11, 2025. It attracted 224 submissions worldwide for the main track, as well as over
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60 submissions for the late-breaking work and demo tracks. The conference also had a 
doctoral consortium, and 14 doctoral proposals were accepted. 

Split over five volumes, the proceedings aggregate the best contributions received 
and presented at xAI 2025, describing recent approaches, methods, and techniques for 
explainability. The acceptance rate has been roughly 40 per cent, with 96 accepted papers 
for the main track. The accepted contributions were selected through a rigorous, single-
blind peer-review process. Each article received at least three reviews, with an average 
of four reviews per paper, from more than 300 scholars in academia and industry. All 
accepted research contributions are included in these proceedings and their authors were 
invited to give oral presentations. 

Several thematic sessions were organised, each proposed and chaired by various 
researchers. A parallel track was organised for work in progress, specifically preliminary 
novel research studies relevant to xAI, which were presented as posters during the event. 
A demo track was held, where researchers from academia and industry presented their 
software prototypes, focusing on explainability or real-world applications of explainable 
AI-based systems. A doctoral consortium was organised, with lecturers for PhD scholars 
who submitted their doctoral proposals on future research in XAI. Finally, two panel 
discussions were organised with renowned scholars in XAI, offering multidisciplinary 
views while inspiring the attendees with tangible recommendations to tackle challenges 
toward designing responsible, trustworthy AI-based technologies through explainable 
AI. 

We would like to thank the volunteers who helped in the xAI 2025 organising com-
mittee, our local chair, Berrin Yanikoglu, and Pınar Karadayı Ataş. Thank you to the 
doctoral consortium chairs, Przemysław Biecek and Slawomir Nowarczyk, and the late-
breaking work and demo chair Gitta Kutyniok. Also, a special thank you goes to Wojciech 
Samek, the keynote speaker for xAI 2025. A word of appreciation goes to the proposers 
of the special tracks and those who chaired them during the conference, and to all the 
senior chairs, including Charlie Abela, Christopher Anders, Omran Ayoub, Pietro Bar-
biero, Przemysław Biecek, Enrico Ferrari, Pascal Friederich, Francesco Giannini, Paolo 
Giudici, Julia Herbinger, Verena Klös, Tuwe Löfström, Gianmarco Mengaldo, Mau-
rizio Mongelli, Anna Monreale, Grégoire Montavon, Francesca Naretto, Ann Nowe, 
Ruairi O’Reilly, Roberto Pellungrini, Alan Perotti, Salvatore Rinzivillo, Christin Seifert, 
Francesco Sovrano, Lenka Tětková, Giulia Vilone, Philipp Wintersberger, and Bartosz 
Zieliński. A word of appreciation goes to all the moderators and panellists of the two 
engaging sessions “Integrating XAI in industry processes challenges for responsible AI” 
and “From Explanations to Impact“. Special thanks go to the researchers and practition-
ers who submitted their work, the various program committee members who provided 
valuable feedback during the peer-review process, and all who attended the event, mak-
ing it a fantastic networking opportunity to share findings and learn from one another as 
a community . 

July 2025 Riccardo Guidotti 
Ute Schmid 
Luca Longo
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Reasoning-Grounded Natural Language 
Explanations for Language Models 

Vojtech Cahlik(B) , Rodrigo Alves , and Pavel K ordik

Faculty of Information Technology, CTU in Prague, Prague, Czech Republic
{vojtech.cahlik,rodrigo.alves,pavel.kordik}@fit.cvut.cz 

Abstract. We propose a large language model explainability technique 
for obtaining faithful natural language explanations by grounding the 
explanations in a reasoning process. When converted to a sequence of 
tokens, the outputs of the reasoning process can become part of the model 
context and later be decoded to natural language as the model produces 
either the final answer or the explanation. To improve the faithfulness 
of the explanations, we propose to use a joint predict-explain approach, 
in which the answers and explanations are inferred directly from the 
reasoning sequence, without the explanations being dependent on the 
answers and vice versa. We demonstrate the plausibility of the proposed
technique by achieving a high alignment between answers and explana-
tions in several problem domains, observing that language models often
simply copy the partial decisions from the reasoning sequence into the
final answers or explanations. Furthermore, we show that the proposed
use of reasoning can also improve the quality of the answers.

Keywords: Explainable AI · Large Language Models · Natural
Language Explanations · Reasoning

1 Introduction 

Today’s prevalent large language model (LLM) explainability techniques lack 
the expressivity of natural language, as the explanations are limited in detail
and hard to interpret for an untrained user [1]. On the other hand, natural
language explanations [2] can potentially be easy to follow and unlimited in 
expressivity, but their faithfulness is typically questionable, such as with the 
simple answer-then-explain setting which tends to lead models into fabulating 
their explanations. Moreover, it is even questionable whether LLMs produce 
their outputs in a thought process that is anyhow related to human reasoning,
as they are in essence mere enhancements of traditional n-gram models [3, 4]. 
Chain-of-thought reasoning is one notable improvement of the decision process 
as the answers tend to follow from the preceding n atural language reasoning
sequences, but it is too computationally intensive for ubiquitous use.

We propose to ground natural language explanations, as well as the answers, 
in a suitable resource-efficient LLM reasoning process. When converted to a
c© The Author(s) 2026 
R. Guidotti et al. (Eds.): xAI 2025, CCIS 2578, pp. 3–18, 2026. 
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sequence of tokens, the result of the reasoning process can then become part of 
the context observed by the model when producing its final answer or explana-
tion. The reasoning sequence does not have to be directly human-readable, as 
it merely has to encode the explanation together with the answer. This infor-
mation can then be simply decoded from the reasoning sequence to natural 
language when the model generates the final answer or explanation. In order 
for the explanations to be credible, a joint predict-explain setting can be used, 
in whic h the answer and explanation are inferred independently of each other.
To demonstrate the plausibility of this approach, we experiment with compact
reasoning sequences that we refer to as compressed chain-of-thought reasoning.
We present the high-level overview of our methodology in Fig. 1. 

Fig. 1. Overview of our methodology. As a first step, we gather a conversational dataset 
in which for each user input, the triplet of reasoning-answer-explanation ground truths 
is present. In the second step, we fine-tune a conversational GPT model on the dataset 
from step 1. As a last step, we perform inference using the fine-tuned m odel by first
computing a reasoning sequence and then including it in the conversation to produce
the final answer or explanation, which are obtained independently of each other.

We evaluate our explainability framework in an “LLM-as-a-classifier” setting, 
in which we train LLMs to mimic the behavior of simple machine learning classi-
fiers such as decision trees. This setting is convenient for our approach as it can 
be framed so that the final model outputs are affected by multiple intermediate
decisions, and also allows for simple and deterministic evaluation of results. Our
paper makes the following contributions to the field of LLM explainability:

1. We propose an LLM explainability technique for producing faithful natural
language explanations grounded in reasoning.
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2. We observe that when a suitable reasoning process is included in LLM train-
ing, and the outputs of the reasoning process are placed in the LLM input con-
texts, LLMs will often copy the partial decisions from the reasoning sequence
into their answers or explanations.

3. We demonstrate the plausibility of our proposed explainability technique by 
achieving a high alignment between answers and explanations in several prob-
lem domains.

4. We show that besides enabling faithful natural language explanations, the 
inclusion of the reasoning process c an also improve the quality of answers.

2 Related Work 
2.1 LLM Explanations 

LLMs are by default complex black boxes, and without proper explainability, 
it is difficult t o understand their capabilities, limitations, and potential failures
[1, 5]. Explainability techniques in general are commonly categorized based on 
whether explainability is incorporated into the model’s architecture and thus 
the explanation is part of the model’s prediction (ante-hoc or intrinsic explana-
tions), or if explanations are calculated after the model has been trained and a 
prediction has been obtained (post-hoc explanations). Explainability techniques 
can be further classified based on whether they are related to a single prediction
(local explanations) or to the general behavior of the model across all predictions
(global explanations).

Zhao et al. [1] categorize local LLM explainability techniques into 4 main 
approaches: feature attribution-based explanations, atten tion-based explana-
tions, example-based explanations, and natural language explanations.

Feature Attribution-Based Explanations. These explanations measure the 
importance of each input feature (such as an input token) in relation to outputs. 
Perturbation-based techniques perturb the inputs using removal or masking [6, 7], 
which may however generate out-of-distribution data. Gradient-based techniques 
measure partial derivatives of outputs with respect to the input features, using 
well-established e xplainability techniques such as gradient × input or integrated
gradients [8– 11] which address some of the difficulties that occur when u sing
gradients naively [12]. Surrogate model methods employ simpler white-box mod-
els to explain individual predictions, notably using the SHAP technique, which 
utilizes Shapley values and has also been adapted to Transformer models [13]. 

Attention-Based Explanations. Attention-based explanations analyze the 
parameters or behavior of attention heads. Numerous studies have focused on 
explaining attention heads using visualizations, such as with token-level bipar-
tite graphs and heatmaps or neuron-level heatmaps [14, 15]. Other works have 
adopted gradient-based methods using various definitions of gradient in attention
heads [11, 16]. However, there is ongoing debate on the reliability of atten tion-
based explainability techniques [1].
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Example-Based Explanations. These explanations analyze how changes in 
model inputs affect the outputs. A popular approach is to generate counterfac-
tual examples that cause important changes in the outputs b y adding, altering,
masking, removing, or shuffling words in the input text [17]. On the other hand, 
adversarial examples aim to substantially alter the model outputs w ith barely
noticeable changes to the input text [18, 19]. These examples can be added to 
the training data to improve the robustness of the final model. Another family of 
methods aims to analyze the impact of the individual training examples on the
behavior of the trained model, remarkably without the need for multiple rounds
of training [20, 21]. 

Natural Language Explanations. Natural language explanations refer to 
explanations that take the form of text in natural language, thu s making them
suitable even for a lay audience [1, 2]. The quality of natural language explana-
tions is commonly assessed according to plausibility, which checks if the explana-
tions are logically sound, faithfulness, which assesses w hether the explanations
describe the true decision process of the model, and readability [22]. Although 
being a relatively large field, most natural language explanation studies focus 
on other types of models than LLMs. The approaches for LLMs include using
simple explain-then-predict and predict-then-answer methods [23], training the 
models using datasets of synthetic [24] or human-written explanations [25, 26], 
and translation of natural language to symbolic solver domains [27]. 

2.2 LLM Reasoning 

The field of LLM reasoning covers a wide range of methods aimed at improving 
the model outputs or answers. Chain-of-Thought [28] is perhaps the most well-
known technique, in which the LLM is simply tasked to reason first before stating 
the final answer. Extensions of this approach include self-consistency [29], in 
which multiple reasoning paths are sampled, and Tree of Thoughts [30], where 
the reasoning trajectories form a tree which is explored using search strategies 
such as BFS and DFS. Other notable reasoning methods include multi-agent
collaboration [31], knowledge distillation [32], process-based reward models [33], 
Monte Carlo Tree Search [34], and reinforcement learning [35]. 

3 Methods 

3.1 Reasoning-Grounded Natural Language Explanations 

To achieve faithful natural language explainability, we propose to ground LLM 
explanations as well as answers in a reasoning process. In order to decrease com-
putational complexity, we suggest that the output of the reasoning process does 
not have to be inherently human-readable, but that it should merely contain the 
information necessary to be later decoded by the LLM into the final answer or
natural language explanation. Such reasoning can be used in a two-step conver-
sational framework, where as the first step, the reasoning sequence is generated,
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and as the second step, the user (or the chat interface) sends a command mes-
sage indicating whether the model should answer the question or explain the 
answer, and the model responds accordingly. In case the user chooses to obtain 
both the answer as well as the explanation, it is crucial that both are obtained
independently by the chat interface to prevent the model from fabulating the
explanation or the answer being affected by the explanation.

For a clearer definition of the conversational inference process, we can define 
the conversation history Hn as a sequence of u ser question messages Ui and
model answer messages Ai:

Hn = U1 · A1 · U2 · A2 · .  .  .  · Un−1 · An−1 · Un (1) 

With this notation, the message with reasoning output Rn can be defined by
the formula

Rn = ReasoningModel(Hn), (2) 

and the model’s answer message An and explanation message En can b e
defined by the formulas

An = LLM(Hn · Rn · Canswer) (3) 

and 

En = LLM(Hn · Rn · Cexplain), (4) 

where Canswer and Cexplain are the “ANSWER” and “EXPLAIN” command
messages.

As a proof of concept, we experiment with using the LLM to generate com-
pact reasoning sequences in an approach that we refer to as compressed chain-
of-thought reasoning. With the use of the previous notation, we therefore set
ReasoningModel = LLM. We suggest to put three requirements on such reason-
ing sequences:

1. The reasoning sequences should encode all the partial decisions necessary for 
the m odel to produce the right answers.

2. The reasoning sequences should encode all the partial decisions necessary for 
the model to produce t he natural language explanations in the desired level
of detail.

3. The encoding of the partial decisions in the reasoning sequences should follow 
a chain-of-thought ordering t o allow accurate token-by-token generation by
the LLM.

Similarly to regular chain-of-thought reasoning, compressed chain-of-thought 
reasoning can also potentially improve the quality of LLM answers, as more 
circuit layer operations can be performed by the LLM before the final answer is
produced.



8 Vojtech Cahlik, Rodrigo Alves, and Pavel Kordik

3.2 LLM as a Classifier 

In our experiments, we adopt an “LLM-as-a-classifier” approach in which the 
LLM is tasked with mimicking the behavior of a machine learning classifier. 
This approach is convenient for our study as reasoning and explanation sequences 
can be formulated so that they involve chains of various decisions, and we can 
calculate evaluation metrics deterministically without using methods such as 
LLM-as-a-judge. We experiment with three problem domains: Logistic regres-
sion, decision tree classification, and a natural language dataset generated using 
decision tree logic. For each problem domain, we design the ground-truth answers 
to simply state the classification result. For explanations, we use detailed chain-
of-thought sequences that describe the intermediate decisions necessary to reach
correct classification, and for reasoning, we extract or encode the most important
values from the explanation sequence to form minimal, “compressed” chain-of-
thought sequences. For each of the datasets, an example of an input, reasoning,
answer, and explanation text for a single instance is shown in Table 1. 

Table 1. Examples of instances from our experimental datasets. For each instance, 
the sections corresponding to values included in the reasoning sequence are highlight ed
with bold text, and the occurrences of the ground truth class are underlined.

Dataset 
Logistic regressor Decision tree Natural language d ecision

tree

Input X: [−0.4408, 0.7812, −0.3482, 
0.9094, 0.869, −0.0214, −0.0555, 
−0.8395] 

X: [0.923, 0.252] Loan amount: $115000.0 
Loan-to-value ratio: 92.266 
Debt-to-income ratio: <20% 
Applicant’s age: 25–34 Loan term: 
120.0 Income: $83000.0 Property 
value: $475000.0 Total loan costs: 
$0.0 

Reasoning −1.2465 −1.2465; −2.9536 
−4.2001; −2.3885 −6.5886; 
7.2595 0.6709; −4.5762 
−3.9053; 0.2138 −3.6915; 
−0.5065 −4.198; 6.8913 
2.6933; 1 

0, 0, 0, 1, 1, 1, 0, 0 1, 0, 0, 0, 1 

Answer 1 0 The mortgage is issued. 

Explanation [[0, “w[0] * x[0] = −1.2465”, “y − 
1.2465 = −1.2465”], [1, “w[1] * 
x[1] = −2.9536”, “y − 2.9536 = 
−4.2001”], [2, “w[2] * x[2] = 
−2.3885”, “y − 2.3885 = 
−6.5886”], [3, “w[3] * x[3] = 
7.2595”, “y + 7.2595 = 0.6709”], 
[4, “w[4] * x[4] = −4.5762”, “y − 
4.5762 = −3.9053”], [5, “w[5] * 
x[5] = 0.2138”, “y + 0.2138 = 
−3.6915”], [6, “w[6] * x[6] = 
−0.5065”, “y − 0.5065 = 
−4.198”], [7, “w[7] * x[7] = 
6.8913”, “y + 6.8913 = 2.6933 ”],
[“OUTPUT”, 1]]

[[“0.923 < 0.3562”, false], [“0.252 
> 0.6825”, false], [“0.923 < 
0.5613”, false], [“0.252 < 0.2597”, 
true], [“0.923 > 0.8087”, true], 
[“0.252 > 0.0709”, true], [“0.923 < 
0.8676”, false], [“OUTPUT”, 0]] 

The loan-to-value ratio is higher 
than 79%. The income is lower 
than $110000. The applicant’s 
age is lower or equal to 34 
years. The debt-to-income ratio is 
lower or equal to 40%. 
Therefore, the mortgage is 
issued.
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Logistic Regression. In this setting, we randomly generate a parameter vector 
w of a logistic regression model without a bias parameter and train the LLM to 
classify random 8-dimensional input vectors x according to the following formula:

y(x) =

{
1 if wTx > 0
0 otherwise.

(5) 

Decision Tree. In this setting, we randomly generate a binary decision tree of 
depth 7 with the following node selection logic at each non-leaf node: 

next(N)  =

{
lef t( N) if sN × xindex(N) > sN × tN

right(N) otherwise,
(6) 

where next(N) is the next node to be evaluated after the current node N , 
lef t(N) and right(N) are the left and right child nodes of node N , tN is a 
random threshold, index(N) is a function that selects the index of x (defined 
so that two c onsecutive nodes can not use the same index), and sN is a random
sign of -1 or 1 that can effectively flip the comparison operator.

Leaf nodes are assigned a class of 0 or 1.

Decision Tree Encoded in Natural Language. In the last setting, we exper-
iment with a decision tree that represents a mortgage application review process 
encoded in natural language. We take a subset of randomly selected mortgage
applications from the 2022 version of the HMDA National Loan Level Dataset
[36] as input data and using a manually designed decision tree that represents a 
fictional mortgage application review process, we generate paragraphs in which 
each sentence describes a decision branch comparison for one of the input fea-
tures. Decisions are evaluated for each dataset instance from the top of the
decision tree to the leaf with the final class of issued or not issued.

4 Experiments 
4.1 Categorization of Experiments 
Separate Fine-Tuning for Answers and Explanations. In this setting, 
the training dataset is split into two separate datasets, each composed of either 
input-command-answer or input-command-explanation instances. The LLM is 
then fine-tuned on each of the two datasets independently, resulting in t wo fine-
tuned models. The inference for answers and explanations is then performed
separately using the corresponding model.

Joint Fine-Tuning. This setting is similar to the previous one, but the answer 
and explanation instances are not separated into two training datasets. Instead, 
fine-tuning is performed jointly on the mix of input-command-answer and input-
command-explanation examples. Inference is performed in the joint predict-
explain approach, with the answers generated independently of the explanations
and vice versa, according to the command “ANSWER” or “EXPLAIN”.
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Joint Fine-Tuning with Reasoning. In this setting, the training dataset is 
composed of a mix of input-reasoning, input-reasoning-command-answer, and 
input-reasoning-command-explanation instances. Inference is performed in two 
steps, where in the first step, the model generates a reasoning sequence, and 
in the second step, the answer and explanation are generated independently
according to the “ANSWER” or “EXPLAIN” command.

In-Context Learning. To understand how strongly the performance of LLMs 
is affected by fine-tuning to the specific problem domain, we include results for
in-context learning [37] as an informative baseline. In this setting, the LLMs 
are not fine-tuned to the specific classification model, but instead obtain their 
problem domain knowledge only from classification input-output example pairs 
included in their input prompt. For each few-shot example, both the answer 
and explanation target is included. In order to prevent the influence of human 
prompt engineering, we pre-train the LLMs on a training dataset where each 
training instance belongs to a different problem domain, corresponding to a 
randomly generated classifier from the same model family but with different 
values of model parameters than those used in the test dataset. The input of
each few-shot example is randomly generated to achieve greater diversity. We
omit the in-context learning setting in the experiments with natural language
decision trees due to the complexity of random generation of meaningful decision
processes in this problem domain.

4.2 Experimental Setup 

All experiments were performed using a s imilar methodology.1 For each of the 
five LLMs tested, the model’s instruction-tuned variant was u sed. LLMs were
trained using low-rank adaptation [39] and Adam optimizer [40]  for  a  single  epoch  
on a train dataset created using 2000 classification inputs. During training, the 
test loss was periodically measured on a test dataset created using 200 inputs, 
and at the end of training, the best model checkpoint was kept. In the in-context 
learning experiments, the number of few-shot examples was 5 for logistic regres-
sion and 2 0 for decision trees. The same training hyperparameters were used in
all experiments, namely a batch size of 4 and a learning rate of 5× 10−5 with a
linear schedule and 100 warmup steps.

4.3 Evaluation Metrics 

In our experiments, we separately measure the classification accuracy of answers 
and explanations on test datasets created using 200 classification inputs. For 
explanations, determining the resulting classification is possible as we have
designed the explanations as chain-of-thought sequences in which the output

1 The source code, together with our datasets, is a vailable under the CC0 license at
https://github.com/vcahlik/reasoning-grounded-explanations and at Zenodo [38]. 

https://github.com/vcahlik/reasoning-grounded-explanations
https://github.com/vcahlik/reasoning-grounded-explanations
https://github.com/vcahlik/reasoning-grounded-explanations
https://github.com/vcahlik/reasoning-grounded-explanations
https://github.com/vcahlik/reasoning-grounded-explanations
https://github.com/vcahlik/reasoning-grounded-explanations
https://github.com/vcahlik/reasoning-grounded-explanations
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class is always stated at the end. Furthermore, we measure the rate of align-
ment between the answer and explanation classifications. The predicted classes 
are determined using automated r ules such as regular expressions; outputs that
could not be reliably parsed are counted as errors.

5 Results 

5.1 Logistic Regression Results 

The results for the logistic regression dataset are shown in Table 2. In-context 
learning has near-perfect classification accuracy for explanations, as the param-
eters of the logistic regressor are stated in the few-shot examples and therefore it 
is simple for the model to generate correct chain-of-thought explanations. How-
ever, for answers, classification accuracy is equivalent to random guessing due 
to the difficulty of the task when a chain-of-thought process is not used. The 
gap between the classification accuracy for answers and explanations is also w ide
for most of the fine-tuning experiments without reasoning. However, when rea-
soning is used, the classification accuracies of answers increase to the level of
classification accuracies for explanations, indicating that the reasoning process
helps the LLMs achieve correct answers.

Table 2. Results on the logistic regression dataset. The experimental setup differs in 
whether training was performed separately or jointly for answers and explanations, 
whether in-context learning (ICL) was used, and whether reasoning was used. Outputs 
that could not be parsed into a valid class are counted towards errors and their rate is
additionally shown in parentheses.

Ans./exp.training ICL Reas. Metric Llama 3 8B Mistral NeMo Mistral 7B Zephyr SFT Phi-4 
Separately Yes No Answer acc. 0.455 0.515 0.470 0.495 0.470 

Expl. acc. 0.990 1.000 0.995 1.000 0.990 
Align. rate 0.455 0.515 0.475 0.495 0.460 

Separately No No Answer acc. 0.610 0.890 0.830 0.555 0.620 
Expl. acc. 0.615(0.140) 0.990(0.005) 0.995 0.995 0.990 
Align. rate 0.455(0.140) 0.880(0.005) 0.835 0.560 0.620 

Jointly No No Answer acc. 0.640 0.530 0.555 0.470 0.470 
Expl. acc. 0.990 1.000 1.000 0.995 1.000 
Align. rate 0.630 0.530 0.555 0.475 0.470 

Jointly No Yes Answer acc. 0.890(0.020) 0.995 1.000 1.000 0.945 
Expl. acc. 0.875(0.030) 0.995 1.000 1.000 0.940(0.005) 
Align. rate 0.965(0.035) 1.000 1.000 1.000 0.995(0.005) 

5.2 Decision Tree Results 

The results for the decision tree dataset, belonging to a tree of depth 7, are shown
in Table 3. Even though 4 times as many few-shot examples were used than in the 
logistic regression experiments, the classification accuracy of in-context learning
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is low even for explanations, as the number of few-shot examples is still lower 
than the number of decision tree leaves. The results for fine-tuning without 
reasoning are similar to those with the logistic regression dataset. Results for 
reasoning show higher error rates than in the logistic regression experiments, 
presumably due to the less detailed reasoning process. However, answers and 
explanations now remarkably contain the same classification errors in almost all
cases, as can be seen from the near-perfect alignment rates. We visualize this
phenomenon by plotting the classifications for one of the experiments in Fig. 2. 

Fig. 2. Experiments with joint training of answers and explanations on a decision tree 
dataset. The colored regions correspond to ground-truth classes. When reasoning is
used, answer and explanation classification errors are typically near-perfectly aligned.

Figure 3 shows the results for the Mistral 7B model on datasets of varying 
decision tree depths, indicating that classification accuracy tends to decrease as
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the complexity of the trees increases. With reasoning, answer and explanation 
classifications are near-perfectly aligned for all of the depths, in contrast to the 
alignment rates for experiments without reasoning. However, explanations with-
out reasoning tend to have the h ighest classification accuracy in these experi-
ments, supposedly due to the chain-of-thought explanation sequences being more
thorough than the compressed chain-of-thought reasoning sequences.

Table 3. Results on the decision tree dataset, with the same semantics as in Table 2 

Ans./exp.training ICL Reas. Metric Llama 3 8B Mistral NeMo Mistral 7B Zephyr SFT Phi-4 
Separately Yes No Answer acc. 0.535 0.510 0.490 0.490 0.535 

Expl. acc. 0.670 0.685 0.695 0.695 0.700 
Align. rate 0.565 0.565 0.495 0.485 0.505 

Separately No No Answer acc. 0.475 0.525 0.530 0.565 0.565 
Expl. acc. 0.975 0.985 0.985 1.000 0.955 
Align. rate 0.480 0.540 0.515 0.565 0.580 

Jointly No No Answer acc. 0.475 0.450 0.500 0.475 0.520 
Expl. acc. 0.985 0.985 0.995 0.975 0.985 
Align. rate 0.480 0.435 0.505 0.460 0.505 

Jointly No Yes Answer acc. 0.745 0.835 0.845 0.875 0.715 
Expl. acc. 0.745 0.835 0.840(0.005) 0.875 0.715 
Align. rate 1.000 1.000 0.995(0.005) 1.000 1.000 

Fig. 3. Classification accuracies for experiments with decision trees of various depths

5.3 Natural Language Decision Tree Results 

The results for the natural language decision tree dataset, shown in Table 4, 
are similar to those for the decision tree dataset. However, in this case, the
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use of reasoning is associated with near-perfect classification accuracies for both 
answers and explanations and with perfect alignment of classification errors.

Table 4. Results on the natural language decision tree dataset, with the same semantics
as in Table 2 

Ans./exp.training ICL Reas. Metric Llama 3 8B Mistral NeMo Mistral 7B Zephyr SFT Phi-4 
Separately No No Answer acc. 0.810 0.825 0.850 0.850 0.815 

Expl. acc. 0.950 0.975 0.950 0.995 0.970 
Align. rate 0.860 0.840 0.850 0.855 0.835 

Jointly No No Answer acc. 0.840 0.840 0.810 0.865 0.845 
Expl acc. 0.935 0.975 0.980 0.990 0.975 
Align. rate 0.825 0.855 0.820 0.875 0.830 

Jointly No Yes Answer acc. 0.985 0.970 0.985 1.000 1.000 
Expl acc. 0.985 0.970 0.985 1.000 1.000 
Align. rate 1.000 1.000 1.000 1.000 1.000 

5.4 Analysis of Errors 

As a further analysis, we study the partial decisions present in the reasoning and 
explanation sequences generated on the decision tree dataset by the Llama 3 8B
model. As shown in Table 5, the final classification errors in both the reasoning 
and explanation sequences are caused by the accumulation of mistakes in partial 
decisions. It is noteworthy that all of the decisions are perfectly aligned between 
the reasoning and explanation sequences. Although not shown in the table, we 
also observed perfect alignment between the answer classifications and reasoning
classifications, meaning that all partial decisions as well as the final classifications
are aligned between the generated answers, explanations, and reasoning in this
case.

Table 5. Analysis of the correctness of the reasoning and explanation chain-of-thought 
sequences generated by Llama 3 8B on the decision tree dataset

Partial decision Final c lassification
1 2 3 4 5 6 7 

Reasoning accuracy 0.995 1.000 0.990 0.960 0.895 0.830 0.745 0.745 
Explanation accuracy 0.995 1.000 0.990 0.960 0.895 0.830 0.745 0.745 
Alignment rate 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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6 Discussion 

It may not be immediately clear why the inclusion of reasoning sequences in LLM 
input contexts leads to alignment between answers and explanations. It seems 
that during training, the LLM must learn the relatively simple task of repro-
ducing the compressed chain-of-thought reasoning sequence to succeed at the 
more difficult task of producing the one-step answer classifications. We hypoth-
esize that once the model learns to produce accurate reasoning sequences, the 
internal mechanism by which the LLM produces its explanations also degrades 
to the copying of the partial decisions from the reasoning sequence. To gain 
supporting evidence for this hypothesis, we further experimented with randomly
flipping the partial decisions as well as the final classification decisions present in
the reasoning sequences produced by fine-tuned Llama 3 8B. As was suspected,
we observed that almost all of the changes were propagated into the produced
explanations as well as to the answers.

Our approach presented in this paper can be extended in numerous possible 
ways, which we leave for future work. Primarily, the reasoning process that we 
chose for our proof-of-concept experiments could be extended to wider problem 
domains or even to general-purpose assistant datasets, for example by straight-
forwardly using chain-of-thought reasoning or similar approaches, such as the
reasoning process used by DeepSeek-r1 [35]. It would also seem beneficial to 
introduce a training loss that directly penalizes the mismatch between answers, 
explanations, and reasoning. Furthermore, we believe that LLM applications 
could benefit from other output modes besides answering and explaining. We 
envision a multitask setting with additional implemented commands, such as
those for obtaining explanations of varying detail, classification of user intent,
content filtering analysis, metadata generation, and so on.

7 Conclusion 

In this paper, we have proposed an LLM explainability technique for obtaining 
faithful natural language explanations by grounding the LLM answers and expla-
nations in a reasoning process. We have shown that LLMs often simply copy the 
partial decisions from the reasoning sequence into their answers or explanations, 
and we utilized this phenomenon to achieve high alignment between answers 
and explanations in several problem domains. Furthermore, we have shown that 
besides enabling faithful explanations, the use of a reasoning process can also 
lead to improvements in the quality of answers. We hope that our study inspires 
further research or real-world use-cases that advance the current state of explain-
ability in LLMs.
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Abstract. Evaluating synthetic tabular data is challenging, since they 
can differ from the real data in so many ways. There exist numerous met-
rics of synthetic data quality, ranging from statistical distances to pre-
dictive performance, often providing conflicting results. Moreover, they 
fail to explain or pinpoint the specific weaknesses in the synthetic data. 
To address this, we apply explainable AI (XAI) techniques to a binary 
detection classifier trained to distinguish real from synthetic data. While 
the classifier identifies distributional differences, XAI concepts such as 
feature importance and feature effects, analyzed through methods like 
permutation feature importance, partial dependence plots, Shapley val-
ues and counterfactual explanations, reveal why synthetic data are distin-
guishable, highligh ting inconsistencies, unrealistic dependencies, or miss-
ing patterns. This interpretability increases transparency in synthetic
data evaluation and provides deeper insights beyond conventional met-
rics, helping diagnose and improve synthetic data quality. We apply our
approach to two tabular datasets and generative models, showing that
it uncovers issues overlooked by standard evaluation techniques.

Keywords: Synthetic data quality · Generative artificial intelligence · 
Explainable artificial intelligence · Interpretable machine learning · 
In terpretable evaluation · Synthetic data detection · Tabular data

1 Introduction 

The rapid development of generative modeling, also known as generative arti-
ficial intelligence (GenAI), is driving profound changes in business, science, 
education, creative processes, and our everyday lives. While the maturation of
transformer-based architectures [62] and diffusion models [33, 59] has led to pre-
viously unimaginable possibilities and quality leaps in text, image, audio, and 
video generation, the adva nces in tabular data synthesis lag behind. However,
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generative modeling has great potential for tabular data: A large amount of 
data in organizations, research and medicine is organized in a tabular format, 
and there is a w ide range of useful applications, such as privacy-preserving data
sharing, data augmentation and balancing, missing data imputation and what-if
analyses [35]. 

What is it that makes tabular data synthesis so difficult for methods which 
excel in image and text domains? How can we examine which exact parts of a syn-
thetic dataset contain implausible values or patterns? Answering these questions 
is not trivial, as already measuring the quality of synthetic data is not straight-
forward: As opposed to supervised learning, there are no direct performance 
measures for generative modeling as a mainly unsupervised discipline through 
the absence of labels. Moreover, even in relatively low dimensions, dependencies 
between features – of numerical or categorical nature – are hard to comprehend 
for humans. This makes the evaluation of tabular data synthesis quality even 
more challenging compared to image or text data where human experts can 
assess the results more easily. There are many different concepts for evaluating
the performance of generative models, and not all of them are available for every
model and data type. New measures are also frequently proposed to address the
shortcomings of the previous ones. However, transparency regarding the under-
lying reasons for poorer synthesis quality, reflected in lower performance scores,
is rarely available. Furthermore, while some of the measures allow for evaluation
at individual observation level [5, 39], it often remains unclear which specific 
feature values or combinations are responsible for the poor quality of a spe-
cific synthetic observation. (See Sect. 3.1 for more background about generative 
models and their evaluation.)

Explainable artificial intelligence (XAI), also referred to as interpretable 
machine learning (IML), tries to explain the outputs and decision-making of 
machine learning models. This is an emerging machine learning discipline, as 
high performing machine learning models are often black boxes due to their 
complexity, and there is an urgent demand for methods to make them more 
transparent and easier to trust. Some XAI methods are able to attribute to 
each feature - or even feature interaction - its contribution to a model’s output.
However, the majority of these XAI methods is designed for supervised learn-
ing and not directly applicable to generative modeling. (See Sect. 3.2 for more 
background ab out XAI.)

Contributions. We propose to leverage a synthetic data detection model to eval-
uate the performance of a generative model and to use it as a supervised proxy 
model in order to obtain more detailed insights about the strengths and weak-
nesses of the synthetic data via common XAI methods. While the detection 
model itself can give an indication of the overall and individual discernibility of
real and synthetic data and about the fidelity and diversity of the synthetic data
(Sect. 4.1), we go one step further: As our main contribution, we provide a set of 
suitable global and local XAI tools which can be u sed to unlock more detailed
insights by answering the following questions (Sect. 4.2):
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Q1. Which features and feature dependencies were most challenging f or the gen-
erative model?

Q2. How do the generative models behave in low and high density areas of fea-
ture distributions? Which areas are under- or overrepresented in the syn-
thetic data?

Q3. Which features and feature dependencies/interactions contributed most to 
the detection of an individual real or synthetic observation?

Q4. Which minimal changes to a correctly classified synthetic observation could 
be performed t o make it look realistic?

We demonstrate the utility of this approach by answering t hese questions for
real data examples (Sect. 5). This work is primarily aimed at practitioners and 
researchers in the field of generative modeling, who want to gain deeper insights 
about the quality of their synthetic data or about the strengths and limitations 
of their generative models. Secondarily, within the XAI comm unity, we want to
raise awareness of the specific challenges in explainability for generative models
that have not yet been adequately addressed.

2 Related Work 

The intersection of XAI and generative modeling has not yet been sufficiently
researched. Schneider [55] underscores the demand for interpretability meth-
ods for generative models and gives a road map for this research direction but 
does not refer to explaining synthetic data quality explicitly. Several w orks have
focused on finding meaningful representations of the latent space of generative
models [20, 22, 32] to better understand and control the data generation pro-
cess or have specifically examined the explainabilit y of the attention mechanism
and transformers [3, 63]. XAI has successfully been incorporated in the training 
process of generative models to increase their performance [45, 71], but these 
approaches are specifically aimed at image data generation.

In the opposite direction, generative modeling has supported XAI meth-
ods to explain the inner workings of neural networks [47], create more human-
understandable interpretations of model decisions [23], calculate conditional fea-
ture importances [4, 13], and produce more plausible counterfactuals [21, 46, 52]. 

The following works are most closely related to our approach, though they 
emphasize different aspects and do not extend as far in our primary focus area
of explaining synthetic data quality: Lopez-Paz et al. [39] suggest to train a 
detection model to evaluate if two samples derive from the same distribution 
and analyze the s tatistical properties of such classifier two-sample tests. Zein et
al. [67] follow this strategy to demonstrate that machine learning utility as an 
evaluation measure may not be a reliable indicator for synthetic data quality. 
Both underline the interpretability of such classifier mod els and even perform
a limited analysis using XAI, but do not focus on this aspect: Lopez-Paz et al.
[39] briefly mention several feature importance methods and show an example
on image data, Zein et al. [67] use impurity-based and permutation-based fea-
ture importances for synthetic tabular data detection. Neither of these works go
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beyond feature importance techniques which represent only an initial analysis 
step in the set of XAI tools presented in this work.

On image data, a wide range of existing studies use binary classifiers and 
their image-specific interpretation techniques for deep fake detection [2, 8, 11]. 

3 Background 

Since this work lies at the intersection of generative modeling and XAI and is 
intended for researchers and practitioners who do not necessarily have expe rtise
in both disciplines, we provide a high-level overview of both fields.

3.1 Generative Modeling of T abular Data

Generative modeling or generative artificial intelligence is a machine learn-
ing sub-discipline concerned with generating realistic synthetic data: Let . Dreal
denote a dataset with instances from a feature space . X , each of which is a realiza-
tion of a random variable . X. Given .Dreal, generative modeling tries to generate 
synthetic data .Dsyn which follow the same joint distribution .pX. As this original 
data distribution is unknown in real-world settings, generativ e modeling explic-
itly or implicitly approximates .pX in order to generate realistic instances and 
is therefore related to the discipline of joint density estimation [35, 42]: Explicit 
generative models .G : X → R

+
0 directly model the underlying j oint distribution

(.G = p̂X) and provide a sampling routine to generate new instances. O n the
other hand, implicit generative models .G : L → X are trained to generate real-
istic samples given random noise . z from a latent-space . L without being able to 
compute density likelihoods (.G(z) ∼ p̂X). 

Early deep learning approaches such as variational autoencoders (VAEs) [37], 
generative adversarial networks (GANs) [29], and normalizing flows (NFs) [53] 
have set the ground for the success of generative AI within the past decade.
Modern transformer-based architectures [62], denoising diffusion probabilistic 
models (DDPMs) [33, 59], often combined with autoregressive models (ARs) [10], 
are responsible for the recent hype about generative AI for realistic text, image,
audio, and video synthesis [14]. 

While numerous adaptions of these methods for tabular data synthesis have
been proposed [38, 66, 69], these often struggle to achieve the same overwhelm-
ing results as on image or text data. Tree-based generative methods [48, 64]  have  
demonstrated competitive or superior performance while being significantly less
computationally demanding than deep learning approaches [26, 49], which aligns 
to well-known findings from discriminative modeling [15, 30, 57]: This type of 
models showed the capacity to effectively deal with the challenges specific to 
tabular data, such as different feature types (e.g., continuous, discrete, categor-
ical), odd-shaped feature distributions (e.g., multimodality, skew, truncation), 
complex feature dependencies, and lack of a natural positional or syntactical 
feature order as for image or text data. However, recent advances in deep learn-
ing for both discriminative and generative modeling seem to be promising steps
towards closing the gap to tree-based methods [34, 68].
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Another inherent challenge in tabular data synthesis is the assessment of its 
quality. Generative models in general lack direct evaluation methods, since they 
are usually trained in an unsupervised manner. An evaluation via test likeli-
hoods as in density estimation is only available for explicit generative models
and does not necessarily allow for implications about the synthetic data qual-
ity [61]. On top of that, tabular data quality cannot innately be evaluated like 
data modalities such as images and text, which humans are able to process and 
judge naturally. Various evaluation concepts exist which try to cover different 
aspects of the complexity of tabular data: Fidelity or precision metrics mea-
sure the resemblance of a synthetic dataset to the original data, and coverage
or recall its diversity [5, 54]. This is often measured by assessing how much of 
the synthetic data is covered by the original data distribution and vice versa. 
As a trivial synthesizer returning an exact copy of the original dataset would 
receive perfect scores in both previous metrics, a t hird dimension is often added:
Authenticity, overfitting or – closely related – privacy metrics measure the gen-
eralization or privacy preservation ability of the generative model [5, 35]. The so-
called detection score or classifier two-sample test gives a measure of how well 
binary machine learning classifiers can distinguish between original and syn-
thetic data [39, 49]. Alternatively, the distance between original and synthetic 
data distributions can be assessed using statistical tests and distance measures 
such as Kullback-Leibler divergence, Wasserstein distance, and maximum mean
discrepancy [12, 42]. Utility-based evaluations assess how well predictive machine 
learning tasks or statistical analyses can be repeated on s ynthetic data, using
measures of machine learning utility or statistical utility [26, 35, 66]. So far, no 
gold standard has been established in measuring the quality of synthetic data. 
Good performance in one of the p revious approaches does not imply the same for
a different one [35, 61, 67]. Moreover, none of these possibilities to measure syn-
thetic data quality provides a data-based explanation of their scores or insights 
into why the quality o f some synthetic dataset has been evaluated to be good or
bad.

3.2 Explainable Artificial In telligence

Due to their high performance, machine learning models are increasingly imple-
mented in high-stake decision-making. However, the gain in performance often 
comes at the cost of reduced interpretability. XAI methods aim to enhance trans-
parency and trustworthiness by developing inherently in terpretable models or
creating post-hoc methods that provide insights into the behavior of complex
black box models.

Post-hoc XAI methods can be categorized along several dimensions, which 
should be taken into account when selecting the most suitable approach in a given
context [43, 44]: Model-agnostic methods can be applied to any model, whereas 
model-specific methods are tailored to particular model classes, making them 
often m ore computationally efficient. For instance, Shapley additive explanation
values (SHAP) [41] are not limited to any specific model class, DeepSHAP [41]
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and TreeSHAP [40] can only be used for deep learning architectures and tree-
based learners, respectively. Another central axis of differentiation is the scope 
of interpretability: Global methods provide explanations for the overall model 
b ehavior across all data points, local ones for single instances. Partial dependence
plots (PDP) [27], as an example, provide a global assessment of feature influence,
while individual conditional expectation (ICE) [6] curves refine this perspective 
by depicting variation at a local level. A further distinction arises regarding the 
perspective of explanations: Prediction-based methods, such as SHAP, concen-
trate on how the model’s predictions change in response to different inputs, while
loss-based methods, such as permutation feature importance (PFI) [25], focus on 
how the model learns and generalizes rather than how it predicts. Explanation 
methods differ in how they account for relationships between features: Marginal 
explanations evaluate the effect of a f eature ignoring dependencies with other
features while conditional explanations account for feature relationships based
on the data distribution [1, 13, 17]. Marginal methods are said to be “true to the 
model” because they reflect how the model internally processes features, even if 
the resulting explanations are unrealistic given the data due to ignored correla-
tions. In cont rast, conditional methods are said to be “true to the data”, ensuring
that explanations align with real-world feature dependencies [18]. 

The reliability of any interpretability method highly depends on the model’s 
capacity to generalize. If a model underfits, explanations may reflect oversim-
plified patterns, whereas an o verfitting model may yield explanations that are
driven by noise rather than meaningful structure.

4 Methods 

To not only assess the quality of synthetic data but also gain more granular 
insights into their limitations, we propose applying XAI methods to a synthetic 
data detection model. Specifically, we introduce methods capable of addressing
questions Q1.–Q4. from Sect. 1, which represent increasing levels o f explanatory
detail.

In the following, .D := {Dreal,Dsyn} denotes a dataset of size . n and dimen-
sionalit y . p consisting of original data .Dreal and equally-sized synthetic data . Dsyn
from an arbitrary (explicit or implicit) generative model . G. Furthermore, l et . xj

denote the .j-th feature of . D, .x−j the subset of features excluding . j,  and .x(i) the 
.i-th i nstance.

4.1 Synthetic Data Detection M odel

A synthetic data detection model is a binary classifier .C : X → [0, 1] trained o n
.Xtrain ⊂ D with corresponding binary labels .ytrain marking if an observation is 
real or synthetic. It outputs a probability .C(x) for a given data point to be real. 
Its performance on unseen test data .Xtest and .ytest can be evaluated by metrics 
such as accuracy and the area under the ROC curve (AUC), and serves as a 
measure for the quality of the synthetic data: Intuitively, high quality synthetic
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data should almost be indistinguishable from real data for . C. False positive 
rates and false negative rates can be used to assess fidelity a nd diversity of
the synthetic data [58]. If additionally a train-test-split is introduced before 
generative model training so that .C gets trained on different real data than . G, 
the performance of . C also reflects the generalization ability of . G. 

Different types of binary classifiers can be used as a synthetic data detection 
model. In order to obtain reliable evaluation scores and explanations, it is vital 
to select a highly capable model and ensure it do es not overfit substantially. For
tabular data, well-tuned gradient-boosted tree ensembles such as XGBoost [19] 
are a robust choice [67]. 

4.2 Explaining Synthetic Data Detection with XAI Methods

Given a synthetic data classifier .C and a dataset of original and synthetic
instances . D, we present suitable XAI methods addressing questions Q1. – Q4. 
and discuss their properties, advantages and shortcomings. For a more holistic 
and detailed discussion of XAI methods, we refer to Molnar [43]. 

Q1.: Feature Importance Measures. To determine which features or feature 
combinations were not reproduced realistically in synthetic data, feature impor-
tance measures can be leveraged. High feature importance values can p oint to
the features or dependencies most responsible for low synthetic data quality.

Permutation feature importance (PFI) is a global loss-based method for 
assessing feature importance. It quantifies the impact of a feature .xj by the 
drop in model performance, measured by the model loss . L, averaged over all 
instances when this feature is replaced by a permuted version .x̃j of itself: 

. PFIj =
1
n

n∑

i=1

(
L

(
C(x̃j ;x

(i)
−j), y

(i)
)

− L
(
C(x(i)), y(i)

))
.

As an effect of the permutation across the whole dataset, the associations
between .xj and . y, as well as all other features, are removed. The more the model’s 
performance declines, the more important the feature is considered. Since the 
model’s performance is involved in the computation of PFI, it is preferable to
calculate it on test data [43]. PFI can yield inaccurate results in the presence of 
highly correlated features as the permutation procedure leads to the generation 
of off-manifold data. This can be tackled by replacing the marginal permutation
routine by conditional sampling techniques [13, 65]. 

Alternatively, Shapley values [56] can be leveraged to obtain feature impor-
tances: The Shapley feature importance [40] is calculated as the mean absolute
Shapley value

. φj =
1
n

n∑

i=1

∣∣φi
j

∣∣ ,

where .φi
j denotes the Shapley value for instance . i and feature . j. For an intro-

duction to Shapley values, see Sect. 4.2 Q3.
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Q2.: Feature Effect Plots. The marginal effect of a feature on the detection 
model’s prediction can be graphically represented by feature effect plots. This 
allows for the identification of unrealistic feature value regions in the synthetic 
data, as well as areas of the original data distribution that are not covered or
underrepresented by the synthetic data. To facilitate understanding of feature
effect plots in the context of synthetic data detection, Fig. 3 and its interpreta-
tion in Section 5.2 Q 2. can already be considered alongside their m ethodological
discussion in this section.

At a single-instance level, this can be visualized using individual conditional 
expectation (ICE) curves, represen ted by the graph of the function

. ICEi
j(xj) = C(xj ;x

(i)
−j),

where model predictions are evaluated for different values of the .j-th feature 
while keeping all other features constant. Non-parallel ICE curves of different 
individuals indicate the presence of an interaction effect with other features on 
the prediction, suggesting that some f eature dependencies present in the original
data were not consistently retained in the synthetic data.

By averaging over each feature value, a global partial dependence plot (PDP) 
can be derived from local ICE curves:

. PDPj(xj) =
1
n

n∑

i=1

ICEi
j(xj).

This provides a comprehensive view of the feature’s marginal effect on the pre-
diction. Regions where the PDP drops significantly below 0.5 indicate unrealistic 
feature values in the synthetic data, making them easily identifiable for the clas-
sifier. Conversely, regions where the PDP rises well above 0.5 highligh t feature
value areas that are absent or underrepresented in the synthetic data. Often,
PDP and ICE curves are presented together in a joint plot.

Both ICE and PDP assume independent features, which can lead to mis-
leading interpretations when features are correlated. Accumulated local effects
(ALE) [7] plots are an alternative to PDP for this case, as they compute local-
ized instead of marginal effects by m easuring changes in model predictions within
small conditional neighborhoods.

Q3.: Shapley Values. Rooted in cooperative game theory, Shapley values [56] 
were originally designed to fairly distribute a total payoff among players in a 
game. In the context of machine learning, the most common approach treats 
features as players, and distributes a single observation’s prediction among them
based on their contribution. This is done in an inclusion-removal manner con-
sidering all possible feature coalitions . S: 

.φi
j =

∑

S⊆{1,...,p}\{j}

|S|!(p − |S| − 1)!
p!

(
vi(S ∪ {j}) − vi(S)

)
. (1) 

The function .vi returns the model’s expected output when only a given subset 
of features of an instance . i is considered. In the classical marginal approach



What’s Wrong with Your Synthetic Tabular Data? 27

[ 41], the remaining features are marginalized out using their marginal expecta-
tions, implicitly assuming independence between observed and unobserved fea-
tures. In the conditional approach [1], the remaining features are integrated out 
based on their conditional expectations given the considered features, preserving 
dependencies in the data. This results in conditional Shapley values, which are 
often more r ealistic when estimated accurately. However, their estimation can be
challenging and entails higher computational costs [1, 17]. Equation (1)  can  be  
slightly modified to compute contributions of feature interactions [60]. For large 
datasets and high-dimensional feature spaces, computing exact Shapley values 
can be computationally expensive or even infeasible. Often, only a subset of all 
po ssible coalitions is considered to make computations feasible, for instance with
the model-agnostic KernelSHAP method [1, 41]. Also model-specific adaptions 
such as DeepSHAP and TreeSHAP can speed up calculations significantly.

In the setting of synthetic data detection, Shapley values decompose the pre-
dictions of individual synthetic observations to reveal which features (or feature 
interactions, in the case of Shapley interaction values) make instances appear 
unrealistic to the detection model. Conversely, they also help identify which val-
ues and feature combinations of a real instance are insufficiently represented in 
the synthetic data distribution. Thus, Shapley values quantify the relevance of
the presence of each feature value (or feature combination) in determining how
realistic this observation appears to the detection model: For real observations
with .C(x) � 0.5, the features with the largest Shapley values indicate that the 
feature values they correspond to are the main reasons the detection model is 
able to separate them from the synthetic data. This suggests that these fea-
ture values may be underrepresented in the synthetic data. The same applies to
synthetic observations with .C(x) � 0.5. 

Q4.: Counterfactuals. Counterfactual explanations (CE) present examples of 
minimal feature changes that would alter the model’s prediction to a different 
outcome. For our binary classification setting, a different outcome will correspond 
to crossing the threshold of 0.5. We will leverage this method to study how we 
can most easily modify the feature values of a correctly detected synthetic sam-
ple so that it looks realistic to the detection model (i.e., has .C(x) > 0.5). The 
best counterfactual examples possess several quality properties [31], where spar-
sity/proximity (changes are as few and small as possible), plausibility (changes 
are realistic and align with the feature distribution), v alidity (actually resulting
in a changed outcome) are the most relevant in our case.

As discussed in Sect. 2, many methods for counterfactual generation rely on 
generative models themselves in order to produce realistic counterfactuals. The 
Monte C arlo sampling of realistic counterfactual explanations (MCCE) method
[52], used in Sect. 5.2 Q 4., directly aims to achieve the aforementioned quality 
properties and leverages an autoregressive tree-based synthesizer to generate 
on-manifold counterfactuals, making it particularly well-suited for tabular data.
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5 Real Data Examples 

We demonstrate our approach on real world data. First, we examine the perfor-
mance of different synthetic data detection models (Sect. 5.1) on various datasets 
and generative models. After that, we answer questions Q1.–Q4. with the XAI 
methods presented in Sect. 4.2 for synthetic adult data [9] generated with T ab-
Syn [68] (Sect. 5.2). In Appendix A, we do a similar, but simplified exercise 
for synthetic nursery data [50] generated with CTGAN [66]. Generic scripts for 
detection model tuning and training, for applying the XAI methods discussed 
in this paper, as well as for reproducing o ur presented tables and figures can
be found in the repository accompanying this paper.1 Additionally, it includes 
an overview and descriptive statistics of all datasets and further context for our
experiments with all synthesizers considered.

5.1 Performance of Different Synthetic Data Detection Models

In order to obtain reliable explanations, we need to ensure that we use a high 
performing classifier as our synthetic data detection model. For this purpose, 
we performed hyperparameter tuning for XGBoo st via Bayesian optimization,
e.g., for the tree depth, learning rate and regularization parameters. As already
stated in 4.1, a well-tuned XGBoost model is typically a robust choice for clas-
sification tasks on tabular data. Figure 1a supports this statement: Across six 
different state-of-the-art or frequently used generative models [48, 64, 66, 68, 70] 
and eleven standard machine learning datasets from publicly available sources
[24, 36], tuned XGBoost models consistently show the strongest classification 
performance against logistic regression and random forest as baseline models.

Figure 1b shows the performance of the tuned XGBoost models for the two 
datasets (adult and nursery) we use in the following to illustrate our approach.

5.2 Answering Q1.–Q4. for Synthetic Adult Data

Before synthesis, we removed all rows with missing values from the adult dataset 
as well as the categorical feature education, since its information value is iden-
tical to education_num, resulting in a dataset with 47 876 instances and 14 
columns (6 numeric and 8 categorical). We generated ten synthetic datasets 
using TabSyn, a state-of-the-art DDPM for tabular data. On each of these gen-
erated d atasets, we trained an XGBoost model for synthetic data detection using
Bayesian optimization for hyperparameter tuning and a train-test split of 30%,
while keeping the real data points the same across all ten synthetic datasets.

Q1. To address our first research question on identifying the most challeng-
ing features and feature dependencies for TabSyn, we analyze feature impor-
tances using both loss-based and prediction-based XAI methods. Figure 2a  shows  
results for PFI and global TreeSHAP (mean absolute Shapley values estimated

1 https://github.com/bips-hb/XAI_syn_data_detection. 

https://github.com/bips-hb/XAI_syn_data_detection
https://github.com/bips-hb/XAI_syn_data_detection
https://github.com/bips-hb/XAI_syn_data_detection
https://github.com/bips-hb/XAI_syn_data_detection
https://github.com/bips-hb/XAI_syn_data_detection
https://github.com/bips-hb/XAI_syn_data_detection
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Fig. 1. (a) Synthetic data detection performance of logistic regression, random forest
[16] and XGBoost models with six generative models generating five synthetic datasets 
for eleven original datasets each. CTAB-GAN+ did not converge for all runs. (b) Syn-
thetic data detection p erformance for XGBoost on train and test data for adult and
nursery data with ten replications.

Fig. 2. Feature importance values for synthetic data detection with XGBoost for ten 
TabSyn-generated synthetic adult datasets. Higher importance values indicate poorer 
synthesis quality. (a) PFI and global TreeSHAP va lues. (b) Global TreeSHAP interac-
tion values of degree 1 and 2 (top 20 most important).

by TreeSHAP), while Fig. 2b provides a finer examination of the interaction 
effects inherently obtained using TreeSHAP. In general, if a feature has a high 
importance, it indicates patterns in the synthetic data that make a differenti-
ation on a global level easier for the detection model, whereas low importance
suggests more realistic feature values.

At a broad level, both methods in Fig. 2a identify similar key features for 
the XGBoost detection model, such as age, hours_per_week, fnlwgt,  and  
education_num, highlighting these features as weak spots in the synthetic data 
where marginal distributions or dependencies to other features are not repli-
cated accurately. Moreover, the relatively low variance (except for occupation)
in the boxplots suggests that the detection models rely on the same features
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across all ten synthesized dataset versions, indicating a consistent decision basis. 
The  high  variance  for  occupation may be due to its strong dependencies with
multiple important features (see Fig. 2b), which seem challenging to retain for 
TabSyn. Comparing PFI and global TreeSHAP, both yield similar feature rank-
ings and relative differences. However, their importance v alues differ in scale: As
mentioned in Sect. 4.2, TreeSHAP sums absolute contributions across instances, 
leading to larger values, while PFI measures the average performance drop of 
a feature removal. An exception is the feature fnlwgt, which is ranked consid-
erably higher in PFI than in TreeSHAP. This is likely due to its strong inter-
actions with other important features, such as age and hours_per_week (see
Fig. 2b). Since PFI disrupts feature dependencies through permutation, it fully 
attributes interaction effects to each involved feature once, not multiple times,
whereas TreeSHAP distributes them fairly among the interacting features [28]. 

Figure 2b shows that, alongside strong main effects, many interaction effects 
contribute substantially to the model’s predictions, which are inherently calcu-
lated with TreeSHAP for XGBoost models (interaction TreeSHAP). The features 
hours_per_week, education_num,  and  age remain the most important individ-
ually, but interactions, such as education_num with occupation and age with 
fnlwgt and education_num, also show a strong influential effect. Their appear-
ance within the most important features (main and interactions) indicates that 
TabSyn struggles to fully recreate this complex dependence structure. An inter-
esting case is occupation, which, as previously noted, appears in numerous
interactions (with education_num, hours_per_week and workclass). The vari-
ability in this interaction across all ten dataset versions further confirms that
the dependencies involving occupation are difficult for the synthesizer to cap-
ture consistently. Another notable observation is that the importance ranking
of occupation in Fig. 2b including the interactions is much higher than in b oth
PFI and TreeSHAP in Fig. 2a. One possible explanation is that occupation’s 
interactions partially cancel out or reduce the main effect due to different contri-
bution signs in the standard TreeSHAP decomposition, whereas for interaction 
TreeSHAP, the separation of interactions prevents this effect. This may happen 
if the marginal distribution of occupation deviates from the real distribution
(i.e., making it easier to distinguish), but the dependencies for influential classes
of occupation to other features are realistically generated.

Q2. Using feature effect plots, we now take a closer look at the numerical fea-
ture education_num and the categorical feature occupation which were among 
the top-ranked features and appeared in several interactions in Fig. 2b. From 
now on, we base our explanations on one synthetic dataset only and do not 
further examine the variation across differen t TabSyn-generated datasets. ICE
curves and PDP for education_num are shown in Fig. 3a with indicated marginal 
distributions for real and synthetic data on the x-axis. We observe that espe-
cially in the low-density region of the real data for feature values below 4, the 
PDP is located considerably below 0.5, implying that TabSyn learned unreal-
istic patterns in this area which make the identification of synthetic data easy
for XGBoost. Furthermore, the PDP and the plotted data distributions reveal
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Fig. 3. ICE/PDP for synthetic data detection with XGBoost for TabSyn-generated 
synthetic adult data. (a) Numeric feature education_num, distribution for original and 
synthetic data on x-axis. (b) Categorical feature occupation, PDP in red, frequencies
for real and synthetic data on y-axis.

unrealistic synthetic feature values: While in the real data only integer values 
occur for education_num, TabSyn also generates non-integer values, resulting 
in a periodical PDP drop between integers. Looking at the ICE curves, we see 
that not all curves run in parallel and that some cross each other. This indicates
the presence of interactions with education_num which alter the course of the
curves individually on top of the marginal effects, which aligns to the findings
presented in Fig. 2b. Another observation is that the share of real data ICE 
curves markedly falling under 0.5 is higher than the share of synthetic data ICE 
curves over 0.5. This means that it is harder for the model to correctly classify 
real data than synthetic data based on this feature, indicating low fidelity but
high diversity of the synthetic data for this feature.

Figure 3b shows results for the categorical variable occupation.  For  each  
class, the variation of ICE values across instances is displayed by box plots, the 
PDP values are represented by red lines. On the y-axis, the class frequencies are 
shown for real and synthetic data. We observe that the classes Protective-serv, 
Armed-Forces and unknown with most deviation from 0.5 have a low number 
of occurrences, while the most frequent classes such as Prof-specialty and 
Exec-managerial tend to have values close to 0.5. This implies that data gener-
ation quality is low for rare classes and improves for more frequent ones. Looking 
at Protective-serv and the corresponding class frequencies for real and syn-
thetic data, we notice that this class is substantially underrepresented in the syn-
thetic data, which can be an explanation for its PDP value close to 1 (prediction
as real). On the contrary, the class Handlers-cleaners seems to be moderately
overrepresented in the synthetic data, which can be the reason why its PDP and
ICE values are consistently smaller than 0.5 (prediction as synthetic). The class
unknown appears to be equally represented in real and synthetic data. However,
its PDP value is close to 0, indicating that synthetic instances with this class are
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Fig. 4. Force plots for conditional and marginal Shapley values decomposing the 
XGBoost prediction for a n exemplary instance of TabSyn-generated synthetic adult
data.

often unrealistic. A reason for this can be that combinations of this class with 
other feature values are not retained realistically in the s ynthetic data. This
aligns to the presence of important interactions with occupation in 2b. 

Q3. While the first two questions focused mainly on the detection model’s global 
behavior, we now examine how features and feature interactions contribute to 
the classification of specific individual predictions. To explore this, we analyze 
two correctly classified samples – one synthetic and one real. Note that these 
two examples illustrate key aspects that should be considered w hen interpreting
predictions of the detection model. However, for a comprehensive assessment of
local behavior, a structured analysis across many more observations is required.

We first explore a specific synthetic observation corresp onding to a young
(age .= 17), white female with low education (education_num .= 4, indicating 
education up to the 7th or 8th grade) based in the United States with marginal 
and conditional Shapley values. Note that potential issues with the region around
education_num .= 4 were already visible in Fig. 3a. The feature distributions in 
the conditional approach are estimated with conditional inference trees [51]  and  
both approaches use the KernelSHAP method with 2000 coalitions to approx-
imate the Shapley values. The force plots in Fig. 4 visualize how differently 
marginal and conditional Shapley values drive the prediction from the base-
line value of 0.5 down to a very low predicted probability of .C(x) = 0.0364:  The  
marginal approach attributes the majority of the contribution to this prediction 
to the young age, whereas the conditional approach distributes the c ontribution
almost evenly between education_num and age. As noted already in Sect. 4.2, 
the marginal and conditional approaches differ in the presence of (local) feature 
dependence. Upon closer inspection of these two features, we find that the com-
bination present in our synthetic example is highly unlikely in the real data: Only 
0.7% of 17-years-old r eal individuals have a value of 4 for education_num, the
average value is 6.69 for this age. Moreover, the mean age for education_num
.= 4 is the oldest across all education levels with 49.12 years. An explanation 
for these numbers can be the fact that it was common for older generations to
quit school after the 8th grade to start working, as younger generations typically
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attend school for longer than that. Moreover, their global correlation in the real 
data is small (0.03), but larger for the younger (0.54 for age.≤ 20). The stronger 
feature dependence among younger individuals is natural, as many are still in 
education and have yet to attain higher degrees. With this in mind, we consider 
the conditional approach the more appropriate, and argue that this synthetic
sample is weak not only in terms of age, but also in education_num.

Fig. 5. Waterfall plots for Shapley interaction values decomposing the XGBoost pre-
diction for an exemplary instance of TabSyn-generated synthetic adult data. Note that 
T reeSHAP decomposes the prediction on the log-odds/logistic scale rather than on the
probability scale.

Figure 5 confirms this line of reasoning: It displays a waterfall plot with 
the largest (in absolute value) Shapley interaction values for the same syn-
thetic female as above, computed with the (path dependent) TreeSHAP algo-
rithm [40], which partially accounts for feature dependencies, placing it between 
the conditional and marginal approaches: The interaction between age and 
education_num is identified as a key factor for correctly classifying the sam-
ple. Interestingly, when adjusting for interactions, education_num alone actually 
makes the sample look more similar t o the real observations. This suggests that
locally around this sample, education_num itself aligns well with real observa-
tions, but its combination with the specific age is causing the discrepancy.

For the majority of the features, the overall average dependence in this 
dataset is relatively small, such that the conditional and marginal Shapley values 
more or less agree for most of the samples. However, as seen abo ve, the features
may be highly dependent locally. Going forward, we therefore stick to the condi-
tional approach. Figure 6 displays both conditional Shapley values and Shapley 
interaction values for a 47-year-old, self-employed, male in the real dataset, w hich
was easily correctly classified by the detection model .C(x) = 0.94.  The  main  
contributor to that was the capital_gain feature, while the interactions also 
reveal that the dependencies between education_num and occupation play a
role. As seen from Fig. 2, capital_gain was not very important globally, which 
exemplifies that there may be local areas in the feature space which are not 
adequately represented in the synthetic data even if the feature is globally well
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represented. The education_num–occupation interaction, on the other hand, is 
already highlighted as a potential issue globally.

Fig. 6. Force and waterfall plots for, respectively, (a) conditional Shapley values and 
(b) Shapley interaction values decomposing the XGBoost prediction for an exemplary 
real instance of the adult d ata. Note that TreeSHAP decomposes the prediction on the
log-odds/logistic scale rather than on the probability scale.

Q4. Finally, we investigate how minimal changes to synthetic observations can 
be performed to make them look realistic. We proceed to exemplify this with the 
same synthetic sample as in Sect. 5.2 Q3. , the young female with lo w education.
Figure 7 provides four counterfactual examples which modify a few of the feature 
values in different ways to change the classification to real. The counterfactual
examples are generated with the MCCE method of [52] with all features mutable
and .5 × 105 Monte Carlo samples.

First, observe that fnlwgt is changed in all counterfactuals. This feature 
reflects the number of people each observation represents in the population, 
making it natural that it m ust be adjusted when other features change to main-
tain consistency. Moreover, Fig. 2b indicated issues in the synthetic data for 
its dependencies with other features on a global level, so that its value might 
not have aligned to other features. Apart from fnlwgt, the first counterfactual 
(CF1) changes only education_num, while CF2 and CF3 perform slightly smaller
changes in education_num while also increasing respectively age by 1 year and
occupation. Finally, CF4 illustrates that education_num does not need to be



What’s Wrong with Your Synthetic Tabular Data? 35

Fig. 7. Four counterfactual explanations for an exemplary instance of TabSyn-
generated synthetic adult data. Highlighted features are changed.

changed for the synthetic observation to appear real – increasing age by five 
years and hours_per_week by 15 h also changes the classification to real.

6 Discussion 

In this paper, we demonstrate that the application of XAI methods on a syn-
thetic data detection model can generate valuable insights about synthetic data 
quality. We provide a set of suitable global and local XAI tools, such as feature 
importance measures, feature effect plots, Shapley values and counterfactuals. 
These XAI tools can be used to identify the most challenging features and depen-
dencies in the original data for successful data synthesis and to detect unrealistic
patterns in the synthetic data on dataset- and single-instance level. The exper-
iments in Sect. 5 illustrate this on real world data and underline the gain in 
explanatory depth in comparison to traditional synthetic data quality metrics 
and visual approaches such as histograms and correlation plots. The insights gen-
erated from our suggested XAI-driven analysis can be used for synthetic data 
auditing to explain overall utility, synthesis quality in low density areas of the 
real data, and to determine low fidelity instances. It could also be leveraged to
analyze and compare the strengths and weaknesses of different generative models
on different datasets and to debug or further improve generative models.

One limitation of this approach is that it is not directly applicable to a 
generative model itself but depends on the performance of a binary classifier 
used for synthetic data detection. Special care has to be taken during the tuning 
and training process of this classifier as low detection accuracy values can both be
caused by insufficient classification performance and by high quality synthetic
data. For some purposes, the detection model can even be too sensitive and
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might detect deviations such as different numeric precision which might not 
be relevant to assess the practical utility of the synthetic data. Moreover, it is 
critical to choose an appropriate XAI method considering data dependencies 
and explanation goal in order to obtain reliable explanations. As is generally 
true for all applications of XAI methods, there is no one-fits-all solution and it is 
important to know the strength and limitations of different tools. For instance,
it is important to be aware of the differences of loss-based and prediction-based
methods as well as marginal and conditional approaches [44]. Some of the XAI 
methods, especially conditional approaches and counterfactuals generators, are 
even based on generative modeling themselves. As stated in Sect. 3.1,  one  should  
keep in mind that generative models for tabular data synthesis are not yet as 
mature as for image and text data generation, which could lower the quality of
explanations created with these methods.

We restricted this work to the explanation of synthetic data fidelity and 
diversity and did not consider the generalization and privacy dimension of data 
quality. F ollowing a different routine for generative model training as described
in Sect. 4.1, our approach could be extended to cover these aspects as well. W e
leave this for future work.

Especially in the light of the current worldwide rise of generative models and 
the increasing use of synthetic data in all relevant areas of daily life, we strongly 
believe that the identification and explainability of synthetic data quality as well 
as the intersection of XAI and generative AI in general is of highest importance. 
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A Answering Q1.–Q4. for Synthetic Nursery Data 

We provide another exemplary application of our approach using the nursery 
dataset and the generative model CTGAN [66]. The nursery dataset has 12 958 
instances and 9 columns (all categorical). CTGAN is a widely used GAN-based 
generative model for tabular data. Again, on each of these generated datasets, 
we trained an XGBoost model for synthetic data detection using Bayesian opti-
mization for hyperparameter tuning and a train-test split of 30%, while keeping
the real data points the same across all ten synthetic datasets. The mean accu-
racy and its variation on both train and test data are shown in Fig. 1b: The 
accuracy is consistently around 70%, with slightly lower values on test data.
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Fig. 8. Feature importance values for synthetic data detection with XGBoost for 
ten CTGAN-generated synthetic nursery datasets. Higher importance values indicate 
poorer synthesis quality. (a) PFI and global TreeSHAP va lues. (b) Global TreeSHAP
interaction values of degree 1 and 2 (top 20 most important).

Fig. 9. ICE/PDP for synthetic data detection with XGBoost for CTGAN-generated 
synthetic nursery data. (a) Feature form, (b) feature class. P DP in red, frequencies
for real and synthetic data on y-axis.

Figure 8 shows that CTGAN struggled to accurately reproduce multiple fea-
tures. On top of that, especially the dependency between health and class 
appears to be insufficiently retained. In alignment with Fig. 8b, the ICE and 
PDP values for the feature form in Fig. 9a indicate a poor reconstruction of 
the marginal distribution with over- and underrepresented classes. The situa-
tion differs for the feature class, as shown in Fig. 9: Except for the rare class 
very_recom, the classes appear to be equally represented in real and synthetic 
data. The low ICE and PDP values for the three frequent classes are therefore 
likely due to inadequately captured dependencies with other features, consistent
with the presence of multiple relevant interactions for class in Fig. 8b. 

Finally, we consider a specific correctly classified (.C(x) = 0.07)  synthetic  
observation with pretentious parents, one child and non-problematic social con-
ditions, to mention some key features. The Shapley interaction values of this



38 J. Kapar et al.

Fig. 10. Waterfall plots for Shapley interaction values decomposing the XGBoost pre-
diction for an exemplary instance of CTGAN-generated synthetic nursery data. Note 
that TreeSHAP decomp oses the prediction on the log-odds/logistic scale rather than
on the probability scale.

Fig. 11. Four counterfactual explanations for an exemplary instance of CTGAN-
generated synthetic nu rsery data. Highlighted features are changed.

prediction, displayed in Fig. 10, indicate that correct classification is mainly 
driven by single features as opposed to feature interactions. The feature val-
ues children .= 1 and parents = pretentious contribute the most, but nearly 
all other features also have a substantial impact, implying that the majorit y
of the features values are unrealistic or overrepresented. Figure 11 shows four 
counterfactual examples for the same individual. Modifying the parents feature 
and changing the children feature to 3 are commonalities i n three of the exam-
ples. However, like in Sect. 5.2, the synthetic observation can be altered in quite 
different ways to app ear realistic to the detection model.
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Abstract. Progress in operations research allowed for the widespread 
use of mathematical optimization in supply chain planning. Despite its 
numerous practical and economic benefits, human planners often doubt 
the solutions provided by automated optimizers, which limits their poten-
tial effectiveness. Although Explainable Artificial Intelligence (XAI) 
offers innovative methods to improve the transparency of various models, 
the tools available to explain optimization algorithms remain underde-
veloped. Existing solutions tend to present explanations in numerical for-
mats difficult to interpret. This study explores the application of Large 
Language Models (LLMs) to enhance the interpretability and persua-
siveness of these explanations. Specifically, it investigates whether LLMs 
can convert numerical explanations into clear, context-aware narratives, 
thereby fostering greater trust among planners in the optimizer outputs. 

We worked on top of a supply chain planning optimizer with a LIME-
inspired algorithm to generate explanations for typical supply chain sce-
narios. Explanations generated by LLMs were evaluated using various
metrics and compared to the expectations of experienced experts in the
field. Our results show that LLMs can substantially improve the clarity
and persuasiveness of XAI explanations, increasing human planners’ con-
fidence in the optimizer’s outputs. We also identify future improvements
needed to fully meet the ideal standards set by expert planners.

Keywords: Explainable Optimization · Explainable AI · Large
Language Models

1 Introduction 

Advances in Operations Research (OR) have led to a broad industrial adop-
tion of mathematical optimization technology to solve supply chain planning
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problems [ 24]. Despite that progress, seamless deployment and adoption of the 
technology remains a challenge in business reality. The common business practice 
is that solutions to a supply chain planning problem proposed by optimization 
technology must be reviewed and confirmed by a human planner before they are 
executed. Human planners often have many years of experience with the plan-
ning tasks at hand, during which they acquired a lot of k nowledge about what
constitutes feasible high-quality solutions and how to obtain them. Solutions
generated by optimization technology that do not satisfy the expectations of
human planners tend to face distrust, leading to their feasibility and/or quality
being challenged [33]. 

Such distrust towards generated solutions hinders the benefits obtainable 
from mathematical optimization technology. While the technology is be ing
deployed, gaining trust consumes time and introduces costs [17]. In practice, 
concerns about the quality of the technology delay its introduction into the 
daily planning process, thus also postpone realization of the benefits. After the 
deployment project is over, planners who do not trust the technology tend to
manually modify the solutions more often [33]. The manual modifications made 
for trust reasons take time and potentially reduce the quality of the plan and
thus hinder the benefits of the automated optimization.

In recent years, research has increasingly focused on enhancing the inter-
pretability of black box models. Explainable Artificial Intelligence (XAI) has 
become a central area of investigation, with efforts aimed at developing tech-
niques to increase the transparency of complex machine learning and deep learn-
ing models. XAI methods strive to deconstruct model predictions, providing 
insights into how specific input features impact outcomes. This growing emphasis 
on interpretability is crucial for fostering trust, improving model robustness, and
ensuring the ethical and legal deployment of AI systems. However, less attention
has been given to explaining OR-based optimization models [6]. While existing 
XAI techniques can clarify some optimizer decisions, the explanations provided 
are often too complex for human planners without technical background, pre-
venting them from full understanding.

This study introduces a methodology to utilize Large Language Models 
(LLMs) to generate human-centered explanations for the outcomes produced 
by a tactical supply chain planning optimizer. The primary aim is to evalu-
ate the capacity of LLMs to interpret and understand the numerical outputs of 
XAI techniques, which are currently employed to elucidate the complex decision-
making processes of the optimization system. Furthermore, the research seeks 
to determine whether LLMs can effectively convey these XAI-generated insights 
in a manner that is context-aware, clear, coherent, and easily interpretable by 
human users. The ultimate goal is to enhance the quality of information pro-
vided to human planners, thereby fostering greater trust in the optimization sys-
tem. By comparing LLM-generated explanations with authoritative explanations
provided by domain experts, we investigate whether LLMs, given specific input
contexts, can approach or match the quality of expert-derived explanations. The
contribution of our work is to develop and validate a methodology capable of
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providing human-readable explanations for questions related to a complex and 
highly interdependent optimization problem, thereby a dvancing research in the
developing field of explainable optimization.

2 Literature Review 

2.1 Explainable AI 

The challenge of building user trust in machine learning predictions has become 
a widely explored area of research. As black-box predictive models are increas-
ingly deployed across various domains, the demand for transparency and inter-
pretability in their decision-making processes has intensified [26, 30]. Certainly in 
high-stakes fields such as finance, healthcare, and criminal justice, where model 
decisions directly affect people’s lives, but also in any domain where people 
collaborate closely with models, it is essential that models not only deliver accu-
rate predictions, but also offer interpretable and understandable explanations. 
In addressing this need, a research domain, termed eXplainable Artificial Intelli-
gence (XAI), has emerged, with the primary goal of fostering trust and confidence
in AI models when applied in real-world settings [10]. 

In recent years, various XAI methods have been introduced [23], focusing on 
both local explanations for individual predictions and global explanations that 
capture overall model behavior. Local explanation techniques include counter-
factual and contrastive explanations, while global explanations a re often derived
from transparent surrogate models or feature attribution aggregations. Among
the widely-used state-of-the-art methods are LIME [25] and SHAP values [19]. 
However, outcomes of these methods demand a technical background to be 
understood, presenting challenges for non-expert users to fully comprehend [21]. 

Within the research field of human-centric XAI, considerable attention is 
devoted to addressing this challenge. One potential solution involves the graphi-
cal representation of explanations, where visualizations are used to enhance the
comprehensibility of technical XAI outputs [3]. By leveraging (interactive) visual 
tools, complex information can be conveyed more intuitively, making it easier 
for users without a technical b ackground to understand the underlying model
behaviors [11]. An additional method for improving the interpretability of XAI 
outputs involves translation into natural language. A dedicated section will later
provide a more in-depth discussion of this aspect.

2.2 Explainability in Optimization 

While XAI provides methods for interpreting proposed decisions of machine 
learning models, explainability in optimization specifically addresses the chal-
lenge of clarifying the reasoning behind proposed decisions within complex sys-
tems. This subsection explores the techniques and approaches developed to
enhance the interpretability of optimization models, bridging the gap between
opaque mathematical formulations and user-friendly explanations.



Leveraging Large Language Models for User-Friendly Explanations 47

In XAI, counterfactual and contrastive explanations are foundational meth-
ods for providing clear and human-friendly interpretations of model predictions. 
Counterfactual explanations operate by illustrating the smallest change in fea-
ture values that would alter the prediction to a desired outcome, a method 
that resonates with how people naturally describe causal situations—e.g., “If
your income had been $10,000 higher, your loan application would have been
approved” [23]. These explanations are effective because they are both con-
trastive, as they highlight differences between the actual prediction and a spec-
ified alternative, and selective, as they focus on the most relev ant features or
changes. To generate counterfactuals in optimization contexts, Korikov & Beck
[14] introduced the concept of Inverse Optimization. In a standard (or forward) 
optimization problem 〈c, f, X〉, the goal is to determine the decision vector 
x ∈ X ⊆ Rn that optimizes an objective function f , given a parameter vec-
tor c ∈ C ⊆ Rn. However, in some cases, a user may wish to understand why 
the optimal solution x∗ does not align with an expected or desired outcome 
xd, typically characterized by additional constraints. These constraints define a 
refined feasible set Xψ = X ∩ ψ. Inverse optimization addresses this challenge 
by identifying the minimal adjustments to the initial parameter vector c, giving 
c′, required to make xd optimal for the forward problem 〈c′, f,X〉. The proposed
solution, however, is currently limited to cases involving a specific structure
of partial assignment constraints and imposes restrictions on the explanation
parameters. More complex problems remain outside the scope of this approach
for now.

Contrastive explanations, another approach within XAI, address the question 
“Why was A chosen instead of B?”—a common mode of human reasoning [22]. 
Instead of identifying inputs that would lead to an expected or desired outcome, 
contrastive explanations highlight differences between the actual and expected 
outcomes, often by emphasizing distinctions in objective values. This pro vides
insights into why a specific decision was made over alternatives. The Explainable
Planning (XAIP) framework [7] is built around contrastive explanations. It rec-
ognizes that contrastive questions arise when a planning algorithm suggests an 
action that diverges from user expectations. Like counterfactual explanations, 
these expected plans can be conceptualized in various ways, making it crucial to
identify the most suitable alternative from the set of possible explanations.

The methods discussed earlier require generating alternative solutions for 
comparison with the optimal solution, which can be computationally expensive 
and even prohibitive for optimization models. Additionally, users often p refer
immediate explanations and are unwilling to wait for these alternatives to be
generated [28]. An alternative approach involves employing surrogate models, 
which serve as simplified approximations of the original optimization model by 
learning the underlying relationships between inputs and outputs in the sys-
tem. By adopting a simpler, ante-hoc (white-box ) model for this purpose, sur-
rogate mo dels offer transparency in their internal workings, allowing users to
understand and interpret the decision-making process while providing a compu-
tationally efficient solution [29]. In cases where data is limited due to the high
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computational cost of generating candidate solutions, gray-box models can pro-
vide an effective approach. These models combine the accuracy of black-box 
models with the interpretability of white-box models by generating additional
labeled instances to train a more interpretable model, aiming to closely approxi-
mate the original model [8]. Although gray-box models are not typically designed 
for optimization problems, their effectiveness in addressing the challenge of gen-
erating alternatives within machine learning highlights t heir potential to inform
innovative approaches to similar challenges in optimization.

2.3 LLMs and XAI 

Recent advancements in LLMs have greatly enhanced their applicability across 
various tasks. Due to their extensive parameterization and pre-training, LLMs 
excel in pattern recognition and understanding long-term dependencies, making 
them effective tools for natural language processing tasks, such as text gener-
ation, translation, summarization, and conversational AI. Additionally, LLMs
can be further optimized for specific tasks using techniques such as Retrieval-
Augmented Generation, Prompt Engineering, and Fine-Tuning.

LLMs typically store factual knowledge within their parameters [12], which 
are learned during pre-training, without direct access to external information. 
This architecture can result in limitations such as difficulties in updating knowl-
edge over time, as well as potential inaccuracies or hallucinations if the model 
lacks access to relevant or up-to-date information. One approach to mitigate this
issue is Retrieval-Augmented Generation (RAG), which integrates a pre-trained
LLM with an external, non-parametric memory system, such as specialized doc-
uments or databases [16]. This allows the model to retrieve relevant information 
during generation, reducing hallucinations and improv ing performance in spe-
cialized or evolving contexts [9, 31]. 

Additionally, Prompt Engineering plays a crucial role in optimizing LLM 
performance for specific tasks. This technique involves strategically designing 
prompts to guide LLMs toward generating accurate and contextually relev ant
responses. It is an iterative process that refines prompts to achieve the desired
output [27]. A key strategy within prompt engineering is in-context learning, 
which uses a limited set of examples and/or instructions within the prompt to 
teach LLMs new skills, often referred to as one-shot or few-shot learning. By 
carefully structuring prompts, prompt engineering enhances the effectiveness of
in-context learning, enabling LLMs to adapt to specific tasks more efficiently.

Kroeger et al. [15] explore the potential of leveraging LLMs to enhance the 
interpretability of black-box machine learning models by instructing the LLM to 
identify the most important features influencing a model’s predictions. The effec-
tiveness of this approach depends largely on prompt engineering, with prompts 
structured to include contextual introductions, dataset examples (features and 
outcomes), queries, and specific instructions. The LLM’s feature rankings are
compared to traditional XAI techniques such as SHAP and LIME using four
metrics: Feature Agreement (FA), Rank Agreement (RA), Prediction Gap on
Important feature perturbation (PGI), and Prediction Gap on Unimportant
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feature perturbation (PGU). Results showed that the LLM outperformed SHAP 
and performed comparably to LIME in most cases. However, the experiment was 
conducted on relatively small datasets with limited features, potentially leading 
to an optimistic bias in the outcomes. As dataset size increases, challenges in 
prompt design may become more pronounced, given the token constraints of 
LLMs, which limit the number of dataset examples that can be processed simul-
taneously. More fundamentally, LLMs are not inherently designed for feature
attribution tasks, raising concerns about their suitability for such applications.

The rapid advancement of LLMs presents significant opportunities for gener-
ating clear and readable explanations. Building on this foundation, this research 
aims to determine whether LLMs can effectively produce human-readable expla-
nations by transforming specialized XAI explanations related to optimization
problems into accessible text, thereby establishing a so-called LLM-XAI tan-
dem.

The concept of an XAI-LLM tandem, where an LLM interprets and conveys 
XAI outputs in accessible language, is relatively new and still in early develop-
ment. However, it holds significant potential for enhancing user understanding
of complex model behaviors. Yu et al. [34] presented the first framework that 
combines XAI techniques with natural language processing to generate human-
readable explanations. This integration enables the provision of explanations in 
accessible, everyday language, a critical aspect for facilitating user engagement 
and fostering critical evaluation of AI systems, which may contribute to greater
trust and understanding. Mavrepis et al. [21] developed a model that generates 
summaries of various XAI methods, tailoring the explanations to the knowl-
edge and expertise level of the target audience. Use-case studies demonstrated 
that the model effectively delivers easy-to-understand, audience-specific explana-
tions, regardless of the XAI method employed. The primary limitation identified 
in this paper is that the LLM tends to create lengthy, long-winded explanations,
where users often want quick, direct information without excessive detail that
can obscure the main points. In the realm of cybersecurity, Ali & Kostakos [2] 
introduced HuntGPT, a dashboard designed to clarify the results of a predictive 
model for identifying cyber attacks. This dashboard presents initial explanations 
of XAI outcomes, followed by further insigh ts provided by an LLM. Additionally,
it offers the opportunity for discussion with a chat assistant.

Martens et al. [20] demonstrate the effectiveness of integrating LLMs with 
XAI through their introduction of the XAIstories technique. This method 
employs counterfactual explanations for image classification and SHAP expla-
nations for tabular data classification, presenting them as coherent narratives. 
Their findings underscore the value that data scientists attribute to this app-
roach, particularly in enhancing decision-making across diverse applications.
Building on this framework, Cedro & Martens [5] utilize it to improve the 
comprehensibility of numeric, XAI-generated explanations for individual predic-
tions in graph neural networks. Similarly, Zytek et al. [35] explore the potential 
of LLMs in transforming XAI explanations into human-readable narratives, a 
focus that aligns closely with our research objectives. However, our study dif-
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ferentiates itself by specifically examining the capability of LLMs to generate 
human-readable explanations in the context of optimization problems, with a 
particular emphasis on supply chain optimization. Our work uniquely considers
the importance of incorporating supply chain context within these explanations.

3 Methodology 

The methodology proposed in this study works within a framework of three key 
components for generating narrative explanations: (1) formulation of the opti-
mization problem and its solver, (2) application of an XAI technique, inspired 
by LIME, to produce numerical explanations of the optimizer, and (3) utiliza-
tion of language models to craft prompts and generate narrative explanations. 
The first two components are e stablished techniques, while the third represents
the novel contribution of this work. These components are designed to work
in tandem to address the challenge of producing human-readable explanations.
Figure 1 provides a schematic representation of the methodology, highlighting 
its structure and flow. The subsequent sections provide a detailed discussion of
each component.

3.1 Optimization Problem and Optimizer 

The problem addressed in this experiment is the Master Production Scheduling 
Problem (MPSP) as described in [32]. This problem involves balancing demand

… 

… 

Fig. 1. Schematic overview of the methodology. The current approach utilizes an opti-
mizer to produce an optimized schedule, which is then explained using a LIME-inspired 
technique to generate feature importances. Our approach integrates both information
about the optimized schedule and the feature importances into a prompt provided to
the LLM.
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and supply across supply chains while simultaneously scheduling supply orders 
and managing resource capacities. Unlike detailed scheduling, where specific 
operations are allocated to resources in sequence with exact starting and ending 
times, the MPSP emphasizes allo cation of bucketed capacity in longer horizon.
The focus is therefore on coarse-grained resource capacity utilization rather than
fine-grained scheduling.

Feasible solutions need to respect constraints on individual multi-level sup-
ply chains of various complex structures from diverse industries, aggregate con-
straints on variable resource capacity in presence of wandering bottlenecks, or 
stocking limits. The objective is a complex combination of factors measur-
ing, among others, delivery performance, adherence to inventory targets, o r
minimization of inventory and work-in-progress. To address these complexities
throughout a multi-month horizon, a specifically tailored optimizer is used. Rely-
ing on large-scale neighborhood search [1] and mathematical programming, it 
delivers high-quality solutions virtually impossible to improve by humans. While 
further details of the proprietary optimizer remain undisclosed, they do not influ-
ence the further study, since the explanation method is independent of the actual
optimization algorithm as long as provided solutions are of high quality.

3.2 LIME-Inspired XAI Model 

Local Interpretable Model-agnostic Explanations (LIME) [25] is a widely used 
model-agnostic framework for interpreting the predictions of complex machine 
learning models. By generating locally faithful explanations, LIME approximates 
the behavior of any given model in the vicinity of a specific prediction using 
interpretable surrogate models, typically linear models. It operates by perturbing 
the input data to observe how changes affect the model’s predictions, allowing
for an analysis of feature importance and contribution to the decision-making
process.

This paper builds on the work of Tullemans [32], which presents a method 
for identifying explanations for underutilized resource periods. Such phenomenon 
occurs even in optimal solutions to the MPSP, and often raises concern among 
human planners occurring. To address the explanation task, a generic LIME-
inspired method was designed and then implemented specifically for the resource 
utilization use case in the MPSP. The original plan generated by the optimizer 
is perturbed by systematically increasing utilization of the resource in question. 
For each perturbed plan, the difference in each partial objective metric (further
called KPI score) is compared to that of the original plan. Repeating this process
multiple times yields a value that quantifies the impact of the perturbations on
each individual KPI score.

3.3 Prompt Engineering 

Our experiment follows the prompt design methodology established by Zytek et
al. [35], which provides a structured approach to creating and evaluating prompt 
templates across multiple LLMs. Using this methodology, we constructed a series
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of prompt templates with recurring components, each adjusted to enhance the 
prompt’s overall effectiveness. Table 1 details all prompt components utilized in 
our study, along with explanations of their functions and intended effects. The 
process involves methodical combination, reordering, and rephrasing of these 
comp onents to achieve an effective design, which is a crucial aspect of prompt
engineering [27]. The resulting templates are presented in Table 2.  This  prompt  
engineering methodology allows us to systematically explore and refine the inter-
actions between different prompt components, ultimately leading to more effec-
tive and nuanced model outputs. The methodology for evaluating and identify-
ing the most effective combination of prompt template and model is detailed in
Sect. 4.3. 

Table 1. Overview of the key components in the prompt e ngineering process, along
with their explanations.

Component Description 
[A] Role The role component specifies the assumed perspective that 

the LLM is expected to adopt during the interaction.
[B] Data Examples Raw data examples of alternative plans that include KPI 

scores and Resource Utilization Scores. This data is utilized 
by LIME to determine which features are most significant. 
The raw data serves as a component to assess whether the
LLM can extract specific information independently.

[C] LIME Examples The actual LIME outcomes, describing the most important 
features related to the XAI question.

[D] XAI Context Context about the XAI itself, including the specific question 
or challenge we want to address. This ensures the LLM 
understands the context in which it should provide
explanations or insights.

[E] Supply Chain 
Con text

Context related to the specific supply chain dynamics and 
operations. This information helps the LLM connect LIME 
outcomes with real-w orld scenarios, enhancing the relevance
and applicability of the insights generated.

[F] Task Define a step-by-step plan to achieve the primary objective 
that the LLM is intended to fulfill. This involves breaking 
down the objective in to manageable actions or milestones,
ensuring clarity and focus in the model’s execution.

[G] Instructions Guide the model towards the desired output by providing 
clear and concise directives that outline the expected format, 
tone, and content of the response. This ensures that the
model aligns with user expectations and requirements
effectively.



Leveraging Large Language Models for User-Friendly Explanations 53

Table 2. Overview of the constructed prompt templates (T1–T5) and their corre-
sponding component composition and order, as defined in Table 1. 

Template Component S equence

T1 ACF 
T2 ABCF 
T3 ADCEF 
T4 ADECF 
T5 ADCEFG 

4 Experiments 

4.1 Data 

The experimental dataset consists of three test instances, each representing a dis-
tinct use case: two from a bulk production supply chain (denoted Metals-A and 
Metals-B) and one from an automotive assembly supply chain (further called 
Assembly). Each case study focuses on a specific resource within the respective 
supply chain that is planned as not fully utilized at some period within the
horizon of the problem instance. Test instances were based on data of actual
real-world supply chain planning challenges.

The dataset incorporates the results of the LIME explanations derived from 
the method proposed by Tullemans [32]. Furthermore, it is supplemented with 
raw input data of the optimization problems, like resources and production pro-
cesses, and solution data like inventory levels of all production stages throughout
the planning horizon.

4.2 LLMs 

We tested several LLMs to evaluate their performance in transforming XAI 
explanations into human-readable form. The models tested include OpenAI’s 
ChatGPT-3.5, Meta’s Llama-3-8B-Instruct and Llama-3-70B-Instruct, as well 
as Mistral AI’s Mixtral-8x7B-Instruct-v0.1 and Mistral-7B-Instruct-v0.2. These 
models represent a diverse set of architectures and parameter sizes, allowing for 
a comprehensive comparison of their capabilities in this context. All LLMs were 
accessed via APIs on a remote server, ensuring consistent interaction protocols
and enabling automated evaluation across different model types. Local simula-
tions were executed on a system with a 2100 Mhz Intel Core i7 processor and
32 GB RAM.

4.3 Evaluation 

Three distinct evaluation protocols were considered. The first protocol assesses 
the quality of LLM-generated responses across different prompt templates and 
models to identify the best combination. The second protocol evaluates whether
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LLM-generated narrative explanations enhance the numerical explanations from 
the LIME-inspired approach. The third protocol compares LLM-generated expla-
nations to expert explanation, to assess if the u se of large language models sup-
ports the goal of providing high-quality explanations.

Evaluation of LLM Response Quality. To evaluate the LLMs’ responses 
across the different combinations of prompt templates and models, we used 
the same four metrics as employed by Zytek et al. in [35], i.e., completeness, 
soundness, fluency, and context-awareness, and added consistency next to the 
set. Completeness refers to the extent to which the response covers all relevant 
aspects of the question or topic. Soundness evaluates validity of the response, 
ensuring that it is based on accurate information and reasoning. Fluency mea-
sures the clarity and readability of the language used in the response. Context-
awareness refers to the extent to which contextual information is integrated 
into the explanation. This aspect serves as a crucial metric for evaluating and 
achieving i mpactful outcomes in the transition from LIME to our proposed
method. Additionally, we introduced the evaluation of answer consistency, which
assesses the stability of the LLM responses across different iterations and con-
texts, extending the analysis beyond the scope of the study of Zytek et al.
[35]. An authoritative expert knowledgeable in the optimization problem and 
its e xplanations evaluated all LLM responses.

Comparison of Numerical and Narrative Explanations. To assess 
whether integrating LLM-generated narrative explanations enhances numerical 
explanations from the LIME-inspired approach for human planners, a question-
naire was developed to collect qualitative feedback from five domain experts who 
were not part of the previous evaluation. The questionnaire aims to explore the 
clarity, utility, and completeness of the generated explanations. Additionally, it 
seeks to determine whether narrative explanations provide added value to the 
current numerical explanations. It is conducted in an interview format, allow-
ing for a conversational approach where experts can elaborate on their responses 
and provide detailed i nsights. This interactive method facilitates a deeper under-
standing of their perspectives and experiences. The collected responses are subse-
quently analyzed using thematic analysis, a systematic approach to identify and
interpret recurring patterns and themes, providing a comprehensive evaluation
of the proposed methodology’s effectiveness [4]. 

Alignment with Expert Explanations. To establish a benchmark for model 
response quality, experts were initially asked to provide their explanations in 
natural language, as they would to a customer. They did this without prior expo-
sure to the model-generated explanations, thereby minimizing potential biases. 
These explanations are gathered during an interview in which the expert had
to think out loud about their approach, providing insights into their reasoning
and decision-making process. Besides establishing a benchmark, this also pro-
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vides an opportunity to understand the aspects experts focus on when creating 
explanations, which could be valuable for future research.

Since optimization problems can be explained from multiple angles, experts’ 
responses naturally differ depending on the aspects they emphasize or omit. To 
create a standardized reference, the same authoritative expert, who evaluated 
the LLMs earlier, later reviewed all explanations provided for the same use case. 
Gaining insight into different perspectives, they formulated t he collective under-
standing into a single, aggregated explanation. This explanation is considered to
be the Authoritative explanation, designed to be the most complete, sound, and
high-level representation of the given scenario.

Ultimately, the experts’ explanations, as well as the Authoritative explana-
tion, were compared with the LLM-generated explanations using the proposed
Human Similarity metric from Ichmoukhamedov et al. [13]. Specifically, both the 
expert-generated explanations and LLM-generated explanations were encoded as 
high-dimensional embeddings, represented by vectors a and b, with an a ngular
relationship defined by the angle θab. Following the methodology in [13], we 
used voyage-large-2-instruct as the embedding model, which converts a narra-
tive into a 1024-dimensional vector. The similarity between the explanations 
was quantified using the distance metric d =  1  − cos(θab). This quantitative 
measure provides an interpretable indication of the degree of alignment between
the LLM-generated and the expert-generated explanations.

5 Results and Discussion 

This section presents the results and discussion of the e xperimental evaluations
outlined in Sect. 4.3. Additionally, examples of LLM-generated explanations, 
along with an authoritative explanation, are provided in Sect. 5.4. 

5.1 LLM Response Quality 

An evaluation of responses generated by different LLMs, combined with vari-
ous prompt templates, reveals that models with a higher number of parame-
ters, such as OpenAIs GPT-3.5 and Meta’s Llama-3-70B-Instruct, consistently 
perform b etter across the metrics of completeness, soundness, fluency, consis-
tency, and context-awareness, as shown in Table 3. Larger models demonstrate 
a stronger ability to capture contextual information and produce fact-based 
responses, receiving higher evaluations from the authoritative expert in both 
completeness and soundness. In contrast, smaller models are more likely to gen-
erate incomplete or inaccurate responses, often displaying ’hallucinations’ that 
negatively impact their consistency and factual reliability. While fluency remains
robust across all models, larger models provide outputs that are more coherent
and contextually relevant.

The prompt template, structured as Role → XAI Context → Supply Chain 
Context → LIME Examples → Tasks, was evaluated as the most effective by the 
expert based on five key metrics and will be used in further experiments requiring
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prompt outputs. This approach ensures that the LLM is initially assigned a clear 
role and provided with a well-defined XAI use case. The absence of this step led 
to unsound responses, as the LLM lacked guidance on how to approach the task. 
Following this, the provision of specific contextual details pro ved critical, with
the order of presentation—starting with the supply chain context—significantly
influencing the model’s ability to accurately interpret the information. This find-
ing aligns with the conclusions of [18]. By enforcing strict task definitions, addi-
tional instructions became redundant, thus reducing unnecessary complexity in 
the prompt. Furthermore, the inclusion of data points as in-context examples 
w as found to have no significant effect on response quality and was therefore
excluded.

Table 3. Binary evaluation scores indicating compliance with authoritative expert 
expectations for LLMs across different prompt templates (see Table 2), assessing Com-
pleteness (C), Soundness (S), Fluency (F), Consistency (O), and Context-Awareness
(A).

T1 T2 T3 T4 T5 
C S F O A C S F O A C S F O A C S F O A C S F O A 

ChatGPT-3.5 ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Llama-3-8B-Instruct ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ 
Llama-3-70B-Instruct ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Mixtral-8x7B-Instruct-v0.1 ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ 
Mistral-7B-Instruct-v0.2 ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ 

5.2 Comparison of Numerical and Narrative Explanations 

Thematic analysis revealed five central themes regarding the use of numerical 
and narrative explanations: added value of narrative explanations, limitations 
of narrative explanations, user role in interpretation, completeness of expla-
nations, and suggestions for improvement. T hese themes underscore the rela-
tionship between different explanation styles and their effects on expert trust,
usability, and decision-making.

Added Value of Narrative Explanations. A prominent theme identified 
in the analysis was the positive impact of narrative explanations compared to 
numerical ones. Experts emphasized that narrative explanations provided addi-
tional context, which not only helped in understanding the optimization process 
but also saved time. Moreover, they played a crucial role in fostering trust in the
optimizer’s decision-making. Notably, four out of five experts explicitly high-
lighted the importance of the “in-context” placement of explanations. As one
expert noted:
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“That really is an added value: having the information placed into context. 
I think that’s particularly useful when you’re just starting out. And indeed, having 
examples and that extra level of detail—like which resource is involved—goes 
beyond what the numerical explanation can show, and I find that to be a real 
advantage.” 

This ability to embed the explanation in context was contrasted with the 
abstract nature of numerical explanations, which were often seen as detached
and difficult to interpret. Experts consistently noted that the narrative format
made the optimizer’s decision-making process more relatable. Another expert
mentioned:

“Numbers are fine, but they don’t tell a story. Narratives give me the reasoning
and examples. That’s what builds trust.”

Limitations of Narrative Explanations. While narrative explanations were 
well-received, their limitations were also acknowledged. The length of the expla-
nations emerged as a challenge, particularly for experienced users who may not 
require a too detailed contextualization. As one expert observed: 

“The explanations were sometimes overly verbose. I don’t need a full story 
every time—I just need the key insights.” 

Additionally, the potential for bias in narrative explanations was highlighted. 
Experts noted that the framing and wording of these explanations could subtly 
influence decision-making, raising concerns about objectivity. One expert cau-
tioned: 

“Narratives are helpful, but they can steer you in a direction without you 
realizing it. There’s a fine line between explaining and persuading, where you 
might start believing one option is the only valid choice, even if other possibilities 
exist.” 

One final limitation of the narrative explanation noted by some experts was 
the lack of clarity regarding the magnitude of a feature’s importance, which is 
conveyed in the numerical explanation. Numerical explanations provide insight 
into the relative importance of features, allowing users to discern whether one f ea-
ture is significantly more important than others, or if multiple features contribute
equally. In contrast, this level of detail is absent in the narrative explanation,
which focuses more on providing context and reasoning without emphasizing
the relative significance of each feature. At the same time, it should be also
taken into account that the relative values of feature importance as delivered
by the LIME-inspired algorithm are hard to interpret, especially for users who
lack expertise in XAI. And their imprecise interpretation based on insufficiently
grounded assumptions could be actually misleading.

User Role in Interpretation. The analysis also revealed that the effectiveness 
of narrative explanations varied depending on expert experience levels. Experi-
enced experts often required less detailed explanations, relying more on their
domain knowledge to interpret outcomes. This aligns with findings discussed in
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the previous theme, where it was noted that experienced users tend to prioritize 
efficiency over elaboration. One expert summarized this sentiment: 

“As an experienced user, I value narrative explanations but prefer concise 
ones that highlight key points. Newer users might need longer narratives.” 

This suggests a need for customization in the presentation of explanations, 
tailoring the level of detail to the user’s expertise. In line with this, another 
expert emphasized the practicality of narrative explanations, highlighting the 
differences between experienced and less experienced users when it comes to 
sharing insights and making decisions with other stakeholders: 

“A planner with extensive experience, such as someone who’s worked in sup-
ply chain for years, can likely interpret the numerical data or might just need
a narrative explanation highlighting key points. However, they can’t present the
numerical explanation directly to their manager. In contrast, the narrative expla-
nation is more suitable for sharing with managers.”

Completeness of Explanations. The narratives were frequently endorsed for 
addressing the inherent limitations of numerical methods. Experts appreciated 
how narrative explanations filled gaps left by numerical outputs, which often 
lack nuance. 

“The narrative explanation was clarifying; it provides context, such as 
explaining what the KPI means and highlighting key areas to focus on. It [allows 
me to skip] a step, because when I look at the numerical data, I have to deduce 
things myself to figure out what happened based on the numbers. But with the 
narrative, it’s already pointed out for me.” 

However, this strength also underscored a key limitation: the risk of oversim-
plification. One expert commented:

“Narratives provide the bigger picture, but sometimes they simplify too much.
It’s important to balance completeness with clarity.”

This ties back to the concern about bias, as oversimplification or selective
framing in narratives could lead to incomplete or skewed interpretations of the
data.

The overall conclusion from most experts regarding the completeness of both 
numerical and narrative explanations is that neither tells the full story. This 
limitation stems from the inherent nature of the numerical method, which relies 
exclusively on KPI values to explain a specific use case. While this can be effec-
tive in many machine learning applications, optimization problems often involve 
greater complexity. Experts highlighted factors such as constraints and param-
eter input values, which they routinely consider in their own explanations but 
are absent from the numerical method’s approach. One expert noted: 

“The issue with the method, even before converting graphs into text, is that 
it focuses on KPIs but misses underlying reasons, like hard constraints. For
instance, if a [resource is unavailable], it won’t recognize that as the root cause—
it will point to a KPI [measuring inventory holding] instead. However, the real
issue might be the [unavailable resource] or a long lead time. This limitation
seems inherent to the method itself, not just the textual explanation.”
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Since narrative explanations are derived from these numerical methods, they 
inherit the same shortcomings. This lack of depth becomes particularly appar-
ent in supply chain contexts, where constraints and parameter interactions are
integral to understanding the decision-making process.

Additionally, the LIME-inspired numerical approach focuses only on local 
perturbations, making it difficult to capture the broader system-level dynam-
ics of the supply chain. This local perspective can sometimes obscure the true 
underlying explanations of complex optimization problems. As one expert sum-
marized: 

“The limitation of LIME is that it focuses solely on the immediate impact 
on the KPI without considering the broader consequences. For example, it might 
suggest increased utilization of a resource, but this could exacerbate the situation 
by causing delays elsewhere in the supply chain. Since LIME is designed to ana-
lyze local perturb ations, it often overlooks cascading effects, such as unnecessary
[inventory] holding. Consequently, it may fail to identify the true root cause of
an issue.”

These limitations underscore the need for complementary approaches that go
beyond local KPI-based methods, integrating a more holistic view of the system
to enhance explanation completeness.

Suggestions for Improvement. Several experts proposed improvements to 
enhance the utility of narrative explanations. Key suggestions included:

– Adjusting explanation length: Offering tiered or collapsible explanations to 
suit diverse user preferences.

– Addressing bias: Ensuring that suggestions provided by the explanations are 
either entirely accurate or accompanied b y a clear warning for users to verify
the information.

– Enhancing interactivity: Introducing features like hyperlinks that allow users 
to quickly access key p oints within the explanation for immediate clarity.

One expert suggested: 
“If I could toggle between a short summary and a detailed explanation, it 

would make the tool more versatile.” 
These recommendations align with the broader themes of customization and

user-centric design, emphasizing the need for explanations that are both acces-
sible and adaptable.

The analysis highlights the significant advantages of narrative explanations 
over numerical ones, with experts praising their ability to provide valuable con-
text, foster trust, and enhance interpretability. These benefits represent a major 
improvement, particularly in addressing the abstract and often detached nature 
of numerical explanations. While narratives do have some limitations, such as 
verbosity, potential bias, and oversimplification, their strengths in facilitating
understanding and collaboration were widely recognized. The primary short-
coming of narrative explanations—completeness—largely stems from the LIME-
inspired numerical approach that underpins them, which focuses on local per-
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turbations and KPI values while overlooking broader contextual factors. Nev-
ertheless, narrative explanations effectively bridge important gaps by embed-
ding numerical insights into a meaningful context. This directly supp orts the
objective of this paper: making explanations for optimization problems more
human-friendly.

Looking ahead, experts proposed several improvements, including customiz-
able explanation length, enhanced interactivity, and clearer communication of 
uncertainties. These suggestions underscore the value of narrative explanations 
as a critical enhancement to traditional methods, paving the way for even more
user-friendly and adaptable explanatory approaches.

5.3 Alignment with Expert Explanations 

As outlined in Sect. 4.3, experts were tasked with generating their own explana-
tions for the given use cases. It became apparent that each expert employed a 
unique approach to both constructing and conveying their explanations. To fur-
ther analyze these variations, the experts’ explanations were compared quantita-
tively using the cosine distance metric, including comparisons with the Author-
itative explanation. The results of these comparisons for the different use cases
are presented in Tables 4, 5,  and 6. The cosine distance values between each 
expert’ explanation and the Authoritative explanation highlight the variation in 
how experts interpret and convey the reasoning behind the optimization deci-
sions. Lower cosine distance values indicate greater similarity, while higher values 
reflect more divergence. These comparisons offer insight into the consistency and
variability of expert interpretations, as well as the potential for alignment with
the Authoritative explanation.

Table 4. Cosine distance values between expert-generated explanations and the 
Authoritative e xplanation for the Metals-A use case.

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Authoritative 
Expert 1 X 0.237 0.179 0.215 0.194 0.173 
Expert 2 0.237 X 0.114 0.201 0.185 0.089 
Expert 3 0.179 0.114 X 0.229 0.22 0.067 
Expert 4 0.215 0.201 0.229 X 0.213 0.234 
Expert 5 0.194 0.185 0.22 0.213 X 0.195 
Authoritative 0.173 0.089 0.067 0.234 0.195 X 

The comparison of expert-generated explanations using cosine distance values 
reveals notable variation in how different experts approach the same use cases, 
highlighting the subjectivity inherent in expert reasoning. Across all use cases, 
expert explanations exhibit a wide range of cosine distances, both in relation to
one another and to the Authoritative explanation. This variability confirms that
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Table 5. Cosine distance values between expert-generated explanations and the 
Authoritative e xplanation for the Metals-B use case.

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Authoritative 
Expert 1 X 0.307 0.187 0.265 0.191 0.127 
Expert 2 0.307 X 0.369 0.197 0.207 0.311 
Expert 3 0.187 0.369 X 0.286 0.222 0.038 
Expert 4 0.265 0.197 0.286 X 0.157 0.22 
Expert 5 0.191 0.207 0.222 0.157 X 0.153 
Authoritative 0.127 0.311 0.038 0.22 0.153 X 

Table 6. Cosine distance values between expert-generated explanations and the 
Authoritative explanation for the Assembly use case.

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Authoritative 
Expert 1 X 0.236 0.179 0.132 0.164 0.141 
Expert 2 0.236 X 0.314 0.283 0.217 0.27 
Expert 3 0.179 0.314 X 0.174 0.211 0.106 
Expert 4 0.132 0.283 0.174 X 0.171 0.081 
Expert 5 0.164 0.217 0.211 0.171 X 0.163 
Authoritative 0.141 0.27 0.106 0.081 0.163 X 

experts construct explanations in distinct ways, suggesting they rely on different 
strategies, domain knowledge, and interpretations.

The differences in expert explanations can also be attributed to the multi-
faceted nature of supply chain optimization problems, which involve intercon-
nected variables such as resource capacities, inventory levels, and constraints. 
Experts emphasize different aspects based on their experience and knowledge, 
leading to diverse yet valid interpretations. While each expert may focus on dif-
ferent elements, their explanations remain generally correct and offer meaningful 
persp ectives. Therefore, a high cosine distance does not necessarily indicate an
error. Instead, this variability underscores the complexity of optimization prob-
lems, where multiple valid viewpoints can coexist without one being inherently
more accurate than another.

Similarly, differences between expert explanations and the Authoritative 
explanation stem from their distinct approaches. Experts tend to focus on spe-
cific aspects of a use case based on their expertise, whereas the Authoritative 
explanation aims to provide a comprehensive, neutral overview by incorporat-
ing multiple perspectives and f actors. Some experts align more closely with the
Authoritative explanation, as indicated by a smaller cosine distance, suggesting
that their focus and reasoning reflect its broader, all-encompassing nature.

Table 7 presents the cosine distances between the LLM-generated narrative 
explanation and the explanations produced by individual experts, as well as the
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Authoritative explanation, for all three use cases. These distances offer insights 
into how closely the LLM-generated explanations align with t hose produced by
human experts and the aggregated Authoritative explanation.

Table 7. Cosine distance values between expert-generated explanations or the Author-
itative explanation and the LLM-generated explanation for the Metals-A, Metals-B and
Assembly use cases.

Metals-A Metals-B Assembly 
Expert 1 0.284 0.197 0.293 
Expert 2 0.192 0.322 0.371 
Expert 3 0.161 0.178 0.245 
Expert 4 0.281 0.248 0.258 
Expert 5 0.243 0.201 0.271 
Authoritative 0.182 0.151 0.239 

A key observation is that for two of the three use cases (Metals-B and 
Assembly), the Authoritative explanation shows the closest alignment to the 
LLM-generated explanation, as indicated by the lowest cosine distance values of 
0.151 and 0.239 respectively. This suggests that the LLM is capable of produc-
ing explanations that are broadly consistent with the Authoritative explanation, 
which is considered the best and most comprehensive representation for these
use cases. However, it is worth noting that even in these cases, a noticeable gap
remains between the Authoritative explanation and the LLM-generated output.
To provide context, [13] conducted a similar analysis for machine learning pur-
poses and reported significantly lower cosine distances (ranging from 0.01 to 
0.08). This contrast might indicate a potential for improvement in the LLM’s 
approach to explainability in optimization, but could also stem from a differ-
ent nature of optimization problems compared to AI, or even properties of this
particular problem.

For the Metals-A use case, however, the Authoritative explanation is not 
the closest match. Instead, Expert 3’s explanation has the smallest cosine dis-
tance (0.161) to the LLM-generated explanation. As shown in Table 4, Expert 
3’s explanation aligns most closely with the Authoritative explanation. Yet, the 
LLM-generated explanation remains closer to Expert 3’s formulation than to the 
Authoritative. This suggests that the LLM’s reliance on predefined features and 
patterns ma y, in this case, align more with individual expert styles rather than
a consensus-driven authoritative perspective.

Discrepancies between LLM-generated explanations and both Authoritative 
and individual expert explanations may stem from a fundamental limitation in 
the LLM’s methodology, which focuses primarily on numerical features derived 
from the LIME-inspired approach and restricts its ability to account for broader
contextual factors. As described earlier, experts tend to incorporate additional
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context, such as operational constraints or domain-specific nuances, into their 
explanations. These contextual elements, while critical for a holistic understand-
ing, are not always directly reflected in the feature set used by the LLM. This 
reliance on feature-based reasoning could explain why the LLM struggles to 
fully replicate the depth and complexity of expert explanations. While it cap-
tures key patterns and relationships within the data, it may overlook subtleties
that experts intuitively factor into their reasoning, such as interdependencies
between features, constraints, or prior knowledge.

To address this gap, future research should explore alternative methods that 
go beyond local perturbations and incorporate richer data representations from 
the supply chain. For instance, developing machine learning models that directly 
learn explanations from raw data of the optimization model could enable a 
more comprehensive understanding of the system. These models would ana-
lyze complete datasets, including historical trends, constraints, and parameter 
interactions, to produce explanations that better mirror the depth and complex-
ity of expert reasoning. By replacing or augmen ting the current LIME-inspired
methodology with more holistic approaches, future work can aim to bridge the
gap between machine-generated and expert-level explanations. This progres-
sion holds promise for creating more human-friendly, accurate, and actionable
insights, ultimately advancing the utility of AI in optimization problem-solving.

5.4 Examples of Explanation 

This section presents examples of LLM-generated and Authoritative explana-
tions for the Metals-B use case. The LLM-generated explanation interprets the 
top three features from t he numerical explanation, which had importance mag-
nitudes of 0.129, 0.113, and 0.109.

LLM-Generated Explanation. Hello! I’d be happy to help you understand 
the output of the LIME method, which explains why the [resource] is underuti-
lized during a particular time period. Let’s dive into the LIME outcome table, 
whic h highlights the features most negatively impacted by increasing the utiliza-
tion of the [resource]. The top three features are:

1. KPI [work-in-progress on resource]: This feature indicates that increas-
ing the utilization of [resource] would lead to a higher KPI [work-in-progress]. 
In the context of our supply chain, this means that more products would be 
held in the [resource] operation, waiting to be processed. This could be due 
to upstream constraints, such as delays in the [upstream operations] or in ven-
tory shortages of the [required input materials] in the [stocking area]. As a
result, increasing the utilization of [resource] would exacerbate these holding
times, leading to a less optimal schedule.

2. KPI [inventory adherence of upstream product X]: This feature sug-
gests that increasing the utilization of [resource] would negatively impact the 
KPI [measuring inventory adherence] of [input material] in [stocking area].
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This implies that there might be inventory shortages or constraints in [stock-
ing area], which would be further strained if more products were pushed 
through the [resource] operation. This could be due to delays in the sup-
ply of [upstream materials] from the [supplier] or inefficiencies in the [two
upstream] operations. By increasing the utilization of [resource], we would be
exacerbating these inventory shortages, leading to a less optimal schedule.

3. KPI [inventory adherence of upstream product Y]: Similar to the 
previous feature, this suggests that increasing the utilization of [resource] 
would negatively impact the KPI [inventory adherence] of [input material] in 
[stocking area]. This reinforces the idea that there are inventory constraints 
in [stocking area], which would be worsened by increasing the utilization of 
[resource]. This could be due to similar upstream constraints, such as delays
in the supply of [upstream materials] or inefficiencies in the [two upstream]
operations.

In general, these features suggest that increasing the utilization of [resource] 
would lead to a less optimal schedule due to upstream constraints and inventory 
shortages in [stocking area]. This highlights the importance of considering the
entire supply chain when optimizing the master production schedule.

Authoritative Explanation. The input materials for the [resource] consist 
of [input materials], which are stored at [stocking area]. During the specified 
period, the inventory levels of [input materials] are at or below their minimum 
target levels. An y increase in the utilization of this resource will further deplete
these inventories, resulting in a higher KPI [inventory adherence].

Replenishments of these input materials cannot be planned earlier, as lead 
times would not allow that so early in the planning horizon. While some 
[resource] supply orders could be moved earlier, advancing them would increase 
stock levels, i.e., reduce the [inventory holding costs] before [resource] but
increase the [work-in-progress cost] between [resource] and [next resource], lead-
ing to a higher [total objective] overall.

Downstream of the [resource], the [next bottleneck resource] is at full capac-
ity, preventing earlier scheduling. Advancing processes would lead to inven-
tory h olding costs between operations, negatively affecting the KPI [work-in-
progress].

Most of the [resource] tasks are scheduled on time or early, so pushing them 
earlier offers no tangible benefit. The resource shows minimal lateness, with only 
minor delays that are not significant enough to warrant rescheduling. Underuti-
lization of specific resources can be influenced by KPI configurations, but the
current setup does not prioritize unused periods as a cost.

6 Conclusion 

In conclusion, this study presents two key findings. First, qualitative research 
through expert interviews illustrates the potential of LLMs to bridge the gap
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between advanced optimization technologies and human planners. By transform-
ing complex, technical explanations from XAI models into more accessible and 
persuasive narratives, LLMs significantly enhance the interpretability of opti-
mization outputs. The findings suggest that incorporating LLMs into the supply 
chain planning process can increase trust and acceptance among experts, thereby 
improving the overall effectiveness of optimization mo dels in practical applica-
tions, in line with the objectives of this paper. While promising, there remain
limitations in narrative explanations that can be refined to further improve their
clarity and applicability.

Second, a quantitative comparison between LLM-generated and expert expla-
nations reveals a gap regarding the contextual richness. In particular, the experts 
mentioned factors missing in explanations coming from the underlying LIME 
method. We hypothesize that expanding the underlying explanations would also 
improve the narrative ones. The comparison further highlights the variability in 
expert explanations, reflecting the difficulty of generating a comprehensive expla-
nation for supply chain optimization problems due to their multifaceted nature. 
Future research should focus on integrating LLMs with other models, utilizing 
more specific and granular data within optimization frameworks. This will refine 
the applicability of LLM-generated explanations, ensuring better alignment with 
expert expectations and practical requirements, and ultimately enhancing the 
overall utility of these technologies in optimization contexts. 
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Abstract. Large Language Models (LLMs) have demonstrated remark-
able performance across diverse domains. However, effectively leveraging 
their vast knowledge for training smaller downstream models remains an 
open challenge, especially in domains like tabular data learning, where 
simpler models are often preferred due to interpretability and efficiency. 

In this paper, we introduce a novel yet straightforward method 
for incorporating LLM-generated global task feature attributions into 
the training process of smaller networks. Specifically, we propose an 
attribution-matching regularization term that aligns the training dynam-
ics of the smaller model with the insights provided by the LLM. By doing 
so, our approach yields superior performance in few-shot learning scenar-
ios. Notably, our method requires only black-box API access to the LLM, 
making it easy to integrate into existing training p ipelines with minimal 
computational overhead. 

Furthermore, we demonstrate how this method can be used to address 
common issues in real-world datasets, such as skewness and bias. By inte-
grating high-level knowledge from LLMs, our approach improves gener-
alization, even when training data is limited or imbalanced. We validate
its effectiveness through extensive experiments across multiple tasks,
demonstrating improved learning efficiency and model robustness.

Keywords: Large Language Models · Attribution Regularization · 
Data-Efficient L earning

1 Introduction 

The recent expansion in model parameters and training data for large language 
models (LLMs) has driven a significant breakthrough in natural language pro-
cessing (NLP) [9, 13, 25, 54]. These models exhibit remarkable performance across 
various evaluation paradigms, such as zero-shot [33] and few-shot inference, lever-
aging in-context learning [39, 56]. This capability stems from the extensive text 
corpora used for training, which embed rich prior knowledge into LLMs, allow-
ing them to approximate expert know ledge across diverse domains. Although 
their strong performance and g eneralization capabilities have been successfully
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extended to other modalities, such as images [37] and speech [ 59], their applica-
tion in tabular learning settings remains limited.

Several challenges hinder the adoption of LLMs for tabular data tasks. Firstly, 
their large parameter counts demand substantial computational resources, typi-
cally reliant on GPUs, which significantly increases operational costs. Secondly, 
tabular learning is often employed in domains where transparency and inter-
pretability are critical, such as h ealthcare and finance. In these fields, simpler and 
more interpretable models, such as logistic regression or decision trees, are often
preferred. Although techniques exist to enhance LLM interpretability [3, 34], they 
currently fall short compared to the inherent explainability of simpler models.

Inthispaper,we investigate thepotentialofutilizingLLMsastrainingregulariz-
erstoenhancefew-shotlearningperformanceandimprovegeneralization,especially 
in scenarios with skewed or biased training data. Specifically, we propose a method 
calledLargeLanguageModelAttributionAlignedTraining(LAAT),which intro-
duces an attribution-matching regularization term that aligns the local, feature-
wise explanations of smaller models with the global, task-specific explanations gen-
erated by LLMs. This approach harnesses the strong generalization capabilities of 
LLMs while preserving the efficiency and transparency of smaller models. We share
our code at: https://github.com/davor10105/laat. 

2 Related Work 

2.1 Standard Machine Learning Approaches 

Inspired by the success of deep learning in other domains, numerous efforts 
have sought to apply self-supervised learning to tabular data to dev elop trans-
fer learning-ready models. These approaches i nclude masked feature prediction
[4, 38], feature corruption correction [ 6, 58], and contrastive pre-training [52]. 
However, comparative studies indicate that gradient-boosted tree ensembles s till 
outperform these methods [21, 49]. More recently, Nam et al. [41] introduced Self-
generated Tasks from UNlabeled Tables (STUNT), leveraging self-generated few-
shot tasks for tabular learning, though its reliance on large unlab eled datasets 
may limit practical applicability. Additionally, Hollmann et al. [26]  proposed  
the Tabular Prior-data Fitted Network (TabPFN), a tabular foundation model 
pre-trained on millions of syn thetic datasets.

2.2 Large Language Models in Tabular Learning 

Most approaches integrating large language models (LLMs) into tabular learning 
rely on encoding task and feature descriptions in natural language, s erializing 
the data, and leveraging LLMs for inference—either through in-context learning
[50] or additional fine-tuning [14, 24, 55]. However, these methods face significant 
drawbacks, including the high cost of LLM inference for individual samples and 
the c omputational demands of fine-tuning.

In sensitive domains such as medicine or finance [48], where transparency is 
critical, the opaque decision-making of LLMs is less desirable than traditional,

https://github.com/davor10105/laat
https://github.com/davor10105/laat
https://github.com/davor10105/laat
https://github.com/davor10105/laat
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smaller models. Alternative approaches involve using LLMs to generate syn-
thetic examples to augment existing datasets, emplo ying both in-context learn-
ing and fine-tuning [46, 51, 60]. However, these methods inherit the same scal-
ability issues, particularly when dealing with high-dimensional datasets, where 
generating sufficiently large datasets becomes c omputationally expensive.

Recently, Han et al. [ 22] introduced FeatLLM, a novel approach that utilizes 
LLMs as feature engineers. Instead of directly performing inference, FeatLLM 
employs code-generating LLMs to create preprocessing functions that transform 
the original dataset into a more suitable representation for few-shot classification. 
This method implements an ensemble classifier to combine insights from mul-
tiple feature transformations, improving robustness and classification accuracy. 
FeatLLM significantly reduces resource requirements by relying solely on pre-
trained LLMs with API-level access. Moreover, FeatLLM outperforms existing 
fine-tuned and in-context learning approaches while maintaining lowe r compu-
tational costs. However, even though FeatLLM achieves state-of-the-art perfor-
mance on few-shot tabular classification problems, its many iterations of rule and 
preprocessing function generation incur significant costs. F urthermore, during
preprocessing, FeatLLM produces only binary features, which may limit expres-
siveness compared to the original data.

2.3 Explanation Guided Learning 

A growing line of research explores enhancing model behavior through additional 
supervision derived from explainable artificial intelligence (XAI) techniques. This 
field can be broadly categorized into local explanation-guided learning a nd global
explanation-guided learning [18]. 

Local explanation guidance applies supervision signals or regularization 
terms to individual model explanations, steering learning at the sample level. 
This approach is more prevalent due to the extensive dev elopment of local expla-
nation techniques, particularly in the image domain, such as Grad-CAM [47], 
Layer-wise Relevance Propagation (LRP) [5], and attention-based attributions 
[ 2]. Ross et al. [45] propose regularizing differentiable models by penalizing input 
gradients, aligning them with expert-defined attribution maps. Dharma et al. [30] 
use object bounding boxes as explanation supervision signals. In text classifica-
tion, several studies leverage per-sample human-annotated rationales [12, 29, 61]. 
Gao et al. [ 19] demonstrate the effectiveness of local explanation supervision 
under limited training data. However, a key limitation of this approach is its 
reliance on per-sample attribution annotations, which are often difficult and 
costly to obtain, particularly in expert-driven fields like medicine.

Global explanation guidance, in contrast, does not require instance-level 
attributions, instead offering a broader, more scalable approac h to shaping model 
behavior. Liu et al. [36] reduce undesired biases by penalizing nonzero attri-
butions on sensitive tokens. Erion et al. [17] aggregate local feature attribu-
tions via expected gradients to improve interpretability. Weinberger et al. [57] 
extract prior knowledge from multiple gene expression datasets to construct 
meta-features, training a deep global attribution model alongside a predictive
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model with a regularization loss. However, this method assumes the availability 
of additional datasets related to the problem, which may not alwa ys be feasible.

3 Method 

In contrast to other methods that utilize LLMs for tabular data prediction, we 
seek to minimize both the computational and price overhead of their use, while 
simultaneously still effectively using their generalization abilities and providing 
small, interpretable models that can be readily used in existing pipelines.

3.1 Formulation 

Given a trained binary classification model mθ : RN → [0, 1] parametrized by θ, 
an attribution produced by an attribution method a for an input x is a vector 
a(x)  =  (s1, ..., sn),  where  si is the attribution score of the input feature xi.  We  
are interested in the expected value of the attribution scores over the entire 
dataset, given by sE = Ex∼D[a(x)] , where D represents the data distribution.

For certain datasets where the expected attribution follows an intuitive pat-
tern that humans can interpret, we hypothesize that this expected value can be 
approximated using a large language model and thus serve as a valuable local
attribution guide during training.

Taking a step back, given an untrained model along with a task description 
and feature descriptions, we query an LLM to generate importance scores for 
each feature, producing a vector sLLM. During model training, we then regularize 
the local attribution scores of the model to align with these LLM-derived scores. 
This regularization acts as a guiding signal, helping the model main tain behavior
that aligns with intuitive, human-understandable reasoning.

The final model’s loss function consists of two components: the standard 
binary cross-entropy loss and an attribution regularization term. The regular-
ization term is the mean squared error between the normalized attribution scores 
and the normalized LLM-derived scores, weighted by γ. The overall loss is given 
as a weighted sum of these terms:

L(θ)  =  
1 
n 

n∑

i=1 

(�BCE(mθ(xi), yi)  +  γ�MSE( 
a(xi)

‖a(xi)‖ , sLLM 

‖sLLM‖ )) (1) 

Following Ross et al. [45], we employ the input gradient as our chosen attri-
bution m ethod.

3.2 LLM Prompting and Score Parsing 

To enable Large Language Models (LLMs) to generate meaningful feature attri-
bution scores for guiding downstream models, we developed a structured prompt-
ing methodology. This approach ensures score accuracy and relevance through
three key components.
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Task and Dataset Contextualization. We embed task and dataset details 
within the prompt. Task descriptions succinctly define classification objectives 
and outcomes, e.g., “Predict whether this patient’s breast cancer will reoc cur. 
Yes or no?”, following established methodologies [22, 24]. Feature descriptions 
clarify dataset attributes, e.g., “Age: The age of the patient at diagnosis.”. Cate-
gorical features are one-hot encoded with explicit descriptions for each category, 
enabling the LLM to assign distinct attribution scores per category rather than 
per feature. Unlike prior approaches that use LLMs for tabular data classifica-
tion, our method avoids serializing dataset examples into the prompt, thereby
reducing prompt length and computational cost.

Score Generation Protocol. We instruct the LLM to assign integer scores 
between −10 and 10, establishing a s tandardized feature importance scale. Using 
chain-of-thought prompting [56], we ensure explicit reasoning before score assign-
ment, enhancing interpretability. The f ull prompt template is pro vided in Prompt
1.1 in the A ppendix. 

Score Extraction and Aggregation. A secondary LLM instance extracts 
numerical scores from the primary LLM’s textual output via function calling, 
converting semi-structured responses into a standardized list format. To enhance 
stability, we generate scores multiple times (Nestimates) and compute their mean, 
yielding the final LLM-based feature attribution vector (sLLM).

This methodology provides a robust framework for leveraging LLM capabil-
ities to generate reliable feature attribution scores t hat effectively inform down-
stream predictiv e models.

4 Experiments 

We conducted a comprehensive evaluation of LAAT across diverse tabular 
datasets, examining its performance in few-shot learning contexts and scenarios 
where significant bias was present in the training data. Furthermore, we per-
formed supplementary e xperiments to investigate the impact of various hyper-
parameter configurations o n the proposed methodology.

4.1 Few-Shot Learning 

While large volumes of data are readily available in many domains, expert-
labeled data remains scarce in fields requiring specialized knowledge, such as 
medicine. To address this challenge, recent research h as focused on enhancing the 
generalization capabilities of tabular classification models under minimal labeled
data constraints [22, 24, 41]. In this experiment, we assess the effectiveness of our 
proposed approach in leveraging LLM-derived kno wledge as a guiding signal 
during e xtremely low-shot training scenarios.

We evaluate our approach on ten publicly available binary classification
datasets:
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– adult [ 7] - predicting whether an individual earns ov er $50,000 ann ually
– bank [ 40] - predicting whether a client will subscribe t o a term dep osit
– bodyfat [ 43] - predicting whether an individual’s body fat p ercentage exceeds 

the mean
– breast-ljub [ 62] - predicting whether a patient’s breast c ancer will reo ccur
– cdc-diabetes [ 1] - predicting whether an individual h as diab etes
– contraceptive [ 53] - predicting whether an individual u ses con traception
– diabetes [ 28] - predicting whether an individual h as diab etes
– electricity [ 23] - predicting the price change of electricity (up or down) in 

New South W ales
– indian-liver [ 8] - predict whether a patient h as liver disease
– myocardial [ 20] - predicting whether the myocardial infarction complications 

data for an individual shows chronic h eart failure

The datasets vary in size and complexity, and their additional basic information 
is outlined in Table 6 in the A ppendix. 

Baselines. We compare our proposed method with several baselines: logistic 
regression (LR), 2-layer MLP with ReLU activation and 100 hidden units (MLP), 
random forest (RF), XGBoost (XGB) [10], CatBoost [ 15], TabPFN [ 26]  and  
FeatLLM [ 22]. 

Implementation Details. We employ three distinct foundation models as our 
importance score estimators: Llama 3.3 70B (LLa3.3) [16], Gemini 2.0 Flash 
(Gem2.0)  [  44] and GPT-4o-mini (G4om)  [  27]. As simple downstream models, we 
utilized logistic regression and a two-layer multilayer perceptron (MLP) with 
ReLU activation and 100 hidden units. Optimization was performed using t he
Adam optimizer [31] with a learning rate of 1 × 10−2 and no weight decay, 
leveraging LAAT’s internal regularization via the γ factor, which was set to 100. 
Additionally, the number of importance score estimations for LAAT was set to 
5. LAAT was executed without early stopping. Data preprocessing involved one-
hot encoding categorical variables and s tandardizing numerical features using 
z-score normalization. Feature descriptions were derived from dataset repository 
metadata or original publications, whereas task descriptions w ere formulated
based on prior research on tabular data classification using LLMs [22, 24]. As 
prompt engineering is not the focus of our work, we leave the exploration of 
alternative prompting strategies to future research. Exact task descriptions used 
can be found in Table 7 in the A ppendix. 

For traditional machine learning models (logistic regression, MLP, random 
forest, XGBoost, and CatBoost), we performed hyperparameter optimization 
through grid search with 5-fold cross-validation, with the exception of 1-shot 
learning scenarios where default scikit-learn [42] hyperparameters were applied. 
The complete baseline hyperparameter search spaces are detailed in Table 8 in 
the Appendix. TabPFN and FeatLLM were implemented with their respective 
default parameter configurations as described in the original publications. Addi-
tionally, FeatLLM incorporated early stopping mechanisms in the 5-shot and
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10-shot experimental settings. Due to the inherent complexity of generating mul-
tiple conditions and preprocessing functions in the FeatLLM method, Llama 3.3 
exhibited inconsistencies in producing valid outputs. As a result, we excluded it 
from the FeatLLM experiments.

All models were trained using k-shot examples as the training set, while the 
remaining data served as the test set. To ensure statistical robustness, we con-
ducted twenty independent experimental runs for each model. The significance 
of the difference in the mean values of the total scores was verified using the 
Wilcoxon signed-rank test with p = 0.05.

In the following sections, we present our experimental results and provide 
additional analyses on LAAT’s robustness to noise, as well as an examination 
of ho w LAAT influences the training loss landscape through t he lens of the
bias-variance tradeoff.

Results. The results of our experiments, averaged over twenty repetitions, are 
presented in Tables 1 (for non-LLM methods) and 2 (for LLM-based methods). 
As demonstrated, LAAT models consistently rank among the top-performing 
methods, securing the highest or shared highest scores in 28 out of 30 experi-
ments. Notably, the highest-performing variants of LAAT were LAATM  LP  

G4om and 
LAATLR 

Gem2.0, securing 12 and 21 top or shared top scores respectively. Further-
more, the LAAT-trained models statistically significantly outperformed their 
non-LAAT counterparts in 24, 28, and 27 out of 30 experiments using logistic 
regression with Llama 3.3 70B, Gemini 2.0 Flash, and GPT-4o-mini as scoring 
models, respectively. For MLP, LAAT models significantly exceeded the perfor-
mance o f vanilla MLP in 23, 28, and 29 experiments, respectively. These results 
underscore the positive impact of LLM attribution alignment on the general-
ization capabilities of even simple models, achieving significant i mprovements
without the need for extensive hyperparameter tuning, which is often required
for other approaches.

Figure 1 illustrates the average ROC AUC performance across all datasets, 
highlighting the superior performance of LAAT model variants across all shot 
settings. While FeatLLM closely matches LAAT in the 1-shot scenario, its per-
formance plateaus beyond this point. We hypothesize that this occurs for two 
reasons: first, FeatLLM generates binary features, which may lack the expres-
siveness of the continuous features present in the original dataset. Second, the 
serialized few-shot examples significantly increase the length of the input prompt, 
potentially reducing the effectiveness of the rule and preprocessing function gen-
eration procedure. This may occur because the expanded prompt causes the 
initial instruction and relevant data to become less prominent among the large 
number of tokens. In contrast, LAAT models demonstrate a substantial advan-
tage in both the 5-shot and 10-shot settings, significantly outperforming all other 
methods. Among the scoring models evaluated, Gemini 2.0 Flash-Lite emerged as 
the top performer, with GPT-4o-mini following closely behind. Although Llama 
3.3 70B lagged behind these two LLMs, it consistently matched or outperformed
all baseline methods across all settings. In addition to outperforming FeatLLM,
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Table 1. ROC AUC scores of baseline models on the few-shot experiments. Best scores 
for each dataset, across both LLM and non-LLM approaches, are emphasized in bold. 
Multiple bolded values indicate that their differences were not statistically significant 
according to the Wilcoxon signed-rank test at p = 0.05.

Dataset Shot LR MLP RF XGB CatBoost TabPFN 
adult 1 58.919.5 57.914.1 67.911.8 50.00.0 64.714.5 64.916.3 

5 76.76.6 72.87.0 73.89.2 63.911.9 78.14.8 78.14.7 

10 81.03.4 78.44.8 76.48.1 77.43.3 82.33.5 82.23.5 

bank 1 51.212.5 55.510.7 56.09.1 50.00.0 56.89.2 56.28.7 

5 63.98.7 64.67.8 65.78.4 56.49.3 68.28.1 67.59.1 

10 66.73.9 67.06.3 69.16.8 71.46.9 74.75.1 74.57.6 

bodyfat 1 62.722.4 69.014.2 64.419.1 50.00.0 67.115.6 68.613.7 

5 78.39.6 78.710.1 74.88.0 64.314.1 75.211.9 78.010.4 

10 84.43.1 84.33.7 79.46.9 80.25.0 83.62.6 86.23.9 

breast-ljub 1 55.19.7 56.712.7 55.87.2 50.00.0 52.89.1 53.19.8 

5 58.410.6 57.96.5 61.68.3 55.07.8 60.210.0 59.99.8 

10 61.65.9 61.25.6 60.98.2 61.68.1 64.66.5 66.45.6 

cdc-diabetes 1 58.012.9 62.411.9 59.115.6 50.00.0 59.712.5 64.111.4 

5 69.35.9 63.311.5 66.08.4 60.65.7 73.04.5 72.14.0 

10 71.84.3 67.012.1 66.78.5 69.85.6 75.53.0 73.34.1 

contraceptive 1 50.94.9 52.45.0 54.45.7 50.00.0 51.93.7 51.35.6 

5 54.24.9 53.05.2 54.56.7 52.24.9 56.06.8 56.95.9 

10 56.53.9 53.66.1 57.33.9 57.54.9 59.24.6 59.43.8 

diabetes 1 53.913.6 58.315.6 63.57.9 50.00.0 59.28.3 58.510.1 

5 70.66.4 64.29.8 66.07.4 61.68.7 72.65.1 72.95.3 

10 73.87.9 72.75.8 68.87.2 70.97.4 75.35.1 75.85.9 

electricity 1 51.512.3 54.113.1 58.59.5 50.00.0 60.211.8 58.910.2 

5 65.27.9 69.06.4 63.68.3 58.39.9 65.48.1 66.87.9 

10 72.64.5 68.08.8 70.74.4 70.57.2 74.52.2 73.25.1 

indian-liver 1 54.314.7 55.614.8 60.011.6 50.00.0 58.511.3 61.111.8 

5 61.310.5 60.412.3 60.310.3 58.97.1 67.74.5 63.46.3 

10 67.47.3 65.94.7 62.16.8 62.77.0 70.63.2 69.44.2 

myocardial 1 50.55.7 52.13.0 51.95.8 50.00.0 50.84.0 50.84.1 

5 55.35.2 53.37.6 52.36.8 50.93.4 53.36.0 54.65.4 

10 59.35.4 58.55.2 53.45.5 52.34.4 58.75.0 61.05.8 

LAAT utilizes, on average, 79% fewer input tokens and 60% fewer output tokens, 
as  shown  in  Table 3, demonstrating significant conservation of computational
resources.
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Table 2. ROC AUC scores of LLM-based models on the few-shot experiments. Best 
scores for each dataset, across both LLM and non-LLM approaches, are emphasized 
in bold. Multiple bolded values indicate that their differences were not statistically 
significant according to the Wilcoxon signed-rank test at p = 0.05.

Method FeatLLM LAAT 
Model Ensemble LR MLP 
Dataset Shot Gem2.0 G4om LLa3.3 Gem2.0 G4om LLa3.3 Gem2.0 G4om 

adult 1 81.26.1 80.44.7 68.911.6 67.013.1 70.510.3 70.58.6 71.49.9 72.87.6 

5 85.32.5 81.14.2 79.24.5 81.54.6 77.94.2 76.34.8 78.75.2 77.54.5 

10 84.43.0 78.55.1 82.43.4 85.23.4 81.03.2 79.14.8 82.14.4 78.63.7 

bank 1 71.43.3 66.33.0 61.38.7 76.210.3 77.27.5 58.19.4 72.510.1 74.47.8 

5 71.95.0 66.34.3 65.62.2 85.62.0 83.80.8 64.44.9 82.05.0 83.42.6 

10 70.34.0 64.25.1 64.71.4 86.00.9 84.71.0 65.64.5 81.93.9 84.42.1 

bodyfat 1 67.611.5 76.07.4 88.21.6 89.60.8 89.01.2 84.96.1 85.66.6 85.56.2 

5 82.62.4 81.62.4 89.00.5 90.20.4 89.70.4 89.00.5 90.20.5 89.70.5 

10 82.62.4 78.87.1 89.00.6 90.20.5 89.70.6 89.00.7 90.20.6 89.80.7 

breast-ljub 1 60.96.9 61.57.9 74.00.9 73.91.1 74.40.7 72.73.0 72.62.7 72.63.1 

5 65.07.1 61.45.5 74.40.8 74.70.8 74.40.8 74.11.0 74.41.0 74.01.1 

10 63.96.8 61.08.5 73.81.1 74.21.1 73.71.1 73.61.3 73.81.4 73.21.4 

cdc-diabetes 1 73.72.8 72.62.9 72.52.8 75.12.7 72.62.1 70.84.2 74.32.9 72.13.2 

5 71.411.1 75.31.5 74.41.9 78.10.9 75.11.2 74.72.2 78.20.9 75.61.5 

10 73.23.3 73.42.6 74.81.3 78.50.6 75.70.9 75.21.4 78.60.6 76.31.1 

contraceptive 1 55.74.5 55.64.3 62.80.8 61.62.4 61.11.3 63.12.3 61.23.3 61.32.2 

5 53.45.8 53.15.5 62.70.2 64.20.7 61.70.1 62.90.4 64.21.4 61.70.3 

10 54.74.6 53.64.0 62.60.2 64.90.4 61.60.2 62.90.4 65.20.7 61.70.3 

diabetes 1 75.64.5 73.13.7 72.88.1 78.92.9 75.08.0 68.49.8 69.89.3 69.79.4 

5 73.18.9 75.02.0 78.71.5 79.80.4 79.70.6 78.81.5 79.80.5 79.70.7 

10 70.95.7 75.42.3 79.10.7 79.60.3 79.70.4 79.20.7 79.70.4 79.80.4 

electricity 1 63.94.9 66.55.7 65.53.7 66.83.4 73.35.3 61.47.1 61.88.2 65.49.8 

5 71.84.1 67.65.3 67.60.6 68.30.2 74.91.5 67.40.7 68.20.4 74.91.6 

10 70.83.8 65.56.3 67.40.4 68.40.3 74.12.0 67.40.5 68.30.4 74.22.0 

indian-liver 1 68.54.1 67.64.9 73.11.6 73.41.1 72.71.7 72.02.1 72.11.7 71.42.2 

5 72.21.7 72.70.8 73.81.0 73.70.9 73.21.0 73.70.9 73.51.0 73.10.9 

10 70.33.8 70.52.5 74.00.9 73.90.7 73.30.9 73.90.9 73.91.0 73.41.1 

myocardial 1 59.03.5 59.14.4 54.85.3 58.36.3 57.96.3 58.52.9 63.13.9 61.74.4 

5 59.75.0 60.63.0 60.73.7 65.92.5 64.93.0 62.01.8 66.11.8 64.42.6 

10 58.72.8 60.73.2 63.02.7 67.22.2 66.53.0 62.62.4 66.72.5 65.92.7
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Fig. 1. ROC AUC scores for baseline models and LLM-based methods, averaged across 
all datasets. In the 1-shot setting, FeatLLM achieves the highest average performance. 
However, in subsequent shots, LAAT-based approaches, both Logistic Regression and 
MLP variants, outperform the baselines and FeatLLM.

Table 3. FeatLLM and LAAT average token count comparison. LAAT consumes sig-
nificantly less input and output tokens, conserving computational resources.

Method FeatLLM LAAT 
k-shot 1 5 10 N/A 
Token Typ e Input Output Input Output Input Output Input Output 
Count 37866 19730 51704 20067 62310 20282 10570 7990 

Sensitivity to Importance Score Noise. We assess the robustness of the 
LAAT method by introducing controlled noise into the importance scores pro-
vided by the LLM. Specifically, we define a noise ratio ε ∈ [0, 1] and compute 
the perturbed importance scores, snoisy LLM , as a linear interpolation between the 
original scores and r andomly generated scores, snoise, sampled from a uniform 
integer distribution in the range [−10, 10]: 

snoisyLLM = (1 − ε)sLLM + εsnoise (2)
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Figure 2 presents the average performance across all shot scenarios for both 
LR and MLP LAAT variants using the GPT-4o mini model under varying noise 
conditions. As expected, the performance of LAAT declines as the noise ratio 
increases. However, even with noise ratios as high as 0.6, LAAT variants con-
tinue to outpe rform their non-LAAT counterparts. These results demonstrate 
LAAT’s ability to enhance baseline model performance even w hen the LLM-
derived importance scores are imperfect.

Fig. 2. LAAT robustness to noisy importance scores. Despite performance degradation 
with increasing noise ε, LAAT variants outperform non-LAAT counterparts up to ε = 
0.6, demonstrating resilience to imperfect LLM scores.

Exploring the Loss Landscape. To understand why LAAT consistently out-
performs other methods, we analyze the training and test loss landscapes [35]  of  
two logistic regression models: one trained with standard binary cross-entropy 
loss and another incorporating the attribution alignment loss with γ = 100. 
We also visualize their respective training trajectories. Each model was trained 
using Adam for 200 epochs without early stopping or weight decay, with only 
five training samples per class, while the r emaining dataset was used as the test
set.

Figure 3 illustrates the results for the adult and bank datasets, while addi-
tional results for the breast-ljub and myocardial datasets are provided in the 
Appendix in Fig. 6. 

A key observation from these visualizations is that the loss landscape of 
the standard model exhibits a substantial discrepancy between training and 
test loss surfaces. This suggests high variance, where the model overfits to the 
limited training data, learning feature importance patterns that do not generalize 
well. Conversely, introducing the attribution alignment loss alters the training 
loss landscape, shifting it closer to the test loss landscape. This shift can be 
interpreted as a form of inductive bias, where the model is nudged toward an
attribution structure informed by the LLM’s prior knowledge.
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Fig. 3. Train and test loss landscapes for logistic regression on the adult and bank 
datasets, comparing models with attribution alignment loss (γ = 100, top left subfigure) 
and without it (γ =  0, bottom left subfigure). The addition of attribution alignment 
loss results in a closer match between training landscapes (left half) and t he test 
loss landscape (right half), guiding the training process (colored lines ending with 
a point) towards minima that align well with testing minima, indicating improved
generalization. (Color figure online)

From a bias-variance perspective, LAAT’s regularization constrains the 
model’s optimization path, discouraging reliance on spurious correlations and 
guiding it toward more stable, generalizable parameters. Secondly, the model 
becomes less sensitive to variations in small datasets, lowering the variance, 
which is preferable in low-data scenarios. This trade-off mitigates overfitting and 
enhances generalization, ultimately leading to improved predictive performance,
as demonstrated in previous experiments.
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4.2 Learning on Biased Data 

Many real-world datasets exhibit varying degrees of bias, which can negatively 
impact machine learning models by introducing misleading correlations. For 
instance, a model trained o n historical recruitment data may inherit biases 
related to gender and job roles [11]. Similarly, systemic biases in criminal justice 
datasets often lead to strong correlations between demographic attributes and 
outcomes, potentially reflecting enforcement patterns rather than actual crime 
rates. In some cases, these confounding factors can be explicitly removed when 
they are demonstrably unrelated to the target classification. However, the chal-
lenge becomes more complex when the relationship is “soft”—i.e., a correlation 
exists, but its exact influence is difficult to quantify.

To evaluate the performance of baseline methods alongside our proposed 
LAAT method, we introduce artificial biases into the training portion of the 
medicine-related datasets used in the previous experiment while keeping the 
evaluation data distribution unchanged. This approach mimics real-world biases 
that may arise due to the way data is collected—for example, demographic skews 
in clinical trials or socioeconomic biases in electronic health records. By training 
mo dels on biased distributions and assessing them on the original, unbiased test 
data, we simulate practical scenarios where spurious correlations may mislead 
models, allowing us to analyze their robustness to such biases. Specifically, we
apply the following modifications:

– bodyfat - Exclude all individuals under the age of 50 with above-average 
body fat percentage, introducing a bias that overestimates body fat in elderly
individuals.

– breast-ljub - Exclude all patients under the age of 50 who experienced breast 
cancer recurrence, introducing a b ias that overestimates recurrence in elderly
patients.

– cdc-diabetes - Exclude all women with diabetes and all men without dia-
betes, artificially inflating the apparent prevalence of diabetes among men.

– contraceptive - Exclude all working women not using contraceptives and 
all non-working women using contraceptives, creating a spurious relationship 
between employment and con traceptive use.

– diabetes - Remove all individuals under 50 years old who have diabetes, 
encouraging models to o ver-rely on age for diab etes prediction.

– indian-liver - Remove all male patients with diagnosed liver disease, biasing 
models toward associating liver disease more strongly with female patients.

– myocardial - Remove all female patients with a history of myocardial infarc-
tion, biasing models toward ov erestimating the risk of myocardial infarction
in men.

Results. As in the few-shot experiment, results are presented in Tables 4 for 
non-LLM methods and 5 for LLM-based methods. LAAT effectively mitigates 
dataset biases and achieves the highest performance across all datasets, sur-
passing non-LLM baselines by more than 20 ROC AUC points in some cases.
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Although FeatLLM outperforms traditional baselines, it achieves shared top per-
formance with LAAT on only two datasets and lags significantly behind LAAT 
models on the remaining datasets. The superior performance of LAAT on this 
challenging benchmark further highlights the benefits of attribution guidance— 
not only in enhancing performance in data-scarce scenarios but also in address-
ing subtle, hard-to-detect dataset biases that could otherwise compromise the
integrity of the machine learning pipeline.

Table 4. ROC AUC scores of baseline methods on the biased dataset experiments. Best 
scores for each dataset, across both LLM and non-LLM approaches, are emphasized 
in bold. Multiple bolded values i ndicate that their differences were not statistically 
significant according to the Wilcox on signed-rank test at p = 0.05.

Model 
Dataset 

LR MLP RF XGB CatBoost TabPFN 

bodyfat 84.54.4 81.14.7 78.16.2 75.07.3 82.34.1 85.03.9 

breast-ljub 54.36.6 54.45.4 55.87.4 54.69.5 54.06.6 52.97.6 

cdc-diabetes 62.20.4 62.40.3 60.32.3 49.31.3 60.22.1 50.11.3 

contraceptive 57.33.0 50.95.8 55.75.3 47.62.2 57.02.8 50.12.9 

diabetes 75.83.3 72.94.1 72.94.6 60.78.8 75.03.2 76.43.1 

indian-liver 60.46.7 56.85.3 54.98.4 49.36.1 58.95.6 59.85.5 

myocardial 55.18.2 55.85.9 58.55.1 54.68.7 55.69.9 50.07.8 

4.3 Hyperparameter Analysis 

We investigate the impact of varying the regularization factor γ and the num-
ber of importance score estimations on the final performance of LAAT models. 
Specifically, we assess the performance of a logistic regression model t rained using 
LAAT alignment with importance scores provided by GPT-4o mini. The exp er-
imental results are presented in Figs. 4 and 5, corresponding to the γ variation 
and the number of imp ortance score estimations, resp ectively.

Our findings indicate that increasing γ initially enhances model performance, 
reaching an optimal value around γ = 100. However, further increases beyond 
γ = 250 lead to a substantial decline in performance. In contrast, increasing the 
number of importance score estimations results in a steady performance improve-
ment, which plateaus at approximately four to five estimations, depending on the 
k-shot setting. These results suggest that while additional score generation and 
ensembling can enhance performance, their benefits diminish beyond a certain
threshold.
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Table 5. ROC AUC scores of LLM-based models on the biased dataset experiments. 
Best scores for each dataset, across both LLM and non-LLM approaches, are empha-
sized in bold. Multiple bolded values indicate that their differences were not statisti-
cally significant according to the Wilcoxon signed-rank test at p = 0.05.

Method FeatLLM LAAT 
Model Ensemble LR MLP 
Dataset Gem2.0 G4om LLa3.3 Gem2.0 G4om LLa3.3 Gem2.0 G4om 

bodyfat 80.96.4 79.36.2 84.516.2 83.418.0 84.317.0 89.54.2 91.03.6 90.44.0 

breast-ljub 67.88.7 62.97.2 71.19.6 71.18.6 70.58.7 73.66.9 73.56.8 73.26.9 

cdc-diabetes 75.43.3 76.10.8 72.50.3 79.00.2 75.60.3 72.40.3 78.90.3 74.10.9 

contraceptive 54.88.6 51.83.9 63.93.4 66.62.2 62.93.4 63.93.4 66.12.2 62.93.5 

diabetes 76.83.8 76.32.8 78.86.9 78.47.2 78.67.3 79.94.1 80.03.9 80.24.0 

indian-liver 67.46.4 69.36.1 71.15.7 71.45.5 69.35.7 72.14.3 72.13.9 71.24.5 

myocardial 54.09.2 62.55.1 63.86.2 66.26.4 64.45.6 59.47.2 64.87.3 61.67.3 

Fig. 4. ROC AUC scores of LAAT aligned 
logistic regression over varying gamma va l-
ues. 

Fig. 5. ROC AUC scores of LAAT 
aligned logistic regression over vary-
ing number of e stimates. 

5 Limitations 

While LAAT offers significant benefits, it has several limitations. First, the 
method is restricted to tabular data and supports only binary classification tasks. 
Additionally, LAAT requires features to be describable in natural language, lim-
iting its applicability to datasets with anonymized or uninterpretable features. 
Finally, its effectiveness depends on the general knowledge embedded in LLMs, 
whic h may vary across different data domains.

6 Conclusion 

We introduce Large Language Model Attribution Aligned Training (LAAT), 
a novel approach that leverages importance scores inferred by large language
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models (LLMs) as local attribution guides. This method effectively harnesses the 
generalization capabilities of LLMs while employing simple, traditional machine 
learning models. Although gradient boosting trees have traditionally dominated 
tabular data learning, LAAT significantly outperforms existing methods in few-
shot learning and biased dataset scenarios. Notably, it surpasses F eatLLM, the
current state-of-the-art LLM-based few-shot learning approach.

Beyond its standalone effectiveness, LAAT is highly versatile and can be used 
in conjunction with more complex models, provided they are differentiable—for 
example, TabPFN. Additionally, it can be combined with feature preprocessing 
techniques such as FeatLLM. Given the interpretability of LLM-derived impor-
tance scores, LAAT could be incorporated into interactive, chat-based in terfaces, 
enabling human experts to refine these scores before finalizing them. This human-
in-the-loop refinement could further enhance model performance by leveraging
domain expertise.

While we focus on input gradient-based attribution in this work, future 
research could explore alternative attribution methods to further enhance 
LAAT’s effectiveness. Additionally, future research could explore extending 
LAAT to multiclass classification problems by generating LLM-based feature 
attribution vectors for each class. Subsequent training could regularize loc al 
attributions based on the class of the current example. Similarly, in regression 
tasks, the score generation prompt of LAAT could be adapted to accommodate
continuous target variables.

Furthermore, LAAT’s framework could be expanded beyond tabular data to 
other modalities, such as images, b y integrating it into concept bottleneck models
[32]. These architectures produce high-level, human-interpretable features that 
could serve as input to a LAAT-augmented classifier, facilitating improved fea-
ture selection and attribution in vision tasks. Such an extension could enhance 
b oth interpretability and generalization in image-based applications. We leave 
the exploration of these research directions to future work.

Disclosure of Interests. The authors have no competing interests to declare that 
are relevant to t he content of t his article.

Appendix 

We provide dataset details, task descriptions, score extraction prompt, hyperpa-
rameter search spaces, and loss landscapes used in our exp eriments.

Prompt 1.1. Prompt template for LLM importance score g eneration. 
You  are  an  expert  at  assigning  importance  scores  to  features  
used  for  a  classification  task  .  For  each  feature  ,  output  an  
integer  importance  score  between -10  and  10.  Positive  scores  
suggest  that  an  increase  in  the  feature  ’s  value  boosts  the  
class  probability  ,  whereas  negative  scores  indicate  that  an  
increase  in  the  feature  ’s  value  reduces  the  class  probability  .  
You  have  to  include  a  score  for  every  feature  .
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Table 6. Basic information about dataset used in our experimen ts.
Dataset Samples Num. features Cat. features Pos. label r atio 
adult 48842 14 8 23.93% 
bank 45211 16 9 11.70% 
breast-ljub 277 16 0 29.24% 
cdc-diabetes 253680 21 0 13.93% 
diabetes 768 8 0 34.90% 
electricity 45312 8 0 42.45% 
myocardial 686 91 13 22.16% 

Table 7. Task descriptions utilized in the experiments. 
Dataset Task Description 
adult Predict whether this person earns more than 50000 dollars 

per year. Yes or no?
bank Predict whether this client will subscribe to a term dep osit. 

Yes or n o?
breast-ljub Predict whether this patient’s breast cancer will reo ccur. Yes 

or no?
cdc-diabetes Predict whether the patient has diab etes. Yes or no?
diabetes Predict whether the patient has diab etes. Yes or no?
electricity In the electricity market, prices are not fixed and are affected 

by demand and supply of the market. They are set every five 
minutes. Electricity transfers in the state A to/from the 
neighboring state B are done to alleviate fluctuations. Based 
on the current measurement, predict whether the price of 
electricity in s tate A will go up. Yes or no?

myocardial Predict whether the myocardial infarction complications data 
of this patient show c hronic heart failure. Yes o r no?

Task  :  {  task_prompt  }  
Features  :  
{  features_prompt  }  
Output  the  importance  scores  for  the  class  "{  label  }".  

Think  step  by  step  and  output  an  integer  importance  score  
between -10  and  10  for  each  feature  .  You  must  specify  each  
feature  individually  ,  in  order  of  its  appearance  .
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Table 8. Hyperparameter search spaces for baseline models. 
Model Hyperparameter search space 
Logistic Regression C: [100, 10, 1, 1e−1, 1e−2, 1e−3, 1e−4, 1e− 5]
MLP alpha: [0.001, 0.01, 0.1, 1, 10] 

learning_rate_init: [0.1, 0.01, 0.001, 0.0001]
XGBoost max_depth: [2, 4, 6, 8, 10] 

alpha: [1e−4, 1e−3, 1e−2, 1e−1, 1, 10] 
lambda: [1e−4, 1e −3, 1e−2, 1e−1, 1, 10] 
eta: [0.01, 0.03, 0.1, 0.3]

Random Forest bootstrap: [True, False] 
max_depth: [2, 4, 6, 8, 10] 
n_estimators: [2, 4, 8, 16, 32, 64]

CatBoost colsample_bylevel: [0.01, 0.03, 0.06, 0.1] 
boosting_type: [“Ordered”, “Plain”] 
depth: [2, 4, 6, 8, 10]

Fig. 6. Loss landscapes for logistic regression on the breast-ljub and myocardial 
datasets, comparing models with (γ = 100, top left) and without (γ =  0, bottom left) 
attribution alignment loss. The addition of attribution alignment loss better a ligns 
training (left) and test (right) loss landscapes, guiding the model t owards minima that
improve generalization.
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Abstract. Graph Neural Networks (GNNs) are a powerful technique for 
machine learning on graph-structured data, yet they pose challenges in 
interpretability. Existing GNN explanation methods usually yield tech-
nical outputs, such as subgraphs and feature importance scores, that are 
difficult to understand, thereby violating the purpose of explanations. 
Motivated by recent Explainable AI (XAI) research, we propose GraphX-
AIN, a method that generates natural language narratives explaining 
GNN prediction. GraphXAIN is a model- and explainer-agnostic method 
that uses Large Language Models (LLMs) to translate explanatory sub-
graphs and feature importance scores into coherent, story-like expla-
nations of GNN predictions. Evaluation on real-world datasets demon-
strates GraphXAIN’s ability to improve graph explanations. A survey of 
machine learning researchers and practitioners reveals that GraphXAIN 
enhances four explainability dimensions: understandability , satisfaction, 
convincingness, and suitability for communicating model predictions. 
When combined with another graph explainer method, GraphXAIN fur-
ther improves trustworthiness, insightfulness, confidence, and usability. 
Notably, 95% of participants find GraphXAIN to be a valuable addi-
tion to the current GNN explanation methods. By incorporating natural
language narratives, our approach serves both graph practitioners and
non-expert users by providing clearer and more effective explanations.

Keywords: Explainable AI · Graph Neural Networks · Generative 
AI · Generative XAI · Natural Language Explanations · XAI Narratives

1 Introduction 

The exponential growth in the complexity of machine learning models has led 
to architectures reaching billions of parameters, r esulting in significant improve-
ments in their performance [5, 13, 26, 39]. As these complex ‘black-box’ mod-
els, characterized by their high accuracy yet lack of interpretability, continue 
to evolve, the demand for transparency and understanding of the underlying 
model processes has intensified [35]. Explainable Artificial Intelligence (XAI) 
has emerged to address this challenge by enhancing the trustworthiness a nd 
transparency of the predictions of complex AI models [18]. 
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Fig. 1. LLM-generated GraphXAIN (bottom part) complements the explanatory sub-
graph and feature importance output of GNNExplainer [47] (top part), providing a 
comprehensive explanation of the GNN’s prediction of salary level classification for the 
NBA player ( node 57).

Graph Neural Networks (GNNs) have recently gained notable success and 
have become state-of-the-art solutions for modelling relational data, character-
ized by instances (nodes) being connected via edges [21, 40, 44, 46]. However, the 
need for interpretability of the GNNs’ predictions remains [23, 25, 47]. 

Existing GNN explanation techniques [ 25, 47] predominantly offer explana-
tory subgraphs and feature-importance attributions. This is illustrated in the 
upper section of Fig. 1, which shows the explanation pro duced by GNNExplainer 
[47] for a GNN model’s prediction on a real-world dataset. The example presents
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the explanation for the classification of node (player) 57 from the NBA dataset, 
taking into account the player’s attributes, field statistics, and social connec-
tions. For a node regression example, which illustrates the explanation for the 
prediction of the IMDB mov ie rating for node (movie) 95 based on the movie 
features and relations to other movies being connected via shared actors, see
Fig. 4b  i  n  A.1. 

GNNExplainer output provides some insights into the prediction process, 
however, the correct interpretation of the subgraph visualization alongside fea-
ture importance metrics alone can pose significant challenges for readers. With-
out a complementary natural language narrative, practitioners employing this 
explanation technique to analyse the GNN’s prediction must rely solely on sub-
graphs and feature importance outputs, which can be particularly c hallenging 
given the complex nature of GNN models. Despite its limitations, GNNExplainer 
remains a state-of-the-art graph explainer. Such an approach is n ot aligned with
the comprehensibility postulate introduced by Michalski [30], which advocates 
that computer-generated results should be directly interpretable in natural lan-
guage. Moreover, effective explanations should enhance the alignment b etween 
the user’s mental model and the AI model [20, 29]. GNNExplainer, among other 
graph explainers, does not adhere to these principles and exemplifies the phe-
nomenon termed the “Inmates Running the Asylum”, where solutions are tech-
nical and created primarily for experts, overlooking the needs of less-technical 
practitioners and end users who prefer natural-language explanations [6, 28, 33]. 

Martens et al. [ 28] proposed the XAIstories framework that employs Large 
Language Models (LLMs) to generate narratives explaining the AI model’s pre-
dictions for tabular and image data based on SHAP and counterfactual (CF) 
explanations. In their survey among data scientists and lay users, over 90% of 
the general audience found these narratives convincing, while 83% of the sur-
veyed data scientists indicated they would likely use XAIstories to communicate 
explanations to non-exp ert audiences. By incorporating narrative communica-
tion to technical XAI methods, the model’s predictions can be presented in a 
manner that aligns with human cognitive preferences, elevating explanations
beyond mere descriptions and clarifying cause-and-effect relationships [6]. 

To the best of our knowledge, no previous research proposes the general 
framework for natural language XAI Narratives to explain Graph Neural Net-
work models’ predictions. In this article, we introduce the first method to auto-
matically generate GraphXAIN, a natural l anguage narrative, to explain the 
GNN models. By complementing explanatory subgraphs and feature imp ortances
with coherent XAI Narratives (see Fig. 2), we aim to further explain the GNNs’ 
predictions in a more transparent and accessible way. We posit that this method 
will not only enhance int erpretability but also facilitate more effective commu-
nication of model p redictions across various graph applications.

To summarise, our main contributions are as follo ws:

– We present the GraphXAIN, a novel model-agnostic and explainer-agnostic 
method that generates natural language XAI Narratives to enhance the 
explainability of the model’s predictions over graph-structured data.
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Fig. 2. Workflow diagram of the GraphXAIN method. Graph-structured data, along 
with its corresponding features, is first processed by a GNN model. Next, a graph 
explainer generates an explanatory subgraph and corresponding feature importance 
values for a target node. The dataset description, explanatory subgraph, feature impor-
tance values, target node features and edge connections, and final GNN prediction are 
then incorporated into a prompt. This prompt is processed by the LLM, which gener-
ates GraphXAIN, a complementary narrative to explain GNN’s prediction.

– We illustrate our approach by integrating GraphXAIN with the existing graph 
XAI framework (GNNExplainer) for GNNs and demonstrating its e xplana-
tory abilities on real-world datasets, both in classification and regression
tasks.

– We qualitatively assess the GraphXAIN method with a user study conducted 
with machine l earning practitioners.

– We formalise the concepts of narrative and descriptive explanations within the 
context of XAI, clarifying their distinctions and discussing their implications 
for model explainability.
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2 Related Work 
2.1 Explainability in Machine Learning 

Several approaches have been proposed to enhance the explainability of machine 
learning models across various modalities, including image data [1, 16, 39, 41, 43], 
tabular data [ 4, 26, 39], natural language [ 26, 39, 43], and unstructured data suc h 
as graphs [25, 47]. Among the most popular XAI methodologies are post-hoc 
explanations, which aim to explain the model’s prediction after t he training stage
[35]. The counterfactual explanations indicate what minimal changes in the input 
data are required to obtain a different predicted class [29, 45]. These methods 
comprise feature importance measures, visualisation techniques, and surrogate 
models. For instance, SHAP (SHapley Additive exPlanations [26]) and LIME 
(Local Interpretable Model-agnostic Explanations [39]) estimate the contribution 
of each feature to a particular prediction.

However, despite these advancements, challenges persist in ensuring that 
explanations are both methodologically accurate and meaningful for a variety of 
stakeholders, both for the data scientists and lay users [11, 28, 36]. Explanations 
must bridge the gap between technical complexity and the reader’s comprehen-
sion, necessitating a careful balance between fidelity and interpretability [6, 33]. 
The need for explainability methods that are understandable to less technical 
users is primarily crucial in sensitive domains such as healthcare, finance, and 
legal systems, where understanding the model’s prediction process is essent ial
for trust and transparency [35, 39] for both domain experts and end users. As the 
conversational AI explanation systems have been studied previously [22, 27, 42], 
the LLM’s general knowledge presents a promising avenue for enric hing targeted 
explanations with additional insights [48]. 

2.2 Explainability in Graph Neural Networks 

GNNs are increasingly used for modelling relational data in domains such as 
social networks, molecular structures, and knowledge graphs [21, 40, 44]. Their 
complex architectures, however, pose challenges for understanding and i nterpret-
ing their predictions. GNNExplainer [47] is the first method developed to address 
GNNs’ explanations by identifying an explanatory subgraph and relevant node 
features which are the most influential for a specific prediction. GNNExplainer 
formulates the explanation task as an optimisation problem, maximising the 
mutual information between the explanatory subgraph with a subset of node 
features and the original graph that is subject to explanation.

Among other graph explanation methods, Lucic et al. [25] introduced CF-
GNNExplainer, which alters the GNNExplainer to answer ‘what-if’ questions 
using the counterfactual explanation approach. Rather than merely identifying 
influential features or subgraphs, CF-GNNExplainer searches for minimal per-
turbations to the original graph that would change the GNN model’s prediction 
by edge deletion. This method demonstrates how small changes in graph struc-
ture could impact the outcome, enhancing the understanding of the model’s
decision-making process.
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Although the aforementioned state-of-the-art graph explanation frameworks 
are methodologically sound, they merely provide users with additional graphs 
and node feature importance values that are not easily interpretable (see Fig. 1 
and Fig. 4b), thereby limiting their practical utility and force practitioners to 
construct the explanatory narrativ e themselves.

We posit that incorporating natural language into GNN explanations could 
bridge the gap between technical outputs and human understanding by trans-
lating complex model reasoning into accessible narratives, thereby enhancing 
comprehension and trust among practitioners. However, previous methods t o 
generate them are not tailored to the popular GNNExplainer output and/or 
provide descriptive explanations rather than a cohesive narrative (see Subsect.
3.1 for a discussion of the important differences). Giorgi et al. [10] addressed this 
issue by using LLMs to generate textual explanations for counterfactual graphs. 
However, their explanations lack contextual information and do not illustrate 
cause-and-effect relationships, resulting in primarily descriptiv e communication 
rather than narrative explanation, the latter being more valuable for conveying
more complex information [6] (see Appendix A.2 for e xamples). 

He et al. [ 15] used LLMs to generate explanations for counterfactual graphs 
in the context of molecular property prediction. However, since their framework 
adheres to domain-specific knowledge, it cannot be considered a general method 
for graph model explanations w ith natural language explanations. Furthermore, 
the explanations produced by their method exhibit the same limitation as in
Giorgi et al. [10], being more descriptive rather than narrative in their nature 
(see Appendix A.3 for e xamples). 

The most comparable approach to ours is presented by Pan et al. [36], who 
developed TAGExplainer, a method for generating natural language explana-
tions for Text-Attributed Graphs (TAGs). Although their explanations incorpo-
rate some elements of narrative communication, the examples provided by the 
authors consist of bullet points of information that can be rearranged without 
affecting the conveyed message, which is a characteristic aligning with descriptiv e
writing rather than a coherent narrative [6]. Consequently, the proposed expla-
nations remain context-independent. Moreover, the proposed method is limited 
only to TAGs, which limits the general use of TAGExplainer to broader graph 
data modelling scenarios, as TAGs represent only a subset of real-world graph
data (see Appendix A.4 for e xamples). 

3 Methods 

3.1 XAI Narrative and Description 

Research in psychology and communication theory indicates that narrative-based 
explanations are more accessible and memorable than descriptive forms, mak-
ing them effective for conveying scientific evidence to non-expert audiences [6]. 
Moreover, narratives are processed more rapidly by individuals without prior 
knowledge and are more engaging and persuasive, thereby enhancing trust and 
understanding of AI models [3, 28, 33].
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Further, as narrative communication relies on contextual cause-and-effect 
relationships, it is considerably more challenging to fragment a narrative into 
smaller, meaningful segments without either significantly altering t he interpre-
tation of these segments or disrupting the coherence of the original narrative [6]. 
Consequently, narratives are often perceived as storytelling, characterised by a 
coherent structure comprising an introduction, a main body, and a conclusion. 
In contrast, descriptive, context-free comm unication can be readily fragmented 
into smaller units while still effectively conveying the necessary information [6], 
however, at the cost of understanding and remembering. The XAIstories method 
addresses the aforementioned explanation limitations by enhancing the narrative 
communication of SHAP and CF explanations o f models trained on tabular and 
image data, aligning with the research on human-AI interactions [3, 28, 33]. 

Having identified the need to distinguish between narrative and descriptive 
explanations in XAI and drawing on social science research [6, 7, 12, 33], we pro-
pose definitions f or both terms:

Definition 1 (XAI Narrative). A XAI Narrative provides a structured, story-
like representation of a model’s prediction. Narrative explanations illustrate the 
relationships between key features in a context-dependent manner, pr oviding a 
coherent and comprehensive understanding of how the mo del arrives at specific
outcomes.
Definition 2 (XAI Description). A XAI Description provides a static pre-
sentation of key features or attributes relevant to a model’s prediction, delivered 
in a context-free and fact-based manner.

In the context of explaining GNN models, a description would just list the 
most important features and neighbouring n odes. This relates closely to the 
data-to-text or graph-to-text approaches [9, 37]. Figure 3 presents an example of 
XAI Description for the subgraph and feature importance output provided by 
GNNExplainer shown in Fig. 1. Clearly, a XAI Description is less valuable than 
an XAI Narrative, as descriptions are less accessible and memorable than narra-
tive communication metho ds, making them less effective for conveying scientific 
evidence to a broader audience [6, 28]. 

From the XAI Description presented in Fig. 3, a clear template may be 
derived: Prediction of instance X is Y based on: x1 (importance score of fea-
ture x1), feature x2 (importance score of feature x2), feature x3 (importance 
score of feature x3), ..., feature xn (importance score of feature xn). Regarding 
the connections between the nodes, a XAI Description would just describe which 
connections appear in the subgraph, however, not reflecting t heir meaning, which
is seen in the bottom of the Fig. 3. In conveying the information to the reader, 
if the order of the features or connections mentioned in the text were changed, 
the information conveyed itself would persist, contrary to the assumption of the 
coherency and context-dependent manner and therefore violates the definition of 
XAI Narrative. The GraphXAIN examples shown in Fig. 1 and Fig. 4b, provide 
more coherent story, and are enhanced by LLM’s general knowledge cause-and-
effect narration as an explanation, whic h is aligned with the recommendations 
regarding effective scientific communication [6, 12].
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Fig. 3. LLM-generated XAI Description for the GNNExplainer’s [47] subgraph and 
feature importance explain the GNN’s prediction for player (node) 57. Compared to 
GraphXAIN’s output, XAI Description focuses on features and connections in a static 
and context-free format, which is less valuable than a XAI Narrative.

3.2 From GNNs to Natural Language Narratives 

To address the limitations of existing XAI methods for GNNs, which usually 
produce technical outputs, we propose GraphXAINs, which are natural lan-
guage explanatory narratives f or graphs. We propose the following definition of 
GraphXAIN, a XAI Narratives for graphs:

Definition 3 (GraphXAIN). A GraphXAIN is a XAI Narrative tailored f or 
graph-structured data.

Our solution involves converting subgraph structures and feature impor-
tance scores derived from graph explainers, dataset information, and external 
knowledge of the LLM into GraphXAINs, resulting in coherent natural language 
explanatory narratives that explain GNN predictions. The detailed workflow to 
generate the GraphXAINs in presented in Fig. 2. 

Following the approach proposed by Fatemi et al. [8], we transform the graph 
into the textual form for LLM’s further inference. Importantly, our framework is 
agnostic to the graph data type, graph model, p erformed task (classification and 
regression), and graph explainer, allowing its a pplication across various graph
scenarios and applications.

4 Experiments 

4.1 Datasets 

We conduct the experiments on two real-world graph datasets, one used in the 
node classification scenario and the other in the node regression task. The dataset
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for the node classification, the NBA p layers’ d ataset1, includes players’ perfor-
mance statistics from one basketball season, alongside various personal attributes 
such as height, weight, age, and nationality. The graph is constructed by linking 
NBA players based on their relationships and interactions on the Twitter plat-
form. After preprocessing, filtering out disconnected nodes, and ensuring the 
graph is undirected, the final g raph comprised 400 nodes (players), 42 node fea-
tures, and 21,242 edges (Twitter connections). The node classification inv olves
predicting whether a player’s salary exceeds the median salary.

The dataset used to perform node regression, t he IMDB movie dataset2, 
includes information on 1,000 movies from the IMDB database. The movie’s 
features consist of information on the director, main actors, release year, dura-
tion, and genre. The graph is created by connecting nodes (movies) by edges 
which link movies if at least one actor played in both movies. In total, the graph 
consists of 1,000 nodes, 12 node features, and 5 ,608 undirected edges. The node 
regression task involves predicting the IMDB rating score ranging between 0 and 
10, where 10 is t he maximum score indicating the general appreciation of the
movie by the audience.

4.2 Graph Models 

Prior to training, both datasets are randomly divided into separate training, 
validation, and test sets in a 60/20/20 split. We systematically explore differ-
ent hyperparameter settings for both classification and regression GNN models, 
adjusting the number of layers (2–4), number of hidden channels (8, 16, 31, 
64, 128), learning rates (0.001, 0.005, 0.01, 0.02, 0.05), weight decay (1× 10−4, 
5 × 10−4,  1× 10 −3), and training epochs (100, 500, 1,000, 5,000, 10,000) to evalu-
ate performance on the held-out test sets. The GNN classification model consists
of two Graph Convolutional Network (GCN) layers [21], with 16 hidden chan-
nels. For training, we use the Binary Cross-Entropy loss function, the Ad amW
[24] optimizer with a learning rate of 0.001 and a weight decay of 5× 10−4.  The  
training continued for 1,400 epochs, resulting in the GCN classification model 
that achieved a test AUC of 0.80.

The GNN regressor model consists of two GCN layers with 32 hidden chan-
nels. The Root Mean Square Error loss function is used to train the model, with 
the AdamW optimizer, a learning rate of 0.01 and a weight decay of 5 × 10−4. 
The training process continues for 7,500 epochs, with the early stopping of 500 
steps, resulting in the RMSE of 0.28 on the test set.

4.3 Graph Explainer 

To obtain the explanatory subgraph and feature importance scores, we use 
GNNExplainer [47], the current state-of-the-art method for explaining GNN

1 https://kaggle.com/noahgift/social-power-nba. 
2 https://kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-

and-tv-shows. 
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models’ predictions. The GNNExplainer formulates the explanation task as 
an optimization problem that maximizes the mutual information between the 
explanatory subgraph and a subset of node features relative to the input 
graph under consideration. In both scenarios ( classification and regression), the 
GNNExplainer training process are conducted for 200 epochs, adhering to the
default settings recommended by the authors [47]. In the explanatory subgraph, 
different shades of the edges indicate the strength of the importance of each 
connection, with darker edges indicating higher strength. However, to generate 
the GraphXAINs, any graph explainer may be used as long as it provides a n
explanatory subgraph and feature importance.

4.4 Graphs and Large Language Models 

The XAI Narratives are derived from the GNNExplainer output using an LLM. 
In this work, we use GPT-4o, however, any LLM may be used to generate 
GraphXAINs. In our method we use LLM in a zero-shot manner with the default 
hyperparameters. The b ase of the prompt is inspired by earlier works on nar-
ratives aiming to explain mach ine learning models developed on tabular data
[19, 28], which we adapt to graphs and then refine through iterative manual 
adjustments until we achieve reasonable narratives. A thorough prompt engi-
neering process c ould yield further improvements and help assess sensitivity to
minor prompt changes.

The prompt includes the following information (see Fig. 2): dataset informa-
tion, the target node’s feature values, the feature importance, the explanatory 
subgraph, the feature values of the nodes within the subgraph, and the final 
GNN model prediction for the target node.

In our visualisations, we use the seven most important features and restrict 
the subgraph to output seve n nodes with the highest impo rtance, aligning with
Miller’s [31] theory on cognitive limits, which suggests that seven pieces of infor-
mation represent an optimal amount for receiving, processing and recalling. How-
ever, the number of presented nodes in the subgraph and the number of most 
important features may be changed. Figure 2 presents the generation process in 
detail. The full prompt used to generate GraphXAINs is available in the article’s 
GitHub repository3. 

5 Results 

In the following, we provide examples presenting various automatically generated 
GraphXAINs to explain the GNN model’s prediction for the target node. It is 
important to clarify that the presented results are not selectively chosen - rather, 
subsets of five nodes from t he test sets (subject to explanation) are randomly 
drawn from both datasets. The GraphXAINs are s ubsequently generated for
each of the drawn nodes. Figure 1 and Fig. 4b present examples of generated

3 https://github.com/ADMAntwerp/GraphXAIN. 

https://github.com/ADMAntwerp/GraphXAIN
https://github.com/ADMAntwerp/GraphXAIN
https://github.com/ADMAntwerp/GraphXAIN
https://github.com/ADMAntwerp/GraphXAIN
https://github.com/ADMAntwerp/GraphXAIN
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GraphXAINs for node classification and node regression tasks, respectively. For 
the other GraphXAIN example, see Appendix A.1. 

The results of the GraphXAINs show the effectiveness of generating XAI 
narrative-based explanations from the technical and context-free subgraphs and 
feature importance values. Unlike other GNN XAI descriptive outputs, which 
typically present static feature values, the outputs generated by our method 
provide coherent XAI Narratives. Not only do these narratives articulate which 
features contributed most to the model’s prediction, but they also explain how 
and why these features combined in a cause-and-effect manner. For instance, 
the n arrative for a high-salary prediction highlights the player’s field and perfor-
mance statistics, such as position and the number of games played, simultane-
ously contextualising these with, arguably, broader patterns of team dynamics,
basketball domain considerations, and social interactions.

GraphXAIN approach ensures that the explanation is not limited to mere 
numerical and visual descriptions but instead offers a comprehensive, story-like 
narrative that enables the practitioners to understand the model’s decision-
making process more intuitively. By conveying the reasoning beyond the sole 
prediction, the XAI Narrative explanation addresses a primary goal in XAI by 
bridging the gap between technical model outputs and practitioner’s compre-
hension, thereby reflecting both the principles of narrativ e communication and
the general objectives of explainability research [6]. 

Note that in the IMDB dataset, movie titles are available and directly 
mapped to nodes, whereas in the NBA dataset, player names are hashed, pre-
venting their direct mapping. We hypothesize that having actual names would 
allow GraphXAIN to produce more effective explanations by drawing additional 
information on specific player information from LLM’s knowledge.

6 Evaluation with Human Subjects: A User Study 

To evaluate the proposed GraphXAIN method, we conducted an online u ser 
study similar to Martens et al. [28] and Baniecki et al. [2]. Twenty active 
researchers and practitioners from the field of machine learning (ML) and data 
science (DS) participated in the evaluation survey. Seventy-five percent of the 
participants are academic ML researchers, and the remaining 25% are industry 
ML/DS practitioners. Regarding professional experience, 30% of the participants 
had between 0 and 2 years of experience, 50% had 3 to 5 years, 15% had 6 to 
10 years, and 5% had more than 10 years o f experience in the domain. The sur-
vey was distributed to the authors’ network, however, none of the respondents 
participated in developing the prop osed method, ensuring that the responses are
valid and unbiased.

The purpose of the survey was to evaluate the impact of the proposed 
GraphXAIN method in c omparison with the current state-of-the-art GNN XAI 
method, GNNExplainer [47], to explain GNN predictions. Six randomized GNN 
explanation examples were shown to each participant sequentially. After view-
ing each singe XAI method, participants are asked to rate their agreement with
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Table 1. Survey Questions for Assessing Explainable AI Method P erceptions

Dimension Question 
Understandability Q1: I find the explanation understandable. 
Trustworthiness Q2: This explanation increased my trust in the 

mo del’s prediction.
Insightfulness Q3: The explanation helped me gain insight into 

the factors influencing t he
classification/regression.

Satisfaction Q4: I am satisfied with the e xplanation’s clarity 
and thoroughness.

Confidence Q5: I feel confident in the 
classification/regression after reviewing the 
explanation.

Convincingness Q6: I find this explanation convincing in 
justifying why node X is classified as 
Y/predicted to have a regression score of Y.

Communicability Q7: I find this explanation method suitable for 
communicating the model’s predictions to others.

Usability Q8: If I work with Graph Neural Network models 
in the future, I am likely to use this explanation 
method to explain the model’s prediction.

eight questions on a five-point Likert scale, ranging from “Strongly disagree” (1) 
to “Strongly agree” (5), where higher scores indicate stronger agreement or pref-
erence. Each participant was presented with three examples drawn from each 
of the classification and regression scenarios: 1) GNNExplainer [47] explanation 
comprising a subgraph and feature importance attributions, 2) GraphXAIN, 
which provides a narrative explanation of the model’s prediction, 3) a combined 
approach that integrates GNNExplainer and GraphXAIN. The order of metho d
presentation was randomized.

Respondents evaluated XAI methods across eight dimensions: understand-
ability, trustworthiness, insightfulness, satisfaction, confidence, convincingness, 
communicability, and usability. Table 1 presents the survey questions used to 
measure each dimension. The following section presents t he theoretical princi-
ples for selecting t hese evaluation criteria.

– Understandability - In Hoffman et al. [17], Miller [ 32], and Mohseni et al. [34], 
the understanding of XAI explanation is declared to be a crucial part of the 
XAI methods t o ensure understandability of the rationale b ehind the model’s
predictions.

– Trustworthiness - Hoffman et al. [ 17] note that fostering appropriate trust is 
one of the core objectives of explanations, underscoring the need to assess 
whether an explanation effectively increases trust.
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– Insightfulness - Riberio et al. [ 39] declare that a good explanation should 
provide additional insights into model predictions.

– Satisfaction - Miller [ 32] investigates the cognitive and social dimensions that 
render explanations meaningful to humans, positing that, among others, prac-
titioner and user satisfaction is fundamental to effectiv e explanatory strate-
gies.

– Confidence - Ribeiro et al. [ 38] argue that explanations should enable indi-
viduals to gain confidence in the model.

– Convincingness - Miller [ 32] underscores that an explanation must be pe rsua-
sive to the user.

– Communicability - Miller [ 32] argues that the information exchanged between 
the explainer and the explainee should align with the general r ules of cooper-
ative conversation proposed by Grice [12], ensuring that it remains relevant 
to the explainee’s context and builds upon their prior knowledge.

– Usability - Miller [ 33] argues that individuals evaluate explanations accord-
ing to pragmatic influences of causalit y, which encompass criteria suc h as
usefulness.

Table 2 presents the survey results along with the statistical significance of 
Wilcoxon signed-rank tests assessing the differences between XAI methods, con-
ducted at the α =  0  .05 significance level.

In a preference comparison between GNNExplainer (presented in Table 2 
as the “GNNExp” method) and GraphXAIN, the latter is preferred in four 
dimensions (understandability, satisfaction, convincingness, and communicabil-
ity), w hile no statistically significant differences are observed i n the remaining
four dimensions.

Evaluation of the GraphXAIN alone against a combined explanation that 
integrates GNNExplainer’s outputs with t he GraphXAIN narratives (presented 
in Table 2 as the “Combined” method), only one dimension, communicability, 
shows a statistically significant difference, with the combined method being pre-
ferred. For the remaining seven dimensions, no significant differences between 
GraphXAIN and the c ombined approach occur, indicating the power and the 
need of narrative explanations to explain graph models.

Moreover, across all eight investigated dimensions, the combined method is 
always preferred over the GNNExplainer method. This finding suggests that 
incorporating GraphXAIN’s narrative component into the technical subgraph 
and feature importance explanations consistently enhances the ove rall quality of
the explanation.

Furthermore, 95% of participants (19/20) answered “Yes” to the question, 
“Do you think that the narratives are a useful addition to explaining the GNN 
model’s predictions?”. This response aligns with the observed advantages of the 
alone and combined approaches ov er the stand-alone GNNExplainer outputs.

Additionally, at the α =  0.05 significance level, no statistically significant 
differences are identified between responses over the NBA and IMDB datasets 
across any condition or question. Overall, these findings indicate that partici-
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Table 2. Pairwise post-hoc Wilcoxon signed-rank tests comparing XAI methods for 
each dimension question. Higher values indicate increased preference on a 5-point Lik-
ert scale (1–5). “GNNExp” refers to GNNExplainer [47], while “Combined” refers to 
combined GNNExplainer and GraphXAIN outputs. Columns M1 and M2 report the 
mean ± standard deviation (SD) of participants’ preferences, Δ(M2,  M1) is the mean 
difference (with SD). Bonferroni-corrected p -values are reported (* indicates statistical 
significance at α =  0.05). Bolded methods indicate statistically significant preferences.

Dimension Method Comparison 
(M1 vs M 2) 

M1 ↑ M2 ↑ Δ 
(M2,  M  1) 

p 

Understandability GNNExp vs GraphXAIN 3.3±0.8 4.3±0.5 0.95±1.02 0.004* 
GNNExp vs Combined 3.3±0.8 4.4±0.6 1.05±0.94 0.003* 
GraphXAIN vs Combined 4.3±0.5 4.4±0.6 0.1±0.58 1.000 

Trustworthiness GNNExp vs GraphXAIN 3.3±0.7 3.8±0.6 0.42±1.03 0.254 
GNNExp vs Combined 3.3±0.7 4.2±0.6 0.92±0.94 0.005* 
GraphXAIN vs Combined 3.8±0.6 4.2±0.6 0.5±0.84 0.072 

Insightfulness GNNExp vs GraphXAIN 3.9±0.6 4.2±0.4 0.28±0.62 0.178 
GNNExp vs Combined 3.9±0.6 4.4±0.6 0.5±0.63 0.018* 
GraphXAIN vs Combined 4.2±0.4 4.4±0.6 0.22±0.50 0.251 

Satisfaction GNNExp vs GraphXAIN 3.0±1.1 3.8±0.6 0.85±1.29 0.045* 
GNNExp vs Combined 3.0±1.1 4.0±0.6 1.05±1.0 0.003* 
GraphXAIN vs Combined 3.8±0.6 4.0±0.6 0.2±0.70 0.586 

Confidence GNNExp vs GraphXAIN 3.0±0.9 3.6±0.7 0.62±1.09 0.085 
GNNExp vs Combined 3.0±0.9 3.9±0.8 0.88±1.17 0.015* 
GraphXAIN vs Combined 3.6±0.7 3.9±0.8 0.25±1.02 0.786 

Convincingness GNNExp vs GraphXAIN 3.2±0.7 3.8±0.8 0.62±0.96 0.030* 
GNNExp vs Combined 3.2±0.7 4.1±1.0 0.9±1.15 0.021* 
GraphXAIN vs Combined 3.8±0.8 4.1±1.0 0.28±1.18 0.314 

Communicability GNNExp vs GraphXAIN 2.8±1.0 3.8±0.8 1.0±1.39 0.020* 
GNNExp vs Combined 2.8±1.0 4.2±0.7 1.45±1.22 0.001* 
GraphXAIN vs Combined 3.8±0.8 4.2±0.7 0.45±0.63 0.019* 

Usability GNNExp vs GraphXAIN 3.2±0.9 3.6±1.0 0.35±1.43 0.284 
GNNExp vs Combined 3.2±0.9 4.0±0.8 0.78±0.9 0.008* 
GraphXAIN vs Combined 3.6±1.0 4.0±0.8 0.42±1.24 0.541 

pants’ ratings do not differ between the presented scenarios represent ing different 
graph p redictive tasks.

Although the sample size is modest, the survey findings demonstrate that 
GraphXAIN consistently outpe rforms the current state-of-the-art graph e xpla-
nation method [47], serving as a valuable addition to improve understanding, 
trust, insightfulness, satisfaction, confidence, convincingness, communicability, 
and usability.
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7 Conclusion and Future Work 

In this work, we introduced GraphXAIN, a novel method that transforms techni-
cal subgraph and feature importance explanations into coherent natural language 
narrative explanations of Graph Neural Network’s (GNN) prediction. GraphX-
AIN is a graph data-agnostic, model-agnostic and explainer-agnostic approach 
that complements traditional graph explainer outputs with the use of Large Lan-
guage Models (LLMs). Results of LLM-generated narrative explanations for both 
classification and regression tasks on real-world datasets demonstrate that these 
narratives provide clearer insight into the predictive p rocesses of GNN models, 
making them more accessible to practitioners. GraphXAIN method addresses 
a significant gap in the current Explainable AI (XAI) field by moving beyond 
technical a nd descriptive outputs by offering intuitive, story-like explanations
that enhance comprehension and trust.

A user study conducted among practitioners highlights the advantages of 
GraphXAIN over t he current state-of-the-art graph XAI metho d, GNNExplainer
[47]. At the α =  0.05 level, the GraphXAIN significantly improves the explana-
tion’s understandability, satisfaction, convincingness, and suitability for commu-
nicating the model’s predictions. Furthermore, when the GraphXAIN narrative 
is combined with the GNNExplainer output, the all eight measured dimensions 
of the explanation (understandability, trustworthiness, insightfulness, satisfac-
tion, confidence, convincingness, communicability, and future usability) show 
significant improvements compared to using GNNExplainer alone, indicating 
that integration of the XAI Narratives with subgraph and feature importance 
enhances user’s perception of the explanation. Moreover, in seven out of eight 
measured dimensions, the preferences of GraphXAIN explanations alone do not 
differ from the combined approach (subgraph, feature importance and the nar-
rative), thereby even more strengthening the power and need for the narrative 
explanations. Notably, 95% of participants indicate that GraphXAIN is a valu-
able addition to the e xplanation of GNN predictions. The study result indicates 
that explanatory narratives, alone or as a compliment to technical outputs of 
graph XAI methods, result in the improvement of the general perception of the 
explanations. Therefore, GraphXAIN may offer a solution not only for AI prac-
titioners but also for domain experts and end users in fields where transparency
and understanding are necessary, such as medicine (for clinicians and patients)
or finance (for credit analysts and loan applicants).

In future work, the use of quantitative metrics will be essential for a more 
thorough and objective assessment of the quality of generated narrative expla-
nations, as these narratives may happen to be unfaithful s ince LLMs are prone
to hallucinations [8, 19, 49]. In particular, an assessment of the prevalence and 
impact of errors, in conjunction with the completeness and soundness metrics 
introduced in [49] and the faithfulness and assumptions metrics p roposed in 
[19], could measure the alignment of the generated narratives with the original 
explanations. The issue of hallucinations can also be addressed by integrating 
our approach w ith retrieval-augmented generation (RAG) methods designed for 
graphs such as G-Retriever [14]. G-Retriever uses a RAG approach on textual
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graphs, ensuring that the answers are retrieved from the original graph, which 
decreases the hallucination and leads to a more robust response. However, we 
also emphasize that the central aim of this study is to demonstrate the strength 
and feasibility of LLM-generated narratives for graphs as an explanation method 
and leave their further optimization for future work. 
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A Examples of XAI Explanations in Natural Language 
for GNN Models 

A.1 GraphXAIN 

In this section, we present more examples generated b y the GraphXAIN m ethod.
Figure 4a and Fig. 4b provide further insight into the interpretability of the 
GNN’s model prediction by presenting coherence narratives, which demonstrates 
the GraphXAIN’s consistency across a range of randomly sampled nodes for 
both node classification and node regression tasks. The examples showcase the 
explanatory depth of GraphXAINs in capturing the reasoning behind the GNN
model’s predictions.

In the truncated subgraph visualisation presented in Fig. 4a, GNNExplainer 
is instructed to reduce the subgraph to the seven most influential nodes according 
to the edges’ weight importance. As a result, this process occasionally results in 
disconnected nodes within the truncated subgraph, as GNNExplainer prioritises 
node importance over connectivity in the simplified view. Consequently, these 
subgraph representations can appear more unintuitive or fragmented. A comple-
mentary natural language narrative is therefore argued to be essential to bridge 
these interpretative gaps, providing end users with a coherent understanding of 
the GNN model’s final prediction, regardless of the connectivity of the subgraph.

A.2 Natural Language Counterfactual Explanations for Graphs 
Using Large Language Models (Giorgi et al., 2024) 

This section presents three examples of textual explanations prop osed by Giorgi 
et al. [10] for counterfactual explanations of node classification using a GNN

https://github.com/ADMAntwerp/GraphXAIN
https://github.com/ADMAntwerp/GraphXAIN
https://github.com/ADMAntwerp/GraphXAIN
https://github.com/ADMAntwerp/GraphXAIN
https://github.com/ADMAntwerp/GraphXAIN
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Fig. 4. LLM-generated GraphXAINs (bottom parts of the i mages) complements 
GNNExplainer’s [47] subgraphs and feature importance outputs (top parts) in explain-
ing the GNN’s predictions.
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model trained on the Cora dataset. The Cora dataset is a citation network 
dataset in which nodes represent research papers, and edges denote citation 
relationships, with the task being to classify each paper into one of seven cate-
gories. Since the authors do not provide any output examples in their article, the 
examples presented below are taken from the article’s official GitHub repository. 
These examples are not selectively chosen but represent the first three expla-
nations generated by the best-performing model, as reported in the paper and
available in the article’s official GitHub repository4: 

– “The target node (node 15) was originally classified as ‘Probabilistic_Meth-
ods’ in the factual graph. However, in the counterfactual graph, the classi-
fication changes to ‘Reinforcement_Learning’. Despite the features of node 
15 remaining identical, the classification shifts due to changes in the clas-
sification of its neighboring nodes. Specifically, nodes 4 and 12, which were 
previously classified as ‘Probabilistic_Methods’, are now reclassified as ‘Rein-
forcement_Learning’. This change in the neighborhood context strongly influ-
ences the classification of node 15, leading to its reclassification as ‘Reinforce-
ment_Learning’. The only neighb or that remains consistent is node 19, but 
its influence is outweighed by the changes in nodes 4 and 12. Thus, the pri-
mary factor driving the change in classification is the altered c lassification of
neighboring nodes, rather than any intrinsic change in the features of node
15 itself.” (Line 4)

– “In the factual scenario, Node 3 is classified as ‘Theory’ and is connected to 
Nodes 0, 9, 10, and 13. In the counterfactual scenario, Node 3 is reclassified as 
‘Case_Based’ and is only connected to Node 10. The change in classification 
is influenced by the loss of connections to Nodes 0, 9, and 13, and the retention 
of a connection to Node 10, which is classified as ‘Case_Based’.” (Line 8)

– “In the factual scenario, Node 0 is classified as ‘Theory’ and is connected to 
both Nodes 1 and 4. Node 1 shares similar features with Node 0 and is also 
classified as ‘Theory’. However, Node 4, which is classified as ‘Case_Based’, 
introduces a conflicting influence. In the counterfactual scenario, the connec-
tion to Node 4 is removed, isolating Node 0 from the ‘Case_Based’ influence. 
As a result, Node 0 is reclassified as ‘Case_Based’, reflecting the reduced 
influence of ‘Theory’ nod es and the absence of conflicting ‘Case_Based’ con-
nections. This counterfactual explanation highlights how the removal of a sin-
gle connection can significantly alter the classification of a node, providing
insight into the decision-making process of the graph-based model.” (Line 12)

According to Dahlstrom [ 6] and our proposed definitions, these examples 
constitute an XAI Description rather than an XAI Narrative.

4 https://github.com/flaat/llm-graph-cf/blob/main/data/results/cf-gnn_Qwen2.5-
14B-Instruct-GPTQ-Int4_cora_Response.json. 

https://github.com/flaat/llm-graph-cf/blob/main/data/results/cf-gnn_Qwen2.5-14B-Instruct-GPTQ-Int4_cora_Response.json
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https://github.com/flaat/llm-graph-cf/blob/main/data/results/cf-gnn_Qwen2.5-14B-Instruct-GPTQ-Int4_cora_Response.json
https://github.com/flaat/llm-graph-cf/blob/main/data/results/cf-gnn_Qwen2.5-14B-Instruct-GPTQ-Int4_cora_Response.json
https://github.com/flaat/llm-graph-cf/blob/main/data/results/cf-gnn_Qwen2.5-14B-Instruct-GPTQ-Int4_cora_Response.json
https://github.com/flaat/llm-graph-cf/blob/main/data/results/cf-gnn_Qwen2.5-14B-Instruct-GPTQ-Int4_cora_Response.json
https://github.com/flaat/llm-graph-cf/blob/main/data/results/cf-gnn_Qwen2.5-14B-Instruct-GPTQ-Int4_cora_Response.json
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A.3 Explaining Graph Neural Networks with Large Language 
Models: A Counterfactual Perspective for Molecular Property 
Prediction (He et al., 2024) 

Presented below are three examples of textual explanations generated by the 
method proposed by He et al. [15] for counterfactual explanations in the context 
of molecular property prediction using a Graph Neural Network (GNN) model 
trained on a chemical molecule dataset. This dataset comprises molecular struc-
tures in which nodes represent atoms and edges signify chemical bonds, with the 
primary ob jective being the prediction of specific molecular properties. These 
three examples are the only i nstances provided by the authors in their article
[15]: 

– “This molecule contains a cyclohexane ring, a dithiane ring, a ketone group, 
and a thiocarbonyl group, in which the ketone gro up may be the most influen-
tial for AIDS t reatment.” (Page 3, Figure 2)

– “The molecule contains hydroxylamine, cyclohexane, sulfone, and thioether 
functional groups, in which hydroxylamine may be the most influential for 
AIDS treatment.” (P age 4, Figure 4)

– “This molecule contains a cyclohexane ring, a dithiane ring, a ketone group, 
and a hydrazine group, in which the hydrazine gro up may be the most influ-
ential for AIDS t reatment.” (Page 6, Figure 5)

Again, the explanations presented by He et al. [15] are delivered in a context-
free and fact-based manner without illustrating underlying relationships or 
cause-and-effect relationships, thereb y categorising them as XAI Descriptions 
rather than XAI Narratives.

A.4 TAGExplainer: Narrating Graph Explanations 
for Text-Attributed Graph Learning Models (Pan et al., 2024) 

Presented below are three instances of textual explanations propo sed by Pan et 
al. [36] for Text-Attributed Graph (TAG) learning models using their TAGEx-
plainer method. The authors applied TAGExplainer to the Cora, DBLP, and 
Book-History datasets to generate natural language explanations that incorpo-
rate elements of narrative communication. These three e xamples are the only 
instances provided by the authors in their article, each corresponding to the
aforementioned datasets, respectively [36]: 

– “The classification of the ROOT node into the ‘Reinforcement Learning’ cat-
egory can be explained as follows:
• ROOT mentions reinforcement learning, learning algorithms, and hier-

archical control structures indicating that it focuses on reinforcement 
learning methodologies and their applications. - Node-1 discusses transfer 
learning in reinforcement learning, highlighting how learning agents can
adapt to multiple tasks.
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• Node-1.1–Node-1.8 provide more context about various reinforcement 
learning architectures and approaches, including modular Q-learning and 
hierarchical reinforcement learning.

• Node-2 focuses on learning in continuous domains with delayed rewards, a 
pertinent aspect of reinforcement learning, particularly in real-world appli-
cations.

• Node-2.1 discusses generalization in reinforcement learning using neural 
networks, which is relevant but less directly tied to the prediction.

• Node-3: This node discusses the need for hierarchies within control sys-
tems and the improvements in nested Q-le arning, which are highly relevant 
to the classification label.
In summary, the classification of the ROOT node into ‘Reinforcement 
Learning’ is well-supported by the strong presence of key reinforcement 
learning terms within the node itself and its direct connections to Nodes 
1, 2 and 3, which also focus on reinforcement learning metho dologies.”
(Page 10, Figure 4b)

– “The classification of the ROOT node into the ‘Cloud computing’ category 
can be explained as follows:
• ROOT: The presence of keywords such as ‘user’, ‘interfaces’, and ‘service-

oriented approach’ indicates that the paper is focused on topics central to 
cloud computing, particularly how users interact with cloud services and 
the modular nature of these services.

• Node-1: While Node 1 discusses ‘graphical user interfaces’ and ‘domain-
specific languages’, which are relevant to cloud computing, it is slightly 
less directly related to the core concepts of cloud computing compared to
the ROOT node.

• Node-1.1: This node emphasizes ‘user interface requirements’ and 
‘requirements analysis’, which are crucial for developing effective cloud 
applications that meet user needs.

• Node-1.2: This node focuses on ‘stereotypes’ and ‘domain-specific terms’, 
highlighting the importance of understanding user interactions and the 
c ontext in which cloud services a re utilized.
In summary, the classification of the ROOT node into ‘Cloud computing’ 
is well-supported by the presence of key terms related to user interaction 
and service-oriented architectures. The direct connection to Node 1, which 
discusses user interfaces, further reinforces this classification, while the 
additional insights from Nodes 1.1 and 1.2 emphasize the importance of 
user-centric design i n cloud computing applications.” (Page 16, Figure 6b)

– “The classification of the ROOT node into the ‘Europe’ category can be 
explained as follows:
• ROOT: The presence of keywords such as ‘cambodia’, ‘year’, and ‘transla-

tion’ indicates a context that may involve historical or cultural discussions 
relevant to Europe, particularly in terms of colonial history and cultural 
exchanges. The mention of ‘english’ and ‘french’ highlights the linguistic 
dimensions that are significant in European contexts.
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• Node-1: This node discusses Michael D. Coe, an anthropologist specializ-
ing in Southeast Asia and the Khmer civilization. While it provides his-
torical context, the focus on Southeast Asia may dilute its direct relevance 
to Europe. However, the terms ‘civilizations’ and ‘ancient’ could connect 
to European historical interests.

• Node-2: This node is more directly relevant as it discusses the destruction 
of Cambodia during the Nixon-Kissinger era, a significant historical event 
that involved European powers’ interests in Southeast Asia. The emphasis 
on ‘destruction’ and ‘cambodia’ alongside key historical figures suggests a 
critical perspective on the geopolitical dynamics involving European coun-
tries.
In summary, the classification of the ROOT node into ‘Europe’ is sup-
ported by the presence of key terms that indicate a historical and cultural 
context relevant to Europe an interests, particularly through the stronger 
connection found in Node-2.” (Page 16, Figure 7b)

The TAGExplainer approach applies to text-attributed graphs only and does 
not pro vide an explanatory subgraph or feature importance scores.
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Abstract. A scoring list is a sequence of simple decision models, where 
features are incrementally evaluated and scores of satisfied features are 
summed to be used for threshold-based decisions or for calculating class 
probabilities. In this paper, we introduce a new multi-class variant and 
compare it against previously introduced binary classification variants for 
incremental decisions, as well as multi-class variants for classical decision-
making using all features. Furthermore, we introduce a new multi-class 
dataset to assess collaborative human-machine decision-making, which is
suitable for user studies with non-expert participants. We demonstrate
the usefulness of our approach by evaluating predictive performance and
compared to the performance of participants without AI help.

Keywords: machine learning · decision support · scoring systems ·
user study

1 Introduction 

Machine Learning (ML) methods have achieved remarkable accomplishments 
in various application domains. While complex and powerful methods like deep 
neural networks offer state-of-the-art predictive accuracy, they lack t ransparency
and inherent explainability, which are key requirements for high-stakes decision-
making [3]. In general, there are two competing approaches navigating the 
accuracy-explainability trade-off in ML [2, 4]: On the one hand, complex models 
may be accompanied by simplistic post-hoc explanation methods like LIME [39] 
and SHAP [28]. These can be applied to any predictive and complex model and 
help mitigate some lack of transparency by explaining individual predictions.
Yet, they fail to provide full transparency.
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An alternative approach is the use of less complex models that are genuinely 
interpretable, also known as ante-hoc explanation. Corresponding models have 
a restricted, simple structure that humans can inspect, offering a global under-
standing of how different features influence the model predictions without the
need for additional explanation. This inherent property of explainability makes
them an appropriate choice for decision support in high-stakes domains [42]  when  
human understanding and a ccountability are required.

One of the most prominent model classes of this kind are scoring s ystems
with a long-standing tradition in clinical decision-making [38]. Simply put, they 
assign an integer-valued score to each (binary) feature, and a decision is made by 
comparing the sum of all scores for present features to a threshold. Recently, the
need for situation-adapted decision models of such kind has been addressed with
Probabilistic Scoring Lists (PSL) [15], for which a prediction can be made with 
any prefix of features in an ordered list. This allows for adjusting the decision 
process by stopping the feature acquisition once a prediction can be made with 
sufficient confidence for the decision context at hand. A PSL is a simple model
that can be handled by lay persons [19]. 

While these methods have shown promising performance for the binary case, 
they have not yet been adapted to polychotomous decision situations in which 
three or more options are considered. However, many real-world applications 
are multi-class problems, at least if there is more than one option available (in 
addition to “do nothing”). For instance, in many medical situations, there is
more than one treatment available in addition to “do nothing”, which makes this
scenario already a multi-class problem.

In this paper, we introduce Multi-class Scoring Lists (MSL), an extension of 
PSL to accommodate multi-class predictions. We evaluate the MSL’s predictive 
performance against various baselines on benchmark datasets, and we observe 
a favorable compromise between accuracy and interpretability. Additionally, we 
introduce a new dataset rooted in the sports domain that is particularly well-
suited for studies on human-AI interaction. To this end, we have conducted a
first study to compare participants’ predictive performance on the dataset with
the introduced model class.

2 Related Work 

Scoring systems are widely utilized in medical applications, including the assess-
ment of atrial fibrillation [27], pancreatitis [32], pneumonia [21], strokes [12], and 
infants [52]. While their simplistic architecture may result in reduced accuracy, 
their transparency and ease of use allow for application without computational 
support. Additionally, such transparency and interpretability can lead to higher 
acceptance. However, the potential increase in cognitive load compared to so-
called “black-box” decision support systems should be considered to avoid causing
the opposite effect [29, 36]. 

Traditionally, scoring systems have been manually designed based on domain 
expertise. However, recent advancements have introduced data-driven methods,
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such as Supersparse Linear Integer Models (SLIM) and RiskSLIM, whic h employ
mixed-integer programming (MIP) [46, 47], as well as Interval Co ded Scoring
(ICS) [5, 7, 8]. 

Although these models have demonstrated effectiveness in binary decision-
making, there remains a need for scoring systems capable of handling multi-class 
classification. Established scoring systems are either considering the pure binary
setting, like the PERC rule [22], or scenarios in which multiple classes exhibit 
an ordinal structure, most notably risk classes in the clinical setting, e.g., the
SAPS or APACHE scores [23, 30]. In the first case, the total score is compared 
to a threshold to make the decision, while in the latter case, the risk classes 
correspond to predefined intervals, and membership is determined by checking 
in which interval the total score falls. However, little attention has been paid 
to the m ulti-class setting with nominal categories, and only a few proposed
methods exist. Rouzot et al. propose a one-versus-rest decomposition on top of
SLIM for solving multi-class classification problems [41]. While this is a natural 
approach to transforming a binary into a multi-class classifier, the resulting 
decomposition has one classifier p er class. The more recent approach, MISS,
uses a multinomial approach instead [13]. Many existing multi-class approaches 
leverage mixed-integer nonlinear programming for model learning [13, 41]. 

Despite their potential, both binary and multi-class scoring models face a crit-
ical limitation: they become inapplicable when essential feature data is unavail-
able. This challenge arises in scenarios where data acquisition i s costly or when
decision-makers operate under time constraints, limiting the available informa-
tion [6, 45]. 

To address these constraints, adaptive decision support frameworks are 
required. One approach involves decision lists, which apply predefined rules for 
prediction. If no applicable rule is found, the decision-making process is deferred
to the next rule in the sequence [40]. Heid et al. [18] propose a framework of 
complexity-ordered catalogues of models, where each successive model incorpo-
rates an additional rule compared to its predecessor, along with a methodol-
ogy for learning these models. Expanding on this concept, probabilistic scoring
lists have been introduced [15]. These systems, structured as sequentially depen-
dent scoring models, function similarly to decision lists but pro vide probabilistic
rather than deterministic predictions, akin to RiskSLIM.

3 Multi-class Scoring List 

We consider a decision-making scenario in which decisions have to be made for 
varying contexts that are specified in terms of binary features F = {f1,  .  .  .  fK}. 
Moreover, decisions are incremental in the sense that the concrete values xi ∈ 
{0, 1} of these features are acquired in a stagewise fashion, one after another, in 
a prespecified order. At each of these stages 1, . . . , K, the decision-maker (DM)
has the option to make a decision immediately or gather additional evidence in
terms of further feature values, until all features are exhausted. When learning
an arbitrary set of classifiers, e.g., logistic regression models, those models do
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not share any parameters, which makes it impossible to carry over partial results 
from previous stages. Decision lists on the other hand are a joint model and can
also be interpreted as a sequence of models with coherence constraints.

The multi-class scoring list (MSL) is a decision support model tailored to 
this scenario and is formally defined as follows:

Definition 1. A multi-class scoring list (MSL) over candidate features F 
and score set S  ⊂  Z is a triple h = 〈F, S, b〉,  where  F =  (f1,  .  .  .  ,  fK) is a list 
of (distinct) features from F , S ∈  SC×K is a score matrix and b ∈  SC is a 
bias term, wher e Y is the set of classes and C = |Y| is the number of elements
therein.

At prediction time, stagewise decisions are formed in the following manner.

– Let s(k) =  (s (k) 1 ,  .  .  .  ,  s  (k) C ) denote the cumulative score vector at stage k,  with  
s (k) c the score of class c. At stage k =  0, where no features have been evaluated 
yet, the s cores are formed by the bias term

s(0) = b

that can be interpreted as a general tendency towards a certain decision when
no information is available.

– For subsequent stages k  >  0, the cumulative scores are given by 

s(k) c = s(k−1) 
c + Sc,k · xk, ∀ c ∈  Y  

where Sc,k is the s core associated with class c at stage k (feature fk) in the
score matrix S.

– After computing the cumulative class scores, the prediction for stage k can 
be conducted by computing the argmax set of these scores

ŷ = argmax
c∈Y

s(k)c (1) 

Note that the argmax of the cumulative scores may indeed be ambiguous due 
to the discrete nature of the scores. Hence, the prediction ŷ can be set-valued, 
if several classes are scored maximally lik ely. This is a natural way for the
predictor to express its uncertainty about a predictive outcome [31]. 

– Another practical interpretation of the cumulative class scores s (k) c is to use 
them as logits for the softmax function. This way, we can obtain probabilistic 
predictions

p̂c = 
exp 

(

s
(k)
c

)

∑

c′∈Y exp
(

s
(k)
c′

) , ∀ c ∈ Y (2) 

where p̂c denotes the estimated probability for class c. Therefore, multiple 
maximal scores in the discrete decision scenario will be converted into equal
predictive probabilities in the probabilistic setting.
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– At every stage k, the decision maker can either exit with decision (1)  or  
continue the process and acquire the next feature fk+1. This question will 
mainly be answered on the basis of the probability estimates (2), which pro-
vides information about the confidence in the decision (1). 

Table 1. Example of a multi-class scoring list for football player classification. The 
numerical features have been binarized through thresholding (The binarization thresh-
olds are as follows: Many shots > 0.55; Long Playing Time > 78.8; High Pass Success 
Rate > 74.5; Many Aerial Duels Won/Match > 0.65; Tall Player > 183.5.). The m odel
was trained using a score set {0, ±1, ±2, ±3} and L2 regularization of 10−6.

Feature Forward Midfielder Defender Goalkeeper

〈Bias〉 0 1 1 0 
Many Shots 2 2 0 –3 
Long Playing Time –3 –1 2 3 
High Pass Success Rate –1 1 1 –1 
Many Aerial Duels Won/Match 2 0 1 -3 
Tall Player –1 –1 –1 2 

Table 1 shows an exemplary MSL for classifying positions of football players. 
The first row corresponds to the bias term: Here, the class forward and the class 
goalkeeper have a score of 0, while midfielder and defender have a score of 1. 
These bias scores, which are available before acquiring any feature values, hint 
at the marginal distribution of classes. Overall, there are more midfielders and 
defenders in a team than there are goalkeepers and forwards. The first feature 
acquired is the average number of shots per match (second row). This feature 
carries positive evidence for the classes forwar d and midfielder, no evidence for
defender, and strong negative evidence for goalkeeper. Again, this is intuitively
reasonable, as most shots are performed by players in offensive positions and
definitely not by goalkeepers. This can be continued until all features have been
consumed, and the final prediction is formed.

The MSLs score set S is specified in advance according to the DMs pref-
erences and typically comprises a set of small integers reflecting different lev-
els of “evidence” in favor or against a decision. For example, the score set 
S = {0, ±1, ±2, ±3} distinguishes three levels of evidence: weak, medium, and 
strong. Assigning a score of +1 to a feature then means that the presence of 
that feature provides weak evidence in favor of a decision, whereas a score of −3 
means strong evidence against that decision. Restricting the magnitude and num-
ber of admissible scores ensures that the resulting model is cognitively tractable
for a human expert. The influence of an individual feature can be immediately
understood and communicated, and in principle, predictions could even be made
without the help of computing devices.
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3.1 Connections to Other Interpretable Probabilistic Classifiers 

Given the simple and inherently interpretable structure of MSL, one may won-
der how it distinguishes itself from other simple probabilistic classifiers. Most 
notably, MSL resembles a multinomial logistic regression (MLR) with two major 
differences: First, MLR has unbounded real-valued coefficients which are harder 
to understand t han integer-valued scores that stem from a small, predefined
score-set. Secondly, MLR does not provide stagewise predictions but uses the
full feature set for all predictions.

Another natural connection can be drawn to the Naïve Bayes (NB) classifier, 
which models the posterior probability of class c given a feature vector x as 

P(c | x)  =  
P(c)

∏K 
k=1 P(xk | c) 
P(x) 

. 

Taking the logarithm on both sides yields

logP(c | x) = logP(c) +
K

∑

k=1

logP(xk | c) − logP(x) (3) 

which shows the relation to MSL. The log P(c) correspond to the bias term 
b and the log-likelihoods log P(xk | c) in the sum correspond to the stagewise 
class scores s (k) c .  As  P (x) is constant across all classes, it only serves to normalize
the values to form a valid probability distribution over class labels and can be
neglected.

Unlike MSL and MLR, NB can make predictions with any subset of fea-
tures, even without adhering to a predefined order, making it an interesting 
choice for situated decision support. However, there are again two major disad-
vantages compared to MSL: The log-likelihoods in NB are not restricted to a 
predefined score set, yielding the same disadvantages regarding score complexity 
as MLR. Additionally, the probability estimates in NB are built upon the naïve
assumption of conditional independence and are formed by normalization. MSL
can implicitly model feature dependencies by selecting scores that reflect the
combined influence of multiple correlated features on the predicted probability.

3.2 Learning Multi-Class Scoring Lists 

Consider a standard supervised learning setting in which the data generating 
process is characterized by a joint probability distribution P(x,  y) over X  ×  Y. 
Given a loss function �(ŷ, y) that quantifies how different a prediction ŷ is from 
the  true  outcome  y, the risk of a classifier h : X −→ Y is defined as

R(h) = E
[

� (h(x), y)
]

=
∫

� (h(x), y) dP(x, y). (4) 

As the distribution P(x,  y) is unknown, the true risk is substituted with the 
empirical risk on observed training data Dtrain = {(x,  y)}N 

n=1:

Remp(h) =
1
N

N
∑

n=1

�
(

h(xn ), yn
)
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In our listwise scenario, we are not considering a single model, but rather a 
sequence of models h =  (h1,  .  .  .  ,  hK) ∈  HK ,  where  H is an underlying hypoth-
esis space (in our case the set of scoring systems). The learning objective is to
find such a sequence of models, or decision list, that has minimal global risk
throughout the stages, i.e.,

h∗ ∈ arg min 
h∈H 

R(h1) ⊕ R(h2) ⊕  · · ·  ⊕ R(hK) , (5) 

where ⊕ is a s uitable aggregation operator1 (e.g., the s um).
It is important to note that an optimal decision list (5) does not necessarily 

consist of elements hk that have minimal stagewise risk, as the stage-optimal 
models may not constitute a valid MSL due to conflicting feature selections and 
score assignments. Hence, the problem is not decomposable in the sense that
we could simply identify optimal models for the individual stages and combine
them into a decision list.

In the following, we propose a learning algorithm for inferring MSLs from 
training data Dtrain. The learning algorithm has to identify three components, 
that is, the order of features F , the score matrix S,  and  the  bias  term  b. Note 
that this search space is rather large, precisely, the number of candidate MSLs 
for a score set S, K features, and C classes is 

K! ·  |S|(C·(K+1)) , 

as it consists of all possible feature permutations and score assignments. Needless 
to say, an exhaustive search in such a huge s pace is not feasible. Thus, a heuristic
approach has to be employed, that does not consider all candidate solutions. A
natural strategy is to build the model bottom-up and stage by stage, starting
with an empty list, first identifying the bias term, and then adding locally optimal
features and score assignments for each stage consecutively.

An illustration of such a greedy forward selection procedure is given in Algo-
rithm 1. The function evaluate is used to compute a loss value for candidate 
solutions, fully specified through F , S and b, given the training data Dtrain.  The  
core of the greedy forward selection is the loop starting in line 2, that continues 
until all a vailable features have been added to the MSL. In the first iteration,
the bias term b is identified by considering all possible b ∈ SC .

Afterwards, the subsequent stages are constructed: In each iteration, the 
locally optimal extension of the current MSL is identified by selecting the feature 
f ∈ F̄ and corresponding score vector s ∈  SC that minimizes the loss achieved 
on the training data in line 6.  As  there  are  |S|C many possible score vectors and 
| ̄F | many remaining features, this step takes |S|C · |F̄ | many calls of evaluate.
In the beginning, we start with the full feature set and have |F̄ | = K, which is

1 The learning algorithm we propose below is of heuristic (greedy) nature and does not 
directly optimize a specific global risk. Therefore, the concrete form of ⊕ is not that 
important. The essential p roperty assumed by the algorithm is the monotonicity of
⊕, which is naturally fulfilled by all meaningful candidates.
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reduced by 1 in each iteration, as features are being added to the MSL. This 
results in 

|S|C + 
K(K +  1)  

2
·  |S|C ∈  O(K2 ·  |S|C) 

overall calls of evaluate for identifying the entire MSL including the bias term.
The loss function � can be instantiated with any meaningful loss that com-

pares  a  class  label  y with probability estimates. We cho ose the well-established
cross-entropy loss

�(p̂, y) = − log p̂y , (6) 

where p̂y is the predicted probability for the true c lass label y.
To further trade-off interpretability and performance, an L2-loss of all scores 

can be added to the cross-entropy loss as a regularizer. This yields models with
even smaller scores with often little to no expense in performance.

4 Football Player Dataset 

Along with the MSL, we introduce a dataset containing the career statistics of 
football players and their position (goalkeeper, defender, midfielder,  and  forward) 
as the classification label. Although a classification of players to their positions 
may not look lik e a very important problem, it provides distinct advantages in
experimental human-(X)AI interaction research.

In human-(X)AI interaction experiments, participants are often assigned clas-
sification tasks drawn from various datasets and task types, such as quiz question
answering [10], and playing chess moves [9]. While several well-known tabular 
datasets exist for binary classification and regression in h uman-(X)AI experi-
ments (e.g., income [24], recidivism [49], or house pricing [43]), there is a lack 
of comparable datasets for multi-class classification [26]. This gap is partly due 
to the common practice of recruiting lay participants—often via crowdsourcing 
platforms lik e Prolific—which necessitates easy understandable tasks to ensure
valid results.

In our view, popular multi-class datasets in the machine learning literature,
such as iris [11], wine [1], and heart [20], do not fully meet this criterion and 
therefore cannot be as readily adapted for human-(X)AI research as the afore-
mentioned binary and regression datasets. Football, as the world’s most popular 
sport, offers a clear advantage in this context. Its universal app eal ensures that a
diverse participant pool is already familiar with the game, enhancing both task
engagement and the reliability of study outcomes.

Our raw dataset comprises 5,449 active professional football play ers from
eight professional leagues2. It includes all players who were on their teams’ ros-
ters at the time of data collection. The dataset contains performance statistics 
spanning each player’s entire career up to the time the dataset was compiled

2 England and Germany (1st and 2nd divisions), and the top-tier (1st division) leagues 
in Spain, France, Italy, P ortugal, the Netherlands, Russia, Turkey, and the USA.
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Algorithm 1: Greedy MSL 
input : dataset Dtrain , number of classes C, 

set of all features F including the ∅ for the bias term 
the available scores S, loss function � to evaluate a hypothesis 

output : MSL model h 
1 F, S ← (),

[]

# While not all features have been used. For set difference and 
inequality operators we treat F as a set for ease of notation. 

2 while F �= F do 
# In the first iteration compute the bias term 

3 if ∅ /∈ F then 
4 b ← arg minb∈SC

{
evaluate

(
(),

[]
, b

)}

# Select all remaining features 
5 F̄ ←  F  \  F 

# Evaluate remaining features with all comb. of scores per class 

6 f, s ← arg minf ∈ F̄  ,s ∈SC

{
evaluate

(
F ‖ (f ),

[
S 
s

]
, b

)}

7 F ← F ‖ (f ) 

8 S ←
[
S 
s

]

9 return h = 〈F, S, b〉
10 Function evaluate(F, S, b): 
11 L ← 0
12 for (x, y) ∈ Dtrain do
13 xF ← x[F ] /* Select features F of instance x */

# Matrix product of scores and selected features and bias
14 s ← SxF + b
15 p̂ ← softmax(s) /* Softmax probabilities acc. to Eq. 2 */ 
16 L ← L + �(p̂,  y) 
17 return L

(11th November 2024). In addition to basic information such as name, national-
ity, age, height,  and  current team, the dataset provides a variety of performance 
metrics, including the number of matches played, total minutes played, goals, 
assists, yellow and red cards, shots, pass success percentage, aerial duels won 
percentage, and each player’s primary playing position. To o ur knowledge, no
comparable dataset exists. Other publicly available football datasets typically
include information from only a single season or provide fewer performance indi-
cators.

Because some players occupy multiple positions (e.g., central defender or 
defensive midfielder), various approaches to handling such cases are possible. For 
our evaluation, we chose four broad categories—goalkeeper, defender, midfielder,
and forward. Players who could be assigned to more than one of these four
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Fig. 1. Correlation of classes and features in fo otball player dataset.

categories were removed, leading to the exclusion of 1,582 players (29%). An 
additional 256 players (6.6%) were removed due to missing data, resulting in
3,611 players in the cleaned dataset. Figure 1 presents the cross-correlation of 
the classes and features on the dataset.

5 User Study 

We conducted an online user study as a benchmark for the MSL. Our main objec-
tives were to assess how accurately participants perform the classification task 
and gauge the dataset’s comprehensibility. Moreover, to determine the poten-
tial for automated decision support, we wa nted to compare the performance of
human decision-makers with the performance of a data-driven approach, namely
a machine learning model.

We recruited 31 participants through the Prolific platform. Each participant 
was asked to predict the playing positions of football players drawn from our 
dataset. The study included detailed instructions, which were verified through 
comprehension checks. Before making their predictions, participants completed 
four Likert-scale questions assessing their familiarity w ith football. They were
then asked to describe their decision-making process during the classification
tasks, after which they received feedback on their responses.

The study included incentives: participants received a fixed payment of € 2 
and an additional € 0.40 for each correct prediction. Only UK residents with 
English as their native language were eligible to participate. Moreover, partic-
ipants were required to have a Prolific acceptance rate of at least 95% and to
have successfully completed more than 10 prior studies on the platform.



MSL: Multi-class Scoring Lists for Incremental Decision-Making 127

The dataset was adapted specifically for this user study: we included only 
players who had participated in more than 50 games, as those with fewer games 
were particularly difficult to classify during a pretest. This criterion removed 54% 
of the 3,611 players, but the r emaining total of 1,957 players was still sufficient.
Additionally, we included a variable called Man of the Match, which cannot be
published for legal reasons.

Fig. 2. Distribution of participants’ accuracy on the football dataset. The red line 
shows the mean (63%), and the green line s hows the accuracy of the 12th stage of an
MSL model (83%).

The remaining dataset contained 1,957 players, which was then split into 
training and test sets. Only players from the test set were presented to partic-
ipants to allow a fair comparison. Each participant was randomly assigned 10 
pla yers, ensuring the selected positions mirrored the overall class distribution.
The participant were not made aware of this stratification.

Figure 2 shows the distribution of participants’ classification accuracies com-
pared to the MSL. For a fair comparison, the MSL is trained on the training 
data and evaluated on the same test samples as the participants. Their aver-
age accuracy of 63% fell below that of the MSL model, which achieved up to 
83%. These results demonstrate that meaningful classifications are possible from 
humans (crowd-sourced workers), but also that performance can be improved 
through data-driven methods based on machine learning. Pe arson correlation
between accuracy and self-reported football knowledge (r = 0.246, p = 0.165)
suggests that greater familiarity with soccer did not necessarily lead to better
performance, although this may be due to self-selection effects in the study or
insufficient sample size.

Figure 3 further analyses the classification errors with the help of a confusion 
matrix. In general, the participants make less precise decisions, however, many of 
the participants can better judge whether a player plays in the forward position. 
Albeit, this is not due to misclassifications, but is caused by many ties during
prediction. Since the MSL implementation is configured to resolve ties at random,
this yields to sub-par performance for ambiguous decisions. Yet, this is not an
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Fig. 3. Confusion matrices for classifier predictions (left) and participant classifications 
(right). The matrices show the distribution of predicted lab els for each true label, with
row summing to 1.

issue in a decision-support setting, as the classifier will yield both potential 
classes, allo wing the decision maker to disambiguate.

6 Evaluation 

In this section, we provide an evaluation of our newly introduced classifier on 
various datasets including the football player dataset presented in Sect. 4.  The  
detailed experimental setup and implemen tation is publicly available3 as is the 
implementation of the learning algorithm4. 

6.1 Datasets 

To evaluate our classifier, we use well-known binary and multi-class datasets 
from the UCI rep ository in addition to our newly introduced dataset.

Table 2 provides an overview of all used datasets. For all datasets we report 
the entropy with respect to the base of the class count. A uniform class bal-
ance will, therefore, yield and entropy of 1. A dataset with 1:2 class-imbalance 
will yield an entropy of 0.92. The three binary datasets stem from the medi-
cal domain. Note, that the ilp is therefore relatively unbalanced, with signifi-
cantly more positive samples (416) than negative samples (167). The multi-class
datasets include the previously introduced football player dataset as well as one
harder dataset: the customer segmentation dataset, also used in [13]. 

Since the MSL classifier can only work with binary features, all numerical 
features have been binarized by calculating a threshold to minimize the expected 
entropy over the two subsets, similar to splits of a decision stump. Note, that

3 https://github.com/TRR318/pub-msl. 
4 https://github.com/TRR318/scikit-psl. 

https://github.com/TRR318/pub-msl
https://github.com/TRR318/pub-msl
https://github.com/TRR318/pub-msl
https://github.com/TRR318/pub-msl
https://github.com/TRR318/pub-msl
https://github.com/TRR318/pub-msl
https://github.com/TRR318/scikit-psl
https://github.com/TRR318/scikit-psl
https://github.com/TRR318/scikit-psl
https://github.com/TRR318/scikit-psl
https://github.com/TRR318/scikit-psl
https://github.com/TRR318/scikit-psl
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Table 2. Overview of the datasets used in the evaluation. Entropy is calculated to the 
base of the number of classes of the dataset.

Name Classes Instances Features Entropy Task OpenML Ref. 
breast 2 116 9 0.99 Breast cancer 42900 [ 35] 
ilp 2 583 10 0.86 Liver disease 41945 [ 37] 
diabetes 2 768 8 0.93 Diabetes 37 [ 44] 
wine 3 178 13 0.99 Wine origin 187 [ 1] 
player 4 3611 11 0.90 Football player position 46764 ours 
segmentation 4 6665 9 1.00 Customer category [ 48] 

binarization will be problematic if features do not exhibit a monotonic relation-
ship with the target classes. The (close-to) optimal split is selected by employing
a hierarchical search heuristic introduced in [15]. The categorical features in the 
segmentation dataset were one-hot-encoded. The detailed dataset preparation 
can b e found in the experimental repository.

6.2 Setup and Baselines 

To evaluate the out-of-sample performance of the classifiers, all experiments have 
been conducted using Monte Carlo cross-validation (MCCV) with 20 splits where 
2 
3 of the data was used for training and the remainder held back for evaluation. 
The resulting performances have been aggregated and are reported by mean 
performance and its 95% confidence interval. All experiments have been executed 
on a single core of a Intel i7-9750H and parallelized over the folds. The total 
training time of all experiments was more than 40h when parallelized over 12 
cores and mostly dominated by the evaluation of MISS, one of our baselines. All 
MSL instances were learned without regularization and configured with a score
set of {0,±1,±2,±3}. Some metrics, like accuracy, precision, or informedness,
do not rely on probability predictions but on discrete classifications. However,
the discrete nature of MSLs small score set will often yields ties, especially in
earlier stages of the classifier. For example, if only the bias term is evaluated (ref.
Table 1), there might be multiple classes with the same maximal total score. In 
the case of such a set-v alued prediction, we select one of the highest-scoring
classes uniformly at random.

In each evaluation, we train the PSL and MSL models on all features of the 
training dataset. Both classifiers create a decision list, i.e., a sequences of decision 
models for on a nested sequence of features. W e call these models “stages”. All
other baseline models only create single decision models for a specific set of
features. Table 3 provides an overview of the training and evaluation method for 
each stage and the baseline models. In the following paragraphs, we explain in 
detail how those baseline models can be adapted to those stages.

In Sect. 3.1, we have shown the connection to NB. Using only the likelihoods 
P (xk | c) of the features available at stage k, NB can naturally be extended to
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Table 3. Overview of all models used in the evaluation. k is the number of features 
used in the kth stage. modelk is the model at the stage k

Model Training Training features Evaluation per stage Consistent 
PSL global all global ✓ 
MSL global all global ✓ 
NB global all features of MSLk ✓ 
MISS local k features of MISSk ✗ 
LR, RF, XGB local features of MSL k features of MSLk ✗ 

the setting of scoring lists. Similarly to the MSL, the NB classifier is trained on 
all features of the training dataset. At p rediction time, we only use the same
features that the MSL has selected on that stage.

Grzeszczyk et al. [13] introduced learning algorithm for multinomial scoring 
systems. Apart from the fact that miss cannot natively produce decision lists, 
we consider this model closely related to our work. The MISS model at each 
stage was trained with all features but parametrized to use exactly as many fea-
tures as the MSL did on this stage. Note, that this will not create a consistent 
list of models, as selected features and assigned scores can be completely differ-
ent between each model. We have executed MISS with two different timeouts
throughout the experiments. MISS90 and MISS1800 refers to a training timeout
of 90 s, and 30min vice-versa.

Finally, we have selected three additional models as the baseline that have 
been trained and evaluated on the same subset of features that the MSL selected 
on the stage: Logistic Regression (LR), Random Forest (RF), and XGBoost 
(XGB). Overall, we can see that MISS has the largest amount of freedom of
all models with respect to feature selection, as only the number of features is
dictated by the MSLs stage.

To evaluate our model, we rely on two metrics: accuracy (classification 
rate) and expected calibration error (ECE). While the classification rate (frac-
tion of correct predictions) is a standard measure of the correctness of the 
learner’s final (deterministic) decisions, calibration aims to assess the model’s 
probability estimates. Here, we adopt a standard notion of classifier calibra-
tion called confidence-calibration: A probabilistic classifier producing predictions 
p̂(x)  =  (p̂1(x),  .  .  .  ,  ̂pC(x)) is (confidence-)calibrated, if 

P
(

y = arg max 
i 

p̂i(x) | max 
i 

p̂i(x)  =  α
)

= α 

for all α ∈ [0, 1]. In words, if the model reports α-confidence in its decision, i.e., 
the probability predicted for the (presumably) most probable class is α, then this
decision is indeed correct with probability α. For example, among all decisions
for which the model reports a confidence of 80%, indeed 80% of the cases are
correct. While this notion of calibration can be criticized (e.g., because it does
not condition on the instance x itself), it does appear useful from the point of
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view of explainability and informed decision-making. In particular, it provides 
reasonable support for the stopping condition: A calibrated confidence at stage 
k of the decision process provides the decision maker with a clear idea of how
safe or risky it might be to stop and make a final decision at that stage.

Practically, as ground-truth probabilities cannot be observed in the data, 
the calibration of a model is measured in terms of the expected calibration error 
(ECE), which is based on the partitioning of the unit interval in to a set of bins
(intervals) B1, . . . , Bm. Formally, ECE is then defined as follows [14]: 

ECE = 
m

∑

j=1 

|Bj | 
N 

|acc(Bj) − conf(Bj)| , (7) 

where N is the number of data points, |Bj | is the number of points falling in 
bin Bj ,  acc(Bj) is the fraction of points in bin Bj for which the model predicted 
correctly (i.e., the accuracy in that bin), and conf(Bj) the average confidence 
reported by the model for points in Bj . We rely on the implementation of Kumar
et al. for an unbiased estimate of the ECE [25]. 

6.3 Classification Accuracy 

Binary classification problems can be interpreted in two ways: Either as the 
presence of absence of the positive label or as a genuine two class problem. This 
allows comparing the PSL model, which can only make predictions towards the 
positive class and the MSL which collects evidence towards all alternative classes.
Recall, that Naïve Bayes and MSL operate on the same features at prediction
time.

Fig. 4. Classifier accuracy across different stages for all binary datasets. The shaded 
regions represent confidence intervals of the mean.

Overall, the predictive performance of the compared classifiers yield mixed 
results on the binary datasets as seen in Fig. 4. While MISS performes good 
on the breast and diabetes dataset it exhibits poor accuracy on the unbal-
anced ilp dataset. MSL performes generally sligtly worse than the PSL which is
particularly tuned for binary classification problems. On the particularly small



132 S. Heid et al.

breast dataset 20 MCCV splits appear to have insufficient statistical power to
clearly distinguish classifiers performance.

In the multi class setting, we cannot compare to the PSL. Hence, we add 
multinomial logistic regression and two less interpretable decision models (RF,
XGB).

Fig. 5. Classifier accuracy across different stages for all multi-class datasets. The 
shaded regions represent confidence intervals of the mean.

Figure 5 shows the accuracy of the classifiers across the datasets sorted by 
sample size. While the MSL performance is worse in general, it must be noted 
that the MSL and NB construct one list of models that are consistent to each 
other: Feature subsets form a nested sequence, and the score assigned to a feature
remains constant across stages. This is arguably important from an interpretabil-
ity point of view [18]. The remaining classifiers can create different models for 
each stage, thereby compromising interpretability. While LR, RF, and XGB 
at least use the same features that the MSL uses, MISS will only use the same 
number of features. The parametrizations across those models are not consistent. 
Still, the MSL performs similarly well to the other classifiers. The performance o f
MISS declines on the largest dataset (segmentation) as more and more features
become available. This can only be explained by the 30min timeout, meaning
the models still have a large optimality gap.

6.4 Probability Calibration of the Classifier 

In this section we analyze the classifiers probability calibration against t he same
baselines used in the previous chapter.

Figure 6 shows that all classifiers provide fairly calibrated probability esti-
mates, except for the Naïve Bayes classifier, which is known to be a good classifier
but a sub-par probability estimator [51]. 

On the multi-class datasets (ref. Figure 7) MISS performs slightly worse when 
only little features are available. In absolute terms, most models exhibit low 
calibration errors across all stages. The strikingly bad performance of MISS on
the segmentation can again be explained by the premature terminated training
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Fig. 6. Expected Calibration Error across different stages for three binary datasets. The 
plots compare the calibration performance of four models: PSL, MSL, Naïve B ayes, and
MISS1800. The shaded regions represent confidence intervals.

Fig. 7. Expected Calibration Error across different stages for all multi-class datasets. 
The plots compare the calibration performance of four models: PSL, MSL, Naïve B ayes,
and MISS1800. The shaded regions represent confidence intervals.

due to timeouts. This can also be seen on the player dataset, which is also 
stopped due to timeouts for stages 8 and following. Fortunately, on this dataset,
only a relatively small optimality gap is retained after exhausting the 30min
training budget.

6.5 Runtime Analysis 

In the previous sections, we have seen mostly competitive performance of the 
MISS classifier. However, particularly on the segmentation dataset, the perfor-
mance was often suboptimal, even though the MISS baseline, was the one with
the most flexibility as it was only constrained regarding the number of features
used.

The MISS classifier is learned by solving a mixed integer program with the 
help of the cplex solver. This can yield provably optimal solutions with respect 
to the loss function and the training data. However, this training method is 
also very costly in terms of training time. This is exacerbated in the scenario of
decision lists, because many decision models have to be learned independently.
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Figure 8 shows the performance of the MSL classifier and two parametriza-
tions of the MISS classifier: one with 90 s and one with 30 min. With only 90 s 
per stage, the performance of MISS already stagnates after 3 features and hardly 
exceeds the performance of the MSL, even though the MSL will additionally 
enforce coherence of the whole decision list. Even with 30 min, stages 6 and fol-
lowing time out, however, with significantly higher performance, which can even
be seen in the slight performance decrease after stage 8. For the segmentation
dataset, not even 30min per stage are sufficient and large optimality gaps remain.

Fig. 8. Accuracy and runtime analysis for the Football Player dataset. The left plot 
shows accuracy across different stages for MSL and the two 90s and 30min timeout
configurations of MISS. The right plot shows the total training time for all stages.

7 Conclusion 

In the search for explainable AI, two approaches are currently pursued: post-hoc 
explaination of complex models and inference of inherently (ante-hoc) explain-
able models. Although the former approach has been fostered by advances in 
generative AI, very recent research has shown that explaining complex or even 
black-box mo dels in easy terms can result in undesirable outcomes, including
overreliance on AI if predictions are accompanied by explanations that appear
to be comprehensive [17]. 

In this paper, we therefore pursue a different path to improve the performance 
of AI in (human) decision-making tasks. We propose a method for learning 
scoring systems that are commonly used and widely accepted for decision support 
in real-world applications. In contrast to existing approaches, our method is 
able to handle problems with more than two choice alternatives. Moreo ver, by
constructing a coherent decision list instead of a single model, MSL supports
a stagewise decision-making process, where a decision can be made as soon as
enough evidence has been accumulated.

Not less importantly, MSL is inherently explainable due to its restriction to 
integer scores, its simple additive structure, and the coherence of the models that 
form a decision list (feature subsets are nested and scores remain unchanged).
Admittedly, compared to black-box models or models being less restricted (e.g.,
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additive models with real-valued instead of integer scores, such as logistic regres-
sion), MSL may exhibit slightly weaker predictive performance. However, the loss 
in performance is in general not very high and appears to be acceptable in view 
of the gain in explainability. Future work should empirically inv estigate MSL
with regard to interpretability and explainability, particularly examining how
the stages are used in different decision-making scenarios and how this affects
decision quality.

We evaluated human performance on a specific dataset that is especially 
suited for analyzing AI-human collaborative decision-making, and show that 
humans perform significantly worse than our approach. Despite this, we believe 
that a hybrid approach—where a human expert supports a machine learning 
algorithm in constructing an MSL, or more broadly, engages in an AI-human 
co-construction of decision mo dels—is a promising direction that we plan to
explore in future work, especially given that prior research has shown human-in-
the-loop approaches can enhance model performance [34, 50], improve decision-
making [19], and increase model acceptance [33], even though such methods 
may be limited when experts are biased [16]. Broadly speaking, the idea is to let 
the human support or correct decisions about the order of features, the scores 
assigned to features, etc. This might be beneficial for the learning algorithm, in 
particular to counteract the heuristic nature of its greedy search strategy. At 
the same time, a hybrid approach could be appealing for the human expert and 
increase the acceptance and adoption of automatic decision support — a model 
that a human expert co-constructed herself will likely increase acceptance, trust, 
and understanding compared to a model that was constructed in a purely data-
driven way and impose on the expert from outside.
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Abstract. Explainable Deep Reinforcement Learning aims to clarify 
the decision-making processes of agents. Recent world model-based 
approaches, such as Dreamer, train agents through “imagination,” where 
the actor learns by interacting with a learned world model that simu-
lates the environment. Consequently, the overall performance of these 
systems depends not only on the learned actor but also on the fidelity of 
the world model’s representation. Effective explanations should, there-
fore, incorporate the learned dynamics of the environment. 

In this work, we propose a method that leverages the imagination 
technique from the training process to generate stepwise, contrastive 
explanations during i nference. Our approach systematically compares
predicted states, actions, and value and reward estimates to evaluate the
observed trajectory. This analysis provides insights into whether failures
arise from inaccuracies in the world model, errors in value estimation,
or deficiencies in reward prediction. We demonstrate the effectiveness of
our method across multiple goal-oriented tasks.

Keywords: Explainable Deep Reinforcement Learning · 
Reinforcement Learning · Explainability · Cont rastive Explanation ·
World Model

1 Introduction 

Deep Reinforcement Learning (DRL) involves sequential decision-making under 
uncertainty and partial observability, making it inherently complex. Recent
advances, such as DreamerV3 [11], have further increased this complexity by 
using models from the learned world to enable training in imagination. This 
approach significantly improves sample efficiency and allows the agent to plan 
its actions based o n predicted future states. However, these improvements come
at the cost of increased complexity.

Despite their performance, modern DRL agents remain black-box systems, 
requiring specialized explanation methods to interpret their behavior [28]. 

Several Explainable Deep Reinforcement Learning (XDRL) approaches hav e
been introduced [19, 28], but explaining every aspect of the DRL decision-making
c© The Author(s) 2026 
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process remains a challenge. Unlike supervised learning models, DRL decisions 
depend not only on the current state but also on the learned policy, the reward
function, the value estimation, and the training process itself.

Training in imagination introduces additional challenges for explainability. 
Since the agent learns from a surrogate world model rather than from the 
real environment, imperfections in the learned dynamics may influence decision-
making in unexpected ways. Existing explanation techniques do not account for
discrepancies between the learned world model and the real world, which can
lead to misleading or incomplete explanations.

To address these challenges, we propose a method that utilizes DreamerV3’s 
learned world model to generate outcome explanations based on the imagina-
tion of the world model. By using the same policy, world model, and imagination 
process as during training, we ensure that explanations are consistent with the 
agent’s decision-making and build on the dynamics the agent was trained on. We 
highlight the differences between learned and real dynamics by comparing imag-
ined trajectories with real-world observations. This approach generates explana-
tions that visualize the behavior within the learned world model and compare
it to the behavior in the real environment. These explanations reveal whether
the agent has learned different dynamics, making the agent’s assumptions about
future outcomes transparent. This could help experts better understand the
agent’s behavior, especially when it acts unexpectedly.

We evaluate our approach on five Minigrid benchmark tasks, assessing its cor-
rectness and continuity in discrete environments with partial observability. Our 
results indicate that leveraging the agent’s internal world model for explanations 
can produce contrastive explanations that a re based on the learned dynamics
during training. The process of accessing the learned dynamics could serve as a
foundation for building further explanations.
The contributions of this paper are: 

– Identification of the explanatory requirements for tr aining in imagination
DRL algorithms

– Contrastive explanation, making the learned dynamics and decision-making
process transparent

– Adjustable, visual explanation technique for failure analysis and agen t behav-
ior understandability

– Extensive technical ev aluation

In Sect. 2, we review the key background concepts in DRL and explainable 
AI, followed by an overview of the current state of the art in Sect. 3. In Sect. 4, 
we describe our proposed explanation technique that integrates learned world 
model dynamics into the explanation process. Section 5 outlines our experimental 
setup and evaluation metrics, while Sect. 6 presents our empirical findings. We 
discuss our findings and related limitations in Sect. 7. Finally, Sect. 8 concludes 
the paper and discusses future research directions.

To promote transparency, all additions to the base DreamerV3 implemen-
tation, as well as the model checkpoints, are publicly available https://github. 
com/wnnng/dreamer_explanation.

https://github.com/wnnng/dreamer_explanation
https://github.com/wnnng/dreamer_explanation
https://github.com/wnnng/dreamer_explanation
https://github.com/wnnng/dreamer_explanation
https://github.com/wnnng/dreamer_explanation
https://github.com/wnnng/dreamer_explanation
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2 Preliminaries 

In this section, we discuss the fundamental concepts on which our work is based. 
We give a broad overview of reinforcement learning in Sect. 2.1 and explain 
the Dreamer algorithm in more detail in Sect. 2.2. Finally, we introduce key 
definitions and concepts in explainable AI in Sect. 2.3, providing the necessary 
context for evaluating DRL explanations.

2.1 (Deep) Reinforcement Learning 

DRL extends traditional reinforcement learning to complex, high-dimensional 
domains using deep neural networks. In (deep) reinforcement learning, the agent-
environment interaction is formalized as a Markov Decision Process (MDP) [27], 
defined by t he tuple

.(S,A, T,R, γ), (1) 

where . S is the set of states, .A is the set of actions, .T (s′|s, a) denotes the state 
transition probability, .R(s, a) is the reward function, and .γ ∈ [0, 1) is the dis-
count factor. The agent aims to learn a policy .π(a|s) that maximizes the expected 
cumulative discoun ted reward:

.J(π) = Eπ

[ ∞∑
t=0

γtR(st, at)

]
. (2) 

In many real-world scenarios, the environment is only partially observable, 
leading to the formulation of a Partially observable Markov Decision Process
(POMDP) [13]. A POMDP augments the MDP framework by i ncorporating an
observation space .Ω and an observation function .O(o|s′, a), and is defined b y
the tuple

.(S,A, T,R,Ω,O, γ). (3) 

Here, the agent receives observations .o ∈ Ω that provide incomplete infor-
mation about t he underlying state.

The decision-making process in DRL is encapsulated in a policy .π(a|s),  typ-
ically trained alongside a value function .V (s) that estimates long-term rewards. 
DRL approaches are broadly categorized into model-free methods, which learn 
the policy and value function directly from experience, and model-based meth-
ods, where the agent either uses a given model or learns a model of the envi-
ronment’s dynamics. The model can be used for planning or to improve sample
efficiency [21]. 

2.2 Dreamer 

For our explanation, we use Dreamer [11] as the base algorithm. Since our tech-
nique uses the internal models and processes to generate explanations, it is 
important to understand the Dreamer algorithm. In this s ection, we give an
overview of the relevant techniques introduced by Hafner et al. [9– 11].
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Dreamer is a model-based DRL algorithm. Model-based reinforcement learn-
ing leverages learned environment dynamics to plan ahead, improve data effi-
ciency, and tackle sparse reward settings. In this context, Dreamer serves as 
a p rime example by using a world model to simulate future trajectories and
optimize policy updates.

It models the environment via a latent dynamics model, specifically a Recur-
rent State Space Model ( RSSM). Given a sequence of high-dimensional observa-
tions .x1:T and actions .a1:T , the RSSM learns to represent the environment in a 
compact latent space. At each time step . t, an encoder network transforms the
observation .xt into a discrete latent representation .zt according to: 

.zt ∼ qφ(zt | ht, xt), (4) 

where .ht is a hidden recurrent state that summarizes past information. The hid-
den state is updated w ith the previous recurrent state, latent state, and action:

.ht = fφ(ht−1, zt−1, at−1), (5) 

with .fφ denoting the transition function parameterized by . φ. 
To ensure that the latent representations capture essential aspects of the 

environment, a d ecoder network reconstructs the observation:

.x̂t ∼ pφ(x̂t | ht, zt). (6) 

In addition, auxiliary predictors are employed to estimate rewards .rt and 
continue signals . ct via: 

.r̂t ∼ pφ(r̂t | ht, zt), ĉt ∼ pφ(ĉt | ht, zt). (7) 

Training is achieved by minimizing a composite loss consisting of a recon-
struction loss, a dynamics loss (which minimizes the Kullbac k-Leibler (KL)-
divergence between the encoder’s posterior .qφ(zt | ht, xt) and the prior . pφ(zt |
ht)), and a representation loss that regularizes the latent space. T echniques such
as free bits [14] are applied to the KL-divergence terms to maintain a minimum 
level of information in each latent dimension, thereby prev enting posterior col-
lapse. The model state is defined as .st = {ht, zt}, combining the recurrent hidden 
state with the discrete latent representation.

With a well-regularized latent representation, the world model can simulate 
future trajectories. This process, known as imagination, allows the model to 
predict future s tates from a given start state without new observations from the
environment:

.ht+1 = fφ(ht, ẑt, at), (8) 

where .at is sampled from the current policy. Since the latent . z state depends on 
observations, the world model approximates it from the recurrent .h-state: 

.ẑt ∼ pφ(ẑt | ht). (9)
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The world model also predicts the corresponding rewards and continue signals 
for each imagined s tate. This rollout creates an imagined trajectory:

. s0, a0, r0, c0, s1, a1, r1, c1, . . . , sT , aT , rT , cT .

The agent uses only imagined trajectories to update its policy and value 
estimates, a process that can be described as tr aining in imagination. For the
actor-critic, the critic learns to predict the expected return .Rt from a given laten t
state . st. 

The actor is updated by maximizing a surrogate objective derived from the 
predicted returns of imagined trajectories. In practice, this means the policy is 
encouraged to select actions that lead to higher predicted returns, while simul-
taneously incorporating an entropy term to foster exploration. Importan tly, the
predicted returns are normalized and treated such that gradients do not flow
back through them, ensuring a stable update process for the actor.

This design allows the agent to efficiently optimize its policy using internal, 
model-generated data, significantly improving data efficiency and enabling long-
horizon planning in environments with sparse rewards.

2.3 Explainability 

The field of Explainable Artificial Intelligence (XAI) seeks to make the deci-
sions of Artificial Intelligence (AI) systems transparent and interpretable [15]. 
Explaining the sequential decision-making process of DRL agents, which aim 
to maximize long-term returns despite sparse rew ards, poses challenges that
traditional XAI techniques do not fully address [4, 6, 25]. Consequently, recent 
research has focused on adapting and extending XAI methods specifically for
DRL [6, 28]. In the following, we define key concepts including interpretability, 
explainability, and post-hoc and intrinsic e xplanation approaches, which under-
pin the understanding of DRL explanations.

In accordance with [28], we adopt the following definitions: An explanation is 
the surface representation of an interpretation that is communicated to the user. 
An interpretation is the explanation content produced by an interpretable model, 
while interpretability refers to the system’s capacity to generate such content. 
Explainability denotes the ability to provide these s urface representations, and
transparency describes the system’s capability to deliver understandable expla-
nations in the deployment context, accounting for domain-specific constraints.

Explanations for DRL can target different aspects of the agent. For example, 
behavioral explanations focus on the agent’s decision-making process, task expla-
nations illuminate the underlying objectives, and reward decompositions eluci-
date the structure of the reward function. Moreover, while technical challenges 
primarily concern model in terpretability, explainability must also address the
needs of diverse stakeholders, who vary in their expertise and expectations [15]. 

One challenge in explainability is the evaluation of explanations, as high-
lighted by Nauta et al. [22]. Explanations that are intuitive and align with users’ 
expectations may be plausible, but not necessarily correct. Therefore, it is impor-
tant to assess both the plausibility (i.e., how convincing the explanation appears)
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and the correctness of an explanation. To address these challenges, Nauta et al. 
propose the Co-12 evaluation criteria [22], which encompass dimensions such as 
correctness, continuity, contrastivity, compactness, and controllability. For each 
criterion, specific evaluation methods are suggested. For our explanation tec h-
nique, we focus on the evaluation of correctness and continuity.

In summary, we have outlined the fundamental concepts of DRL and 
Dreamer, as well as the key principles of XAI and XDRL, including the def-
initions and evaluation criteria critical for assessing DRL explanations. With 
an understanding of the unique challenges associated with sequential decision-
making, sparse rewards, and training in imagination, we are now ready to
describe our approach. The next section details our methodology, including the
architecture of our explanation technique.

3 State of the Art 

As AI processes evolve and are applied to new domains, explanation methods 
must be adjusted to align with these emerging contexts [16]. Consequently, eval-
uating existing solutions is essential. This section provides an overview of rele-
vant DRL algorithms that incorporate training in imagination. We a lso give an
overview of explainability techniques related to our approach.

World-model-based DRL is a promising and growing research d irection for
solving complex tasks [8, 33]. A key concept in most approaches is training in 
imagination, where the actor learns from the dynamics predicted by the world
model rather than direct environment interactions.

Dreamer, introduced by Hafner et al. [9– 11], employs a RSSM as its world 
model. It represents latent states using two components: a recurrent state, which 
encodes historical context, and a stochastic state, which captures the current 
state. Dreamer uses an actor-critic model, and its world model predicts rewards 
and a continue probability. It is applicable to both discrete and continuous envi-
ronments. We selected Dreamer because it offers a well-structured latent state
representation, a recurrent architecture that supports explanation, and broad
applicability.

Recent approaches to world models for DRL have taken diverse directions. 
For example, Mattes et al. [17] proposed a simplified structured state-space (S5) 
model that enables parallel sequence prediction, improving efficiency and long-
term dependencies but struggling with short-term dynamics and local precision,
which complicates the explanation process. Similarly, Micheli et al. [18]  use  a  
transformer-based autoregressive model that also has difficulties capturing fine-
grained details. In contrast, Alonso et al. [1] presented a diffusion model that 
yields more visually accurate imaginations, though its computationally expensive 
denoising step and reduced interpretability limit its applicability. Lastly, Rigter
et al. [24] offer a non-autoregressive diffusion model that iteratively denoises a 
random trajectory to reduce error accumulation, yet it still inherits the inherent
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limitations of diffusion-based methods. We acknowledge that all these methods 
could be explored for explanation, since the explanation fo cuses on the compar-
ison of the imagined state and the observation.

Several methods have been proposed to explain DRL outcomes. Yau et al. [30] 
showed that post-hoc explanations suffer from value ambiguity, addressing this 
by learning a belief map during training. Similarly, Saulières et al. [26]  used  
a Q-learning policy to predict three trajectories—the current, best-case, and 
worst-case outcomes, by modifying environment dynamics to illustrate alter-
native results. Both approaches provide valuable outcome explanations for Q-
learning but are not designed to capture action differences emerging from train-
ing in imagination.

Other methods generate counterfactual explanations. Yu et al. [32]  construct  
causal chains using a causal world model, while Olson et al. [23]  and  Yeh  et al. [31] 
employed counterfactual generation via simulated environments and variational 
autoencoders, respectively. Although these techniques offer insights into alterna-
tive decision paths, they do not incorporate the learned training dynamics into
their explanations.

Amitai et al. [2] visually compare an agent’s chosen action with a counterfac-
tual alternative, demonstrating improved user understanding through simulation 
of subsequent steps in the real environment. In contrast, our approach leverages 
the l earned world model dynamics to generate explanations, thereby reflecting
the agent’s internal representations more faithfully.

Evaluating explanations is inherently challenging, as it requires balancing 
technical fidelity with user-centric criteria such as clarity and relevance [12, 16, 
22]. While correctness is essential, explanations must also be a ccessible and useful
to end users.

While explainable DRL has advanced, particularly with the growing focus on 
counterfactual outcome explanations, no existing approach addresses the unique 
challenges introduced by training in imagination. To the best of our knowledge, 
this gap remains unaddressed. We address this gap by integrating the learned
world model dynamics into the explanation process.

4 Methodology 

Explanations in DRL should be contrastive [20], meaning they should explain 
why one decision was made over another, aligning with human reasoning. How-
ever, explanations must also b e faithful, accurately reflecting the true decision-
making process of the agent.

This is particularly challenging in training-in-imagination DRL, where the 
agent learns to use a world model rather than direct interaction with the real 
environment. Existing explanation techniques primarily focus on the agent’s 
interaction with the real environment, which does not capture the dynamics 
the agent actually trained on. To generate faithful explanations in this setting,
we need to incorporate the agent’s learned world model dynamics into the expla-
nation process.
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Our explanation technique renders the agent’s decision-making process inter-
pretable by incorporating the learned dynamics of its i nternal world model. In
our research abstract [29], we introduced the theoretical concept of using world-
model imagination as an explanation technique. Building on this foundation, our 
approach generates alternative imagination trajectories directly from the learned 
dynamics, eliminating the need for external simulations. These trajectories cap-
ture the agent’s internal expectations, and the con trast between the imagined
and observed trajectories highlights discrepancies between the world model and
the real environment.

Specifically, our method compares the agent’s imagined experiences with 
actual observations to pinpoint where its internal expectations deviate from 
reality. This analysis allows us to differentiate between errors stemming from 
the actor’s policy and those introduced by inaccuracies in the learned world 
model dynamics. By providing contrastive, outcome-based explanations that
mirror human reasoning, our approach enhances transparency and reveals how
the agent’s expectations shape its decisions.

4.1 Generating Imagination Trajectories 

Fig. 1. Stepwise comparison of observed (left) and imagined (right) trajectories. Obser-
vations .xt (white), latent states . zt, .ẑt (blue), actions . at, .a′

t (gold), and hidden states
. ht, .h′

t (purple), are compared at each step. This comparison serves as the basis of 
our explanation technique and highlights discrepancies be tween reality and the agent’s
internal model. (Color figure online)

Figure 1 illustrates the generation of imagination trajectories. For eac h observa-
tion state .xt at time step . t in a trajectory of length . T , we generate an imagined 
trajectory of length . H, corresponding to the imagination horizon used during 
training. Hence, the total number of imagined steps is .t + H.
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This procedure replicates the training dynamics by sampling an initial obser-
vation from the real environment and subsequently generating imagined rollouts 
that optimize the actor network. Unlike during training, we do not compute a 
loss function to optimize decision-making, but instead measure the deviations 
b etween imagined trajectories and actual observations. These deviations indi-
cate potential errors in the learned dynamics, which may lead to suboptimal
decisions.

Since the imagination process does not automatically terminate at terminal 
states, we implement a post-processing pruning step. Let .C(s) ∈ [0, 1] denote the 
continue predictor’s output for a model state .s = {h, z}. We prune any s tate for
which .C(s) < τ ,  whe  re . τ is a user-defined threshold (guided by the continue loss 
from training). This step removes invalid imagined states, which would other-
wise be hallucinations—predictions made after the environment has terminated, 
when no new observations or training data are available. Consequently, correctly 
identifying terminal states is crucial not only to eliminate spurious, hallucinated
states but also to ensure that failure states are accurately detected, thereby
supporting proper learning of negative consequences.

4.2 Identifying Deviations 

Fig. 2. Sequence of checks for the declaration. Starting with the identification of 
whether different actions have been selected, followed by the states of the world model.

To explain the action decision-making process, in this work we focus on discrete
action spaces. Figure 2 illustrates the explanation process. For each time step . t, 
we compare the observed action with the corresponding imagined action. Unlike 
imagination processes used during training, which do not inherently perform suc h
a comparison, this method explicitly identifies deviations in the decision-making
process.

Because the policy samples actions based on a probability distribution, two 
input states can produce the same action even if the underlying distributions 
differ. Furthermore, it is possible for the same distribution to sample two dif-
ferent actions for the same state. To reduce this ambiguity, we also compare
the full probability distributions. This dual comparison ensures that even if the
final actions appear similar, underlying differences in the agent’s confidence or
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reasoning are not overlooked. While this reduces the risk of ambiguity, i t does
not fully eliminate it.

To address the ambiguity of similar outputs, we also compare the states 
within the world model. This includes the recurrent state . h and the discrete 
latent states . z. The actor uses the recurrent state and the discrete latent state, 
which depends on the stochastic latent state. To differentiate the different trans-
formations, we compare them individually. The comparison is done for each 
time step, aligning the observed state with the corresponding imagined state. 
For example, when comparing real time step 1, we compare the first observed
action with the first action in the imagination. We compare the predicted world
model states .ĥt+1, ẑt+1 with the actual observed states .ht+1, zt+1. In Fig. 1, . ĥt+1

and .ht+1 are shown in purple, while .ẑt+1 and .zt+1 are shown in blue.
The state comparison involves Mean Squared Error (MSE) for the recurrent 

state, while the discrete latent state is compared using the Hamming distance. 
The latter is appropriate because the discrete latent state consists of a set of 
categorical variables, each with a number of possible classes. These comparisons
provide insight into the accuracy of the agent’s internal world model, highlighting
deviations in its understanding of the environment.

Next, we evaluate the value estimation by comparing the critic’s estimated 
value with the actual sum of rewards in the observations, which reveals whether 
the expected return is accurately predicted. If the agent selects a suboptimal 
action but imagines a high return, it suggests that the negative consequences 
of that action are not well learned. In these cases, it is useful to examine the 
wo rld model’s subsequent state predictions. If these predictions differ from the
observed states, it suggests that the model may not fully capture the negative
outcomes. If they closely match the observations, then the discrepancy likely
arises from the critic’s evaluation.

Finally, it’s important to note that the world model may not always be able 
to make perfect predictions, especially in stochastic environments. While the 
model provides plausible predictions, the expert user must assess the validity 
of these predictions. This means that, in certain cases, deviations identified by
the model should be analyzed for uncertainty. We cover this topic further in
Sect. 7, where we discuss how to incorporate uncertainty i nto the explanation
framework.

4.3 Explaining the Deviations 

To explain the decision-making process, our approach highlights the differences 
between the imagined and observed trajectories by directly leveraging the agent’s 
inherent world model, the very ground truth used for its optimization. Unlike 
many existing explanation techniques that rely on external models or surrogate 
training strategies, our method provides a faithful diagnostic tool that exposes 
where the learned dynamics diverge from actual behavior. By identifying these
deviations, our approach offers domain experts a powerful foundation upon which
more detailed causal analyses can later be built. In essence, our evaluation algo-
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rithm unfolds in three stages: an action-level analysis, an input-state evaluation, 
and a reward and value estimation assessment.

Action-Level Analysis. We begin by comparing the discrete actions taken at each 
time step. To quantify the similarity between two action distributions .π1 and 
. π2, we use the Jensen-Shannon distance [7], a symmetric and bounded m etric
defined as:

.JSD(π1, π2) =

√
1
2
DKL(π1‖M) +

1
2
DKL(π2‖M), where M =

1
2
(π1+π2) (10) 

This distance is always finite, lies in .[0,
√
log 2] (for base-. e logarithms), and 

is well-suited for comparing discrete probability distributions over actions in 
reinforcement learning. Our dual approach reveals whether similar actions were 
c hosen for similar reasons, or if subtle differences in decision confidence are
present.

Input-State Evaluation. Since the policy’s decisions are deeply rooted in the 
internal state generated by the world mo del, we compare its critical components:
the recurrent state . h and the stochastic latent state . z. For the discrete, cate-
gorical components, the Hamming distance is employed to count mismatches, 
while continuous elements, like the recurrent state . h, are compared using the 
MSE. This analysis pinpoints whether deviations in the world model states have 
propagated to impact the p olicy’s outputs, directly linking discrepancies in the
training process to subsequent decision-making.

Reward and Value Estimation Assessment. Finally, we examine the reward sig-
nals and the estimated value function. By comparing the true accumulated 
rewards with the agent’s value estimation, we can identify misalignment in how 
the learned dynamics translate into expected outcomes. For instance, if a subop-
timal action is chosen d espite similar action probability profiles, a discrepancy
in the value estimation might signal that the policy is not adequately optimized
toward the intended goal.

Collectively, these three evaluation stages, tracing from the imagined states, 
through the action decision, to the downstream value estimation, offer a compre-
hensive view of where and how the learned dynamics diverge from actual behav-
ior. By directly using the agent’s internal world model, our method addresses 
the unique requirements for understanding decision-making in training-in-
imagination deep reinforcement learning. Although our current approach d oes
not yet prove causal relationships, it lays the essential groundwork upon which
future causal analyses can be developed, thereby significantly advancing the state
of explainable reinforcement learning.

In the chosen benchmark, the agent receives image-based observations that 
are first encoded into a latent state representation, which is then used for
decision-making. Since this latent representation is not easily interpretable for
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Fig. 3. Exemplary partial visualization of the explanation process. The top row shows 
a segment of the agent’s observation, while the second row displays the explanation for 
the first step along with its imagination. The first imagined image represents the inter-
nal state derived from the observation, and the second image shows t he corresponding
imagined next state, with measurements provided underneath. From the second step
onward, the imagined states diverge from the actual observations. (Color figure online)

human observers, we decode it back into the image space to provide visual expla-
nations. While these decoded images support human understanding, the analyt-
ical comparison used to identify differences in behavior operates entirely in the 
latent space. As described in the preliminaries, Dreamer employs an encoder and 
a decoder. Although the decoder is not part of the decision-making process, it 
is critical for the explanations that the reconstructed images look similar to the 
original observations. To ensure this, we measure the Learned Perceptual Image 
Patch Similarity (LPIPS) value between the true observation and the decoded 
latent state. Unlike MSE, LPIPS focuses on structural similarity and is less sen-
sitive to minor color differences or small non-structural changes. A low LPIPS
value indicates that the decoded image is similar to the original observation,
preserving the fidelity of the explanation. Moreover, the LPIPS error should
correspond to the error in the latent state; if the latent space deviates signifi-
cantly from the true state, the decoded image should reflect this difference to be
a faithful explanation for the decision-making process.

To keep the explanations compact, we only display imagined trajectories 
where at least one state deviates from the observation, based on defined t hresh-
old values. By adjusting the variables, the explanation size can be controlled.
Figure 3 shows the visualization: green frames highlight states with no devia-
tion, while red frames mark states with deviations. For each deviating state, the
corresponding error metrics are displayed below the transition.
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In summary, our methodology outlines a comprehensive approach to explain-
ing the decision-making process of DreamerV3, a Model-based Deep Reinforce-
ment Learning (MBDRL) agent. We first generate alternative trajectories using 
the agent’s inherent world model, ensuring that the explanations reflect the same 
dynamics used during training. Next, we compare observed and imagined tra-
jectories at the action, input-state, and reward levels to identify and quantify 
deviations. By tracking error propagation over time, our method distinguishes 
between minor discrepancies and significant deviations that influence p erfor-
mance. Finally, we present these deviations visually through a prototype that
uses LPIPS for image fidelity and color-coded frames for clarity. This structured
approach not only provides diagnostic insights for domain experts but also lays
the groundwork for future causal analyses of explainable reinforcement learning.

5 Evaluation 

We use the Minigrid benchmark [5] to evaluate our explanation technique for 
DreamerV3. Minigrid offers a collection of 2D grid-world environments featuring 
goal-oriented tasks in which an agent must navigate to a predefined, randomly 
assigned goal state. Depending on the environment, the task may inv olve simply
solving a maze or interacting with objects such as keys and doors. The obser-
vations are provided as .64× 64× 3 RGB images, and the environments operate 
under partial observ ability with a discrete action space.

Fig. 4. Example maps for the five Minigrid environments. The green field is the goal, 
the red triangle the agent. The highlighted fields around the agent represent the agent’s
visible area. (Color figure online)

For our evaluation, we consider five Minigrid environments. Figure 4 shows 
an example map for each environment. The first environment, SimpleCrossing, 
consists of a maze divided by a wall with a single opening. The agent must 
locate the hole in the wall and then proceed to the goal state on the opposite 
side. There are different variations of this environment that differ in size and the
number of walls. We use the 9. × 9 map with one wall and the 11. × 11 map with 
five walls, each with o ne random opening.

The third environment, LavaCrossing, is a modified version of SimpleCross-
ing, where a lava stream replaces the wall, and falling into the lava results in
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immediate failure. The fourth environment, DoorKey, requires the agent to find 
a key to open a door, with the goal located in the room beyond. We evaluate the
5. × 5  and 16. × 16 versions of the DoorKey environment. The increased map size 
and limited visibility in the 16. × 16 environment result in additional challenges 
for n avigation and exploration.

In all environments, the reward function is defined as:

.r = 1 − 0.9 ×
(

step_count
max_steps

)
(11) 

for successful episodes, and 0 for failures. Each environment allows a max-
imum number of steps per episode (.max_steps), relative to its size. The
.step_count is the number of steps in that episode. The action space for all 
environments comprises seven possible actions, but only three are utilized in the
crossing tasks and five in the key-door tasks.

For each environment, we trained an agent for 800,000 steps, which was 
sufficient for t he agents to reliably solve the tasks.

To assess the fidelity of our explanation technique, we focus on evaluating 
two key properties from the Co-12 framework [22]: Correctness and Consistency, 
using a series o f experiments.

Model Replacement Check. In the Model Replacement Check, we record a trajec-
tory using an agent trained in a specific Minigrid environment and generate the 
corresponding explanation. We then produce explanations for the same trajec-
tory using agents trained on different environments, as well as using trajectories 
recorded from agents trained in alternative settings. Our hypothesis is that an 
agent’s explanation will closely match the ground truth, as indicated by lower 
MSE, JS-distance, or Hamming distance, when the agent and the trajectory
come from the same training task and environment. Qualitatively, the explana-
tion should accurately reflect the key characteristics of the training environment,
such as the maze layout, presence of lava, or the key-door mechanism.

Model Parameter Randomization Check. In the Model Parameter Randomization 
Check, we evaluate the correctness of the explanation. We replace the param-
eters of critical submodels, specifically, the world model, actor, critic, reward 
predictor, and continue predictor, with random values, while keeping the initial 
world model prediction unchanged. Our hypothesis is that this randomization 
will yield increased discrepancies in the generated explanations, as evidenced by 
higher MSE values. Notably, differences should be observable in the predicted 
actions, rewards, value estimations, and continue predictions, with subsequent
imagination steps exhibiting compounded deviations. For each experiment, we
collect quantitative metrics to determine whether the explanations evolve in the
expected direction.
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6 Results 

In this section, we present a comprehensive evaluation of our explanation tech-
nique using the Minigrid benchmark. Our primary objective is to assess the 
technique’s fidelity by measuring its Correctness and Consistency across two
distinct experiments: the Model Replacement Check and the Model Parameter
Randomization Check.

Quantitative performance is primarily evaluated using the MSE for contin-
uous values, the Jensen-Shannon (JS)-distance for probabilities, and the Ham-
ming distance for categorical values like the discrete latent state. In addition, 
qualitative assessments are conducted to verify t he alignment of the generated
explanations with key environmental characteristics. The following subsections
detail the outcomes of each experiment.

6.1 Model Replacement Check 

Fig. 5. Heatmap of the MSE for the world model states and JS-distance for the policy 
outputs. The y-axis corresponds to the observation environment, and the x-axis corre-
sponds to the environment the replaced model was trained on. The diagonal (matched
condition) shows the lowest error values, indicating that models trained in the same
environment produce the most accurate explanations.

In this experiment, we assess the fidelity of our explanation technique by c om-
paring the generated explanations under two conditions:

1. Matched Condition: The agent’s models for both the observation and the 
explanation are t rained on the same environment.

2. Mismatched Condition: The agent’s models for the observation and the 
explanation are trained on different environments.

Each condition was tested on all five benchmark environments, with 25 inde-
pendent runs per condition to ensure statistical robustness. The benchmark 
environments include SimpleCrossingS9N1, SimpleCrossingS11N5, LavaCross-
ingS9N1, DoorKey5x5,  and  DoorKey16x16.  We  chose Minigrid because it is a
goal-oriented benchmark with discrete actions that facilitate the evaluation of
the explanations..
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Table 1. Model Replacement: Aggregated metrics for the matched (top) and mis-
matched (bottom) conditions across all runs. Metrics include the action JS, the recur-
rent state MSE (h MSE), and the stochastic state difference (. ẑ distance). 

Matched Env Act JSD h-MSE .ẑ-Distance 
DoorKey-16x16 0.24 .± 0.30 0.01 .± 0.01 36.07 .± 16.82 
DoorKey-5x5 0.06 .± 0.20 0.01 .± 0.02 14.25 .± 12.22 
LavaCrossingS9N1 0.14 .± 0.28 0.01 .± 0.02 30.89 .± 17.04 
SimpleCrossingS11N5 0.06 .± 0.22 0.01 .± 0.01 32.27 .± 11.58 
SimpleCrossingS9N1 0.04 .± 0.17 0.01 .± 0.01 22.49 .± 11.26 
Mismatched Env Act JSD .h-MSE .̂z-Distance 
DoorKey-16x16 0.60 .± 0.33 0.04 .± 0.02 52.21 .± 8.57 
DoorKey-5x5 0.46 .± 0.38 0.03 .± 0.02 49.38 .± 11.65 
LavaCrossingS9N1 0.44 .± 0.32 0.03 .± 0.03 46.15 .± 13.23 
SimpleCrossingS11N5 0.38 .± 0.38 0.03 .± 0.02 50.00 .± 11.21 
SimpleCrossingS9N1 0.36 .± 0.37 0.03 .± 0.03 47.58 .± 12.67 

Quantitative Analysis. For each run, we computed the MSE between the 
generated explanation and t he recorded observation for both the recurrent state
. h and the stochastic state . ẑ. For the action probability distribution, we cal-
culated the JS-distance (Act JS). Our hypothesis predicted that the matched 
condition would exhibit significantly lower MSE and JS-distance compared to
the mismatched condition.

As  shown  in  Table 1 and Fig. 5, the lowest errors occur when the explainer is 
trained on the same environment as the agent (matched condition). In mis-
matched conditions, lower errors are observed when the explainer’s training 
environment shares similar dynamics with the agent’s environment (e.g., Sim-
pleCrossing and LavaCrossing) or when the explainer is trained on a larger 
map. Conversely, an explainer trained on a smaller map cannot fully capture 
the dynamics of a larger one, resulting in higher errors. These findings sup-
port the hypothesis that an explainer trained on the same model can produce
high-quality explanations, while explainers from similar environments can only
partially bridge the gap.

Aggregating the loss values for the matched and mismatched conditions 
across all benchmarks, we observe that the mismatched losses are consistently 
higher than those for the matched condition. This supports our hypothesis that 
mismatched explanations fail to provide faithful representations, even when the
environments differ only in map size or the task defined on that map.
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Fig. 6. Comparison of model imaginations. Top row: Simple Crossing environment 
observation. Second row: matching explanation. Third row: Lava Crossing environment 
(identified by lava). Fourth row: Simple Crossing S11N5 environment (identified by an
additional wall). Fifth row: explanation from an agent trained on the Door Key 5. × 5 
environment (small size, key, door). Bottom row: Door Key 16. × 16 environmen t.

Qualitative Analysis. In addition to the quantitative metrics, we performed 
a qualitative evaluation of the g enerated explanations to assess their fidelity.
Figure 6 provides a representative comparison of the model imaginations under 
b oth matched and mismatched conditions.

The top row of Fig. 6 displays the original observation from the Simple Cross-
ing (S9N1) environment. The next row shows the explanation generated by a 
model trained on the same, matched environment, which accurately captures 
key features such as the wall opening, present in the observation. In contrast, 
the following rows illustrate explanations produced by mismatched models. For 
instance, when a model trained on the Lava Crossing environment is applied to 
a Simple Crossing observation, its explanation incorrectly incorporates features
typical of the Lava Crossing environment, namely, the presence of lava. Similarly,
explanations generated by models trained on Simple Crossing (S11N5) and Door
Key (5. ×5, 16. × 16) reflect the unique structural characteristics of their respective 
training environments, such as an additional wall or the key-door c onfiguration,
even when the input observation originates from a different environment.

These qualitative observations confirm that mismatched models tend to faith-
fully reproduce the characteristics of their training environments rather than 
accurately representing the input. This behavior reinforces our quantitative find-
ings, demonstrating that alignment b etween the training environment and the
explanation generation process is critical for producing accurate and meaningful
explanations.

6.2 Model Parameter Randomization Check 

Inspired by Nauta et al. [22], this experiment evaluates the impact of individual 
model components on the fidelity of the generated explanations. For each bench-
mark environment, we conducted 25 independent runs using the corresponding
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Fig. 7. Box plots comparing the evaluation metrics: .h-state MSE, .z-state distance, and 
action probability JS-distance across the five model parameter randomization checks. 
We compare standard explanation measurements to runs with randomized policy and
world model.

trained baseline agent. For each run, we first generated an explanation with the 
baseline agent and then produced additional explanations by individually replac-
ing the values of one of the following components with random values: the policy,
the world model, the reward predictor, the critic, and the continue predictor.

Figure 7 presents box plots that summarize the resulting differences in key
metrics—namely, the .h-state MSE, .z-state Hamming distance, and the action 
probability JS-distance. The x-axis lists the components that were randomized. 
As expected, replacing the world model results in the highest MSE for both the 
recurrent and stochastic states. Notably, randomizing the policy also contributes 
to increased errors, reflecting the sequential dependency between actions and 
state predictions. The action probability divergence is primarily influenced by 
randomization of the world model and the policy, which aligns with our hypothe-
sis that the input quality from the world model directly affects the policy output.
In contrast, the critic, reward predictor, and continue predictor each show only
increased errors in their specific functions: estimating value, predicting rewards,
and determining explanation length.

The impact of randomization on explanation outcomes is also evident in the
visualizations. Figure 8 illustrates the expected errors: a random policy results 
in an agent that lacks goal-oriented behavior, and a randomized world model
prevents the generation of plausible state representations.

Overall, these findings validate our hypothesis: every model component is 
crucial for generating faithful explanations, and randomizing any component
leads to measurable deviations from the baseline.

7 Discussion and Limitations 

We showed that the world model imagination process used during training can 
also be leveraged to create local explanations. This can be helpful for debugging 
or failure analysis. A simple example could be an autonomous vehicle involved
in an accident. While the model may have performed well during training and
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Fig. 8. Comparison of the observation, the standard explanation, and explanations 
generated by randomized models. With a randomized policy, the agent behaves without 
clear direction. A randomized world model omits the decoder, resulting in images 
that resemble the environment but have random internal states. Finally, a randomized
continue predictor causes the explanation to persist even after the agent reaches its
goal.

evaluation, there might be a shift in dynamics not captured during training. Our 
explanation technique could provide insights that improve the failure analysis
process.

While loss values help to quickly indicate that something is different, they 
do not reveal what exactly is different . Our approach enables differentiation on
a more detailed level.

Previous research [2] demonstrated that contrastive outcome explanations 
are effective in helping users better understand the decision-making process of 
DRL. We adapted this idea to DRL trained in imagination, addressing the spe-
cific requirements involved in such processes. These explanations can serve as 
a foundation for integration with other explanation techniques, such as feature
attribution to highlight visual differences, or additional counterfactual analyses
to provide more contrastive explanations.

Correct interpretation of these explanations is critical. Previous research [3] 
has shown that world models, especially in Dreamer, tend to overestimate 
aleatoric uncertainty. Therefore, world models likely cannot be used to reliably 
predict the future. They represent the learned dynamics of the agent, which may 
be close to reality but are not guaran teed to match it exactly. This discrepancy
is also the motivation for explanations: they should highlight the differences
between the learned and actual dynamics.

The explanations presented here primarily target domain experts. However, 
the information provided by these explanations can also be adapted for other 
stakeholders. Further research is needed to tailor the explanation format to lay 
users or specific stakeholder groups. Additionally, as the explanations closely 
mirror t he original training process, further work is required to extend them
with additional explainability techniques that help uncover the causal reasons
behind agent behavior.

Our results provide an initial exploration into explaining DRL agents trained 
in imagination. The current evaluation is limited to a discrete environment and a
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single algorithm (Dreamer). Future research should investigate the applicability 
of our approach in more complex environments and continuous action spaces. At 
present, users must manually define threshold values for various measurements; 
more research is needed to automate this process and reduce reliance on expert 
input. One potential solution involves generating counterfactuals within imag-
ined trajectories that gradually approach the observation to determine if and
when the agent’s decision changes. This could be applied to both world model
states and policy actions.

With this work, we propose a new explainability approach that can serve as 
the basis for f uture, more complex explanation methods based on agent imagi-
nations.

8 Conclusion 

In this paper, we presented a novel approach for explaining MBDRL agents 
by leveraging the capabilities of a learned world model. Our method generates 
explanations that faithfully capture t he underlying dynamics of the environment,
as evidenced by both quantitative metrics and qualitative evaluations.

Our approach tailors explanations to the AI model by incorporating imagina-
tions, predictive simulations generated by the world model, into the explanation 
process. Instead of relying on external models, we replicate the training process 
and use the model’s internal representations, resulting in explanations that more
accurately reflect the decision-making processes optimized during training.

These results demonstrate the potential of using world models not only 
for planning and decision-making but also as powerful tools for interpretabil-
ity. Future work will explore further refinements in explanation techniques and 
extend our evaluation to more complex environments and real-world applica-
tions. 
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Abstract. Personalized moderation interventions in online social net-
works foster healthier interactions by adapting responses to both indi-
vidual traits and contextual factors. However, implementing such inter-
ventions is challenging due to transparency concerns and the lack of 
ground-truth behavioral data from expert psychologists. Interpretabil-
ity is crucial for addressing these challenges, as it enables platforms to 
tailor moderation strategies while ensuring fairness and user trust. In 
this paper, we present an unsupervised, data-driven framework to build 
an interpretable predictive model capable of distinguishing between toxic 
and non-toxic users with different personality traits. We leverage person-
ality representations from an external resource to uncover behavioral pro-
files through clustering, utilizing embeddings of both toxic and non-toxic 
users. Then, we model users with features capturing linguistic a nd affec-
tive dimensions, training an interpretable personality detector capable of
distinguishing between behavioral profiles in a transparent and explain-
able manner. A case study on Reddit demonstrates the effectiveness of
our approach, highlighting how an interpretable model can achieve com-
petitive performance comparable to a black-box alternative while offering
meaningful insights into toxic and non-toxic users behavior.

Keywords: Personality Detection · Interpretable Machine Learning · 
Data-Driven User Modeling · Unsupervised Learning

1 Introduction 

Personality traits play a crucial role in shaping social behaviors in digital spaces, 
influencing user interactions and adherence to community guidelines. Research 
shows that online behaviors and language features are closely tied to personality
traits, affecting both the nature of interactions and language choices [2]. This 
link between personality and language patterns provides valuable opportunities 
to study digital b ehavior in the context of personality.
c© The Author(s) 2026 
R. Guidotti et al. (Eds.): xAI 2025, CCIS 2578, pp. 162–179, 2026.
https://doi.org/10.1007/978-3-032-08327-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-08327-2_8&domain=pdf
http://orcid.org/0009-0003-5043-5942
http://orcid.org/0000-0001-9914-1943
http://orcid.org/0000-0002-2827-7613
https://doi.org/10.1007/978-3-032-08327-2_8


Unsupervised and Interpretable Detection of User Personalities 163

A key application of this perspective is in personalized moderation interven-
tions in Online Social Networks (OSNs). Indeed, user r esponses to moderation
efforts differ significantly based on individual characteristics [49]. Thus, imple-
menting personalized moderation strategies can foster greater user engagement, 
improve compliance with OSNs community guidelines, and enhance the overall 
effectiveness of moderation by helping to reduce toxic content [10]. However, this 
approach faces challenges, including the unavailability of ground-truth personal-
ity data [15], the need for privacy-preserving techniques [36], and the importance 
of using interpretable models to ensure fairness and transparency [20]. 

We address these challenges with traits (tool for revealing attributes and 
identifying toxic and safe profiles), a framework for building an interpretable 
personality detection model to analyze toxic and non-toxic user behaviors on 
OSNs. traits uses semantically transparent features, such as writing style and 
affective features, alongside latent personality embeddings derived from an exter-
nal resource. In particular, a clustering method identifies behavioral profiles 
based on latent embeddings, while linguistic and affective features are aggregated 
for interpretable user representation. An interpretable model is then trained to 
predict the cluster labels, linking them to transparent features. By analyzing 
explanations for prototypical instances, traits identifies the defining character-
istics of toxic and non-toxic profiles, enabling experts to design targeted moder-
ation strategies. traits helps prevent harmful counter-reactions or user churn 
while reducing toxicity more effectively than fixed moderation interventions, by 
offering a framework where membership in a specific behavioral group is made 
transparent through an interpretable model. We present a case study apply-
ing traits to a dataset of comments from Reddit users. This analysis shows
traits’ ability to effectively distinguish between toxic and non-toxic data-driven
personality profiles. By leveraging language and affective features, traits cap-
tures nuanced behavioral patterns within both groups, and through an analysis
of the interpretable features and their contributions to these distinctions, we
identify and name the profiles as follows: Aggressive, Provocative, Mildly-Toxic,
Constructive, Contentious, and Neutral.

The rest of this paper is organized as follows. After reviewing works in per-
sonality detection in Sect. 2, in Sect. 3 we formalize the problem faced, and we 
describe our proposal to solve it in Sect. 4. In Sect. 5, we present the experimen-
tal results. Finally, Sect. 6 summarizes our contributions and outlines potential 
directions for future research.

2 Related Works 

According to psychological trait theory, personality traits are characteristic pat-
terns that reflect individuals’ behaviors, thoughts, and emotions [8]. Several psy-
chological frameworks have been proposed to define and categorize personality
traits [32], with the two most widely used being the Myers-Briggs Type Indicator 
(MBTI) and the Five-Factor Model (OCEAN) [17, 33, 37]. The former framework 
categorizes personality into 16 unique types through binary assignments across
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four dimensions: Introversion vs. Extraversion, Sensing vs. Intuition, Thinking 
vs. Feeling,  and  Judging vs. Perceiving. The latter organizes personality traits 
along five broad dimensions: Openness, Conscientiousness, Extraversion, Agree-
ableness,  and  Neuroticism. The OCEAN model constitutes a widely respected
framework in psychology for its empirical reliability and comprehensive scope in
personality assessment [9]. A comparison of MBTI and the OCEAN f ramework
is explored in [13], which highlights the structural and conceptual differences 
between the two models. Based on these frameworks, various datasets have b een
developed to facilitate personality trait analysis [16, 46]. For our purposes, we 
focus on OCEAN due to its reliability and widespread use in psychology [19], as 
well as its established role in OSNs users personality analysis [40– 42]. 

Automatic personality detection has been explored across various domains. 
A comprehensive overview of approaches for text, a udio, visual, and multimodal
data is presented in [34], where main reference datasets and methodologies for 
each modality are discussed. For images, in [44] an approach based on Histogram 
of Oriented Gradients, Eigenfaces and specific face portions for modeling the face 
and training ML models on top is presented. For the audio-visual domain, [26] 
introduces a benchmarking framework, which is used to ev aluate existing archi-
tectures, while [54] integrates a CNN, a Bi-LSTM, and a Transformer model 
to predict personality traits from audio-visual content. Focusing on audio-based
personality detection, the authors of [45] compare different models based on fea-
tures extracted from audios such as jitter, frame i ntensity, and loudness. On
the other hand, in [43] are employed particle swarm optimization in conjunction 
with a CNN for speech-based personality recognition.

In our work, we focus on personality detection from textual data, with partic-
ular reference to OSNs data. In terms of personality detection on texts, two main 
approaches can be identified: one based on lexical, linguistic, and psycholinguistic
features, and another leveraging Transformers-based methods. Early approaches
to personality prediction [29, 39] employed psycholinguistic and linguistic fea-
tures, later advancing through more complex feature aggregation techniques 
such as CNN-based n-gram extraction and hierarchical NNs [30, 52]. An unsu-
pervised method for detecting online personality traits is presented in [6], uti-
lizing an ad-hoc clustering technique based on linguistic features. In contrast, 
Transformer-based models, such as BERT [35], outperform traditional meth-
ods, with advancements like the Transformer-MD architecture [53] enhanc-
ing personality detection by integrating dimension-specific attention modules. 
While we also train models using interpretable linguistic features, our approach 
focuses on predicting labels iden tified through unsupervised methods applied to
a latent space, aligning with Transformer-based techniques.

Interpretable personality detection methods have been applied to both 
feature-based and Transformer-based models. In [38], Integrated Gradients are 
used to explain personality predictions based on OSNs users’ activities, while [22] 
employs Bi-LSTM and MentalRoBERTa directly on users’ texts, applying 
LIME and AGRAD to interpret the predictions. Further, [21] refines psycho-
logical representations using a Siamese Bi-LSTM, providing interpretability by
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comparing embeddings to baseline personality statements. In [50], the person-
ality detection problem is addressed using affective natural language inference, 
determining whether the hypothesis, i.e., the personality label description for a 
speak er, is valid given the affective dialogue content as the premise.

Unlike the aforementioned interpretable approaches, we propose both a glob-
ally and locally interpretable model for OSNs comments that identifies data-
driven beha vioral profiles to differentiate between toxic and non-toxic users.

3 Problem Formulation 

This section presents a problem formalization that aims to clarify the differences 
betw een supervised and unsupervised personality detection.

Definition 1 (Supervised Personality Detection Problem). Let U = {u1, 
.  .  .  ,  un} be a set of n users of an OSN, and let Y ∗ = {y∗ 

1 ,  .  .  .  ,  y∗ 
n} be their 

personality traits with y∗ 
i ∈  Q∗ and where Q∗ = {1,  .  .  .  ,  q} is the set of possible 

personality traits. The Supervised Personality Detection Problem consists of 
learning a pe rsonality detection model f that given in input an unlabeled user ui

returns its personality trait y∗
i , i.e., y∗

i = f(ui).

Unfortunately, the set of possible personality traits Q∗, and consequentially 
the ground truth for personality traits Y ∗, are typically unknown, and even 
when based on psychological theories, the specific personality traits y∗ 

i of a user 
ui are typically undisclosed due to privacy concerns or lac k of expert validation.
This challenge arises despite the fact that users’ content on OSNs is publicly
accessible. Hence, we face the problem from an unsupervised perspective.

Definition 2 (Unsupervised Personality Detection Problem). Let U = 
{u1,  .  .  .  ,  un} be a set of n users of an OSN. The Unsupervised Personality D etec-
tion Problem consists of the two following parts:

(i) deriving from the activities of the users U on the OSN a set K = {1,  .  .  .  ,  k} 
of data-driven personality traits such that each user ui ∈ U is assigned with 
a data driven personality Y = {y1, . . . , yn} with yi ∈ K,

(ii) learning a personality detection model f that given in input an unlabeled user 
ui returns its data-driven personality yi, i.e., yi = f(u i).

In the rest, we propose an unsupervised method to solve the unsupervised 
personality detection problem, treating it as an approximation of the supervised 
personality detection problem, especially useful in scenarios where, as is often
the case, ground-truth personality traits for users are unavailable.

4 Methodology 

This section presents our framework for deriving an unsupervised, interpretable 
model to profile OSNs users and distinguish between toxic and safe, i.e., non
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Algorithm 1: traits(T ) 
Input : T - OSN textual comments of users where ti,j ∈ Ti is the jth comment of user i, 

and Ti ∈ T with Ti = {ti,1,  .  .  .  ,  ti,ni
} is the set of ni comments of user i. 

Param : Dp = 〈Tp,  Yp〉 - external dataset with known personality traits 
is_toxic

α
- returns 1 if the toxicity score is higher than α,  0  otherwise.  

α - text toxicity threshold. β - user toxicity threshold. 
Output: f - interpretable personality detection model. 

1 Gp ←  {gj |gj = Lg(Tp,  Y  (j) 
p ) ∀j ∈ [1,  p]}; // learn pers. detectors on external dataset 

2 X ←  ∅; // init. interpretable user representation 
3 Xtoxic 

emb ←  ∅; Xsafe 
emb ←  ∅; A ←  ∅; // init. latent embeddings and user toxicity label set 

4 for i ∈ [1,  n] do // for each user 
5 A ← A ∪  {1( 1 ni

∑ni 
j=1 is_toxic

α (ti,j ) ≥ β)}; // calculate and store user toxicity 

6 X ← X ∪  {extract_features(Ti )}; // extract interpretable features 
7 t̂i ← 

⋃̂ni 
j=1ti,j ; // concatenate all texts of a user

8 if Ai = 1 then Xtoxic
emb ← Xtoxic

emb ∪ {embGp (t̂i)}; // extract toxic user embedding

9 else Xsafe
emb ← Xsafe

emb ∪ {embGp (t̂i)}; // extract non-toxic user embedding

10 Y toxic ← cluster(Xtoxic
emb ); Y safe ← cluster(Xsafe

emb ); // cluster toxic and non-toxic users
11 Y ← Y toxic ∪ Y safe ; // merge personality traits labels
12 f ← Lf (X, Y ); // learn interpretable personality detector
13 return f ;

toxic, behavior patterns. We present here traits,  a  tool for revealing attributes 
and identifying toxic and safe profiles in OSNs, our p roposal to solve the unsu-
pervised personality detection problem.

The core idea is to leverage latent embeddings learned from an external 
source to identify personality traits and group users accordingly. Simultane-
ously, the same users are represented using interpretable linguistic and affective 
features, which are assigned to the identified groups. An interpretable mo del is
then trained to detect these profiles, revealing the key discriminative factors in
terms of the features. The pseudo-code of traits is in Algorithm 1. 

Given a set of n users U = {u1,  .  .  .  ,  un} of an OSN, we name T = 
{T1,  .  .  .  ,  Tn} the textual comments generated by the users of the OSN in a cer-
tain period, where Ti ∈ T with Ti = {ti,1,  .  .  .  ,  ti,ni } is the set of ni texts of user
i, while ti,j ∈ Ti is the jth text of user i. traits is a framework that takes as
input T and returns an interpretable personality detection model as f .

We refer to traits as a framework because it relies on external data and pre-
trained functions along with their parameters. Indeed, we assume the availability 
of an external dataset Dp = 〈Tp,  Yp〉 of texts Tp with attached known personality 
traits Yp of the users that generated such texts, where each ti ∈ TP is the 
concatenation of all the texts written by a user i coming from this external 
resource and each yi ∈ Yp represents a list of p personality trait scores, i.e., 
yi = {yi,1,  .  .  .  ,  yi,p} where each yi,j ∈ [1, q] can assume q different scores of
personality for each one of the p traits. Y

(j)
p refers to the j-th personality trait

for all the texts in Tp. As first step (line 1), traits learns a set of personality
detectors Gp = {g1, . . . , gp} for each trait using a predefined learning function Lg

(see Sect. 5 for implementative details). These detectors g1,  .  .  .  ,  gp are trained on 
the external dataset Dp solving a supervised personality detection problem, and
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they are used in turn, in a transfer learning fashion [18], for extracting latent 
embeddings of the users U analyzed by traits. We underline that the set of 
users U analyzed is not overlapped with the set of users generating the textual
comments for which we have the associated personality traits in Dp.

Then, the sets X, Xtoxic 
emb , X

safe 
emb ,  and  A are initialized. X stores the inter-

pretable representation of the users U in terms of the attributes revealed by 
traits; Xtoxic 

emb and Xsafe 
emb separately store for toxic and safe users the latent 

embeddings characterizing the users U in terms of some hidden a spects derived
from the learning procedure Lg trained on the external resource Dp; A stores a
user toxicity label as 1 for toxic users, 0 for safe users.

For each user in U (loop lines 4-9), the following steps are performed. First, 
given a function is_toxicα(t) that takes a text t as input and returns 1 if the
text’s toxicity score is α or higher, and 0 otherwise, traits counts1 the number 
of toxic comments made by the i-th user. If the proportion of toxic comments 
relative to the user’s total comments meets or exceeds β, the user is classified as 
toxic, and this information is stored in A (line 5). After that, traits uses the
extract_features function to retrieve human understandable linguistic and affec-
tive features from the set of comments Ti (line 6). Then, traits concatenates2
all the texts of a user in t̂i (line 7) and uses it to extract users latent embeddings 
through a combination of the personality detectors with the function embGp

(t̂i) .
The result is placed in the right set depending on the user toxicity Ai.

After that, assuming the availability of a function cluster that takes as input 
a dataset with n records and assigns a label Y = {y1,  .  .  .  ,  yn} to each record, 
traits groups the toxic users and safe users w.r.t. their latent embedding stored 
in Xtoxic 

emb , X
safe 
emb , respectively (line 10). The labels Y toxic , Y safe identify different 

behavioral traits for toxic and safe users. However, it is still not possible to
describe these profiles in a human understandable way. Thus, Y toxic , Y safe are
merged in Y (line 11) and together with the interpretable user representation X
are used to train an interpretable personality detection model f (line 12).

Given the set of textual comments from any user Ti, by applying the func-
tion f to their interpretable features xi = extract_features(Ti), f(xi) returns 
the toxic or safe cluster label assigned to user ui.  Since  f is interpretable, 
this decision is justified in terms of the features xi. Consequently, by ana-
lyzing prototypical members of the cluster groups traits allows the user to 
simultaneously reveal the interpretable features that contribute to their classi-
fication and help to characterize the data-driven personality t raits in terms of
these features. Details about the implementation of the functions Lg, is_toxic,
extract_features, cluster and embg1,...,gp

and Lf are provided in next section as
they are attached to and dependent on the specific case study.

Ethical Aspects and Privacy Risk Assessment Discussion. Our proposal miti-
gates user privacy and anonymity through several mechanisms. Users can be 
pseudonymized, as only their textual comments are needed, not their real iden-
tities. The interpretable features are derived solely from users’ texts without
1 The operator 1(cond) returns 1 if the boolean condition con d is satisfied, and 0 otherwise.
2 The operator 

⋃̂
performs the union as the concatenation of texts.
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relying on external data of other users. Data is processed collectively only dur-
ing clustering and model training phases. In the clustering phase, embeddings 
make personality traits incomprehensible, and for model training, safeguards like 
model aggregation can be used to protect user anonymity. In the model train-
ing phase, additional safeguards can be applied by aggregating feature values to
protect user anonymity [36]. For instance a discretized version of a feature such 
as “number of posts” can considerably reduce the risk of re-identification from an
external attacker. Also, risk assessment studies [31] show that an attacker would 
need extensive background knowledge to reconstruct a user’s full information. 
Even in such cases, the attacker would not gain access to sensitive data, as the 
interpretable features only describe writing style and mood, while the target
variable reflects group membership based on these features, without referencing
psychological or sensitive traits like “depressed”, “anxious”, or “narcissist”.

5 Case Study and Experiments 

We apply traits to a Reddit users case study3, outlining the experimental setup, 
datasets, and implementation of the functions discussed earlier. We then present 
the p erformance of the interpretable models along with the resulting profiles.

5.1 Experimental Setting 

We present here the datasets, external functions, and models utilized in our case
study to apply the traits framework.

Reddit Dataset. We focus on personality detection within a set U of over 15k 
Reddit users and their corresponding comments T , based on their activities from 
April 2020 to January 2021. For a detailed e xplanation of how users are selected
and how the text extraction process is conducted, we refer the reader to [7]. 

External Personality Dataset. As external dataset with known personality traits 
Dp = 〈Tp,  Yp〉, we employ the PANDORA dataset [16], which provides OCEAN 
scores for approximately 1,6k users derived from explicit mentions of test results 
or responses to personality tests, with scores ranging from [0, 100] for p =  5  per-
sonality traits, i.e., Openness, Consciousness, Extraversion, Neuroticism, Agree-
ableness. Since PANDORA also consists of a collection of English-language Red-
dit comments, similar to our unlabeled dataset T , it serves as a suitable external 
dataset for training models to generate latent representations of the comments 
in T . The users’ comments in Tp are aggregated into a single text per user by 
concatenation, while the associated scores are discretized into q =  5  values. This 
approach reduces predictive complexity while retaining distinctions in personal-
ity intensity among users. We acknowledge the potential limitations of relying
on these scores, as some reported test results may be inaccurate, and some users
may have intentionally misrepresented themselves. Nevertheless, we still choose
to adopt PANDORA as an external reference dataset for our study, given the
3 The code to replicate the experiments is available at: https://github.com/acascione/traits. 

https://github.com/acascione/traits
https://github.com/acascione/traits
https://github.com/acascione/traits
https://github.com/acascione/traits
https://github.com/acascione/traits
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absence of other readily available alternatives, and leave the development of a 
dataset with v alidated personality scores to future work.

Supervised Personality Detectors. The supervised personality detectors Gp = 
{g1,  .  .  .  ,  gp} are obtained training a Transformer for each personality trait 
j ∈ [1,  p=5] on the PANDORA dataset using the OCEAN l abels as ground-
truth. Given the consistent documents length, due to the concatenation, a Long-
Former (LF) architecture [3] is applied as learning function Lg. This allows an 
efficient processing of up to 4,096 tokens, making it well-suited for lengthy text
data4. For evaluating the supervised personality detectors, we divided the users 
in Dp into a 70%/30% train-test split, with an additional hold-out validation on 
the training set using an 80%/20% split. Details for the hyper-parameters are 
av ailable in the repository. The weighted F1-score on the test set is reported on
the first line in Table 2. 

User Toxicity. In order to implement the function is_toxicα,  we  use  t  he Per-
spective API5, which labels a text as toxic if its toxicity score is greater than or 
equal to α =  0.7.  We  set  α =  0.7 to balance sensitivity and s pecificity in tox-
icity analysis, reducing false positives without losing relevant data6. According 
to the Perspective API, the toxicity score represents the proportion of readers 
who would perceive the comment as toxic. For instance, a score of 0.7 indicates 
that 7 out of 10 readers are likely to find the c omment toxic. We consider a user
toxic if 10% or more of their comments in Ti are deemed toxic, i.e., β ≥ 0.1.

Interpretable Feature Extraction. The extract_features function computes lin-
guistic and affective-related f eatures for individual texts7, and aggregates them 
into user-level representations using statistical measures such as sum, mean, 
max, and min. Linguistic features include basic metrics (e.g., counts of stop-
words, emojis, and unique words) as well as advanced readability scores. The 
readability scores assess text complexity based on various linguistic factors: syl-
lable count and sentence length (Flesch Kincaid Grade Level, Flesch Reading 
Ease, SMOG), word difficulty and frequency (Dale Chall, Spac he), letter count
and sentence structure (Coleman Liau Index, Automated Readability Index),
and the proportion of complex words over the entire text (Gunning Fog, Lin-
sear Write). Furthermore, we use MFD metrics to capture moral intensity [24] 
and LIWC 2022 language dimensions (such as Culture and politic highlighting 
the significance of a text w.r.t these topics). Affective features are extracted 
using TextBlob’s polarity score, NRC-Lex, NRC-EIL, and VAD-Lex for valence,
4 For users whose aggregated texts exceeds the 4,096-token limit, the text is split into batches of 

up to 4, 096 × 5 tokens each, with each batch treated as a complete text. If a u ser has multiple
associated texts, the majority predicted class among texts is considered as final label.

5 https://perspectiveapi.com/. 
6 Both the API documentation [1] and previous studies [11] indicate that higher thresholds, such 

as 0.9, lower classification errors but exclude cases useful for studying biases in ML models. 
Furthermore, using 0.7 facilitates the analysis of terms associated with socially targeted groups,
mitigating the effect of imbalanced distributions in training data.

7 For a more detailed description of the features, please refer to the reference repository. 
Implementations of the tools used are available at: https://pypi.org/project/readability/, 
https://textblob.readthedocs.io/en/dev, https://pypi.org/project/NRCLex/, https://www.liwc. 
app/, https://saifmohammad.com/WebPages/lexicons.html,. 
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Table 1. Cluster sizes and Silhouette scores for d ifferent clustering strategies.

Strategy Type C1% C2% C3% Silhouette 

traitsA Toxic 9.71 4.15 36.17 0.086 
Safe 19.96 18.02 11.99 0.037 

traitsC Toxic 15.12 13.82 21.08 0.049 
Safe 31.94 14.60 3.40 0.026 

arousal, and dominance. We filter out features with a variance lower than 0.2, 
obtaining 177 total interpretable features. We retain the obtained features with-
out applying any further transformations to preserve their interpretability as 
much as possible. While feature selection strategies could be explored, we choose 
to avoid discarding further potentially relevant information that could contribute
to a more comprehensive interpretability analysis. Furthermore, our experimen-
tal analysis in Sect. 5 demonstrates that methods capable of automatically dis-
carding irrelevant attributes are the most effective for our case study, justifying
our previous choice.

Users Embeddings. We leverage the trained models Gp to obtain user embed-
dings. For each user, the full text t̂i is processed by averaging token representa-
tions from the penultimate layer of each gj , implementing embGp

. If a user has 
multiple documents, their embeddings are further averaged to create a single rep-
resentation. Two aggregation strategies are explored: (i) averaging embe ddings
from each detector to produce a 768-dimensional vector and (ii) concatenat-
ing these embeddings for a 3840-dimensional vector, referred in the following as
(traitsA) and (traitsC), respectively.

Users Clustering. In our experiments, we adopted a centroid-based approach for 
clustering u sers, employing the standard k-means8 algorithm [ 47]. We also con-
sidered DBSCAN [12] as an alternative density-based clustering strategy, but 
it yielded poor results in our initial experiments. Consequently, we opted for 
the k-means approach. Moreover, we also preferred k-means due to its ability to 
provide a natural identification of exemplar instances, i.e., those closest to the 
centroid w ithin each cluster, which are valuable for the in-depth interpretability
analysis of data-driven personality profiles we present at the end of Sect. 5.  We  
tested values of k ranging from 2 to 10 to avoid generating an excessive number 
of clusters, which could hinder the subsequent interpretability step. We applied 
k-means on the entire set of toxic and safe users, i.e., Xtoxic 

emb ∪ Xsafe 
emb ,  as  well  

as separately on toxic and safe user embeddings. To evaluate clustering perfor-
mance, we considered the Silhouette scores. After testing different approaches,
we found that the most effective strategy was to cluster toxic (Xtoxic

emb ) and safe
(Xsafe

emb ) user embeddings separately and apply the k-means cluster function with
k = 3 for both toxic and safe users.

8 https://pypi.org/project/pyclustering/. 

https://pypi.org/project/pyclustering/
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Table 2. F1-scores for (black) interpretable models trained and applied on transpar-
ent features to predict data-driven profiles; (blue) supervised pers. detectors trained 
applied on the external dataset to predict supervised profiles; (brown) interpretable 
models trained and applied on transparent features to supervised profiles; and (purple) 
interpretable mo dels trained and applied on latent embeddings to predict data-driven
profiles. Best model in bold, best runner up in italic.

Model traitsA traitsC Agree. Consc. Extra. Neurot. Openn. avg rtrA rtrC 

LF - - .664 .725 .733 .629 .672 .684 - -

LGB .675 .681 .431 .508 .448 .447 .478 .462 .453 .480 
EBM .645 .659 .405 .493 .434 .433 .464 .446 .468 .493 
PT .283 .259 .338 .448 .351 .337 .381 .371 .455 .473 
DT .478 .491 .360 .449 .366 .345 .397 .383 .318 .337 
KNN .317 .297 .332 .439 .337 .310 .358 .355 .339 .341 
LR .583 .575 .308 .414 .338 .316 .420 .360 .439 .437

Cluster sizes and Silhouette scores for the two embedding aggregation strate-
gies are reported in Table 1. By considering both clustering labels Y toxic and 
Y saf e we obtain the presumed personality traits Y for the users under analysis. 
We observe that, although the Silhouette scores for the clusters are generally 
low, the resulting clusters still show a relatively good separation between users 
with different online behaviors, as we show in Sect. 5.2. Furthermore, our focus is 
on comparing the performance of the two proposed strategies, rather than on the 
absolute values of the S ilhouette scores. Therefore, we rely on these clustering 
results for our subsequent evaluations.

Interpretable Personality Detectors. As personality detector models f and 
respective learning function Lf , we experimented with two gradient boosting 
algorithms based on Decision Trees (DT) [4]: the Light Gradient Boosting 
Machine (LGB) and its interpretable variant, t he Explainable Boosting Machine 
(EBM) [27]. As interpretable baselines, we include DT and PivotTree (PT) [5], 
the latter functioning both as a standalone classifier and a tool for exemplar 
instances selection. We also consider Logistic Regression (LR) [25]  and  k-Nearest 
Neighbor (KNN) [23] as additional interpretable alternatives. We evaluate the 
performance of each model using a 5-fold cross-v alidation using the weighted 
F1-score as evaluation measure9. 

5.2 Results 

We present here experimental results from interpretable predictiv e models. 
Tab le 2 presents (in black) the experimental results from interpretable predictive
9 Repositories: https://github.com/fismimosa/RuleTree, https://github.com/microsoft/ 

LightGBM, https://interpret.ml/docs/ebm, https://scikit-learn.org. Details for the hyper-
parameters are available in the repository. The results r eported refer to the best hyper-parameter
setting.
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models. In column two and three are reported the weighted F1-scores of the inter-
pretable models f trained on transparent features X to predict traits-driven 
profiles Y . Comparing the two data representation aggregation strategies used 
for clustering, the concatenation (traits C) of embeddings demonstrates supe-
rior predictive performance on interpretable features compared to the average
(traitsA) aggregation strategy.

Among predictive models, LGB achieves the highest performance, followed 
by EBM. Notably, EBM offers a significant interpretability advantage, provid-
ing both global and local feature importance for each prediction, as its additive 
prediction process enables detailed insights [27]. DT, PT,  and  KNN exhibit 
unacceptable performance despite their inherent interpretability. The LR model 
performs slightly better but still falls short of LGB and EBM.  Thus,  we  adv  o-
cate for EBM as the best model for interpretable data-driv en personality traits
detection.

To emphasize the importance of the interpretable features X extracted by 
traits as well as the data-driven personality traits Y , we conducted experiments 
using a set of baselines. As a primary baseline, the first row of Table 2 presents (in 
blue) the performance of the supervised personality detectors {g1,  .  .  .  ,  gp} (LF) 
on the external dataset Dp for the five OCEAN personality traits, along with 
their average score. Notably, the performance of EBM and LGB models within 
the traits framework (reported in black) aligns closely with these significantly 
more complex LF models (reported in blue), d emonstrating the effectiveness of
the interpretable models.

As a second baseline, we compare the traits framework against the training 
of the same interpretable models f on the same interpretable features X, but 
targeting the recognition of OCEAN personality traits obtained by labeling the 
texts Ti of Reddit users using s upervised personality detectors {g1,  .  .  .  ,  gp}.  The  
corresponding results are presen ted (in brown) in columns four through nine
of Table 2. A clear trend emerges: the interpretable models f trained on the 
interpretable features X demonstrate poor predictive performance compared to 
traits alternatives. The only exceptions are PT and KNN,  which  perform  
marginally better on this task, though their performance remains subpar and
unacceptable overall.

As a third alternative, we experimented by applying cluster in the inter-
pretable feature domain X separately for toxic and safe users, instead of using 
Xtoxic 

emb and Xsafe 
emb . This was done using k-means with k =  3. We then predicted 

the data-driven labels Y ′ by training models f on the e mbeddings Xtoxic 
emb and 

Xsafe 
emb , instead of the transparent features X. In essence, this approach is the 

reverse process of traits. In Table 2, this method is denoted as rtrA and rtrC, 
representing the average and concatenated versions of the reverse of traits, 
respectively. The results, shown in purple in the last two columns, indicate bet-
ter performance for rtrC than rtrA, except in the case of LR. rtrC achieves 
comparable performance c ompared to OCEAN-label predictions (highlighted in 
brown), with a notable improvement for PT and LR, though overall performance
remains unsatisfactory.
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Based on these findings, we conclude that the traitsC strategy is the most 
effective approach for data-driven profile detection for the Reddit case study.

5.3 Analysis of Data-Driven Personality Profiles 

We can now utilize the interpretable structure of the trained EBM to analyze the 
identified behavioral profiles, focusing on exemplar instances from each dataset. 
We complement these findings with an analysis of t he intensity of OCEAN per-
sonality traits across clusters, derived from user labeling via LFs.

Interpretable Cluster Analysis. We explain the cluster assignments by considering 
one representative user from each cluster. As representative users, we select the 
medoids of the six clusters and interpret their profiles using the EBM.

In Fig. 1, we present radar plots that illustrate the importance of specific 
features in predicting each representative user’s association with their respective 
behavior group. Among the 177 interpretable features, we visualize a subset 
of features based on two criteria: the top ten features ranked by the global
importance of the EBM (Fig. 1, top), and the top ten features derived from 
the NRC-Lex and VAD-Lex sentiment lexicons (Fig. 1, bottom). This approach 
allows us to interpret the assignment of users to behavioral clusters from both 
an overall f eature importance perspective and an affectiv e perspective.

To enhance the readability of the radar plot, we better specify the seman tics 
of the features used i n the visualization.

As already described in Sect. 5,  given  a  user  ui with a text collection Ti, 
each text ti,j ∈ Ti is analyzed using various tools and attributes. Among many 
of the features extracted from each text ti,j , Perspective API is used to assess 
ti,j ’s content in terms of obscene (use of offensive or vulgar language), threat 
(expressions of harm or danger), insult (derogatory or demeaning language), 
and identity_attack (targeted hostility based on identity) scores. TextBlob eval-
uates ti,j ’s polarity, which indicates the overall sentiment of the text, ranging 
from negative to po sitive. NRC-Lex identifies positive sentiment, indicating the 
presence of emotionally positive expressions. LIWC-extracted features include 
swear (use of profane or offensive language), politic (discussion of political top-
ics), and Culture (cultural aspects, including ethnicity, technology, and politics).

For each user ui, the scores of their texts ti,j were aggregated using statistical 
measures such as sum, mean, max, and min. Based on feature importance results 
from EBM, the sum operator was the most effective in predicting membership to 
behavioral clusters. Additional features for each user identified as most relevant 
are nbr_posts, which represents the total number of posts made by a user, and 
fuck_sum, which counts the occurrences of the word in the user’s texts, and we
report them too in the radar plots.

For affective features, we considered a set of emotional states from the NRC-
Lex, including sadness, surprise, trust, anger, fear, disgust,  and  joy.  These  emo-
tions capture a range of human affective responses. Additionally, we incorporated 
affective dimensions from the VAD-Lex, namely valence (emotional value rang-
ing from negative to positive), arousal (intensity of emotional response, from



174 A. Cascione et al.

calm to excited) and dominance (degree of control or power, ranging from sub-
missive to dominant). The extraction and aggregation of these features follow 
the same approach describ ed above.

Fig. 1. The plots illustrate the contributions of the top ten most important features 
(top) and ten affective features (bottom) for the prototype users of safe (left) and toxic 
(right) clusters. For visualization purposes, feature contribution scores are scaled to 
the interval [−1, +1], where higher values indicate a greater influence of t hat feature
on the cluster assignment.

Focusing on clusters interpretation, Cluster 1-tox shows the highest levels of 
toxicity, with peaks in identity attacks and insult content. The emotional profile 
is dominated by anger, lack of trust,  and  disgust. We name this group Aggressive 
cluster. Cluster 2-tox shows slightly more moderate levels of toxic language, with 
a lower focus on political themes: the user’s emotional profile is more oriented 
toward arousal, valence,  and  fear.  We  name  these  users  Provocative.  Cluster  3-
tox presents lower o verall toxicity, with higher levels of joy, valence,  and  trust, 
and a reduced tendency toward identity attacks. This can be named as Mildly-
Toxic cluster. For the safe clusters, Cluster 1-safe shows peaks of contribution
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Fig. 2. Stacked bar chart of discretized and normalized OCEAN traits distributed 
across traitsC clusters and respective cluster sizes. Among the q =  5  trait values, 
deep er shades indicate higher scores.

in posts number, positive polarity comments, and a low amount of insults.  The  
emotional profile is oriented toward trust and valence, indicating Constructive 
users of the OSN. Users in 2-safe use slightly harsher language compared to the 
other ones. They exhibit the highest levels of anger, fear, and the lowest levels 
of joy,  making  them  Contentious users. Cluster 3-safe is characterized by lower 
levels of surprise and anger, as well as slightly lower polarity. These users are 
neutral and less expressiv e, suggesting they may be considered Neutral users.

OCEAN Traits Across Clusters. We complement the previous findings by high-
lighting how OCEAN personality traits vary in i ntensity across clusters, as s hown
in Fig. 2. 1-tox (Aggressive) stands out with extremely high Neuroticism and low 
Agreeableness, aligning with the hostile behaviors seen in Fig. 1. 2-tox (Provoca-
tive) users share many of the traits of 1-tox, particularly the elevated Neuroti-
cism, but also show higher levels of Extraversion and slightly higher Agreeable-
ness. Lastly, 3-tox (Mildly-Toxic) users display lower Extraversion and moderate 
Agreeableness and Conscientiousness, suggesting a more reserved behavior. Mov-
ing  to  safe  users,  1-safe (Constructive) ones are characterized by low levels of 
Neuroticism and high levels of Agreeableness and Conscientiousness, confirm-
ing emotional stability and cooperative tendencies. 2-safe (Contentious) users 
share similarities with 1-safe but with slightly red uced Agreeableness and Consci-
entiousness, indicating their more argumentative tendency. In 3-safe (Neutral) 
cluster we observe moderate Openness and Agreeableness levels, reflecting a less
expressive disposition.

6 Conclusion 

We have introduced traits, an interpretable framework designed for the unsu-
pervised detection of personality traits in both toxic and safe OSN users, explain-
ing user behavior assignments in terms of lexical and affective features. Through 
a case study on Reddit, we have demonstrated that traits effectively identifies 
distinct behavioral groups and offers a clearer understanding of users’ behavior 
traits, represented by interpretable feature values, by analyzing the contribution
of each feature to the final cluster assignment of a user.
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We acknowledge three potential limitations of our approach and propose 
possible ways to address them. The first concerns the conceptual foundation of 
our framework, as we assume users’ personality traits to be a sufficient basis 
for evaluating behavior on OSNs. However, users with similar personality traits 
may exhibit different behavioral tendencies d epending on the communication
context [48]. Therefore, we plan to extend traits by incorporating contex-
tual variability and emotional intelligence factors, as they significantly influence 
online social interactions [28]. The second limitation concerns the lack of external 
validation from experts. To address this, we plan to collect user-generated posts 
from an OSN while strictly adhering to ethical and privacy-preserving guidelines. 
These posts will be assessed for toxicity and behavioral tendencies using traits 
and subsequently reviewed by domain experts. External validation by expert 
psychologists could further refine behavioral assessments and provide a foun-
dation for m ore effective targeted moderation strategies. Additionally, we aim 
to integrate expert knowledge to evaluate aspects more closely associated with 
toxic personality traits, such as those outlined in the Dark Triad Theory [14]. 
We also plan to carefully address privacy risks associated with data collection, 
ensuring proper anonymization. Moreover, we recognize the challenges of human 
annotation subjectivity and the biases that random user selection may introduce, 
potentially affecting the representation of various writing styles and personality 
traits in our analysis. We plan to account for these factors to ensure a more bal-
anced and reliable evaluation. To further enhance the information provided by 
our interpretable model, we plan to incorporate in our analysis contextual data 
alongside affective and textual features. In our case-study dataset, the absence 
of time zone information limited a deeper temporal analysis of posts, which we 
aim to address in future work. Additionally, considering users’ activity within 
specific communities could provide more specific insights on users’ tendencies; 
however, potential biases must be accounted f or to avoid incorrect inferences, as
toxic behavior may be more associated with certain communities than others.

Finally, to evaluate the effectiveness of traits in contributing to impactful 
moderation strategies, we aim to explore its application alongside content gener-
ated by large language models. Specifically, we intend to assess whether targeted 
moderation prompts, tailored to address toxic individuals within specific behav-
ioral groups, lead to more effective behavioral adaptations in simulated users 
compared to generic, one-size-fits-all moderation approaches. This evaluation 
will be conducted within OSN-simulated environments [51]. To achieve this, we 
plan to conduct experiments with different prompt-design strategies, varying 
aspects such as tone, context, and topic, as well as incorporating leading ques-
tions or framing specific issues positively or negatively, while carefully mitigating 
the introduction of bias, privacy risks, or unfairness in the design. 
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Abstract. Online Social Networks (OSNs) enable large-scale discus-
sions but often suffer from toxic behaviors such as harassment and 
hate speech. While automated moderation helps manage toxicity, per-
sonalized approaches remain challenging due to fairness and trans-
parency concerns. We introduce utoxic, a machine-learning framework 
that detects and analyzes toxic users based on linguistic, affective, and 
clustering-derived features. It performs binary and multi-class classifi-
cation while incorporating explainability techniques for transparency. 
Evaluating utoxic on a Reddit dataset with over 8 million comments,
we demonstrate its effectiveness in identifying toxic users and specific
toxicity types. Our approach enhances automated moderation, offering
interpretable insights for fairer and more adaptive interventions.

Keywords: Toxicity Detection · Machine L earning · XAI

1 Introduction 

Online Social Networks (OSNs) are a key part of modern digital communication, 
shaping users’ interactions. Platforms like Facebook, X (formerly Twitter), and 
Reddit enable large-scale, real-time discussions. However, these platforms often 
suffer from toxic behaviors that harm interactions and degrade discussion qual-
ity. Toxic behavior in OSNs includes cyberbullying, harassment, flaming, hate 
speech, and other harmful actions. To counter this, OSN platforms use content 
moderation strategies, combining user reports with automated detection meth-
ods. While users can report harmful content, automatic machine learning-based 
approaches, which a re typically not interpretable, play a major role in identify-
ing and managing toxic discussions at scale. A major challenge in moderation is
implementing personalized strategies that consider user-specific behaviors. Stud-
ies show that users respond differently to moderation efforts [19], thus customiz-
ing moderation policies based on behavior can improve adherence to communit y
guidelines and enhance moderation effectiveness [4]. However, this approach 
presents challenges, such as the lack of ground truth, and the importance of 
interpretable machine learning models to ensure fairness and transparency [9]. 
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In order to pursue this direction, w e present utoxic1,  a  user toxic 
explainable identification and characterization framework for toxic users based 
on features extracted from their comments and activity. utoxic employs lin-
guistic and stylistic, affective-based, and clustering-derived features, aggregat-
ing them at the user level to perform binary classification (toxic vs. non-toxic) 
and multiclass classification (identifying specific toxic behaviors). utoxic also 
incorporates explainability techniques to clarify model decisions at both local 
(individual cases) and global levels. We evaluate utoxic on a Reddit dataset 
with over 8 million comments from 15,000 users. Our results show that utoxic 
effectively distinguishes toxic from non-toxic users and identifies specific types
of toxicity, such as harassment, violence, racism, and profanity. By using inter-
pretable linguistic, sentiment-based, and unsupervised features, utoxic enhances
automated toxicity detection and characterization, potentially enhancing mod-
eration in OSNs.

The rest of the paper is organized as follows. After reviewing the literature 
in toxicity detection both at a comment and at the user level in Sect. 2,  we  
formalize utoxic in Sect. 3. Section 4 presents the Reddit case study together 
with the experimental results. Finally, Sect. 5 summarizes our contributions and 
outlines potential directions for future research.

2 Related Works 

In the literature, there is not a single and agreed-upon definition of the term 
“toxicity” or “toxic-speech” but it is often used as an umbrella term indicating 
negative behaviors. In general, studies in the literature can be grouped into two 
main lines of research: a first line focuses on identifying and classifying toxicity
at the comment level, while the second addresses it at the user level.

Online toxicity detection at the comment levels often involves analyzing toxic 
posts and comments, where “toxic” includes rude, vulgar, harmful, o r hateful
behavior, such as hate speech. In [15], hate-speech detection is performed on 
tweets by combining textual features with user-related attributes (e.g., demo-
graphics, behavior, personality, readability, and writing style), employing mod-
els lik e SVM, Logistic Regression, Random Forest, CatBoost, and XGBoost.
Similarly, in [8] multilingual hate speech detection on Facebook posts is investi-
gated, focusing on user demographics. For similar tasks, in [18]  and [21], Logistic 
Regression, SVM, and Multilayer Perceptron are used to classify comments. In 
these works, the performances of the models involved for the toxicity detection
tasks improve considerably thanks to the features extracted from the comments.

Another strand of research in online toxicity detection focuses on analyzing 
the behaviors of users who post toxic comments, i.e., user level toxicity detec-
tion. For instance, in [12] the authors studied users’ toxicity on Reddit over 
time by labeling over 3 million comments with Perspective API and categoriz-
ing users into four groups based o n toxicity trends, i.e., steady, fickle-minded,
pacified, and radicalized. Similarly, in [2] over 500 million comments across eight
1 The code is available on GitHub at https://github.com/LauraPollacci/UTOXIC. 

https://github.com/LauraPollacci/UTOXIC
https://github.com/LauraPollacci/UTOXIC
https://github.com/LauraPollacci/UTOXIC
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182 L. Pollacci et al.

platforms over 30 years are investigated by defining user toxicity as the frac-
tion of toxic comments. The study shows that toxicity arises during interac-
tions between highly polarized users rather than influencing user participation. 
Factors contributing to toxicity, such as user demographics, posting time, and
trolls, are highlighted in [7, 10]. For instance, the author in [7] adopts an inter-
disciplinary approach, combining linguistics and discourse analysis to examine 
trolling in asynchronous computer-mediated communication. Through a quali-
tative analysis of user discussions, the study identifies four key characteristics 
of trolling: aggression, deception, disruption, and success. Also, it present s a
structured framework for understanding trolling as a deliberate and socially dis-
ruptive behavior in online interactions. The studies in [17]  and [16] apply binary 
classification for toxic user detection. In contrast, [2]  and [12] categorize users– 
using two and four labels, respectively–but without performing a classification 
task, instead proposing a detailed labeling methodology. In [17], the authors 
investigate the link between toxic online behavior and Dark Triad personality 
traits, i.e., narcissism, Machiavellianism, and psychopathy, using classification 
models such as SVMs, Random Forests, and Naive Bayes on Twitter data. They
observe correlations between language use and Dark Triad traits but show low
model performance when analyzing individual users.

We propose an interpretable approach for toxic user modeling and classifica-
tion by exploiting features extracted from their c omments and from their activity
on the platform like [17]  and [16]. Despite our work not being primarily focused 
on hate speech detection, like [15], we employ textual, such as readability levels, 
and affective-based features for modeling. In the literature, most of the works 
that involve XAI focus on the detection of hate speech or similar toxic behaviors, 
while in our w ork, we do not employ XAI techniques for the explanation of text
classification, but exclusively for the toxicity traits of the users.

3 Methodology 

In this section we present utoxic,  a  user toxic explainable identification and 
characterization framework for modeling and classifying toxic users in OSNs. 
utoxic involves extracting interpretable linguistic and behavioral features, and 
training opaque classification models on top of them to distinguish between
toxic and non-toxic users. Finally, we employ explainability techniques on the
interpretable features to understand the model’s decisions.

We start by formalizing the problem of toxic user identification and classifi-
cation, d istinguishing between binary and multi-class settings.

Definition 1. (Toxic User Detection Problem). Let U = {u1,  .  .  .  ,  un} 
represent a set of n users  in  an  OSN,  and  let  T ∗ = {t1,  .  .  .  ,  tn} represent their 
toxicity levels, where ti ∈  T  ∗ and T ∗ = {0,  .  .  .  ,  c} represent the set of possible 
toxicity states. The Toxic User Detection Problem consists of learning a classi-
fication model f that, given an unlabeled user ui, predicts their toxicity level t∗i ,
i.e., t∗i = f(ui), where t∗i ∈ T ∗ represents one of the classes in T ∗.
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Building on Definition 1, we approach the problem of toxic user identification 
and characterization by leveraging machine learning models. In particular, we 
face two problems: the binary Toxic User Detection Problem with c =  2, i.e., 
T ∗ = {0, 1} with 0 for non-toxic and 1 for toxic, and the multiclass Toxic User 
Detection Problem with c = 5, i.e., T ∗ = {0, 1, 2, 3, 4} with 0 for non-toxicity, 1
for harassment, 2 for violence, 3 for racism, and 4 for vulgarity.

However, ground truth labels for user toxicity, such as expert-based annota-
tions, are often unavailable, complicating the direct classification of users. More-
over, the nuanced and context-dependent nature of toxic behavior in OSNs fur-
ther complicates the task. To address these challenges, we propose a supervised 
machine learning approach for b oth the identification (binary classification) and
characterization (multi-class classification) of toxic users. This is achieved by
extracting features from users’ comments and aggregating them.

Definition 2. (Supervised Toxic User Detection Problem). Let U = 
{u1,  .  .  .  ,  un} be a set of n users in an OSN. Each user ui ∈ U has a set of 
comments Ci = {ci1 ,  ci2 ,  .  .  .  ,  cim},  where  m denotes the number of comments 
posted by the user. The set of features F(cij ) is extracted from each comment 
cij ∈ Ci for every user ui. These features are then aggregated using an aggre-
gation function A (e.g., sum, mean) to represent the user in terms of their 
commenting activity. The Supervised Toxic User Detection Problem consists of 
learning a classification model f that, given an unlabeled user ui ∈ U ,  predicts  
their toxicity level t∗ 

i , i.e., t∗ 
i = f(ui),  where  t∗ 

i ∈  T  ∗ represents one classes in 
T ∗. Specifically, the model a ssigns a label ti to each user based on the aggregated
features of their comments, where ti = f

(
A

(⋃m
j=1 F(cij )

))
.

We apply Definition 2 to both the Binary Supervised Toxic User Detection 
Problem with c =  2, i.e., T ∗ = {0, 1} with 0 for non-toxic and 1 for  toxic,  and  
to the Multi-class Single-label Supervised Toxic User Detection Problem with 
c =  5, i.e., T ∗ = {0, 1, 2, 3, 4} with 0 for non-toxicity, 1 for harassment, 2 for
violence, 3 for racism, and 4 for vulgarity.

In the rest, we present the utoxic framework, aimed at improving the detec-
tion and classification of toxic users in OSNs. This framework addresses the 
challenge of toxicity detection in situations where ground truth data on user
toxicity is often unavailable. In Fig. 1 is summarized the core idea of utoxic 
that extracts interpretable and meaningful features from user comments and 
behaviors to identify and characterize toxic users. The process begins with a 
two-level feature extraction (1): first, from the comments themselves (1.a),  and  
second, from the users’ profiles (1.b), which also include aggregated features 
from the comments. These features are then used to model user toxicity (2),
with both binary (2.a) and multi-class (2.b) classification models. Finally, we
apply an explainability technique (3) to interpret and provide insights into the
classification models, making the decision process transparent and understand-
able.

Through the interpretable features utoxic framework can help not only in 
identifying toxic users but also in understanding the factors behind the toxicity
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Fig. 1. Workflow of the user toxicity identification and characterization process. The 
pipeline includes ground truth definition, feature extraction at both comment and user 
levels, u ser toxicity modeling (binary and multi-class), and an explainability step.

classification, enhancing the interpretability of the underlying machine learning
models.

The pseudo-code of utoxic is in Algorithm 1. Given a set U = {u1,  .  .  .  ,  un} 
of n users in an OSN we consider T = {T1,  .  .  .  ,  Tn} the textual comments 
generated by the users of the OSN in a certain period, where Ti ∈ T with 
Ti = {ti,1,  .  .  .  ,  ti,ni

} is the set of ni texts of user i, while ti,j ∈ Ti is the jth 

text of user i. utoxic takes as input T and returns f as the interpretable users’ 
toxicity classification model by employing α, that is the threshold for determin-
ing whether a comment is considered toxic based on its toxicity score, derived
by Dp, an external dataset containing comments (Tp) and their corresponding
toxicity annotations (Yp) (used for training and model validation), and β that
is the threshold for classifying a user as toxic based on the percentage of toxic
comments.

As a first step (line 1), we establish the ground truth for comments (Gt) 
by using external toxicity annotations, specifically from the Perspective API. 
Perspective API provides scores indicating the likelihood that a reader would 
perceive a given comment as toxic or as exhibiting a specific toxicity-related 
attribute. While Perspective API is not fully transparen t regarding its anno-
tation process and may introduce biases, its behavior has been widely investi-
gated, and performances and biases are-at least partially-quantified in the liter-
ature [6, 11, 12, 14]. Moreover, prior research [5, 20] has provided insights into its 
application, including recommendations on t hreshold settings for toxicity detec-
tion [1]. In contrast, human annotation would not only entail significant costs 
given the vast number of comments to be evaluated but would also introduce 
biases that are inherently more difficult to analyze and quantify. Toxicity and its 
associated attributes are not entirely objective constructs, and their perception 
may at least in part depend on individual sensitivity. Thus, human annotation 
could have introduced biases driven by subjective judgment or prejudice, which, 
unlike those of Perspective API, would have been challenging to identify, mea-
sure, or control. The ground truth helps train the model by associating comments
with known toxicity labels. This is done by creating a set of toxicity labels, Gt,



An Interpretable Data-Driven Approach for Modeling Toxic Users 185

Algorithm 1: utoxic(T) 
Input : T - OSN textual comments of users where ti,j ∈ Ti is the jth comment of user i, 

and Ti ∈ T with Ti = {ti,1,  .  .  .  ,  ti,ni
} is the set of ni comments of user i. 

Param : α - toxicity threshold for comment-level toxicity scoring 
β - toxicity threshold for user-level toxicity classification 
Dp = 〈Tp,  Yp〉 - external dataset with known toxicity annotations 

Output: f - toxicity classification model for users. 
1 Gt ←  {gj | gj = Yp(ti,j ) ∀ti,j ∈ T }; // Ground truth for comments from Perspective API 
2 yi,j ← 1 if Yp(ti,j ) ≥ α else yi,j ← 0; // Assign label (1 if score >= alpha, else 0) 
3 Yc[i, j] ← yi,j ; // Assign the label to each comment 
4 for i ∈ [1,  n] do // For each user 
5 ntoxic ← count_toxic_comments(Ti,  Yc[i]); // Define users’ ground truth from Yc 

ptoxic ← ntoxic 
ni 

; // Compute the percentage of toxic comments for user i if ptoxic ≥ β 
then 

6 Gu[i] ← T ; // Classify user as T if ≥ β of their comments are toxic 
GM 

u [i] ← tox_label(Xusers,i); // Multi-label ground truth for toxic users 
7 else 
8 Gu[i] ← N  T  ; // Otherwise, classify the user as non-toxic 
9 GM 

u [i] ← N  T  ; // Classify the user as non-toxic in multi-label classification 
10 Xc ←  ∅; // Initialize comment-level features 
11 for ti,j ∈ T do // For each comment 
12 xlexical ← extract_lexical_features(ti,j ); // Extract lexical and syntactic features 
13 xaffective ← extract_sentiment_emotion(ti,j ); // Extract affective-based features 
14 xtoxic_words ← extract_toxic_lemmas(ti,j ); // Identify toxic lemmas in the comment 
15 xcluster ← extract_cluster _features(ti,j ); // Cluster comments to identify toxicity 
16 Xc ← Xc ∪  {xlexical ,  xaffective ,  xtoxic_words ,  xcluster}; // Aggregate comments’ features 
17 Xu ←  ∅; // Initialize user-level features 
18 for i ∈ [1,  n] do // For each user 
19 xu ← aggregate_features(Xc,i); // Aggregate comment-level features 
20 xactivity ← extract_activity_features(Ti); // Extract users’ activity features 
21 Xu ← Xu ∪ {xu, xactivity}; // Combine all features for user
22 Abinary ← binary_classification(Xu, Gu); // Classify users as T or NT

Amulti ← multi_classification(Xu, GM
u ); // Classify users into categories

fexplanation ← XAI (Abinary , Amulti , Xu); // Apply explainability to all models return
fexplanation ; // Return the interpretable toxicity model with explanations

where  each  label  gj corresponds to a comment ti,j in the dataset T .  Thus,  for  
each comment ti,j ,  the  toxicity  label  gj is directly obtained from the Perspective 
API score, as represented by gj = Yp(ti,j). The ground truth Gt is populated 
by the toxicity labels for all comments in the dataset, where j ranges from 1 to 
n, the total number of comments. This step is crucial to set the benchmark for 
labeling toxicity in the data, which is then used for training the model. Once a 
continuous toxicity score is assigned to each comment from the Perspective API, 
the a lgorithm assigns a binary label (toxic or non-toxic) based on whether the
score (Yp(ti,j)) is greater than or equal to the threshold α. Specifically, if the
score meets or exceeds the threshold, the label yi,j is set to 1; otherwise, it is set
to 0 (lines 2 and 3).

Next, at the user level (lines 4–12), the algorithm defines the ground truth by 
computing the toxicity scores of each user’s comments. For each user i ∈ [1,  n] 
(line 4), the number of toxic comments (ntoxic) is computed (line 5) by counting 
how many of the user’s comments are labeled as toxic in the ground truth Gt. 
The percentage of toxic comments for user i is then calculated (line 6) by dividing
the number of toxic comments by the total number of comments the user made.
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If a user has at least β toxic comments (line 7), they are classified as toxic (T ) 
in the binary ground truth (Gu) (line 8). For toxic users, a multi-label ground 
truth (GM 

u ) is created based on the average toxicity values of their comments, 
providing deeper insight into their behavior (line 9). Otherwise, a user is classified
as non-toxic (NT ) for both binary and multi-label classification (lines 11–12).

Moving to the feature extraction process (lines 13-19), the algorithm initial-
izes comment-level features Xc (line 13). Then, for eac h comment ti,j ∈ T (line
14), the following functions are called:

– The function extract_lexical_features (line 15) is called to capture textual 
characteristics, such as the number of unique words, the frequency of specific 
w ord types (nouns, verbs, adjectives), and readability indices.

– The function extract_sentiment_emotion (line 16) analyzes sentiment polar-
ity (whether the comment is positive, negative, or neutral), tone, through
measures like valence, arousal, and dominance, end emotions.

– The function extract_toxic_lemmas (line 17) identifies toxic-related lemmas 
appearing in the comment.

– The function extract_cluster_features (line 18) applies clustering techniques 
to capture patterns or types of toxicity based o n how similar comments are
grouped together.

Once these features are extracted for each comment, they are aggregated into the 
set Xc (line 19), which holds all the features for every comment in the dataset.

After extracting the features at the comment level, the algorithm moves to 
extract features at the user level. It starts by initializing the set Xu (line 20) to 
store the aggregated features for each user. For each user i ∈ [1, n] (line 21), the
algorithm performs the following steps:

– The individual comment-level features for all comments posted by the user 
are aggregated into a single vector for the user using the function aggre-
gate_features (line 22). This aggregation involves computing statistics such 
as the sum, mean, maximum, and minimum for each feature across all com-
ments made by the user.

– The function extract_activity_features (line 23) is used to capture features 
related to the user’s commenting activity. This includes information such as 
the total number of comments made, the number of t oxic comments, and the
number of different subreddits or topics the user has participated in.

Finally, the aggregated comment-level features are combined with the activity 
features (line 24) to form a comprehensive feature set for the user. With the 
feature set for each user, the algorithm then models toxicity at the user level. 
A binary classification algorithm (line 25) is applied to classify each user as 
either toxic or non-toxic, based on the features extracted from their comments 
and activity. For users classified as toxic, the algorithm further categorizes them
into different toxicity types (line 26). This is done through a multi-class clas-
sification, where users are classified into distinct toxicity types based on the
features extracted from their comments. The final step of the algorithm is to
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apply Explainable AI techniques (line 27) to interpret the classification results 
and understand which features contributed the most to the model’s decisions. 
The algorithm generates explanations for both binary and multi-class toxicity 
classifications, at a l ocal and global level, providing insights into how different
features impacted the classification decisions for users (line 28).

4 Case Study 

To evaluate the effectiveness of our framework, we apply utoxic to a case study 
of Reddit users. This section details the experimental setup and the f eature
extraction process. We then present the classification model performance and
insights derived from applying XAI.

4.1 Experimental Setting 

We apply the methodology described in Sect. 3 to a Reddit case study by first 
defining the ground truth, then extracting features from comments and users to 
model and characterize toxicity , and finally applying explanation techniques. In
this study, we employ the Reddit dataset2 presented in [3], covering the period 
from April 2020 to January 2021. The dataset represents comments through 16 
properties, including toxicity, severe toxicity, obscene, threat, insult,  and  iden-
tity attack scores. These scores capture toxicity-related information extracted
using the Perspective API3. To define our target variables for multi-class clas-
sification, we map identity attack to racism, threat to violence, obscene to 
vulgarity,  and  insult to harassment, using the corresponding scores from the 
dataset. Together with these, the comments are described by the user, the sub-
reddit where they are posted, the identifiers of the parent comment and the 
submission, the timestamp (without timezone information), their score, and 
any potential awards or gildings. After an initial phase of data preparation, 
which comprises the removal of duplicate comments and irrelevant features, i.e., 
awardings, gildings, parent_id and submission, the dataset includes 8,724,581 
comments, produced by 15,721 unique users, a nd belonging to 45,334 unique
subreddits. To define whether a comment is toxic or not, we set a threshold α on
the toxicity score. We chose α >= 0.7 to ensure a broader inclusion of cases,
rather than restricting the analysis to only the most clearly toxic ones, as would
happen with a higher threshold, as suggested by the documentation [1] 4.  As  a  
result, we obtained 961,251 toxic comments and 7,763,330 non-toxic comments. 
Before the feature extraction, we perform an initial text-cleaning phase in which

2 https://doi.org/10.5281/zenodo.14034510. 
3 Perspective API: https://perspectiveapi.com/. 
4 While ML research often employs stricter thresholds (e.g., 0.9), a lower threshold 

balances inclusivity and precision, capturing a broader r ange of cases while main-
taining reliability. According to prior research [1, 5], ensuring a more comprehensive 
and represen tative dataset for analysis.

https://perspectiveapi.com/
https://perspectiveapi.com/
https://perspectiveapi.com/
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double spaces, URLs, special characters, and punctuation are removed using reg-
ular expressions. Further, to avoid losing useful information, emojis a re decoded
into the corresponding textual definition by using Emoji5, and contractions are 
expanded by using Contractions6. 

4.2 Feature Extraction 

Once the comments were cleaned, we focused on the feature extraction phase 
at the comment level (Algorithm 1, lines 14-18). As described in Algorithm 1 
(line 15), we extracted text-related features, capturing the linguistic and stylistic 
characteristics of the comments. These include, among others, the total num-
ber of words and the count of uppercase words, extracted using NLTK7,  and  
the scores of nine readability tests (See Appendix A.1), obtained from R ead-
ability8. Regarding the affective-based features (Algorithm 1, line 16), we used 
Tex tBlob9 to obtain the polarity score, NRC-Lex10 for the eight b asic emo-
tions11 by Plutchik [13], and the NR C Lexicon12 for valence, arousal,  and  
dominance average values in each comment. To obtain additional toxicity-based 
information, we focused exclusively on the toxic c omments to extract their most
relevant and frequent words (Algorithm 1, line 17). Specifically, we used the 
Wo rdcloud13 Python library to identify the most frequent terms, selecting the 
top 150,000 comments for each of the six types of toxicity, and we applied Term
Frequency-Inverse Document Frequency14 (TF-IDF) to detect the key terms 
in the same set of comments analyzed in the wordclouds. The combination 
of the two approaches provides a set of 27 words that have been lemmatized 
and then individually added as binary features in a one-hot encoding fashion: 
1 if the lemma is present in the comment, 0 otherwise. Moreover, we add the 
toxic_words feature, representing the total number of toxic lemmas p er com-
ment. By following this approach, we obtained a set of 59 features that allow
to fully describe textual, affective, and toxic traits in comments. Moreover, we
applied a centroid-based clustering analysis (Algorithm 1, line 18) using K-means 
and taking into consideration the six toxicity-related features. We applied the 
Elbow Method to determine the optimal number of clusters, which was found 
to be 5. We started from the assumption that the values of the centroids of 
each cluster define the type of toxicity of each comment. Thus, the centroid
of Cluster 0, labeled “extreme toxic”, shows high values for toxicity, obscenity,
5 Emojis: https://pypi.org/project/emoji/. 
6 Contractions: https://pypi.org/project/contractions/. 
7 NLTK: https://www.nltk.org/. 
8 Readability: https://pypi.org/project/readability/. 
9 TextBlob: https://textblob.readthedocs.io/en/dev/. 

10 NRC-Lex: http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.html. 
11 Namely, anger, fear, sadness, disgust, surprise, anticipation, t rust, and joy.
12 NRC VAD-Lexicon: http://saifmohammad.com/WebPages/nrc-vad.html. 
13 Wordcloud: https://pypi.org/project/wordcloud/. 
14 TF-IDF is a numerical statistic that reflects the importance of a word in a document 

relative to a collection, balancing word frequency with its rarity across documents.

https://pypi.org/project/emoji/
https://pypi.org/project/emoji/
https://pypi.org/project/emoji/
https://pypi.org/project/emoji/
https://pypi.org/project/emoji/
https://pypi.org/project/contractions/
https://pypi.org/project/contractions/
https://pypi.org/project/contractions/
https://pypi.org/project/contractions/
https://pypi.org/project/contractions/
https://www.nltk.org/
https://www.nltk.org/
https://www.nltk.org/
https://www.nltk.org/
https://pypi.org/project/readability/
https://pypi.org/project/readability/
https://pypi.org/project/readability/
https://pypi.org/project/readability/
https://pypi.org/project/readability/
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
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https://textblob.readthedocs.io/en/dev/
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http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.html
http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.html
http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.html
http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.html
http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.html
http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.html
http://saifmohammad.com/WebPages/nrc-vad.html
http://saifmohammad.com/WebPages/nrc-vad.html
http://saifmohammad.com/WebPages/nrc-vad.html
http://saifmohammad.com/WebPages/nrc-vad.html
http://saifmohammad.com/WebPages/nrc-vad.html
http://saifmohammad.com/WebPages/nrc-vad.html
http://saifmohammad.com/WebPages/nrc-vad.html
https://pypi.org/project/wordcloud/
https://pypi.org/project/wordcloud/
https://pypi.org/project/wordcloud/
https://pypi.org/project/wordcloud/
https://pypi.org/project/wordcloud/


An Interpretable Data-Driven Approach for Modeling Toxic Users 189

and insult. The centroids of Clusters 2 and 3 show elevated levels of toxicity and 
both toxicity and insult, respectively, and are referred to as “moderate toxic” and 
“obscene toxic”. In contrast, the centroids of Clusters 1 and 4 show low values 
across all toxicity types, indicating that comments in these clusters are generally
non-toxic. As a result, they are labeled “polite” and “non-toxic”, respectively.

After extracting features from the comments, we focused on the users to iden-
tify the features that will be used in the classification tasks. Firstly, we grouped 
the comments per user, then we extracted user-based features also aggregating
the comment-based ones (Algorithm 1, lines 22-24). In addition to the textual-
related features, we considered users’ activity-related features (Algorithm 1, line 
24). These include the number of comments, number and percentage of toxic 
comments, list and number of toxicity type above average, number of distinct 
subreddits the user is active in, list and number of emotions above average, 
number of comments per cluster, ratio of non-toxic comments and number of 
subreddits, and the ratio of toxic comments and number of subreddits. Addi-
tionally, we defined a set of features representing the number of comments o f
the users belonging to each cluster, i.e., extreme toxic, polite, moderated toxic,
obscene toxic, and low toxic. By following the described approach, each user is
characterized by 184 features - listed and described in Appendix A.2 - encom-
passing linguistic aspects, sentiment and emotion attributes, textual complexit y,
and activity-related metrics.

4.3 Classification 
Ground Truth and Experimental Setting. To accomplish the classification 
tasks, we first set two different ground truths for users, i.e., Gu and GM 

u . The first 
annotation (Gu)  identifies  a  user  as  toxic  (T )  or  non-toxi  c (NT ). This is achieved
by setting a threshold β on the feature that indicates the percentage of toxic
comments per user (Algorithm 1, line 7-9, 11). The a threshold β is set at 10%, 
meaning a user is classified as toxic if at least 1 over 10 of their comments are 
toxic. This threshold is based on the idea that even a small percentage of toxic
behavior can have a significant impact on the online discussion environment15. 
The 10% threshold allows for the identification of harmful behaviors without 
over-classifying users who contribute minimally to toxic content. As a result of 
the binary annotation, we obtain a balanced dataset including 7,843 toxic and
7,878 non-toxic users.

The second annotation (GM 
u ) focuses exclusively on the toxic users, and it is 

based on the average of the toxicity-related features derived from the Perspective 
API, i.e., threat, insult, obscene, and identity attack, respectively translated as
violence, harassment, vulgarity, and racism (Algorithm 1, line 9). The multi-
class annotation led to an imbalanced dataset composed of 16 violent users, 297
molesters, 7,496 vulgar users, and 34 racists.
15 Toxicity, can negatively affect other users’ experiences and the overall climate of 

the community and research in OSNs have explored how relatively low levels of 
negative content can c reate a harmful environment, emphasizing the importance of
identifying and mitigating such behavior early.
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Table 1. Binary classification. Best results in bold.

N T T 

Model Acc. Prec. Rec. F1 AuC Prec. Rec. F1 AuC 
LR 93.6% 0.925 0.953 0.939 0.98 0.950 0.920 0.935 0.98 
RF 92.8% 0.911 0.953 0.931 0.99 0.949 0.903 0.926 0.99 
SVM 92.7% 0.889 0.980 0.932 0.98 0.977 0.874 0.922 0.98 
DT 90.6% 0.888 0.933 0.910 0.95 0.927 0.879 0.902 0.95 
KNN 89% 0.859 0.939 0.897 0.97 0.930 0.841 0.883 0.97 

Table 2. Multiclass classification before SMOTE. Best results in bold.

Model Acc. harassment non-toxic racism violence vulgarity 

RF 90% 0.491 0.921 0.110 0.402 0.901 
SVM 90% 0.282 0.943 0.000 0.000 0.901 
DT 89% 0.256 0.912 0.000 0.000 0.881 
KNN 88% 0.000 0.904 0.000 0.000 0.872 
LR 84% 0.361 0.902 0.021 0.012 0.871 

Both the binary and multi-class single-label classification tasks are carried out 
using Hold-out Test Set (with a 70-30 split) and testing five different models DT,
RF, KNN, LR, and SVM whose parameters have been tuned through random
search16. Given the variety of features extracted, a preliminary feature selection 
allowed to find the best set of features for the classification tasks. The feature
selection combines boxplot analysis and Mutual Information17 and led to a set 
of 33 features (highlighted in bold in the complete list in Appendix A.2). 

Binary Classification. The performance are reported in Table 1.  Every  model  
shows a high overall accuracy, ranging around 90%, with Logistic Regression 
achieving the highest (93.6%), and KNN the lowest (89%). All models show 
similar and comparative performances on both classes (N  T  and T )  and  for  all  
considered metrics, with values b etween 0.89 and 0.99, except KNN which shows
precision on NT and recall on T slightly lower (0.86 and 0.84, respectively).

Multi-Class Single-Label Classification. After the binary classification 
task, we experimented with multi-label single-class classification, which takes

16 Scikit Learn RandomizedSearchCV: https://scikit-learn.org/stable/modules/ 
generated/sklearn.model_selection.RandomizedSearchCV.html. 

17 Mutual information is a statistical measure that quantifies the amount of information 
shared between two variables, indicating how m uch knowing one variable reduces the
uncertainty of the other.

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
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Table 3. Multiclass classification before SMOTE. Best results in bold.

Model Acc. harassment non-toxic racism violence vulgarity 

RF 89% 0.419 0.920 0.068 0.000 0.895 
LR 85% 0.325 0.918 0.053 0.017 0.866 
DT 84% 0.256 0.897 0.071 0.133 0.861 
SVM 84% 0.261 0.902 0.175 0.081 0.833 
KNN 78% 0.151 0.895 0.030 0.000 0.780 

into account four types of toxicity, i.e., harassment, violence, racism,  and  vul-
garity,  plus non-toxicity. Since, as mentioned in Sect. 4.3, the dataset is highly 
imbalanced, we applied t he SMOTE oversampling algorithm.

Tables 2 and 3 present Accuracy and the five F1-scores for the classifiers 
before and after applying SMOTE, respectively. Starting from the performances
on the imbalanced dataset in Table 2, every model shows high accuracy, with 
also high F1-scores for the most represented classes, i.e., non-toxicity,  and  vul-
garity. Instead, for the classes racism and violence the values are close to 0 for 
every classifier except for RF, which has 0.11 and 0.40, respectively. In terms 
of F1-score, model performance varies significantly, especially depending on the 
types of toxicity. Howeve r, RF seems to outperform the other classifiers for every
class except non-toxic, where SVM achieves the best performance. After oversam-
pling, as shown in Table 3, the accuracy scores slightly decrease for each classifier 
(ranging from −1% to −5%), and the F1-scores for the least represented classes 
(racism and violence) show no improvement. In general, the oversampling shows 
only slight improvements, particularly for the least represen ted classes (racism
and violence). However, in most cases, including RF, SMOTE tends to worsen
the F1-scores across all other classes.

4.4 Explainable AI 

We applied t he SHAP18 explainer, using TreeExplainer, to the Random For-
est model to analyze feature importance and impact across both classification 
tasks. Our analysis considers both local and global explanations, highlighting
key similarities and differences between the two approaches.

Local Explanation of Binary Classification. For the local explanation, the 
points considered correspond to the medoids of the SHAP value clusters, com-
puted for each class. Here we show in Fig. 2, for illustrative purposes, only two 
medoids: one for the non-toxic class and one for the toxic class. With regards
to the non-toxic medoids (Fig. 2a), the feature tox_over, representing the num-
ber of toxicity types above average, has a high importance in every case, even 
if in one case-here not showed-, it contributes negatively to the classification.

18 SHAP: https://shap.readthedocs.io/en/latest/index.html. 

https://shap.readthedocs.io/en/latest/index.html
https://shap.readthedocs.io/en/latest/index.html
https://shap.readthedocs.io/en/latest/index.html
https://shap.readthedocs.io/en/latest/index.html
https://shap.readthedocs.io/en/latest/index.html
https://shap.readthedocs.io/en/latest/index.html
https://shap.readthedocs.io/en/latest/index.html
https://shap.readthedocs.io/en/latest/index.html
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Fig. 2. Local binary classification explanation.

Among the emotion-based features, disgust_mean has a positive impact in every 
medoid, while fear_mean has a positive impact for three medoids. The feature 
extreme_toxic_group is always present as an important feature and in most 
cases contributes positively to the classification. fuck_sum and shit_sum,  repre-
senting the sum number of occurrences of “fuck” and “shit” terms per comment,
are the only two features based on toxic-related terms that appear as the most
important, although with different contributions.

Considering the toxic medoids (Fig. 2b), the feature tox_over is by far 
the most important one in every case, but for a medoid it determines a mis-
classification. The attributes ratio_toxic, i.e., the ratio between the num-
ber of toxic comments and the number of subreddits for each user, and 
extreme_toxic_group, i.e., the number of comments from cluster 0 - which has 
high values for the features toxicity, obscene and insult, appear as important 
features for three medoids. In general, for the b inary classification task the most
important features are tox_over and ratio_toxic, followed by the information
about the clusters that contain toxic comments. Among the features representing
emotions, disgust and fear are present in most cases with different impacts.

Local Explanation of Multi-Class Single-Label Classification. The bar 
charts of the local explanation for the mu lti-class classification are shown in
Fig. 3. Focusing on the non-toxic class (Fig. 3a), tox_over is again the most 
impactful feature, followed by valence_sum, i.e., the sum of the valence score per 
comment. In one case, ratio_toxic shows a positive contribution, and the emo-
tion disgust consistently plays a role, albeit with varying degrees of influence.
For the harassment class (Fig. 3b), the most impactful features are tox_over 
and the cluster-related attributes, which generally show a positive contribu-
tion. Also, features linked disgust appear in two medoids but with a negative 
contribution, while toxic terms, such as “fuck”, “shit”, and “idiot” show a small
positive contribution. In the case of racism (Fig. 3c), only one medoid is classified
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Fig. 3. Local multi-class classification explanation.

correctly. Here, the most relevant feature is obscene_toxic_group, i.e., the num-
ber of comments from Cluster 3, that is characterized by high values for toxicity 
and insult, followed by ratio_toxic and valence_sum. However, in the mis-
classified medoids, the importance of features changes significantly. Although 
obscene_toxic_group alwa ys provides a small positive contribution, features
like tox_over, arousal_max, and extreme _toxic_group show higher impact,
although depending on the case. Regarding violence (Fig. 3d), we analyzed a 
well-classified medoid and one that was misclassified. For the correctly classi-
fied medoid, disgust_mean contributes negatively, while obscene_toxic_group, 
extreme_toxic_group, and tox_over play a positive role. Conversely, in the
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misclassified medoid, obscene_toxic_group and extreme_toxic_group still 
provide a positive contribution, but trust_max and toxic_words_sum have a 
negative impact on the classification. Finally, for vulgarity (Fig. 3e), all medoids 
are classified correctly, showing consistent patterns in feature contributions. The 
most significant attribute is obscene_toxic_group, which is complemented by 
tox_over – although in one case it has a negative contribution – and other 
cluster-related features. Moreover, ratio_toxic provides a small positive con-
tribution, and toxic-related terms such as “fuck”, “shit”, and “toxic_words” rank 
among the most relevant for this class. In general, for every class the most rele-
vant features appear to be the ones related to the clusters of the comments and
to the toxic activity of the user, like tox_over and ratio_toxic.

Fig. 4. Global binary classification explanation with SHAP.

Global Explanation of Binary Classification. For the binary classifi-
cation, we compared the relevance of the features calculated by the SHAP
Explainer (Fig. 4) with the features’ importance directly derived from the R an-
dom Forest classifier (Fig. 5). The importance of the features for the two
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Fig. 5. Global binary classification explanation with RF feature importance.

approaches is almost identical, with tox_over is by far the most impor-
tant one, followed by ratio_toxic and extreme_toxic_group. According 
to SHAP, obscene_toxic_group is slightly more important than fuck_sum, 
while for RF feature importance it is the opposite. Both approaches iden-
tify two features as important, based on readability tests: coleman_liau_sum 
and dale_chall_mean. These features estimate readability by considering word 
and sentence length, as well as f amiliar vocabulary and sentence structure,
respectively. On the other hand, the approaches differ in terms of the features
stupid_sum and arousal_max, which are important for SHAP and RF feature
importance, respectively.

Global Explanation of Multi-Class Single-Label Classification. The 
global explanation of the multi-class single-label RF classifier highlights that 
the six most important features remain the same before and a fter oversam-
pling, although their impact differs. Moving to the SHAP explainer (Fig. 6), 
before SMOTE (Fig. 6a), tox_over is the most important feature, particularly 
for the most represented c lasses (non-toxicity and vulgarity). After balancing
(Fig. 6b), obscene_toxic_group becomes the most important feature, with a 
greater impact on the racism class. In both cases, these two features are by 
far the most relevant for this classification task. ratio_toxic is the third most 
important feature in both scenarios, with a greater impact on the racism and 
violence classes after SMOTE. In the balanced dataset, extreme_toxic_group
and moderated_toxic_group have a bigger importance, while valence_sum
decreases its relevance for every class. While the top six features remain simi-
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Fig. 6. Global multi-class classification explanation pre a nd post SMOTE.

lar before and after SMOTE balancing, the remaining fourteen features play a 
different role in the classification and have a smaller impact, with their SHAP
values close to 0 in both cases.

4.5 Explanation Comparison 

Local Explanation Comparison. At the local level, both binary and multi-
class classification tasks highlight the importance of features related to user 
toxicity and comment clusters. For the binary classification, key features such as 
tox_over, ratio_toxic,  and  extreme_toxic_group are identified as the most 
impactful across various medoids, indicating that the overall toxicity of a user or 
their comments plays a significant role in the classification. In multi-class classi-
fication, this trend persists for classes such as harassment and vulgarity,  where  
features like tox_over and those related toxic clusters show consistent contribu-
tions. Also, emotion-related, like disgust and fear appear in some cases, but
their influence varies in terms of polarity (positive/negative). In cases of racism
or violence, the impact of emotion-related features becomes more pronounced,
but again, with variations in their contribution. Specific toxic terms such also
show some level of positive contribution, particularly for the vulgarity class.
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Global Explanation Comparison. In the global explanation, both 
SHAP and RF approaches align closely in terms of identifying the 
most important features for binary classification. Features like tox_over, 
ratio_toxic,  and  extreme_toxic_group are consistently ranked as highly 
influential in both methods. However, minor differences arise, such as the 
importance of obscene_toxic_group and fuck_sum, where SHAP ranks 
obscene_toxic_group slightly higher than fuck_sum, while the opposite is true 
for Random Forest. For the multi-class classification, especially after SMOTE, 
the feature obscene_toxic_group becomes more prominent, particularly for the 
racism class, whereas tox_over maintains its importance across most classes.
These two features dominate the classification, with ratio_toxic also remaining
significant, particularly in classes such as racism and violence post-balancing.
The global analysis thus reinforces the helpful impact of these toxicity-related
features, particularly after that the dataset is balanced.

Local Vs. Global Explanation. When comparing the findings from local and 
global explanations, we observe both overlapping and distinct aspects in feature 
importance and behavior. Both approaches identify key toxicity-related features 
such as tox_over, ratio_toxic,  and  extreme_toxic_group as the most sig-
nificant across both binary and multi-class classification tasks. However, local 
explanations provide a more nuanced, case-specific perspective, revealing that 
features linked to emotions, like disgust and fear, have variable impact depend-
ing on the specific medoid and class. For example, disgust shows a positive 
contribution in harassment but a negative one in violence. In contrast, global 
explanations, fails to capture such class-specific variations. Another key differ-
ence is in how dataset balancing a ffects feature importance. Local explanations
do not account for oversampling techniques like SMOTE, leading to consistent
feature importance across instances. On the other hand, global explanations
show how the distribution of classes shifts the relative importance of features
after balancing, as seen in the increased significance of obscene_toxic_group
for identifying racism post-SMOTE.

5 Conclusions 

Toxic behavior in Online Social Networks poses a significant challenge to main-
taining healthy digital interactions. In this work, we introduced utoxic,  a  ML  
framework designed to detect and analyze toxic users by leveraging linguistic, 
stylistic, affective-based, and clustering-derived features. By aggregating these 
features at the user level, utoxic performs both binary and multi-class clas-
sification, distinguishing toxic users from non-toxic ones and further catego-
rizing specific toxic behaviors such as harassment, violence, racism, and pro-
fanity. Our results demonstrate that utoxic effectively identifies toxic users
and provides interpretable insights into their behavior. The use of explainabil-
ity techniques ensures transparency in model decisions, addressing key concerns
in AI-driven moderation. Additionally, our analysis confirms that even without
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directly incorporating toxicity-related features, our approach maintains strong 
classification performance, highlighting the robustness of the extracted user fea-
tures. By offering an explainable and behavior-driven approach to toxicity detec-
tion, utoxic can serve as a valuable tool for improving content moderation in 
OSNs. Future work could explore personalized moderation strategies, integrat-
ing adaptive interventions to mitigate toxic behavior while maintaining fair and 
transparent moderation policies. 
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A Appendix 

A.1 Readablity Tests 

– Flesch Kincaid Grade Level: Measures the readability of a text based on 
the average number of syllables per word and the average number of words 
per sentence. The result c orresponds to a U.S. grade level, indicating the
minimum education level required to understand the text.

– Flesch Reading Ease: Another readability measure that rates text on a 0-100 
scale. Higher scores indicate easier readability, with 60-70 be ing considered
plain English, and scores below 30 indicating very difficult text.

– Dale Chall Readability: Estimates the reading level of a text by counting 
difficult words not commonly found in elementary school-level texts.

– Automated Readability Index (ARI): Calculates the readability of a text 
based on its word and sentence length, yielding a score c orresponding to
the U.S. grade level required to understand the text.

– Coleman Liau Index: Similar to ARI, it assesses readability based on the 
average number of letters per 100 words and the average number of sentences
per 100 words.

– Gunning Fog: Measures the readability of English writing based on sentence 
length and the percentage of complex words.

– SMOG: “Simple Measure of Gobbledygook”. It estimates the years of educa-
tion a person needs to understand a piece of writing, based on the number of
words with three or more syllables.
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– Spache: Evaluates the readability of children’s books by considering the num-
ber of words per sen tence and the number of unfamiliar words.

– Linsear Write: Calculates readability by considering the number of words of 
more than two syllables per sentence.

A.2 User’s Features List 

user: ID of the user 
nbr_posts: Number of comments 
toxic_posts: Number of toxic comments 
nbr_subreddit: Number of subreddits where the user comments 
extreme_toxic_group: Number of comments from cluster 0 
polite_group: Number of comments from cluster 1 
moderated_toxic_group: Number of comments from cluster 2
obscene_toxic_group: Number of comments from cluster 3
low_toxic_group: Number of comments from cluster 4

Aggregated Metrics (sum, mean, max, min): 
score: Aggregated score of the comments 
toxicity: Aggregated toxicity 
severe_toxicity: Aggregated severe toxicity 
obscene: Aggregated obscenity 
threat: Aggregated threat 
insult: Aggregated insult 
identity_attack: Aggregated identity attack 
emoji_count: Number of emojis per comment 
num_unique_words: Unique words per comment
num_words_upper: Uppercase words per comment
num_full_words: Full words per comment

Emotion Metrics (sum, mean, max, min): 
fear, anger, anticipation, trust, surprise, joy, disgust, positive, negative

Readability Scores (sum, mean, max, min): 
flesch_kincaid,  flesch,  coleman_liau, dale_chall, ari, linsear_write, smog,
spache, gunning_fog

Valence-Arousal-Dominance (sum, mean, max, min): 
valence , arousal, dominance

Occurrences of each word per comment: 
‘ass’, ‘bitch’, ‘black’, ‘bootlicker’, ‘die’, ‘dumb’, ‘fuck’, ‘fuckin’, ‘fucking’, ‘gay’,  ‘get’,  
‘go’, ‘holy’, ‘idiot’, ‘just’, ‘kill’, ‘like’, ‘oh’, ‘people’, ‘racist’, ‘shit’, ‘shut’, ‘stupid’,
‘think’, ‘want’, ‘white’, ‘would’

Additional Features: 
toxic_words_sum: Aggregated number of toxic words per comment 
tox_over: Number of toxicities above average
tox_list: List of toxicities above average
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emotion_over: Number of emotions above average 
emotion_list: List of emotions above average

User Behavior Ratios: 
ratio: Ratio between the number of comments and the number of subreddits for each 
user, in [0,1] 
ratio_toxic: Ratio between the number of toxic comments and the number of s ub-
reddits for each user, in [0,1]
perc: Percentage of toxic comments
toxic_annotation: User’s toxic label
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Abstract. Technical and ethical concerns impede the establishment 
of trust among healthcare professionals (HCPs) in developing artificial 
intelligence (AI)-based decision support. Yet, our understanding of trust 
models is constrained, and a standard accepted approach to evaluating 
trust in AI models is still lacking. We introduce a novel methodology to 
assess and quantify HCPs’ perceived trust in an interpretable machine 
learning model that serves as clinical decision support for diagnosing 
COVID-19 cases. Our approach leverages fuzzy cognitive maps (FCMs) 
to elicit and quantify HCPs’ trust mental models for understanding trust 
dynamics in clinical diagnosis. Our study reveals that HCPs rely pre-
dominantly on their own expertise when interacting with the developed 
interpretable clinical decision support. Although the model’s interpre-
tations offer limited assistance in diagnostic tasks, they facilitate the 
HCPs’ utilization of it. However, the impact of these interpretations 
on the establishment of perceived trust varies among HCPs, which can 
lead to an increase in trust for some while decreasing it for others. To 
validate quantified perceived trust, we employ the degree of agreement
metric, which quantitatively assesses whether HCPs lean more towards
their own expertise or rely on the model’s recommendations in diagnostic
tasks. We found significant alignment between the conclusions of the two
metrics, indicating successful modeling and quantification of perceived
trust. Plus, a moderate to strong positive correlation between the two
metrics confirmed this conclusion. This means that FCMs can quantify
HCPs’ perceived trust, aligning with their actual diagnostic advice shift
after interacting with the model.
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1 Introduction 

The need for trustworthy artificial intelligence (TAI) systems is clear in driving 
the integration of AI into healthcare, primarily due to the limited measurable 
benefits observed in real-world patient care, despite the promising results demon-
strated by an increasing number of AI-driven clinical decision support systems
in preclinical and in silico studies [37]. The European Ethics Guidelines for TAI
[11] outlines specific criteria to establish trustworthiness that AI systems must 
comply with. The existing literature reveals a scarcity of prosp ective studies
to validate proposed AI solutions in real-world settings [12]. This scarcity has 
resulted in diminished trust from healthcare professionals (HCPs) towards the 
developed solutions. Therefore, in the current study, we propose a methodology 
to assess and quantify perceived trust of HCPs in in terpretable clinical decision
support. We aim to adhere to the guidelines set forth by the General Data Pro-
tection Regulation (GDPR) [10], emphasizing the critical role of transparency 
and explainability in establishing TAI. Miller [23] recommends incorporating 
interpretable machine learning (IML) models, particularly in high-stakes tasks, 
to enhance the comprehensibility and reliability of AI systems. Doshi-Velez and
Kim [9] presented a taxonomy of IML model evaluation methodologies, including 
application-based assessments that involve domain experts using the IML model. 
Aligned with the goals of this study, which aim to assess and quantify HPCs’ 
perceived trust in the developed clinical decision support, and considering the 
problem’s high sensitivity, we involve HCPs to develop our methodology. Our
proposed methodology considers perceived trust as a dynamic entity affected by
different elements. Hence, we aim to elicit and quantify HCPs’ perceived trust
mental model.

Initially, IML serves as clinical decision support, recommending and inter-
preting diagnostic advice. This helps categorize suspected COVID-19 patients 
into positive or negative cases. Then, we have structured a diagnostic task that 
engages the HCPs in diagnosing the COVID-19 status of selected patients under 
two distinct scenarios: (i) relying on their expertise and (ii) interacting with the
IML model. Then, they will express their satisfaction with the effectiveness of
interpretations in the diagnostic task, using the Explanation Satisfaction Scale
(ESS) proposed by Hoffman et al. [13] using fuzzy linguistic variables. This phase 
seeks four main objectives: (i) its efficacy in assisting HCPs in diagnosing the 
disease, (ii) the effectiveness of interpretations in diagnosing the disease, (iii) 
the impact of interpretations on establishing HCPs’ trust, and (iv) incorporat-
ing HCPs’ subjectivity and uncertainty through the use of fuzzy variables. In 
the next phase of the research, HCPs will contribute to eliciting their mental
models of perceived trust in the IML model based on the influence of ESS on
their perceived trust using fuzzy cognitive maps (FCM) [19] using fuzzy linguis-
tic variables. FCMs model and simulate dynamic systems with complex interac-
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tions, allowing decision-makers to forecast future system states through scenario-
making, learning algorithms, and current state analysis [1]. Upon constructing 
FCMs by HCPs, a distinctive perceived trust mental model will be established 
for each HCP and we can derive a quantified value indicative of perceived trust. 
To validate the results, we measure the degree of agreement (DoA) between the 
diagnostic advice of HCPs when relying on their expertise and after interac-
tion with the IML model. This measure can elucidate whether HCPs exhibit 
reliance on their expertise or lean toward the IML model’s recommendations. 
Considerable alignment and correlation between the two metrics can indicate
whether FCMs could successfully measure HCPs’ perceived trust. In undertak-
ing this research, we contribute to the literature in several ways by addressing
the following gaps.

– Prospective studies validating AI solutions remain limited, as n oted by Nauta
et al. [26], revealing a gap in the literature on eXplainable AI (XAI) with 
respect to application-based performance assessments of IML models. The 
contribution of medical experts is crucial to this study, as their involvement 
is essential for establishing the realism and reliability of a trust a nalysis.
Although the number of participating experts is limited to 15, their input
plays a vital role in understanding trust behaviors toward AI models.

– Trust in AI models is often evaluated using Hoffman’s trust scale [13], which 
relies on Likert-scale questions to provide a simplified representation of users’ 
trust perception. To better model this perception, we utilize FCM to extract 
men tal models of HCPs, capturing their trust perception following their inter-
action with the XAI model.

– Existing methodologies overlook the role of transparency, interpretability, and 
explainability in shaping trust [22]. By embedding the model’s interpretability 
into the diagnostic decision-making process and leveraging FCM’s capability 
to model the impact of interpretability on trust, we e mphasize the critical
role of interpretability in modeling and measuring perceived trust.

The subsequent sections of this paper are structured as follows. In Sect. 2, 
we investigate the XAI literature, reviewing studies that address trust in XAI
models. Section 3 encompasses the primary definition of trust and used meth-
ods to develop the proposed methodology. The experimental task designed t o
measure and quantify perceived trust is described in Sect. 4. In Sect. 5, we will 
validate the proposed methodology. Lastly, Sect. 6 encompasses the discussion 
of the results and outlines potential ave nues for future research.

2 Background 

Nauta et al. [26] found that a minority of XAI papers engage users in eval-
uating model explanations, a trend consistent even when domain expe rts are
involved in assessments. Also, Vereschak et al. [38] conducted a comprehensive 
study revealing a lack of organized research on modeling decision-makers’ trust, 
inspiring us to assess the impact of model interpretations on the trust levels of
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HCPs. Lakkaraju and Bastani [20] conducted groundbreaking research aimed 
at empirically establishing how user trust in black box models can be manip-
ulated through misleading explanations. However, the study did not compare 
the results with users’ own perceptions regarding the efficacy of explanations
in decision-making and their trust levels to elicit their mental models. Zhang
et al. [42] underscored that local explanations for AI-assisted decision-making 
struggle to accurately calibrate human trust in AI. Nonetheless, they did not 
also directly assess users’ perceptions regarding the effectiveness of explanations
in facilitating the decision-making process.

In their empirical evaluation of XAI methods, Wang and Yin [39] conducted a 
comparison of established XAI techniques, analyzing their impact on AI-assisted 
decision-making and user trust. However, their study did not delve into users’ 
pe rceptions regarding the effectiveness of these explanations in shaping their
decision-making processes. Bansal et al. [4] conducted mixed-method user stud-
ies on three datasets. In these studies, participants were assisted by an AI sys-
tem, with accuracy comparable to humans, in completing tasks. The AI system 
explained itself in some conditions, and the researchers studied whether users 
trusted the XAI model o r not. However, the results may not be generalizable
to high-stakes domains with expert users, such as medical diagnosis. Yang et al.
[41] investigated the effects of example-based explanations for an ML classifier 
on end users’ appropriate trust. However, we contend that they primarily mea-
sured agreement rather than trust. Additionally, their focus was solely on the
efficacy of explanations in terms of helpfulness, neglecting other essential aspects
of ESS. In Huber et al.’s study [14], which explored the impacts of global and 
local explanation methods on reinforcement learning agents, the methodology 
primarily focuses on assessing users’ agreement rather than their trust. The 
in terpretable decision support interface for sepsis treatment proposed by Sivara-
man et al. [35] predominantly examines the influence of AI model explanations 
on HCPs’ confidence in their diagnoses, yet it only marginally addresses their
trust in the IML model.

Wysocki et al. [40] introduced a pragmatic evaluation framework for XAI 
within clinical decision support in a separate study. However, their approach 
merely assesses HCPs’ trust with a simplistic survey, lacking a systematic method
to assess trust in the AI model. In an extensive study, Mehrotra et al. [21]  showed  
the impact of various integrity-based explanations made by an AI agent on the 
appropriateness of human trust in that agent. However, their evaluation focused 
solely on the usefulness of the provided explanations in decision-making tasks
and corresponding trust, neglecting other essential factors of ESS. Joshi et al.
[18] presented a Wizard of Oz study comparing low- and high-explainability 
versions of a vacation planning chatbot in a between-subjects design, examin-
ing the effect of explainability on users’ understanding, trust, and acceptance.
Chanda et al. [6] developed an XAI model to generate domain-specific, inter-
pretable explanations to support melanoma diagnosis. In this study, medical 
experts assessed their trust in t he model using a 10-point Likert scale. Perlmut-
ter et al. [32] also investigated the impact of an example-based XAI interface on
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trust, understanding, and performance in highly technical populations using a 
10-point Likert scale.

Therefore, the main shortcomings of existing studies in the literature can be 
summarized as follows: misdefining the concept of trust, conducting studies at a 
general user level without involving domain experts, and neglecting to assess the 
efficacy of explanations in facilitating decision-making tasks and their impact
on users’ trust, which causes overlooking the elicitation of users’ trust mental
models.

3 Methodology 

In this section, we outline the foundational concepts of this study. Sub-sect 3.1 
explores the definition of trust, while Subsect. 3.2 introduces FC M.

3.1 XAI and Perceived Trust 

Trust is generally defined as “the willingness of a party to be vulnerable to the 
actions of another party based on the expectation that the other will perform a 
particular action imp ortant to the trustor, regardless of the ability to monitor or
control that other party [36].” In the same way, when a user trusts the AI model, 
the anticipation depends on whether the model can fulfill its expectations. Here,
we refer to the definition of Jacovi et al. [16] for Human-AI trust:

“If H (human) perceives that M (AI model) is trustworthy to contract C and 
accepts vulnerability to M’s actions, then H trusts M contractually to C. The 
objective of H in trusting M is to anticipate that M will maintain C in the 
presence of uncertainty; consequently, trust does not exist if H does not perceive 
risk.” 

Ribeiro et al. [33] asserted the importance of trust for effective human inter-
action with ML systems, emphasizing the importance of explaining individual 
predictions as a key factor in assessing trust. By hypothesis, effective and satisfy-
ing explanations enable users to construct a good mental model. So, this sound
mental model can facilitate the development of trust in AI and enhance user
performance when using it [13]. Miller [22] states that trust as a mental attitude 
must be measured in field studies, lab experiments, and surveys/interviews with 
human participants. The main reason is that trust can rapidly deteriorate when 
sub jected to factors such as time constraints, noticeable system defects, high
error rates, or frequent false alarms [13]. Like the diverse forms of trust, various 
manifestations of negative trust exist, including mistrust and distrust [13]. The 
proposed trust continuum by Cho et al. [7] can demonstrate this be havior (see
Fig. 1). 

In the XAI domain, the trust assessment is based mainly on the trust scale
proposed by Hoffman et al. [13]; however, Miller [22] declares that the trust scale 
presented does not explicitly measure the effect of trust. In fact, this scale mea-
sures users’ trust through a set of Likert scale questions, primarily focusing on
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Fig. 1. Trust continuum [7]. 

the users’ perception of trust rather than their demonstrated trust when inter-
acting with an XAI model. Besides, the existing techniques do not measure the 
impact of transparency, interpretability, and explainability methods on human
participants’ trust [22]. In essence, trust measurement efforts have often focused 
on precisely defining the elements of trust to measure perceived trust, often over-
looking the underlying mental models that shape users’ perceptions. Therefore, 
it is imperative to introduce a metho dology that delves into the influence of
explanations on trust establishment and examines how they can impact users’
perceived trust.

3.2 Eliciting Perceived Trust Mental Models by FCM 

The ESS proposed by Hoffman et al. [13] serves as the foundational elements of 
HCPs’ perceived trust mental models in this study so that we can analyze the 
contribution of interpretation in building trust. We slightly mo dified the ESS
for our specific context by adding a “Functionality” scale, as outlined in Table 1. 
In this study, trust is considered a dynamic entity with intricate interactions 
among ESS, and we model it using FCM.

Table 1. Explanation Satisfaction Scale and description

ESS Description 
Understandability (US) The interpretation was understandable in d iagnosing the disease.
Sufficiency of details (SD) The interpretation had sufficient details to help me diagnose the disease.
Completeness (CL) The interpretation was complete enough to diagnose the disease.
Feeling of satisfaction (FS) I am satisfied with the quality of the in terpretation for diagnosing the disease.
Accuracy (AC) The interpretation was accurate enough to diagnose the disease.
Usability (US) Interpretation is easy to use to diagnose the disease.
Functionality (FC) In general, the interpretation helped me diagnose the disease.

Kosko [ 19], for the first time, introduced FCMs to mitigate the limited ability
of cognitive maps [3] to represent causal beliefs in social scientific knowledge [25]. 
Multiple domain experts who have knowledge in a particular area contribute as 
knowledge engineers to manually develop an FCM or a mental model [30]. They 
start by identifying key domain components or concepts (C) and then determine 
the influence (edges) of concepts, including their strength on each other or weight
(w) [30]. A semantic representation of an FCM (including concepts, edges, and
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weights) is shown in Fig. 2. In our study, ESS serves as FCM concepts, and their 
initial value, edges, and weights are determined by HCPs.

Fig. 2. A semantic representation of an FCM.

There are three types of relationships between concepts in the FCM [28]: 

– wij > 0, direct influence between concepts C i and Cj ,
– wij < 0, inverse influence between concepts C i and Cj ,
– wij =  0, no relationship between concepts C i and Cj .

The established reasoning process of an FCM [19, 25, 28, 30], uses the following 
simple mathematical formula: 

C 
(k) 
i = f 

⎛ 

⎝Ck−1 
i + 

N∑
j=1,j �=i 

C 
(k−1)
j · wji

⎞
⎠ , (1) 

where, C (k) i represents the value of concept i at iteration k of the reasoning pro-
cess. wji indicates the weight of the edge from Cj to Ci,  and  N is the number of 
entered edges to Ci. Our study utilizes a state vector of size 1 × 8, encompassing
ESS and a target concept denoted as perceived trust (PT).

The initial values of these concepts reflect HCP’s subjective satisfaction 
with ESS effectiveness in d iagnostic tasks, employing fuzzy linguistic variables
detailed in Table 2. With this approach, we achieve two primary objectives: 
firstly, we gain insight into the satisfaction level of HCP with interpretations; sec-
ondly, we embed HCP’s satisfaction impact in establishing the perceived trust, 
which, in fact, models their trust mental model based on the model’s inter-
pretability. To convert these linguistic variables into actionable data to develop
FCM, defuzzification is applied to convert them into crisp numbers (see Table 2),
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employing the center of gravity (CoG) method [31]. Due to its high accuracy, the 
CoG defuzzification method is the most widely used in practice [2]. It effectively 
satisfies important criteria such as continuity, disambiguity, and plausibility, con-
tributing to its reliability and interoperability [2]. These initial values fall within 
the interval [0, 1], with proximity to 1 indicating higher importance. 

w is an 8 × 8 weighted matrix defining relationships between ESS and PT,
determined by HCPs using the linguistic variables outlined in Table 3.  In  the  
same way, defuzzification is applied to weights as well (see Table 3), transform-
ing them within the range [-1, 1], with values closer to 1 indicating stronger 
influence and the sign denoting direct or inverse influence between concepts. 
Following this approach, we integrate the influence of each individual ESS on 
one another, ultimately culminating in their collective impact on the perceived 
trust of HCP. The activation function f(x), typically sigmoid or hyperbolic tan-
gent, is employ ed to constrain the state vector’s values within [0, 1] and [-1,
1], respectively. Our study adopts the hyperbolic tangent function to align per-
ceived trust values with the trust continuum outlined in Fig. 1. According to 
FCM literature, interaction among concepts persists until o ne of the following
states occurs [5]: 

– stable state: The model reaches an equilibrium fixed point, with output values 
settling at constant numerical levels.

– limit cycle: The concept values fall in a lo op of numerical values.
– chaotic behavior: The model exhibits non-deterministic, random fluctuations

in concept values.

We set a maximum iteration limit for the algorithm, ensuring that it terminates 
after this number of iterations, regardless of convergence status. Finally, the 
ultimate value of PT in the state vector quantifies the corresponding HCP’s 
perceived trust level. This process w ill be repeated for all HCPs to elicit a unique
mental model for each participant involved in this study.

Table 2. Linguistic variables for the initial v alues of C.

Linguistic variables Membership function Defuzzified v alue

1 I disagree strongly (0, 0, 0.25) 0 
2 I disagree somewhat (0, 0.25, 0.5) 0.25 
3 I’m neutral about it (0.25, 0.5, 0.75) 0.5 
4 I agree somewhat (0.5, 0.75, 1) 0.75 
5 I agree strongly (0.75, 1, 1) 1 

4 Experimental Design 

This section outlines the step-by-step process used to quantify perceiv ed trust in
this study. Subsect. 4.1 introduces the implemented dataset, the training of the
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Table 3. Linguistic variables to determine w.

Linguistic variables Membership function Defuzzified v alue

1 Inversely high (-1, -1, -0.5) -1 
2 Inversely low (-1, -0.5, 0) -0.5 
3 No influence (-0.5, 0, 0.5) 0 
4 Directly low (0, 0.5, 1) 0.5 
5 Directly high (0.5, 1, 1) 1 

IML model, and its interpretation. Subsect. 4.2 explains how HCPs were selected 
for the study. Subsect. 4.3 analyzes the shift in diagnostic advice during the 
decision-making task before and after interaction with the IML model. Subsect.
4.4 evaluates HCPs’ satisfaction with the model’s interpretability. Subsect. 4.5 
presents the elicited mental models of HCPs’ using FCM, followed by presenting 
the quantified perceived trust for each HCP based on FCM implementation in
Subsect. 4.6. 

4.1 Clinical Setting and Exploited IML Model 

Data Set: The data set comprises the results of blood sample tests obtained 
from suspected patients with COVID-19 upon their arrival in the emergency 
department, encompassing a minimum of 30 distinct clinical measurements. The 
data set comprises 12873 patients with 32 clinical features derived from blood 
samples. We followed the ethical aspects of the AI application by signing writ-
ten agreements regarding the limited use of data. Second, we adhered to security 
measures to protect data privacy per the agreements. Third, patients’ identities 
were removed. The data set includes missing values in both the features and 
labels. Certain observations collected before the C OVID-19 outbreak were clas-
sified as negative cases. Observations with no labels and missing values exceeding
40% were discarded as they offer no meaningful information for the IML model.
Patients under the age of 18 years were also excluded. Ultimately, the data set
comprises 8781 observations, of which 8461 are negative and 320 are positive.

IML Model: Repeated Incremental Pruning to Produce Error Reduction (RIP-
PER) [8] is an IML algorithm that operates on rules directly learned f rom the
data. Abbaspour Onari et al. [27] showed its high predictive performance com-
pared to other ML models in COVID-19 prediction. RIPPER produces IF-THEN 
classification rules using the separate-and-conquer technique and the reduced-
error pruning approach. Afterw ard, a set of rules is returned, which can be
applied to classify new objects [27]. Before implementing RIPPER, KNN data 
imputation is applied to correct 2563 missing values in the data set. Then, the 
correlation between the features is calculated, and features with a higher cor-
relation value of 0.7 with each other are dropped from the data set, leaving 27
features to build the IML model. The data set is split into training and test
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data sets with 80%–20% partition, respectively. Although RIPPER shows high 
capability in unbalanced data set classification, we implement the SMOTE over-
sampling technique to have the same number of positive and negative cases in the 
training phase. Furthermore, the model’s hyperparameters are optimized using 
grid search. The model undergoes 5-fold cross-validation on the t raining data
set to validate its performance. The results on the test dataset demonstrate per-
formance metrics of 0.9841 for accuracy, 0.8667 for precision, 0.6393 for recall,
and 0.7358 for the F1 score.

Interpretations: To interpret the prediction’s logic, RIPPER generates three 
rules on the test data set represented in Table 4. The instances that satisfy either 
of these rules are classified as positive cases, and all others are considered as neg-
ative cases. Building upon the insights of Huysmans et al. [15], which demon-
strated that representing decision rules in decision tables enhances respondents’ 
understanding of the rules, we will present RIPPER rules in the same format.
We represented RIPPER’s logic in correctly diagnosing a truly affected patient
in Table 5 as a visual representation in Fig. 3. The legend in the figure explains 
the colors used: orange indicates that the conditions based on the patient’s clin-
ical features are not verified in the RIPPER’s conditions, blue shows that the 
patient’s features are verified in the RIPPER’s conditions, and purple highlights 
when all conditions are satisfied, and the rule is applied to the patient. In cases
where only a single rule is satisfied in RIPPER, that specific rule becomes the
sole basis for the classification decision.

Table 4. Rules generated by RIPPER to classify patients in to positive cases.

Feature Rule 1 Rule 2 Rule 3 
Albumin ≤ 37.9 - -
Alkaline Phosphatase ≤ 82 ≤ 83.6 -
Calcium ≤ 2.28 - -
Erythrocytes ≥ 3.94 - ≥ 4. 29
Glucose ≥ 5.66 - -
Lactate Dehydrogenase ≥ 302 - ≥ 320 
Basophils - ≤ 0.01 -
C-Reactive Protein - ≥ 19.62 -
Leukocytes - ≤ 7.69 ≤ 7. 68
Lipase - ≥ 30.5 -
Mean Cellular Haemoglobin - - ≥ 1. 85

4.2 Selection of Participants 

In the current study, we use an IML model to recommend and interpret diag-
nostic advice to HCPs due to the high-stakes nature of decision-making. Inter-
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Table 5. Blood sample test results of a patient diagnosed as a positive case by RIPPER.

Features Test result 
1 Albumin 37 
2 Alkaline phosphatase 70 
3 Basophils 0.03 
4 Calcium 2.09 
5 C-reactive protein 1.43 
6 Erythrocytes 4.75 
8 Glucose 10.36 
9 Lactate dehydrogenase 392 
10 Leukocytes 7.13 
11 Lipase 47.8 
12 Mean Cellular Haemoglobin 1.895 

Fig. 3. Representation of RIPPER’s rules as decision tables.

pretable models rely on a limited set of features characterized by a low complex-
ity. The underlying assumption is that the m odel encompasses the necessary
explanatory information due to its interpretability [23]. This study will focus on 
understanding how interpretability can build perceived trust among HCPs in 
the IML model. The university’s e thical board granted ethical approval for this
research project1. The participants in our study, including HCPs, were identi-

1 This study has been approved by Ethical Board of the universit y with reference
number: ERB2023IEIS10.
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fied by snowball sampling. Initially, we contacted our network of clinically active 
HCPs with practical experience in healthcare centers during the COVID-19 pan-
demic. Subsequently, we requested them to send our participation request to indi-
viduals who meet our criteria and might be interested. Our research involved a 
total of N=15 HCPs. While this sample size classifies the study as a pilot, the 
valuable contributions of the HCPs make it highly insightful and meaningful. 
We used Qualtrics software as our main tool to design the user study. First, the 
HCPs responded to three questions about their professional background, profes-
sional tenure, and whether they wanted to participate in this research voluntarily. 
This question is apart from the ethical consent forms sent to them. If they had 
opted not to participate, t heir survey would have been terminated immediately.
HCPs are general practitioners, senior medical students, cardiovascular imaging
specialists, medical specialists in infectious diseases, and internal medicine spe-
cialists. Our participants have at least two years of professional work experience
in healthcare centers and, at most, 13 years. HCPs from diverse geographic loca-
tions participated: Iran (10), Italy (2), Canada (1), Australia (1) and the UK
(1). The gender distribution comprised 7 men and 8 women.

4.3 Diagnostic Task: Diagnostic Advice Shift 

Four instances were selected from the test data set to present to all HCPs. In two 
cases, the ground truth status aligns with the recommendation of the IML model, 
while in the remaining two, there are contradictions. In the first sub-task, the
clinical blood sample test results (As shown in Table 5) are presented to HCPs, 
and they are asked to offer their diagnostic advice relying on their expertise. 
The same question is a sked in the next sub-task, including generated rules by
IML and recommendations (see Fig. 3) functioning as clinical decision support 
to diagnose the disease. For both sub-tasks, HCPs can choose an option between 
“Positive COVID-19,” “Negative COVID-19,” and “Not possible to diagnose.”
The results of the diagnostic task have been outlined in Fig. 4. Using Sankey 
diagram, we show how HCPs change their diagnostic advice after interaction
with the clinical decision support.

In Case 1, following their interaction with the IML model, seven HCPs 
adjusted their diagnostic advice. Remarkably, six of them aligned their advice 
with the model’s recommendation. Notably, one HCP revised their initial diag-
nosis from “Negative COVID-19” to “Not possible to diagnose.” This adjustment 
can be deemed a positive impact of the model, revealing the HCP’s initial lack 
of confidence in their initial diagnostic advice. Moving on to Case 2, four HCPs 
modified their diagnostic advice to “Negative COVID-19” after engaging with the 
model. Regarding Case 3, there was no discernible shift in the diagnostic advice 
patterns of HCPs. It appears that the clinical features recommended by the
model lacked sufficient information for the HCPs. It is plausible that these fea-
tures resembled those of a patient with “Positive COVID-19,” prompting HCPs
to err on caution. In Case 4, six HCPs followed the model’s recommended advice
after interacting with it. In conclusion, we assert that the IML model can influ-
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Fig. 4. Diagnostic advice shift of HCPs before and after interaction with IML model’s
recommendations and interpretation.

ence HCPs’ diagnostic advice in at least three tasks to some extent, though not
drastically.

4.4 HCPs’ Satisfaction with Interpretations 

After completing the diagnostic tasks, the HCPs expressed their satisfaction with 
the effectiveness of the model’s interpretation as outlined in Sect. 3.2. The results 
have been demonstrated in Fig. 5. The results indicate that HCPs perceived the
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model’s interpretations as insightful across three scales: understandability, satis-
faction, and usability. However, regarding completeness and accuracy, HCPs did 
not deem the model’s interpretations sufficiently informative. This observation 
might help explain why HCPs were inclined to refrain from providing precise 
diagnostic advice on the diagnostic task and prefer to rely on their expertise. 
Finally, when it comes to evaluating the sufficiency of details and functionality, 
a notable lack of meaningful consensus among HCPs is apparent. Consequently ,
no informative conclusion can be drawn from these aspects. In conclusion, the
utility of the model’s interpretability appears more evident when HCPs intend
to utilize it for their understanding rather than as a significant source of infor-
mation for offering diagnostic advice.

Fig. 5. HCPs’ satisfaction with mod el’s interpretations.

4.5 Eliciting HCPs’ Mental Models Using FCM 

In the conclusive phase of the experiment, HCPs contributed to eliciting their 
perceived trust mental models, as detailed in Sect. 3.2. Using FCMExpert to ol
[24] to semantically visualize mental models as FCMs, we identified four dis-
cernible patterns: trust, distrust, neutrality, and unknown, as illustrated in Fig. 6. 
The positive-weighted edges that originate from the ESS and enter PT in Fig. 6a 
represent a direct influence of ESS on HCP trust. An elevation in ESS values 
corresponds to an increase in perceived trust in them. I n contrast, the negative-
weighted edges from ESS to PT in Fig. 6b indicate that an increase in ESS values 
leads to a decreased perceived trust of HCPs. This observation may stem from 
the realization that the model falls short of meeting their expectations when its 
interpretability is increased. The neutrality behavior emerges when the cumu-
lated weight in PT converges to zeros, signifying that edges’ weights neutralize
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each other, and HCPs feel neutral about the IML model (see Fig. 6c). Finally, 
the solitary unknown pattern indicates that the HCP perceives no influence from 
ESS on PT and vice versa (see Fig. 6d). Extracting meaningful information from 
this pattern regarding HCP’s perceived trust is challenging. To keep the paper 
concise, we presen t mental models for four HCPs to illustrate key patterns.

Table 6. Quantified perceived trust and DoA results. The “Alignment” column shows 
whether both m etrics converge in a common conclusion.

HCP PT DoA Alignment 
HCP1 0.8098 1.1660 �
HCP2 −0.7619 0.6111 �
HCP3 0.9992 0.7849 × 
HCP4 unk 0.9668 -
HCP5 0.9836 0.8876 × 
HCP6 0.0 0.8326 �
HCP7 −0.7805 0.6489 �
HCP8 0.5884 1.0694 �
HCP9 −0.0746 0.7849 �
HCP10 0.9997 1.1660 �
HCP11 0.2061 0.6111 �
HCP12 0.9997 1.1660 �
HCP13 0.9999 1.6988 �
HCP14 0.9942 1.0694 �
HCP15 −0.4631 1.0694 × 

4.6 Quantified Value of Perceived Trust for Each HCP 

The FCM for each HCP was implemented following the r easoning process out-
lined in Sect. 3.2. The reasoning process is terminated once the algorithm reaches 
its maximum iteration limit (k = 35). To determine this value, we began by test-
ing smaller iteration counts (e.g., 10) and observed whether FCM demonstrates 
triple stop criteria. If it did not, we incrementally increased k and reassessed it.
Eventually, at k = 35, all concepts either reached steady state convergence or
showed chaotic behavior, thereby satisfying the stop criteria outlined in Subsect.
3.2. 

Upon completing the FCM implementation, we derived the quantified PT 
values for each HCP, as presented in Table 6. Comparing the results obtained 
with the trust continuum illustrated in column “PT” of Fig. 1 reveals distinctive 
patterns. Two HCPs (2 and 7) demonstrate distrust towards the model, while 
two others (9 and 15) exhibit an undistrusting stance. HCP6 expresses a neutral
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Fig. 6. Semantic representation of mental models (FCMs) of four HCPs representing 
trust, distrust, neutrality, and unknown behavior.

stance towards the model, and HCP11 displays an untrusting disposition. Also, 
the quantified value of trust for HCP4 is unknown, as depicted in Fig. 6d, and 
we exclude it in our future analysis. While the remaining HCPs express trust in 
the model, the extent of trust varies among them.

5 Validation of the Quantified Perceived Trust 

Formal validation of FCMs is challenging due to their subjective nature. The 
difficulty lies in the fact that FCMs represent different interpretations of the sys-
tem, and assessing their accuracy requires comparing them against yet another
interpretation of reality [29]. To achieve this, we adopted the approach outlined 
by Schmidt and Biessmann [34], who introduced a metric to quantify trust by 
incorporating the concept of mutual information. However, Miller [22] believes 
that the metric primarily measures the agreement of users with the ML model’s 
recommendations rather than trust. So, we have adjusted the terminology to
refer to this metric as DoA. This metric measures the shift of diagnostic advice
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among HCPs after interacting with the IML model, indicating reliance on it. 
To do so, using the information collected in Sect. 4.3, the mutual information 
between the IML model recommendation and the diagnostic advice of each HCP 
after interacting with it is measured using the following formula:

I(ŷIM L, ŷHI)  =
∑

ŷIM L,ŷHI 

p(ŷIM L, ŷHI) log2 
p(ŷIM L, ŷHI) 
p(ŷIM L)p(ŷHI )

(2) 

In Eq. 2, the result is measured in bits. Similarly, I(ŷGT , ŷHE) indicates 
the mutual information between the ground truth status and HCP’s diagnos-
tic advice based on their expertise. Hence, the following equation can be used
to measure DoA of each HCP with IML recommendations:

DoA = 
I(ŷIM L, ŷHI) 
I(ŷGT , ŷHE) 

, (3) 

where DoA < 1 represents that HCP does not have a high agreement with the 
model’s recommendation and prefers to rely on its own expertise. DoA > 1 
shows the HCP relies on the model’s recommendation. The perfect agreement 
between the HCP and the IML model is established when the DoA = 1. The
measured DoA for all HCPs is presented in DoA column of Table 6, showing 
eight HCPs rely on their expertise (DoA < 1). This tendency may be influenced 
by factors such as confirmation bias, general skepticism toward AI models, and 
the way IML rules are presented. HCPs found the rules lacking in completeness 
and accuracy, with no clear consensus on their sufficiency in terms of detail and 
functionalit y. While these factors are important and warrant further investiga-
tion to understand the underlying reasons for this behavior, they fall outside the
scope of this research.

The results indicate that seven HCPs exhibit reliance on the model’s diag-
nostic advice (DoA > 1), which is a sign of over-reliance on it. Possible factors 
contributing to this preference include the level of expertise, and general opti-
mism toward AI. However, we acknowledge that further studies are needed to
better understand the underlying causes of this over-reliance. The “Alignment”
column of Table 6 evaluates whether both metrics lead to consistent conclusions 
regarding PT and DoA. Apart from three HCPs (3, 5, 15), all others adhere to
the trust continuum pattern depicted in Fig. 1 and DoA. For instance, HCP3’s 
PT is 0.9992, suggesting near-perfect perceived trust. However, during the diag-
nostic task, they relied on their own expertise (DoA < 1). These discrepancies 
may stem from inaccuracies in how their mental models were elicited. Weights 
and edges in an FCM reflect the subjective perspectives of HCPs, which is an
advantage because it incorporates domain-specific expertise, but it is a limita-
tion due to its inherent subjectivity. This highlights the need for further analysis
in future studies.

Finally, we further analyze the obtained results by calculating the Pearson 
correlation between PT and DoA in Table 6. The correlation coefficient is 0.6851,
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indicating a moderate to strong positive correlation between the two metrics. 
Thus, FCM demonstrates a high level of confidence in quantifying the perceived 
trust of HCPs, aligning closely with their propensity to adjust diagnostic advice
after interaction with the IML model.

6 Discussion and Conclusions 

This study introduces a novel methodology to measure the perceived trust of 
HCPs in interpretable clinical decision support by eliciting their mental models. 
Our findings suggest that while clinical decision support can somewhat influence 
HCPs’ diagnostic advice, its impact is limited. Additionally, HCPs did not find 
interpretations very useful for diagnosing diseases; instead, they were more help-
ful in implementing them in the diagnostic task. This finding resonates with Jin
et al.’s [17] conclusion that existing XAI algorithms often fall short of meeting 
clinical needs. The study validates the quantified perceived trust obtained via 
FCMs by comparing it with the DoA measure, which shows in most cases, both 
metrics converge to the same conclusion about the behavior of HCPs. Finally,
the moderate to strong correlation between perceived trust and DoA suggests
that FCM can effectively measure HCPs’ perceived trust.

Our developed methodology is applicable across all realms in which domain 
experts are accessible. The pivotal aspect of this research lies in identifying key 
components that contribute to trust establishment within the domain of interest. 
This can be achieved by involving experts to pinpoint the principal elements of 
their trust. The strength of the proposed methodology lies in its ability to model 
the trust mechanisms of participants and reflect their subjectivity. Leveraging 
the high interpretability of FCMs, we can detect crucial aspects contributing to 
participants’ trust refinement. Subsequently, this understanding enables us to
refine and improve the IML model to increase trust. Furthermore, FCMs offer
the flexibility to be updated or modified based on new information or changes
in the system, allowing for continuous refinement and improvement.

This study is limited by its small sample size, which categorizes it as a pilot 
study and potentially renders the results statistically unreliable. While a larger 
sample might reveal a greater discrepancy between PT and DoA, it is impor-
tant to note that the core contribution of modeling perceived trust through FCM 
remains unaffected. Because FCM is a subjective model grounded in each HCP’s 
mental model, the quantified perceived trust precisely reflects what HCPs report 
and how they conceptualize their mental models due to the mathematical basis 
of FCM is robust. Despite these limitations, the insights gained—particularly 
from user studies involving HCPs—remain valuable. Trust, though central to 
this study, is a nuanced concept encompassing multiple facets beyond the scope
of ESS alone. Future research will involve participants in identifying and artic-
ulating these broader trust elements.
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Abstract. Recent legislative regulations have underlined the need for 
accountable and transparent artificial intelligence systems and have con-
tributed to a growing interest in the Explainable Artificial Intelligence 
(XAI) field. Nonetheless, the lack of standardized criteria to validate 
explanation methodologies remains a major obstacle to developing trust-
worthy systems. We address a crucial yet often overlooked aspect of XAI, 
the robustness of explanations, which plays a central role in ensuring 
trust in both the system and the provided explanation. To this end, 
we propose a novel approach to analyse the robustness of neural net-
work explanations to non-adversarial perturbations, leveraging the man-
ifold hypothesis to produce new perturbed datapoints that resemble the 
observed data distribution. We additionally present an ensemble m ethod
to aggregate various explanations, showing how merging explanations
can be beneficial for both understanding the model’s decision and eval-
uating the robustness. The aim of our work is to provide practitioners
with a framework for evaluating the trustworthiness of model explana-
tions. Experimental results on feature importances derived from neural
networks applied to tabular datasets highlight the importance of robust
explanations in practical applications.

Keywords: XAI · Robustness · Feature Importance · Neural 
Networks · Tabular Data · Trustworthy AI

1 Introduction 

The popularity of neural networks and their application to high-risk scenarios has 
recently raised questions on their accountability and trustworthiness. The rapid 
expansion of the field of Artificial Intelligence (AI) has stimulated legislative
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discussions and a series of novel regulations and guidelines has been proposed. 
In the European Union, the AI Act [10] and parts of the General Data Protection 
Regulation (GDPR) [9] have stressed the need for a fairer and more transparent 
approach to artificial intelligence. Similarly, the United States of America ha ve
proposed the new Blueprint for an AI bill of rights [31] that strives for a fair 
development and deployment of AI systems.

Modern AI systems are increasingly complex due to the elevated number of 
parameters involved to solve challenging tasks and are often referred to as black 
boxes given the opaque nature of their predictions. Transparency is, instead, 
a fundamental property that AI systems should guarantee, aiming to provide 
detailed descriptions of the model reasoning, even in natural language. Imagine 
that a model is being used in healthcare for patient diagnosis. If doctors can 
understand how it reached a given prediction, they gain a valuable tool for eval-
uating the correctness of such diagnosis and grow confidence in the AI system,
even if they don’t fully comprehend the technical aspects of the black box model.

The field of Explainable Artificial Intelligence (XAI) has proposed a variety 
of approaches to open the black box and provide explanations addressing the 
model inner reasoning, for example in the form of feature importances. While not 
explicitly referred to from a legislative standpoint, XAI can act as a powerful tool 
in enhancing transparency of AI-based systems. Understanding the reasoning 
behind a model decision is an asset from a technical standpoint, allowing experts 
to validate the predictions and d etect possible biases before a model is deployed.
Additionally, end-users may benefit from explanations as the right to explanation
cited in the GDPR explicitly requires the user to receive an explanation when
the decision is entirely subject to an automated decision system.

Despite their usefulness, the lack of standardized criteria to validate explain-
ability approaches is still a major obstacle towards transparent and trustworthy 
systems. Although it is a critical aspect, the robustness of explanations remains 
an often underexplored facet of the development of explanation approaches. 
Robustness can be defined as an explainer’s ability to provide consistent explana-
tions f or similar inputs. It can be evaluated through both non-adversarial pertur-
bations, showing intrinsic weaknesses even under small changes, and adversarial
attacks, implying a malicious nature of manipulating explanations.

Another complex characteristic of the XAI field is the disagreement problem
[14], which occurs in scenarios where multiple explanation methods applied to the 
same datapoint return contrasting results. The debate over which explanation 
to choose (or trust) i s still open, as explanation disagreement posits practical
impediments to trustable AI systems.

Our contribution explores the following points:

– We propose a set of desirable properties that a robustness estimator should 
satisfy and show that our p roposal, tailored for feature importance methods,
satisfies them all.

– We address the disagreement problem on neural network explanations by 
proposing an ensemble of explanations focused on the ranking of the features.
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– We introduce a framework to test explanation robustness to non-adversarial 
perturbations and assess their trustworthiness in practical applications.

– We propose a novel validation assessment of the robustness estimation, to 
tac kle the lack of a ground truth.

We have tested our proposal on eight publicly-available tabular datasets and 
three neural network-specific feature importance methods. Our analysis demon-
strates the need for evaluation tools to assess explanation robustness, supporting
transparency and accountability in real-world applications.

2 Related Work 

LIME [ 23] and SHAP [16] are among the most widely used XAI techniques in 
real-world applications. LIME works by fitting an inherently transparent model 
(such as a linear model or a decision tree) around the datapoint which is being 
explained. A neighbourhood is constructed from a fixed data distribution, gen-
erating a set of points on which the model, which acts as a local explanation, 
is fitted. SHAP makes use of Shapley v alues to explain predictions, measuring
how the prediction changes when a feature is included or excluded in the feature
set. It then averages these changes across all possible combinations of features,
producing a vector of feature importances.

Despite their wide use, both methods lack robustness (or stability), which in 
this context represents the ability of an explanation method to produce similar 
and consistent explanations when different conditions change. LIME is an unsta-
ble method by design, as the neighbourhood generation step yields different sets 
of datapoints at each call of the method. This implies that, at each time the 
method is applied to the same datapoint, a different model is fitted, resulting in 
explanations whose coefficients differ feature-wise by magnitude or even by sign.
SHAP is instead susceptible to feature correlations, sampling variability and data
distribution shifts due to the way Shapley values are approximated. The insta-
bility of these approaches was first proved in [28], where the authors showed how 
an adversarial model could easily be defined to mask biased classifiers though 
unbiased explanations. Their untrustworthiness, along with other model-agnostic
additive methods, has also been investigated in [12]. Their theoretical assump-
tions on feature independence are hardly met in practice, rendering them unable
to correctly detect feature interactions when present.

According to [19], explanation robustness can be tested along three directions: 
robustness to input perturbations, to model changes and to hyperparameter 
selection. The first one includes the scenarios where the input may be modified by 
random perturbations or by adversarial attacks to the explanations themselves. 
The second one r efers to manipulations of the model, such as fine-tuning of the
parameters with a modified loss function, and the last one considers the influence
of technique-specific hyperparameters.

An adversarial attack in the context of XAI is a perturbation of the input 
such that the model prediction is unchanged but the explanation marks dif-
ferent features as important or not [6]. An evaluation is provided in [11], in
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which attacks to interpretations provided by neural networks aim at maximising 
the change in the explanations (according to different change functions) under 
the constraint that the perturbation is small and the prediction is unchanged.
[8] explores how model manipulation, in particular with the introduction of a 
penalty term in the loss function, can damage explanations. They call for a
rigorous test of robustness to limit the effects of such manipulations. In [4]  the  
authors note that it is possible, for any classifier g, to construct a classifier ĝ that 
exhibits the same behaviour on seen data but presents biased explanations. They
propose a version of the presented gradient-based explanations ([5, 30]) robust 
to model manipulation by projecting the explanations on t he tangent space of
the data manifold.

While random perturbations and adversarial attacks to explanations in the 
context of images (as in [11]) can be easily examined by human experts, as 
the changes are often evident even to the naked eye, it is not sufficient to rely 
on non-quantitative evaluations. Robustness analysis must be supported by an
adequate robustness estimation and agreed-upon metrics must be defined. To
this end, [13] proposes a robustness score to evaluate explanation robustness 
when the data generation process is known, but this assumption makes it difficult 
to adapt to real-world datasets, where a ground truth is hardly available. In [2] 
the authors propose a formalization of local robustness based on the estimate of 
the local Lipschitz continuity. They test their proposal on explanations applied 
to images and show that gradient-based approaches are much more robust than
their perturbation counterparts (LIME and SHAP).

The work of [20] presents an in-depth survey on the evaluation of XAI tech-
niques and identifies different metrics that can be used to assess explanation 
robustness. Similarities can be computed with metrics such as: rank order cor-
relations, top-k intersections, rule matching and structural similarity indexes.
[25] proposes similar metrics for evaluating stability, as the Jaccard similarity, 
additionally requiring that stability tests should be performed using perturba-
tions that do not change the class label and that introduce small amounts of
resampling noise to ensure the stability of the explanations.

Robust-by-construction approaches have emerged as an interesting area o f
research. For example, [3] proposes self-explaining neural networks, a class 
of models for which faithfulness and robustness are enforced by construc-
tion through a specific regularization, aided by a generalization of the a bove-
mentioned local Lipschitz continuity. Similarly, ROPE [15] is a framework based 
on adversarial training that generates explanations which are robust to both 
changes in the input and in the data distribution.

We aim at investigating the robustness of explanations to non adversarial 
perturbations on tabular datasets, presenting a robustness metric that addresses 
limitations of the previously mentioned methods (recalled within brackets i n
this paragraph). In particular we define a metric that can be computed even
in absence of a ground truth [13], considering practitioners needs (for example, 
deploying a model without requiring a retraining [8]) and keeping in mind the 
limitations derived from theoretical assumptions [12]. Importantly, our metric
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is bounded within the [0, 1] range, allowing for comparability among metho ds,
datasets and used models [2]. 

Alongside robustness analysis, we seek to explore the efficacy of an ensem-
ble approach on explanations. [14] presents an overview of the disagreement 
problem according to practitioners: while it is underlined that the problem is 
of non-negligible size, the authors do not propose solutions or good practices.
In the context of adversarial attacks, [24] showcases the efficacy of ensemble 
methods as defences on explanations. They test their aggregated explanation 
on image data and show that it is more resilient to attacks, when a compos-
ing explanation method or the mod el itself is being fooled. Aggregations can
also be performed leveraging multiple explanations from the same method: [7] 
derives a more robust Shapley-value explanation by aggregating the explana-
tions computed on a carefully crafted neighbourhood, minimizing explanation 
sensitivity. W e will consider these characteristics when devising our ensemble
and considering the robustness estimator.

3 Background 

This section introduces key terminology related to the XAI field and describes 
the techniques used in the experimental analysis.

3.1 Terminology 

While there is not an agreed-upon taxonomy to classify XAI techniques, we
follow the proposal of [1], which identifies the following axes of interest:

– Scope of the explanation: a local approach aims at explaining how a given 
individual prediction is made while a global one focuses on the model as a
whole, analysing its overall reasoning.

– Model of interest: model-specific techniques are tailored to the structure of 
the model under investigation, while mo del-agnostic ones can be applied to
any model.

– Transparency: intrinsically transparent models are interpretable by construc-
tion (and are also known as glass boxes) while post-hoc techniques are applied
after the model is fully trained.

As we will be discussing results obtained from neural networks, we can 
further distinguish be tween perturbation-based and gradient-based approaches
[26]. Perturbation-based approaches are often model-agnostic and rely either on 
neighbourhood generation or combinatorial aspects, as in LIME [23] or S HAP
[16]. Gradient-based methods, instead, are specific to neural networks and har-
ness their inner structure, mainly taking advantage of the backpropagation mech-
anisms [5, 27, 30]. 

The broader category of approaches we will be considering is that of fea-
ture attributions. Having an input x =  (x1,  .  .  .  xm) with m features, a feature
attribution is a vector a = (a1, . . . , am) of size m where each entry represents
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the importance of the corresponding feature towards the model’s prediction. 
According to the specific datatype of x, the attributions may refer to individ-
ual variables (tabular data), words or bag of words (natural language), pixels 
or superpixels (images - in this case explanations are often called heatmaps). A 
positive (negative) sign usually represents a positiv e (negative) contribution of
the feature and its relevance in the prediction. In the following, we will use the
terms feature importances and attributions interchangeably.

3.2 Considered Techniques 

We focus on local post-hoc approaches specific to neural networks and that are 
applicable to nets trained on tabular datasets. We ha ve not considered model-
agnostic approaches such as LIME [23] and SHAP [16] due to their kno wn
instability [2, 12, 28], as presented in Sect. 2. Model-specific approaches, such as 
Saliency and Input X Gradient [26] are also known for being unstable [2, 11]  and  
have therefore been excluded from the analysis.

Note that neural network explanations require the selection of the output 
neuron to be explained: this is more relevant in classification problems where 
one may want to investigate the features that contributed to any of the classes 
probability scores. In the f ollowing, the target neuron will be chosen as the one
associated with the model’s predictions, that is, the one with the largest output
score.

DeepLIFT. DeepLearning Important Features (DeepLIFT) [27] computes fea-
ture importances with respect to their difference from a given reference. In par-
ticular, the differences between the two outputs are explained in terms of the 
differences among the two inputs. Each neuron is analysed with respect to the dif-
ference between its activation and that of the reference input. DeepLIFT makes 
use of contribution scores and multipliers to backpropagate the difference in 
output through the network. It requires a single forward-backward pass through
the net, making it efficient. The propagations are computed through appropriate
chain rules, defined according to the neuron’s type and its activations.

Integrated Gradients. Integrated Gradients (IG) [30] satisfies the axioms of 
sensitivity and implementation invariance. It computes the integral of the gra-
dients of a net f along the straight-line path from a baseline x′ to the input x, 
considering a series of linearly separated instances along the path from the base-
line to the point of interest. In practice, it takes advantage of an appro ximation
of s steps such that, for the j-th dimension, it holds:

IGapprox
j =

xj − x′
j

s

s∑

k=1

∂f(x′ + (x − x′) · k/s)
∂xj

(1) 

The authors of [30] found that s ∈ (20, 300) produced satisfactory approxi-
mations but the computation can nonetheless be expensive when the number of
steps is large.



When Can You Trust Your Explanations? 231

Layerwise Relevance Propagation Layerwise Relevance Propagation (LRP)
[5] is based on the backpropagation principle. It defines a series of rules to prop-
agate the output score (or relevance) f(x) through the net’s layers, according to 
the architecture at hand. The conservation property holds: with Rj the relevance 
for neuron j, for each pair of layers

∑
j Rj =

∑
k Rk and globally it holds that 

summing over all layers
∑

i Ri = f(x). Two common propagation rules are the 
epsilon and the gamma rules: 

LRP-ε : Rj =
∑

k

aj · wjk

ε +
∑

0,j aj · wjk
Rk

LRP-γ : Rj =
∑

k

aj · (wjk + γ · w+
jk)

ε +
∑

0,j aj · (wjk + γ · w+
jk)

Rk

(2) 

where aj is the activation of neuron j, wjk is the weight linking neuron j to 
neuron k in the following layer (w+ 

jk is a p ositive weight),
∑

0,j is the sum over
all lower-layer activations.

Missingness Property. DeepLIFT, Integrated Gradients and LRP satisfy the 
missingness property: if xj =  0  ⇒ aj =  0. The features corresponding to the 
null entries in the feature vector will have null coefficients in the attribution 
vector, representing a lack of i mportance towards the prediction. This property
is particularly relevant when dealing with categorical variables, preprocessed
with one-hot encoding.

4 Methodology 

Our approach is applied to tabular datasets and classification problems. Let us 
introduce the following notation: let D =  (X, y) be a dataset with N datapoints 
and m features such that (xi ,  yi)  =  (x(i,1) ,  .  .  .  ,  x(i,j) ,  .  .  .  ,  x(i,m) ,  yi) with yi a 
class label. The dataset is split into a training, validation and test datasets, 
identified by Dtrain, Dvalid and Dtest respectively. Let f (·) be a neural network 
trained on D train and t be a target class. Let e be an explanation method (or
explainer) and e(xi) := e(xi, f) the explanation of model f prediction of point
xi. More specifically, let the feature attribution vector of the l-th method be
ai

l = (a(i,1)
l , . . . , a

(i,m)
l ).

4.1 Robustness Estimator 

We define the robustness of an explanation as a measure of its variability when 
the input is modified. If we consider x the original datapoint, x̃ a perturbation, 
e an explanation method and e(x) the corresp onding explanation, then:

x → x̃, e(x) → e(x̃) ⇒ r(x, e) = g(x, x̃, e) (3) 

that is, the robustness r of e(x) is a function of the chosen explanation method, 
the original datapoint and the perturbed one.
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Further considering a constraint of the form dist(x, ̃x) < ε with ε >  0 and 
dist a distance metric (such as the euclidean distance), we can introduce the
notion of local robustness.

Definition 1. An explanation method e is locally robust if perturbing the input 
results in a similar explanation. If x → x̃ with dist(x, ̃x) < ε (ε >  0) ⇒ e(x) ≈ 
e (x̃).

Given a robustness estimator R̂(xi , N i) := R̂(xi , N i ,  e,  f) that measures the 
robustness of the explanation method e applied to the neighbourhood N i of the 
poi nt xi over the model f , we can define the following set of desiderata.

Property 1. If r(xi , ̃xi) := r(xi , ̃xi ,  e,  f  ) is the robustness of e(xi) with respect 
to the perturbation x̃i, then the robustness R = E[r] is estimated by: 

R̂(xi,N i) =
1

|N i|
∑

x̃i∈N i

r(xi, x̃i) (4) 

where N i = {x̃i|x̃i = xi + λ with dist(xi , ̃xi) < ε ( ε > 0), λ ∈ R
m}.

Two points which are close to each other within the dataspace will produce
explanations with comparable robustness scores.

Property 2. If R̂ is a local robustness estimator, then for two distinct points 
xi , xj such that dist(xi , xj) < ε (ε >  0) it holds that: 

∃ δ  > 0 s.t. |R̂(xi,N i) − R̂(xj ,N j)| < δ (5) 

Robustness estimation is intrinsically linked to uncertainty in the estimates, 
due to errors in the explanations themselves and the lack of a ground truth for
the robustness.

Property 3. R̂ is such that R̂ = R + θε where R = E[r] is the true r obustness
and θε �= 0 is an error term.

By definition, the neighbourhood generation is highly influential in the 
robustness estimation process when non-adversarial perturbations are consid-
ered. On-manifold perturbations better reflect the true data distribution and 
the manifold learned by the model, therefore exhibit greater robustness scores
than random perturbations which may be off-manifold.

Property 4. If N i is an on-manifold neighbourhood and N̄ i an off-manifold one, 
then R̂(xi , N i) > R̂(xi, N̄ i).

The robustness of an aggregation of explainers is bounded by the robustness 
of the individual components.

Property 5. If the explainer ē is an aggregation of explainers, ē = agg(e1,  .  .  .  ,  el), 
then, if R̂(e) := R̂(xi , N i ,  e,  f), it holds that R̂(ē) ≤ max(R̂(e1), . . . , R̂(el)).
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Two equivalent models predicting the same class for a datapoint will be 
related to explanations with comparable robustness s cores. The data manifold
learned by the models influences the robustness score.

Property 6. Let f(·) and g(·) be two models with comparable accuracy on the 
dataset D.  If  the  point  xi is predicted to belong to the same class by both models, 
say ŷi 

f =  ŷi 
g,  and  let  ˆ R(f) := R̂(xi,N i, e, f), then:

|R̂(f) − R̂(g)| < δ with δ > 0 (6) 

We propose the robustness r to be computed as r(xi , ̃xi) =  
ρ(e(xi ,  f),  e(x̃i ,  f)),  where  ρ is the Spearman’s rho rank correlation coefficient 
and e(xi, f) the explanation of model f prediction of point xi. By Property 1, 
it then holds that the robustness R can be estimated via: 

R̂(xi , N i ,  e,  f)  =  
1 

|N i|
∑

x̃i∈N i

ρ(e(xi, f), e(x̃i, f)) (7) 

where N i = {x̃i|x̃i = xi + λ with λ ∈ Rm ,  dist(xi , x̃i) < ε (ε >  0) and ŷi =  ŷ ĩ}. 
By definition, i t holds that 0 ≤ R̂(xi,N i, e, f) ≤ 1.

We will show in Sect. 5 that our estimator also satisfies Properties 2-6. 

4.2 Neighbourhood Generation 

As remarked in Property 4, neighbourhood generation is an influential step in 
the estimation of the robustness, as the score is averaged over the set N i.  In  
the previous subsection, we have limited the constraints of the neighbourhood 
to only consider perturbed points x̃i which are close to the original datapoint 
xi and for which the model’s prediction is the same, ŷi =  ŷ ĩ. We will consider 
t wo possible neighbourhood generation mechanisms which deeply influence the
robustness computation. Let us distinguish between numerical and categorical
variables, xi

num and xi
cat respectively, as they require different perturbations by

construction.

Random Neighbourhood (NR). A first naive approach is the random gen-
eration of the neighbourhood, consisting of the addition of random white noise 
to numerical variables and a random flip of the categorical ones:

{
x̃i 

num = xi
num + δi with δi ← N (0, σ2)

x̃i
cat = flip(xi

cat) with probability γcat

(8) 

The flip of a categorical variable entails a random sampling among the pos-
sible modalities associated with that v ariable, the observed value of xi

cat being
excluded.

Medoid-Based Neighbourhood (NM ). We propose a more refined mecha-
nism that leverages the manifold hypothesis to generate perturbed datapoints
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which are still on-manifold, as our interest lies in testing non-adversarial per-
turbations consistent with the observed data distribution. Consider a k-medoid 
clustering on Dvalid,  with  kmedoids selected so that each cluster is, on average, 
of size nk =  10. For each cluster, the medoid xc is used as a representative and 
its kM nearest neighbours among the other cluster centres are stored in the set 
N  N  c =  (x1 ,  .  .  .  ,  xkM ).  For  each  point  xi ∈  Dtest we want to test, the associ-
ated cluster c is retrieved. From the corresponding cluster centre neighbours list 
N  N  c, one of the medoids is randomly chosen, say xM . With α and αcat the
probabilities of perturbing a numerical and a categorical variable respectively, a
perturbation is performed according to the following scheme:

⎧
⎪⎨

⎪⎩

x̃i
num = (1 − ᾱ) · xi

num + ᾱ · xM
num with ᾱ ← Beta(α · 100, (1 − α) · 100)

x̃i
cat =

{
xi

cat with probability 1 − αcat

xM
cat with probability αcat

(9) 
With both generating schemes, the resulting neighbourhood should be of 

at least size n = 100 to ensure statistical significance. A filtering step is then 
performed to remove the perturbations for which the model prediction is different 
from f(xi). Hyperparameter tuning is performed on θ1 = (σ, γcat) and θ2 =
(α, αcat, kM ) to ensure that, on average, at least 95% of the points are kept.

The main differences among the two approaches are presented in Fig. 1,  where  
the Swiss roll dataset is used as an example. Both schemes were applied to the 
same datapoint: the left most column represents a 3D visual of the dataset (in 
the shape of a rolled piece of paper), while the middle one is a view from above. 
It is easy to note that the random neighbourhood is expanded beyond the Swiss 
roll spiral shape. This is more evident in the right-most column, where a zoomed-
in visualization is proposed: while the random neighbourhood does not follow
the data manifold even when a small perturbation is applied (σ = 0.05), the
medoid-based one remains constantly within bounds despite a larger coefficient
being used (α = 0.3).

4.3 Ensemble 

We present a novel aggregation approach that aims at dealing with the disagree-
ment problem [14] by merging feature importances, focusing on the ranking of 
the features according to their absolute value. Let L be the number of methods 
which are being aggregated and let ri 

l be the l-th ranking, a vector of size m 
storing the indices that would sort the array |ai 

l| in decreasing order. Then, l et
an average attribution ai

ens be defined by:

a(i,j)
ens =

∑L
l=1 r

(i,j)
l · w

(i,j)
l∑L

l=1 w
(i,j)
l

· (1 + λn̄(i,j)) (10) 

where wl is the weight corresponding to the l-th feature attribution vector, λ = 
0.15 is a penalization term and n̄(i,j) is the number of methods for which there is
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Fig. 1. An example of neighbourhood generation (n = 500) on the Swiss roll dataset: 
the top row depicts the random neighbourhood generation NR (σ =  0.05) while the 
bottom one the medoid-based generation NM (α =  0.3 and kM =  5). Blue datapoints 
represen t the generated perturbations while the orange ones in the bottom row are the
kM neighbouring cluster centres.

a disagreement on the sign of the attribution a (i,j) l for l =  1,  .  .  .  ,  L. The ranking 
ri 

ens storing the indices that would sort the attribution vector ai
ens in increasing

order is the results of our approach.
This aggregation method is able to deal with practical issues that emerge 

when considering multiple explanations altogether. First of all, attributions may 
result in coefficients very close, but not equal, to zero. A zero coefficient implies 
that the feature is not important towards the prediction, but the lack of a com-
mon scale for feature attributions makes it difficult to discriminate between 
important and unimportant features only based on the absolute value of the 
corresponding coefficient. We aim at limiting this issue by considering the fol-
lowing weighting scheme where, for the l-th methods, i-th point and j-th feature,
it holds:

w
(i,j)
l =

σ(ai
l)√

|ai
l| · |a(i,j)

l |
(11) 

with ai 
l the feature importance vector, ai 

l its average and σ(ai
l) the standard

deviation.
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Smaller values of the feature importance coefficients translate into larger 
weights, that contribute to moving a feature into the set of non-informative ones 
of our ranking, effectively capturing the scarcer importance towards the predic-
tion. As coefficients may differ greatly in m agnitude between multiple methods,
a normalization is then introduced with the consideration of the average and
standard deviation within the weighting scheme.

The ensemble is computed as the weighted average of the L =  3  rankings 
and a penalization term λ is introduced to penalize features that exhibit sign 
disagreement among the L methods, as we consider it a symptom of feature 
instability. The penalization term allows us to favour the features for which 
there is sign concordance (n̄(i,j) =  0), either positive or negative, and when the 
attribution magnitude is non negligible. Considering h ow larger weights move
features towards the set of non influential ones, the penalization contributes
to a lower attribution value for concordant features, effectively capturing their
(absolute) relevance and importance towards the prediction.

We will compare our ensemble to another aggregation method in Sect. 5. 
Inspired by [24], we will simply consider the average of the attributions, when 
the vectors have norm 1. If ai 

l is such that ‖ai 
l‖2 =  1  , then

a(i,j)
mean =

1
L

L∑

l=1

a
(i,j)
l (12) 

with ai 
mean such that ‖ai 

mean ‖2 = 1.
One of the disadvantages of using the mean as aggregation is that it may 

assign a zero attribution even when all L coefficients are non-null. Assume that, 
for the j-th feature, the L =  3  coefficients derived from the corresponding meth-
ods are (v, v, −2v) with v  >  0. The mean will be equal to zero, implying that 
the feature is non relevant towards the prediction, but the importance for each 
of the L method highlights a relevance of magnitude at least v. Our ensemble
is, instead, able to take this into account, penalizing the disagreement but still
considering the feature to have some level of relevance towards the prediction.

While we have computed both aggregations with the feature attributions 
derived from DeepLIFT, Integrated Gradients and LRP (as presented in Subsect.
3.2), both approaches can be easily extended to include a higher n umber of
feature attribution methods.

4.4 When Can You Trust Your Explanations? 

Assessing the trustworthiness of explanations on previously unseen datapoints is 
a non trivial task. While it is p ossible to compute an estimate of the robustness
via Eq. 7, we argue that the result may not reflect the true robustness of the 
considered datapoint, as it may lay in an unstable area of the feature space. We 
want to verify not only if a datapoint is robust, but also if it lies in a robust
area of the feature space: knowing that the neighbourhood is non robust allows
us to doubt the robustness score of a previously-unseen datapoint. To tackle
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this issue, we propose the usage of a k-nearest neighbours regressor fitted on 
Dvalid robustness scores. For xi ∈  Dtest, we compute both the robustness score
R̂(xi) := R̂(xi,N i, e, f) via 7 and the regressor’s prediction Rknn(xi). According 
to a selected threshold value rth, it is possible to discriminate between three
scenarios:

1. if R̂(xi) ≥ rth and Rknn(xi) ≥ rth then xi is  a  robust point;
2. if R̂(xi) ≥ rth and Rknn(xi) <  rth then xi is an uncertain point, as it lies in 

an uncertain a rea of the feature space and its robustness should be carefully
considered;

3. if R̂(xi) <  rth then xi is a non robust point.

The second scenario represents a set of conditions that practitioners should 
carefully evaluate: despite the robustness score being greater than the selected 
threshold, the local information derived from the neighbours suggests otherwise. 
This scenario aims at ringing a bell in the practitioner evaluating a giv en expla-
nation: knowing that it may be misleading, the analysis will be more careful
and require a more detailed human-evaluation of both the prediction and its
explanation.

The usage of a knn regressor instead of a knn classifier allows for indepen-
dence from the selected robustness threshold rth, requiring the model be fitted 
only once. The number of neighbours kR is a d ataset-dependent hyperparame-
ter and relies on the goodness of approximation of the robustness score by the
regressor.

The selection of the threshold rth is a delicate step of the procedure: as the 
robustness estimator is bounded by construction in the [0, 1] range, it is possible 
to select a c ase-specific threshold to discriminate between robust and non robust
datapoints. As it will be seen in Subsect. 5.1, in which hyperparameter selection 
is discussed in detail, a default value of rth =  0.80 w  orks well on most of the
datasets.

4.5 A Complete Pipeline 

With the considerations presented up to this point, we can discuss the complete
framework (Fig. 2) for robustness evaluation and e xplanation trustworthiness.

1. Split the dataset into Dtrain, Dvalid, Dtest and p erform the required prepro-
cessing steps.

2. Train a neural network on Dtrain.
3. Perform k-medoid clustering on Dvalid and compute the kM nearest n eigh-

bours among the medoids.
4. For each point xj ∈  Dvalid, generate a neighbo urhood N j of size n.
5. Compute the attributions of DeepLIFT, Integrated Gradients and LRP and 

merge t hem following the ensemble aggregation scheme.
6. Compute the robustness score via Eq. 7 for each point xj ∈  Dvalid.
7. Use the previously computed robustness scores to train a k-nearest neighbours

regressor and select an appropriate threshold rth.
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Fig. 2. The complete p ipeline.

8. For each datapoint xi ∈  Dtest, predict the medoid cluster it belongs to a nd
generate a neighbourhood N i.

9. Compute the L feature attribution vectors a nd the resulting aggregation.
10. Compute then the robustness score via Eq. 7 and the predicted robustness 

via t he knn regressor.
11. Assess the trustworthiness following Subsect. 4.4. 

Note that the computational cost of the procedure is dominated by the com-
putation of the individual attributions, as a pass through the network is required 
for each datapoint, for each perturbation and for each of the three methods. The
scaling of the underlying robustness method inherits this complexity.

The advantages of using this framework include the leveraging of an 
ensemble-based explanation, which captures the signals of L individual explana-
tion methods, and the estimation of the robustness on a carefully constructed 
neighbourhood. The pipeline is designed to point out possibly non robust points,
even when they appear so, ensuring greater trustworthiness in the system and a
more aware analysis from a practitioners perspective.

The presented framework is applicable to datasets entirely made of numerical 
variables, but to correctly consider also categorical ones a small adjustment is 
required. Categorical features are often preprocessed with a one-hot encoding 
before a neural network is trained. For example, a feature xcat with four modal-
ities is represented by a vector of the form (0, 0, 1, 0), where the non zero-entry 
corresponds to the observed modality. A feature attribution method applied to 
the one-hot enco ded feature vector returns a set of importances of the form
(0, 0, u, 0): the non-zero entry is the only one associated with a non-null value.
This is to be expected as the attribution methods we are evaluating satisfy the
missingness property (Subsect. 3.2). To limit the effects of zero-entries in the 
Spearman’s rho computation, we propose a reverse encoding of categorical vari-
ables. They are represented by the observed modality and the variable xcat is 
associated with an attribution al = u. This allows us to consider feature vectors
of size m, as in the original feature vector, and to perform a more effective com-
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parison of the robustness. The reverse encoding is applied in steps 5 a nd 9, prior
to the ensemble’s computation.

4.6 Validation 

Robustness estimation is often subject to the lack of a ground truth, as the 
data generation process is not known in real-world applications and comparison 
against expert-provided explanations can be unfeasible due to the large amount 
of data being examined. We argue that robust (explanation-wise) points lie in 
a robust area of the feature space and can be deemed robust even when passed 
though different models. Our assumption implies that non robust points will
exhibit differences both in the explanations and in the predictions of multiple
models, as their lack of robustness is a somewhat intrinsic characteristic of the
area of the manifold in which they lie.

Let us consider three neural networks, say f1,  f2 and f3, which have compa-
rable accuracy over Dtrain and that differ either in the number of hidden layers 
or neurons per layer. Let Dagree be the subset of datapoints for which models 
f1,  f2,  f3 predict the same class and Ddisagree the subset for which one of the
models predicts a different class. Consider a point to be robust if R̂(xi) ≥ rth

and non-robust otherwise.1 We propose the validation to follow a ROC/AUC 
analysis, where the True Positive Rate (TPR) and False Positive Rate (FPR) 
are d efined as:

TPR =
#{Robust & Agree}

#{Agree}
FPR =

#{Robust & Disagree}
#{Disagree}

(13) 

Varying the threshold value rth,  it  is  possible  to  plot  the  ROC  c  urve and
compute the corresponding AUC value.

5 Experimental Evaluation 

5.1 Experimental Setting 

We have selected the following publicly-available datasets from the UC Irvine 
Machine Learning Repository: beans, cancer, mushroom, white wine, adult 
and bank marketing. We have additionally used the heloc and ocean datasets,
following the work of [21, 29] respectively. The first four represent toy examples, 
as the classification tasks are easier to tackle even with non-neural models and 
present an overall lower number of both features and datapoint s. All the datasets
propose binary or multiclass classification tasks and contain both numerical and
categorical variables.

We have relied on the Python libraries pytorch and captum for the imple-
mentation of our approach. The former was used for the training and usage of

1 Note that, in this case, we are not considering t he classification presented in Subsect.
4.4, but only if the robustness score R̂ is above the selected threshold rth.
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the nets while the latter, a pytorch-compatible explainability framework devel-
oped by Meta, was applied for the retrieval of t he attribution vectors. The full
implementation is available on Github.2

For all datasets, the following preprocessing steps were performed:

– Standardization of numerical variables and one-hot encoding of the categori-
cal ones.

– Removal of correlated features. Spearman’s rank correlation coefficient was 
used for numerical variables while the normalized mutual information crite-
rion for the categorical ones. The removal of highly correlated features ensures 
that neighbourhoo d generation is more aligned with the data distribution and
that the computed attributions are non distorted by unconsidered correlations
among the features.

– Softmax in the final layer of the net, also for binary classification examples. 
It ensures stability during attribution computations, as higher relevances are 
backpropagated. This also reduces the effects of the vanishing gradient prob-
lem, when the attribution is returned as a zero-vector, as the signal is lost
when the output score is propagated through the net.

– Selection of the gamma rule for LRP attributions. It was chosen as it was the 
rule minimizing the vanishing gradient problem, and it was applied to all the
layers of the nets (as they are all linear layers).

As anticipated in Subsect. 4.6, we trained three neural networks per dataset, 
say Model 1, 2 and 3, with comparable accuracy scores (Appendix A,  Tab  le 4). 
Model 1 represents the baseline model, model 2 has more layers and more neurons 
in each layer while model 3 is a more compact version, with fewer layers and 
neurons. The ReLU activation function was used in all cases, with the exception
of the ocean dataset, where tanh was used, following the structure in [29]. 

Hyperparameter Selection. Default values for the neighbourhood generation 
hyperparameters are θ1 =  (σ =  0.05,  γcat =  0.05) for the random generation NR 
and θ2 =  (α =  0.05,  αcat =  0.05,  kM =  5)  for the medoid-based one NM .  In  
both cases, the neighbourhood should be of size at least n = 100 (we have set 
n = 100 in our experiments) and dataset-specific hyperparameters are set via 
a grid search, ensuring that at least 95% of the generated datapoints are kept
within the neighbourhood, i.e. they are predicted to belong to the same class as
the original datapoint.

The number of neighbours kR to be used in the knn regressor is chosen as 
the one minimizing the approximation error over the robustness scores derived
from all three nets in each dataset. A good default value is kR = 7.

The robustness threshold rth is selected by looking at the distribution of 
robust, non robust and uncertain datapoints at varying levels of the threshold. 
In particular, it is chosen as the threshold value that corresponds to the first
inflection point of the robust percentage curve. The default value rth = 0.80
works well in most scenarios.
2 https://github.com/ilariavascotto/XAI_robustness_analysis 

https://github.com/ilariavascotto/XAI_robustness_analysis
https://github.com/ilariavascotto/XAI_robustness_analysis
https://github.com/ilariavascotto/XAI_robustness_analysis
https://github.com/ilariavascotto/XAI_robustness_analysis
https://github.com/ilariavascotto/XAI_robustness_analysis
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Fig. 3. The robustness score distribution for adult dataset of the ensemble (left) and of 
the mean (centre) with medoid-based neighbourhood generation; random and medoid-
based neighbourhood generations are compared for the ensemble aggregation (right).

Dataset-specific hyperparameters can be found in Appendix A,  Tab  le 5. 

5.2 Results 

We will begin the discussion focusing on the results derived from Model 1, that 
acts as our baseline, on the test set Dtest.

Figure 3 depicts the robustness score distribution derived from the ensemble 
(left) and the mean (centre) aggregations with the medoid-based neighbourhood 
generation mechanism on the adult dataset. They are compared with the robust-
ness scores derived from the individual XAI approaches, taking into account the 
nature of the aggregation. In particular, the ensemble is compared to the robust-
ness computed on the f eature importance vectors in absolute value, to mimic the
reasoning of the ensemble’s construction, while the mean is compared to the fea-
ture vectors with sign. As stated by Property 5, in both cases the aggregated 
explanation robustness acts as an average of the robustness of the individual 
approaches and is limited by their span. In this example, Integrated Gradients is 
on average the least robust method while DeepLIFT and LRP present grater val-
ues of the estimated robustness. Note that this behaviour is dataset dependent: 
Integrated Gradients is not, in general, the least robust method. The aggregated 
explanations, either with the ensemble or the mean, represent an advantage over 
the use of individual approaches. In particular, the aggregation acts as a conser-
vative explanation, that takes into account the individual method’s robustness
and their feature-wise agreement. While the average robustness may be lower
than that of some of the considered approaches, it is able to take into account
the possible undesirable effects of a less robust and disagreeing method, flagging
possible untrustworthiness for a given datapoint.

The rightmost part of Fig. 3 depicts the comparison between the effects of two 
neighbourhood generating schemes on the ensemble non-adversarial robustness.
As previously shown in Fig. 1, the random neighbourhood consists of datapoints 
which are off-manifold, while the medoid-based one is constructed to remain on-
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Table 1. When can you trust your explanations? Comparison of the robustness scores 
with ensemb le and mean aggregations with rth = 0.80.

Ensemble Mean 
Dataset Dtest Robust Uncertain Non Robust Robust Uncertain Non R obust
beans 500 74.6% 7.2% 18.2% 93.0% 2.2% 4.8% 
cancer 50 62.0% 12.0% 26.0% 100.0% 0.0% 0.0% 
mushroom 400 0.0% 1.2% 98.8% 0.0% 0.0% 100.0% 
white wine 200 7.5% 26.5% 66.0% 56.5% 11.0% 32.5% 
adult 1000 63.4% 7.1% 29.5% 72.6% 7.3% 20.1% 
bank 1000 65.2% 7.1% 27.7% 44.6% 16.4% 39.0% 
heloc 500 62.8% 9.2% 28.0% 60.6% 14.0% 25.4% 
ocean 10000 79.1% 5.6% 15.3% 53.5% 16.0% 30.5% 

manifold, mimicking the effects of non-adversarial perturbations. This reflects 
into larger average robustness over the test set of the latter neighbourhood over 
the r andom one, validating that the robustness estimator with the ensemble
consistently satisfies Property 4. The same property is satisfied also by the mean 
aggregation and the individual XAI methods when tested individually.

Table 1 presents the classification of the test set into robust, uncertain and 
non robust datapoints (as per Subsect. 4.4). For comparability, we set rth = 
0.80 for all datasets and both aggregation methods, even if the ensemble often 
requires lower values of rth compared to the mean (see Appendix A). Medoid-
based neighbourhoods were used, as it was shown in Fig. 3 that they produce 
larger robustness scores.

For almost all the datasets, robust datapoints are the majority, with the 
exception of the white wine dataset with the ensemble and mushroom dataset 
with both aggregations. This is due to the selection of the threshold value equal 
for all datasets, as carefully selected dataset-specific thresholds would be lower 
than 0.80. The percentages of uncertain and non robust datapoints are non-
negligible. I n particular, we consider uncertain datapoints to be the most inter-
esting ones to investigate. They represent areas of the feature space where the
robustness estimation is uncertain (as per Property 3) and should be carefully 
considered during a practical evaluation.

In Fig. 4 we present a two dimensional visualization of the UMAP [18] projec-
tions of the validation set Dvalid, clustered with HDBSCAN algorithm [17], where 
each cluster is coloured by its mean robustness score. UMAP is a dimensionality 
reduction technique that allows us to visualize a lower dimensional projection of 
the data. We applied the density-based clustering algorithm HDBSCAN to such 
projections, producing clusters without the need of setting hyperparameters for 
the desired number of clusters, as in k-means for example. As can be seen in
the figure, the projected data space may be more or less complex according to
the dataset being analysed. Robustness homogeneity within the derived clusters
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Fig. 4. HDBSCAN clusters, coloured by mean robustness scores, over the two dimen-
sional UMAP projections (P1 , P2): beans dataset (left) and adult dataset (right).

Table 2. Comparison of ensemble’s robustness classification (with rth =  0.80) accord-
ing to M odel 1,2,3 concordance in the prediction.

Robust Non R obust

Dataset Agree Disagree N. poin ts Agree Disagree N. poin ts
beans 95.35% 4.65% 409 95.60% 4.40% 91 
cancer 91.89% 8.11% 37 92.31% 7.69% 13 
mushroom 100.00% 0.00% 5 100.00% 0.00% 395 
white wine 94.11% 5.88% 68 92.42% 7.58% 132 
adult 93.76% 6.24% 705 80.68% 19.32% 295 
bank 95.99% 4.01% 723 90.25% 9.75% 277 
heloc 82.22% 17.78% 360 56.43% 43.57% 140 
ocean 85.21% 14.8% 8475 80.33% 19.67% 1525 

support the claims of Property 2, in which close points are expected to exhibit 
smaller differences between their robustness scores. This allows us to support 
the use of the knn regressor to estimate local robustness scores as points are
naturally grouped in clusters with similar robustness scores.

As introduced in Subsect. 4.6, the validation of robustness estimations is 
subject to the lack of a ground truth. Table 2 shows how the percentage of points 
over which the three models (Model 1, 2 and 3) (dis)agree varies according to 
the predicted robustness of the datapoints, with rth =  0.80 for all datasets. The 
ensemble robustness is computed with the medoid-based neighbourhood. Note 
that the mushroom dataset is a particular case, as all three methods reach 100% 
accuracy and are, therefore, always agreeing. It can be seen that the percentage of
disagreeing points within the non-robust ones is, for most datasets, greater than
that of the robust ones. This supports our validation proposal, as we consider
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Fig. 5. ROC curves on the bank dataset with ensemble aggregation and medoid-based 
neighbourhood (left), mean aggregation and medoid-based neighbourhood (centre) and 
ensemble aggregation with random n eighbourhood (right). The gray dotted line repre-
sents the bisecting line.

Table 3. Average AUC value of Model 1, 2, 3 for both aggregation types and neigh-
bourhoods. For each dataset, t he largest average AUC is presented in bold.

Medoid Random 
Dataset Ensemble Mean Ensemble Mean 
beans 0.5711 0.4854 0.4842 0.4067 
cancer 0.7346 0.7400 0.6766 0.6612 
mushroom 0.0000 0.0000 0.0000 0.0000 
white wine 0.4762 0.5931 0.4819 0.6614 
adult 0.7018 0.6695 0.8284 0.8077 
bank 0.6670 0.3883 0.6612 0.4696 
heloc 0.6640 0.6673 0.6262 0.5875 
ocean 0.5194 0.5128 0.4350 0.4053 

the disagreement in the predictions to be a symptom of non robustness, as per
Property 6. 

The ROC/AUC analysis presented in Subsect. 4.6 allows us to jointly con-
sider the aggregation method and the neighbourhood generation scheme whic h
better fit the dataset at hand. Figure 5 depicts the ROC curves of the three 
models in varying scenarios: Model 2 is consistently associated with the highest 
ROC curve, suggesting that, for the bank dataset, a deeper net is better able 
to propose robust explanations. Moreover, the ROC curves are preferable for all 
three models with the ensemble aggregation and the medoid-based neighbour-
hood, while the mean aggregation (as shown in the central plot) presents ROC
curves even below the bisecting line.
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This is further confirmed by the results presented in Table 3, where the aver-
age AUC is computed for the four possible combinations of aggregation method 
and neighbourhood generation. The dataset-wise maximum values of AUC are 
presented in bold, showing how the ensemble is, on average, preferable with 
respect to the mean aggregation and how the medoid-based neighbourhood is
related to larger AUC values in most examples. The mushroom dataset repre-
sents, as in Table 2, a peculiar case: having only agreeing datapoints the ROC 
and AUC cannot be c omputed and are therefore exempt from this analysis.

6 Conclusions and Future Work 

We presented a novel framework to test explanation robustness, introducing a 
new neighbourhood generation mechanism, an ensemble approach to merging 
explanations and a v alidation test. We have shown that our robustness estima-
tor satisfies the desiderata 1-6 and it overcomes the limitations of other met-
rics (Sect. 2). In practical applications, our approach would aid practitioners in 
understanding the quality of an explanation in terms of its robustness, allowing 
questioning on the proposed results when the framework flags a datapoint as
uncertain.

We have proposed our work targeting neural networks, but the approach is 
agnostic in nature with respect to both the investigated model and the XAI tech-
niques being applied. Future steps include a first generalization of the proposal 
on different classes of machine learning models, such as tree-based ones, assum-
ing that local feature importance approaches are available for testing. Future 
work will also aim at better investigating the relationship between robustness 
and adversarial attacks. In particular, we aim at assessing the defence ability of 
our ensemble - as aggregated e xplanations have proved to be more resilient to
adversarial attacks in numerous contexts - and to validate whether our robust-
ness estimator is able to detect attacks. Lastly, we wish to investigate how our
explanations could be used to increase the robustness of classifiers, as in [22]. 

Acknowledgments. This study was partially carried out within the PNRR research 
activities of the consortium iNEST funded by the European Union Next-GenerationEU 
(PNRR, Missione 4 Componente 2, Investimento 1.5âĂŞ D.D. 1058 23/06/2022, ECS 
00000043). 

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.



246 I. Vascotto et al.

A Dataset Description and Hyperparameters 

Table 4. Dataset description and mod el accuracy.

Dataset details Accuracy (%) - Dtr ain

Dataset Classes #Num #CatDtrain Dvalid Dtest kmedoids Model 1 Model 2 Model 3 
beans 7 7 0 10888 2223 500 225 93.41 93.44 89.47 
cancer 2 15 0 397 121 50 10 99.5 99.75 99.24 
mushroom 2 0 21 6498 1225 400 120 100.00 100.00 100.00 
white wine 2 9 0 3918 780 200 80 89.23 89.10 86.55 
adult 2 5 7 36177 8045 1000 1000 91.39 91.38 91.09 
bank 2 5 9 36168 8043 1000 1000 91.99 91.76 91.45 
heloc 2 14 2 8367 1592 500 130 85.50 85.57 85.01 
ocean 6 8 0 109259 30328 10000 3000 92.04 87.88 92.27 

Table 5. Dataset-specific hyperparameter selection.

NM NR 

Neighbourhood Ensemble Mean Neighbourhood Ensemble Mean 
Dataset α αcat kM kR rth kR rth σ γcat kR rth kR rth− 
beans 0.10 – 10 9 0.85 9 0.90 0.02 – 5 0.75 7 0.80 
cancer 0.10 – 4 11 0.85 9 0.90 0.10 – 5 0.55 7 0.65 
mushroom – 0.15 10 7 0.70 11 0.60 – 0.15 9 0.70 11 0.60 
white wine 0.15 – 5 11 0.85 7 0.80 0.03 – 9 0.45 7 0.65 
adult 0.05 0.05 5 9 0.80 9 0.80 0.05 0.05 5 0.70 5 0.70 
bank 0.05 0.10 5 7 0.80 11 0.80 0.05 0.10 7 0.75 9 0.75 
heloc 0.05 0.05 5 15 0.80 13 0.80 0.03 0.10 11 0.45 5 0.60 
ocean 0.05 – 5 5 0.65 5 0.75 0.001 – 5 0.75 5 0.65 
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Abstract. Convolutional Neural Networks (CNNs), such as VGG and 
ResNet, have been widely used for image classification for several years. 
Numerous explainable AI (XAI) algorithms, including Grad-CAM and 
XRAI, have been proposed to enhance interpretability in this domain. 
However, a persistent challenge lies in quantitatively comparing dif-
ferent XAI algorithms, variants of the same algorithm, or combina-
tions of CNN models and XAI algorithms. In this work, we introduce 
XAIEV – a versatile framework for computationally evaluating the qual-
ity of saliency-map-based XAI algorithms. This framework includes (A) 
a benchmark dataset (traffic sign recognition) with a known ground 
truth and (B) a software toolbox designed to facilitate the evaluation 
pipeline. The pipeline consists of four steps: (1) model training, (2) apply-
ing XAI algorithms to generate weighted saliency maps, (3) generating 
new test images with varying percentages of “important” pixels removed 
or retained, and (4) statistically evaluating accuracy changes on these
test images and comparison to the ground truth. Based on this statisti-
cal evaluation, we define an Accuracy-Sensitivity Quotient (ASQ) as a
novel quality metric for XAI algorithms applied to image classification.
Using the XAIEV framework, we compare various combinations of CNN
architectures (“SimpleCNN” (custom model), VGG, ResNet, ConvNext)
with multiple XAI algorithms (Grad-CAM, XRAI, LIME, PRISM). Our
numerical results reveal that the performance of XAI algorithms is highly
dependent on the underlying CNN model.

Keywords: XAI-evaluation · CNN · Image Classification · Quality 
Metric · Accuracy Sensitivity Quotient

1 Introduction 

Along with the success of deep neural networks (DNN) in the field of image 
classification there is a growing i nterest in explaining the outputs of such models.
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Since more than a decade (as of 2025) researchers have proposed a multitude of 
“explainable artificial intelligence” (XAI) methods to cater this need, see e. g. [14, 
20] and the references therein. These methods typically yield “explanations” in 
the form of suitable visualizations which are often superimposed on the original 
image in order to make the classification process comprehensible for humans.
An illustrative example (taken from [18]) is that a dysfunctional Wolf-vs-Husky 
classifier could be uncovered by using XAI: The classifier achieved good accuracy 
on the test set but actually (due to missing variability in the dataset from which 
both train and test split were taken) learned to associate snow-related features 
with the “wolf ”-class. As the XAI method highlights mainly the snowy areas
on the (correctly classified) wolf-pictures a human can then easily recognize the
trained model as flawed.

The development of these various XAI methods, however, raised the issue 
of how to objectively measure and compare the performance of those different 
methods or even of one method with different parametrizations. In principle 
there are two different types of approaches: a) human-based evaluation (i. e.
user studies) and b) algorithmic evaluation.

Because explainability is a human-oriented objective the first category of 
approaches is obviously reasonable, see e. g. [14]. However, user studies also have 
some disadvantages: They require considerable effort to prepare, conduct and 
evaluate and additionally rely on (many) voluntary participants spending their 
time which is a limited and c ostly resource. Additionally, the results of those
studies might be systematically influenced by the selection of those participants.

Thus, algorithmic evaluation methods are desirable to provide fast and cost-
efficient quantification of XAI performance, at least as a complement to user
studies.

However, designing and implementing such evaluation methods comes with 
its own challenges: Different XAI methods produce different kinds of results 
which are nontrivial to compare and an objective ground truth does not exist. 
Also, there are degrees of freedom (design parameters) with a certain range of 
plausible values, which n evertheless affects the resulting performance score. Fur-
thermore, it should be noted that the suitability of an XAI method might depend
on the downstream task [7], which justifies the existence of various XAI meth-
ods as well as evaluation methods and metrics. Previously presented evaluation
metrics include e. g. [1, 2, 6, 11]. 

In this contribution we present the XAI evaluation framework XAIEV [10] 
which focuses on simplicity w. r. t. understandability, usability and reproducibil-
ity, to ease algorithmic evaluation and to facilitate comparative studies. This 
framework allows to algorithmically generate a quantitative performance metric 
(so-called Accuracy-Sensitivity Quotient, ASQ) for combinations of a trained 
Convolutional Neural Networks (CNNs) model and a XAI-method. This score 
is based on how much the classification accuracy changes if different quantities 
of importance-ranked pixels (according to the saliency map produced by the
respective XAI-method) are occluded or revealed. To eliminate the influence of
the input data, the framework includes a dataset tailored to the evaluation task.
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Note that, while drawing inspiration from earlier occlusion-sensitivity based 
approaches such as [28] our approach has a different goal: We use occlusion (and 
revelation) based on the importance values of XAI saliency maps to evaluate 
them, whereas that method uses a sliding occlusion window to generate a saliency
map.

2 Material and Methods 

2.1 XAI Method s

In this study we consider four different XAI methods: Grad-CAM, XRAI, LIME 
and PRISM. However, it should be noted that due to the modular structure 
of the XAIEV framework further methods could be added straightforwardly,
provided they are compatible with the used classification models.

Grad-CAM. The Grad-CAM [21] method is a generalization of the CAM algo-
rithm [29]. It extracts localization information for features from the last convo-
lutional layer in a network. Thereby Grad-CAM is able to operate on CNNs, 
which do not meet the special requirements set by CAM for the structure of the 
classification head: It uses the gradients of the feature maps of the final convo-
lutional layer with resp ect to the desired output class as weights. The outcome
is a saliency map with the dimensions of the original image. Due to upsampling
the important pixels form relatively large connected regions.

XRAI. The XRAI method proposed by [9] is based on the Integrated Gradients 
(IG) method introduced by [23]. Among other features it addresses a major 
issue of IG-generated saliency maps: They usually contain scattered important 
pixels with neighboring seemingly unimportant pixels, making the output less
interpretable for humans and harder to compare to other XAI methods [15]. 

Thus, XRAI uses precomputed segments of the input image generated b y
the Felzenszwalb’s segmentation algorithm [4]. In particular, using six different 
parameter settings a so-called oversegmentation is produced, where a singular 
pixel in the original image is part of multiple segments.

Importance values are given to each segment by calculating the mean attribu-
tion value for the contained pixels with IG. The segment with the highest value 
is moved to a separate list, and its pixels are excluded from other segments. 
This process repeats, ranking segments by imp ortance until the entire image is
covered. The ranked segments are then combined into a weighted heatmap using
their mean attribution values.

LIME. The LIME-method (“Local Interpretable Model-agnostic Explanations”) 
proposed by [18] uses perturbations of the input data to explore the behavior of 
the model for a certain local area. When applied to CNNs, so-called super-pixel 
segments, which are essentially larger areas of the input image, are perturbed.
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The perturbed instances are fed into the CNN to receive the outputs. Using 
these outputs, a n ew interpretable model (sparse linear classifier as suggested in
[18]) is trained with the goal of approximating the behavior of the CNN for each 
image. The importance of the regions/super-pixels in the original input image 
can directly be derived from the weights of the sparse linear classifier. This allows
for a ranking of the features.

To use the results for the comparisons, a heatmap is derived using only the 
most important feature. Thus, this variant of LIME only highlights the feature 
and does not include any weighting within the important/unimportant area. 
This results in a binary heatmap which, in the context of this study smoothened
in order to achieve a gray scale saliency map.

PRISM. Principal Image Sections Mapping (PRISM) unlike many other meth-
ods does not depend on backpropagation [25]. PRISM, similar to Grad-CAM, 
assumes that the features in the final convolutional layer have a high spatial 
correlation to relevant areas in the input image. PRISM derives its importance 
heatmap, by performing Principal Component Analysis (PCA) f or the last con-
volutional layer, which for this purpose has to be reshaped from 4D to 2D.

The PCA results are truncated to the three most important components and 
reshaped to the original spatial dimensions (batchsize, height and width). These 
three channels are now considered as the color c hannels of an RGB-image. As
final step upsampling is achieved with so-called Gradual Extrapolation [24]. 

PRISM thus produces an RGB image which mostly contains gray base color, 
where important regions can visually be identified by a bright saturated color. To 
extract a 2D saliency map for comparison with the other XAI-methods, t he gray
base color is subtracted and the highest value of the three channels is selected
as the importance value of a pixel.

2.2 CNN Mo dels

In this study we investigate the different XAI Methods for four different CNN 
models. Although in recen t times transformer-based classification models such
as Swin Transfomer [12] are considered state of the art CNNs remain widely 
used for various reasons: They typically have few er parameters and require less
computational resources for training and inference [13]. Also, they perform better 
when training data is scarce, while transformers require larger datasets t o achieve
comparable or superior results [17]. Additionally, due to their longer existence, 
they are b etter covered by XAI literature.

As for the XAI methods due to the modular structure of the XAIEV frame-
work further C NN models could be added straightforwardly.

Simple CNN. The “Simple CNN” is a custom model by the authors, designed 
to allow observations of XAI methods on basic building blocks. It starts with a 
7×7 convolutional layer (stride 2) that reduces spatial dimensions while increas-
ing channels from 3 to 32. This is followed by a 3 × 3 convolution, increasing
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filters to 64. A max pooling layer reduces spatial dimensions to 55× 55, followed 
by two more 3×3 convolutional layers, increasing channels to 128 and 256 respec-
tively. The single max pooling layer maintains larger feature maps, which could 
be interesting for XAI methods deriving heatmaps from the last convolutional 
layer. ReLU activation is applied after each convolutional layer. The model ends 
with Global Average Pooling, creating a 1 × 256 feature vector mapped to 19 
classes. To combat overfitting, Batch Normalization is applied after every convo-
lutional layer, and 25% dropout before the global average pooling. This simple
architecture was iteratively developed to achieve over 90% training accuracy
while maintaining good generalization.

VGG. The VGG architecture proposed by [22] over a decade ago is still very 
popular today. While its accuracy on the ImageNet benchmark is not as good as 
that of more recent models, VGG16 (also used in this study) still achiev es state
of the art performance on other datasets, for example outperforming many more
recent CNN designs on the InDL [26] dataset, while matching the p erformance
of ConvNeXt.

Despite being a much deeper network with a large amount of parameters as 
compared to the proposed Simple CNN, it still consists of very basic building 
blocks, utilizing only s imple convolutional filters, the ReLU activation function
and max-pooling layers for the feature extraction.

ResNet. Residual Networks (ResNets) were proposed in [5] and introduced so-
called “residual connections” (also: “shortcut connections”). These consist of a 
signal path which adds the input of a block (typically comprising two or three 
convolutional layers) directly to its output. The input-output-relation of such a 
“residual block” is thus y = x + f(x) instead of the usual y = f (x),  which  signif-
icantly improves the gradient flow and thus alleviates the problem of vanishing 
gradients during t he training of very deep CNNs. In this study the ResNet50
is used. It offers a reasonable trade-off in terms of computational demand and
performance which makes it a popular choice in the field of XAI [20]. 

ConvNeXt. The ConvNeXt architecture, proposed by [13], is based on ResNet 
but updated in several aspects inspired by the Swin Transformer [12]  design  
and training methodology. In particular these updates include modified block 
designs, larger kernels sizes, GeLU instead of ReLU activation functions, replac-
ing batch normalization by layer normalization and using so-called LayerScale
regularization during the training. With this architecture, [13] showed that a 
model consisting only of classical CNN components can compete with state of 
the art Transfomer architectures. In this study the “ConvNeXt-Tiny” variant is
used.



XAIEV – A Framework for the Evaluation of XAI-Algorithms 255

2.3 Augmented Traffic Sign Dataset (ATSDS): Dataset Creation 
and Properties

Large and well designed datasets like ImageNet [3] have been very important for 
the progress made in the field of computer vision. However, such diverse datasets 
are not optimally suited for our study because their images often con tain many
relevant features with varying degree of importance that are distributed over
multiple locations.

For a given input image we expect the XAI algorithm to identify those pixels 
which are decisive for the classification of the image by a chosen CNN model. 
Thus, we require the d ataset images to have a clearly distinguishable “important
area” whose size is limited and similar across the whole dataset1.  To  perform  
sanity checks of the XAI results, the dataset should contain annotations of the 
exact position of that important area (i. e. partial image segmentation). Fur-
thermore, each image should include a “natural substitution bac kground” which
can be used to (partially) replace the important area in occlusion and revelation
scenarios (see Sect. 2.4). Finally, the dataset should be simple enough to allow 
the chosen CNN models to achieve classification accuracy close to 100% in order 
to rule out incorrect assignments caused by a poor model as far as possible.

To meet these characteristics we decided to artificially generate a new dataset 
taylored to the task of evaluating saliency-map based XAI algorithms: the “Aug-
mented Traffic Sign Dataset” (ATSDS) as follows: From the over 60K
Google Street View images published along with [27] depicting urban road traffic 
infrastructure, we randomly chose 9500 and cropped them to a size of 512×512. 
From the “German Traffic Sign Detection Benchmark” [8] we chose those 19 
classes for which at least 500 distinct images are available and from these classes 
we chose the first 500 images. For each of them we produced a cutout patch 
by using the available bounding box annotation and the known shape of the 
respective traffic sign (round, triangular, etc.). Finally each patch was overlayed 
on top of one of the 9500 background images at a random position (with suffi-
cient margin t o prevent protruding). The patch position was saved as a binary
mask which enables to access the initial background pixels of the classification-
relevant area – i. e. the overlayed traffic sign – for the occlusion-based evaluation
(see Sect. 2.4). Figure 1 shows some random examples of this dataset. In total 
it consists of 9500 images, divided in to 19 classes each with a train-test-split of
450:50.

2.4 XAI-Evaluation: Incrementally (Un)Occluded T est Images

The actual evaluation of a combination of an XAI algorithm and a CNN model 
is performed in four steps (summarized in Fig. 2). 

Step (1) consists of training the chosen CNN model on the ATSDS. In 
step (2) for each image of the dataset the XAI method is applied to generate
1 This is motivated by our earlier observations [15, 16] where saliency map generating 

XAI methods performed well on image classes like “lighthouse” or “windmill” whereas 
the saliency maps for image classes like “dining room” or “desert” are less plausible.
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Fig. 1. ATSDS example images for four (out of 19) classes.

Fig. 2. XAIEV evaluation pip eline.

a saliency map (sometimes also called “heatmap” [19]). This 2D array has the 
same resolution as the input images i. e. 512×512 and associates an “importance 
value” i (x, y) ∈ [0, 1] to each pixel (with coordinates x, y)2. 

Step (3): For each image of the dataset a series of 10 additional images is 
created, both for the occlusion and revelation method. More precisely, for every 
threshold value T ∈  {1%, 2%,  .  .  .  10%} a binary mask (2D array) mT (x, y) ∈ 0, 1 
is created. Those pixels (x, y) of the map whose corresponding importance value 
is greater or equal to the (1−T )-quantile of the overall saliency map are assigned 
to 1, while all other pixels of the map are set to 0. With each of those 10 binary
masks two evaluation images are generated: The occlusion-image consists of the
original ATSDS-image but with the top T most important pixels replaced by the
initial background pixels (see Sect. 2.3). On the other hand, the revelation-image 
consists of the whole initial background (before the traffic sign overlay) but with 
the top T most important pixels replaced by the original ATSDS-image.

Fig. 3. Examples for the evaluation images for different values of T . Left: Occlusion.
Right: Revelation.

2 For Grad-CAM this saliency map is the direct result, for the other XAI-methods 
some post-processing such as Gaussian blur is necessary to obtain a comparable
saliency map.
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In step (4) the CNN model is applied to classify all of the evaluation-images 
from step (3). Thereby, the accuracy is calculated for a given threshold value T 
and for occlusion/revelation separately which r esults in two accuracy-sensitivity
curves, aoc(T ) and are(T ), like schematically depicted in Fig. 4. Qualitatively, a 
monotone dependency is to be expected because the occlusion of (presumably) 
relevant pixels should decrease the probability of correct classification for a single 
image and thus reduce the accuracy when classifying the whole dataset. An 
analogous consideration holds for the revelation case. Since the most relevant 
pixels are associated with low T -values, it is plausible that the curvature of the
curves has the opposite sign of the slope. In other words: both curves start steep
and then flatten out.

2.5 Proposed Metric: Accuracy-Sensitivity Quotien t (ASQ)

Based on the accuracy-sensitivity curves from step (4) we can define the areas 
Aoc1,  Aoc1,  Are1,  Are2 below and above the curves as shown in Fig. 4.  Thereby,  
the left and right bounds of these areas are determined by the threshold values 
T =  0  and T = Tmax (chosen to Tmax = 10%). The upper and lower bounds 
of these areas are given by amax (accuracy achieved on the unchanged ATSDS
images) and amin (inverse of the number of classes, i. e. accuracy achieved by
randomly guessing).

Fig. 4. Schematic depiction of expected accuracy curves (blue) in dependence of the 
importance threshold T . Left (occlusion): For T =  0%  we have maximum accuracy, 
then it drops. Right (revelation): For T =  0%  we have minimum accuracy (random 
guessing), then it rises. The colored areas below and above the curve are used to
calculate the ASQ in Eq. (1) (Color fi gure online).

While these areas by themselves have no obvious interpretation, their share 
of the total colored area (for each respective diagram) has: The expression 

Aoc1 
Aoc1+Aoc2 

∈ [0, 1] represents the loss of accuracy due to occluding presumably 
relevant pixels while Are1 

Are1+Are2 
∈ [0, 1] represents the gain of accuracy due to 

revealing those pixels. In both cases a higher number, i. e. closer to 1, means a
higher sensitivity of the accuracy and thus a higher share of accuracy-relevant
pixels which are occluded or revealed, respectively.
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By symmetrically combining these two quantities we can now define the 
Accuracy-Sensitivity Quotient 

ASQ := 
1 
2

(
Aoc1 

Aoc1 + Aoc2 
+

Are1

Are1 +Are2

)
∈ [0, 1] (1) 

as a measure how much the classification accuracy changes if the important pixels 
(according to the c hosen XAI method) are gradually revealed or occluded.

This formula follows the rationale that a good XAI method should identify 
those pixels as important which significantly influence the classification result. 
Thus, if the accuracy curve strongly depends on the importance threshold T the 
areas Aoc1 and Are1 (both green) take up a large fraction of the total area which
results in a high ASQ value.

2.6 Software Toolbox xaiev

While the individual steps of the evaluation pipeline described in Sect. 2.4 can 
be implemented without too much effort the total amount of work is still not 
negligible. To facilitate the quantitative evaluation of XAI methods, we preset 
xaiev, an easy-to-use Python toolb ox, which provides the necessary evaluation
infrastructure. It is available on github [10] and the Python p ackage index.

The toolbox offers a simple command line interface with a main command 
for each of the pipeline steps, i. e. xaiev train, xaiev create-saliency-maps, 
xaiev create-eval-images and xaiev eval. This main command is followed 
by options s uch as --model simple_cnn_1_1 or --xai-method gradcam. The
full range of commands and options is available via xaiev --help.

To facilitate the first steps for users of the toolbox is equipped with a
--bootstrap command and an extensive README.md file. Also, the functioning 
of the system is ensured by deploying continuous integration which at the same 
time specifies a verified runtime environment and thus significantly supports the
reproducibility of the results.

3 Results 

According to step (1) the four CNN models from Sect. 2.2 where trained on the 
ATSDS dataset until achieving at least 97% accuracy on the test fraction ( Simple
CNN: 98.9%, VGG16: 99.3%, ResNet50: 98.6%, ConvNeXt Tiny: 97.7%).

After applying the other steps of the pipeline we obtain 32 accuracy-
sensitivity curves which are displayed in Fig. 5. From those curves the ASQ-
values for the 16 model-XAI-combinations are calculated according to (1), see 
Tab le 1.
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Fig. 5. Accuracy-Sensitivity curves for all CNN mo dels and XAI-methods.

4 Discussion 

The results from Sect. 3 allow for the following conclusions: (1) The classifica-
tion accuracy in dependence of T behaves qualitatively as expected (cf. Fig. 4). 
(2) The exact shape of the curve strongly depends on the specific combination 
of CNN model and XAI method. (3) The proposed quantity ASQ seems to be 
a suitable scalar measure for the “quality” of the curves. (4) In most cases the 
revelation curves are similar to a flipped version of the occlusion curves. This
is plausible because the relevant features of the ATSDS images are locally con-
centrated. However, for XRAI the revelation method results in significantly less
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Table 1. Resulting ASQ values according to (1). 

Grad-CAM LIME PRISM XRAI 
Simple CNN 0.85 0.67 0.05 0.70 
VGG16 0.86 0.68 0.75 0.67 
ResNet50 0.78 0.63 0.47 0.65 
ConvNeXt Tin y 0.12 0.66 0.14 0.66 

accuracy dependency. Especially for higher T -values there is almost no addi-
tional accuracy gain. This means that those pixels whose importance value is 
in the top 90% to 95% of our XRAI saliency maps in average do not contain 
enough information to enable the correct classification of more images. On the
other hand they do prevent correct classification if they are occluded together
with the more important pixels.

Note that the focus of this work is the development of an easy to use algo-
rithmic XAI evaluation method – not the evaluation of the used XAI methods. 
The latter would require a broader study where each XAI method should be
investigated with different parameter settings and each model should be trained
with different initializations.

Nevertheless, our results indicate that the ASQ-performance strongly 
depends on the used CNN model. This is noteworthy because all investigated 
XAI methods are “model-agnostic” but this obviously does not mean that they
perform equally (w.r.t ASQ) on different CNNs.

5 Summary and Outlook 

In this paper we presented a framework to evaluate the performance of saliency 
map generating XAI method s on CNNs. Apart from the theoretical background
(cf. Sect. 2.4 – 2.6) the framework consist of a dedicated dataset and an o pen
source toolbox [10]. 

For the future the availability of this framework significantly simplifies stud-
ies to answer e. g. the following research questions: How much does the XAI 
performance depend on the (random) initial weight distribution of a CNN? How 
does the training progress ( i. e. test accuracy) influence ASQ? How sensitive is
the XAI performance on changes to the model architecture or training process?3

Another interesting research direction is to compare ASQ-results to user 
studies and search for scenarios where it can serve as a proxy for such – or 
under which circumstances both approaches yield contradicting results. A related
question is, how helpful a metric like ASQ is in selecting the adequate XAI
method for a given task.

3 This question is motivated by the observation that the ASQ value for Grad-CAM 
drastically improved when the so-called “Layer Scale”-regularization (used in [13]) is 
removed from the t raining process.
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Finally, it should be stated that the XAIEV framework itself still bears signif-
icant potential for improvements, e. g. more XAI-methods, more datasets, more 
flexible configuration or more modularization. For example, currently it is an
open question how generalizable the presented approach is when applied to more
complex datasets.

Nevertheless, despite its imperfections we are convinced that sharing version 
1.0 of the framework with the community is the right way to generate feedback 
and foster XAI research. 
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Abstract. Despite their critical applications in healthcare, particularly 
in digital pathology, Multiple Instance Learning (MIL) models have been 
poorly investigated with regard to their properties, vulnerabilities, and 
reasoning. To address this research gap, we propose rule-based synthetic 
datasets SyntheticSMIL, and ReasonSMIL protocol, for the investigation 
of the attention-based MIL models. The datasets are generated on a rule 
basis to enable easy manipulation of their difficulty level. Moreover, they 
are designed in such a way that the model has to pay attention to multiple 
locations within the images to perform correct classification (spatial con-
text). The ReasonSMIL consists of two parts: (1) ReasonSMIL-R,  which  
checks if models reason according to ground truth and (2) ReasonSMIL-
A, w hich measures the agreement between models trained on different
subsets (stability). We used the proposed SyntheticSMIL and ReasonS-
MIL to analyse CLAM and TransMIL models. These tools offer a novel
way to address the challenges of investigating model properties with-
out relying on expert knowledge, as the ground truth is given during
the dataset generation.

Keywords: Synthetic datasets · Model evaluation · Multiple Instance
Learning · Spatial context

1 Introduction 

By 2030, most data used in AI is expected to be artificially generated through
rules, simulations, or models [19]. While the focus is typically on generating real-
istic data [4], an alternative approach is to create simplified datasets to shed some 
light on model behavior. Such datasets allow for precise evaluation of whether 
models are learning the correct relationships. Though simplified, these datasets 
are crucial for testing model reasoning, particularly in complex tasks lik e medi-
cal imaging. By using clearly defined rules, they enable targeted investigations,
help identify model weaknesses, and ensure models are reasoning correctly rather
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than relying on shortcuts [6, 12, 31]. In this work, the term ‘reasoning’ is used in 
a distinct s ense compared to its use in Large Language Models.

Our approach is a reverse of ‘garbage in, garbage out’ in the form of ‘under-
standable input, understandable output’ – making synthetic datasets an effective 
tool in explainable AI (XAI) research and for early-stage mo del development,
ensuring transparency, scalability, and reproducibility before deployment.

Fig. 1. The proposed ReasonSMIL protocol evaluates the reasoning ability of attention-
based MIL models trained e.g. on the SyntheticSMIL dataset. ReasonSMIL-R compares 
the model’s patchwise attention scores against ground truth, while ReasonSMIL-A 
checks the agreement between attention maps from models trained on different cross-
validation folds. Ground truth and model-identified important patches are highlighted
in green and yellow, respectively. (Color figure online)

In our work, we focus on attention-based Multiple Instance Learning (MIL)
models [16] which are often applied to large, high-resolution images with sin-
gle global label, such as Whole Slide Images (WSIs) in pathology. Such medi-
cal application makes them an important area for research investigation. These 
models aggregate information extracted from image patches to make an overall
prediction. Note that in real high-resolution images, more than one patch can
be crucial in the decision-making process.

Our goal is to quantitatively investigate if the models truly capture all impor-
tant patches instead of relying on just a few, i.e. shortcuts. The assumption that 
each image can contain multiple important patches leads to the concept o f spa-
tial context (relationships between the patches in the space), which is in line
with a notion of spatial XAI [29]. Our proposed pipeline is shown in Fig. 1.  We  
address the need to investigate the behavior of the attention-based MIL models 
in regards to their spatial reasoning capabilities (SMIL) which are important
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e.g. in the analysis of histopathological images [1, 7]. We propose a term Spatial 
Multiple Instance Learning (SMIL). It is an extension of traditional Multiple 
Instance Learning (MIL) models by incorporating spatial context and relation-
ships between instances (patches) in a bag. This makes it a powerful approach for
tasks that require understanding of spatial patterns, such as in medical imaging.
The notion is inspired by ‘correlated MIL’ [26]. 

Our main contributions are: (1) a set of configurable datasets (Synthetic-
SMIL) where multiple patches are essential for correct classification (spatial 
context), (2) a fine-grained, multi-criteria evaluation protocol to analyze if MIL 
models reason correctly (ReasonSMIL-R) and are stable within cross-v alidation
folds (ReasonSMIL-A), (3) an illustrative investigation of the popular CLAM
and TransMIL models using the proposed datasets and protocol.

The  code  is  provided at https://github.com/gozderam/synth_reason_smil. 
git. 

2 Related Work 

2.1 Multiple Instance Learning

In Multiple Instance Learning (MIL), images of extremely high resolution with 
only global labels (weakly annotated) are processed. This approach is widely used 
in Whole Slide Images in digital pathology. Such images are analysed as bags of 
instances (here understood as patches). Each patch can be either with tumour 
cells or without. One patch with a tumour is enough to label the whole lesion 
as a tumour. In MIL, the samples (patches) from images are often first analysed
individually and later the information from them is aggregated within attention-
based modules to make a final decision about a bag. Common attention-based
MIL models used for WSI analysis include CLAM [21], TransMIL [26], Pro-
toMIL [25]. 

Our work focuses on analysing the reasoning of the attention-based MIL 
vision models, used for instance, in digital pathology for Whole Slide Images. 
Typically, such models are evaluated by global performance metrics (e.g., accu-
racy, AUC) and visualizations of atten tion scores via heatmaps. However, spatial
context understanding through attention scores has rarely been studied, with
only a few exceptions [14, 30]. In the first, the coexistence of some instances 
(MNIST images) within bags is evaluated (only even/odd numbers in a bag or 
only adjacent pairs of numbers in a bag). In the latter, the spatial regression is
used to quantify the role of context in a form of neighborhood in WSIs.

2.2 Model Evaluation on Synt hetic Data

Synthetic datasets have been used in machine learning mainly to address d ata
sensitivity and privacy issues [24]. The rise of Generative Adversarial N et-
works [13] and diffusion models [15] has further popularized the use of syn-
thetic datasets, including text-to-image generation [17] and 3D environments
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for dataset sampling [8, 22]. These methods aim to create realistic images for 
training models, ensuring go od performance in real-world scenarios.

However, synthetic datasets can also be used to evaluate models by testing 
hypotheses, such as understanding spatial relationships [27], or vulnerability to 
adversarial attacks [5]. Such datasets can also serve for explainable AI (XAI)
study [3, 28]. The MIL models were challenged under the adversarial attack [32, 
33] and other synthetic tile modifications [2]. Yet, no rule-based datasets were 
used to investigate the MIL model’s reasoning, vulnerabilities or properties.

The model testing using rule-based datasets in our work is inspired by the 
notion of unit tests for s ymbolic conceptual reasoning in Deep Learning using
synthetic datasets [20] that are based on the theory of concepts by [11]  where  
one of the arguments is a significant role of compositionality in reasoning. The 
ability of abstract reasoning is also evaluated in visual IQ tests i.e. based on
Ravens Matrices [23]. 

3 SyntheticSMIL Datasets 

We propose a set of three synthetic datasets, SyntheticSMIL, to test MIL models’ 
ability to reason using spatial context, where distinguishing classes depends on 
multiple patches. MIL is often used to analyse images of non-standardized size 
larger than typical 224 × 224, with weak labels, and valuable role of spatial
relationships e.g. WSIs in digital pathology.

The SyntheticSMIL datasets were inspired by histopathological images that 
are input to the analysed MIL models. Key features in histopathological images
are shapes, textures, and densities [18]. Their analysis is critical for detecting 
abnormalities and classifying tissue samples: (1) shape—irregular or enlarged 
nuclei often indicate malignancy, (2) texture—coarser chromatin texture is a 
common marker in cancerous nuclei, (3) density—increased cellular density typ-
ically signals high-grade tumors. We wanted to create datasets checking one data 
characteristic to make models’ explanations a s firm and straightforward as possi-
ble. Hence, to isolate the understanding of spatial context, we designed datasets
with pure signal, free from distractors, ensuring straightforward interpretation
without the need for disentanglement.

Inspired by configurable 3D environments [8, 22], the datasets allow flexi-
ble adjustments thanks to parametrization. The SyntheticSMIL implementation 
enables the generation of images of different sizes (Fig. 3). We describe the gen-
eration process of the synthetic binary datasets, their configurable parameters, 
and methods to define important patches (ground truth). The goal is to create 
a flexible, diverse dataset generation framework with adjustable difficulty lev els.
The key values of the parameters used for the generation of datasets for the
experiments are provided in Sect. 5. 

Concavity. The concavity dataset focuses on differences among concave shapes. 
The task is to distinguish structures based on the ratio of a given structure’s 
area to its convex hull area. Specifically, structures with a ratio below a given
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threshold (‘more’ concave) must be separated from those with a ratio abo ve it
(‘less’ concave).

Algorithm 1. Concavity dataset generation (single image). 
af ←  −1 
while af �∈ [afmin ,  afmax ] do 

bpts ← gen_points(npmin,  npmax,  dm,  ds,  dvar) 
spts ← get_spline_points(bpts) 
chull ← convex_hull(spts) 
af ← pol_area(spts) / pol_area(c hull)

end while
ptsscaled ← scale(spts, sfmin, sfmax)
draw_polygon(ptsscaled)

In Algorithm 1: 

– gen_points(npmin,  npmax,  dm,  ds,  dvar) generates base points for spline cre-
ation. The number of points np is an integer sampled from {npmin,  npmin + 
1,  .  .  .  ,  npmax −1} with equal probabilities for each value. Later, for each point 
i, i ∈  {0, 1,  .  .  .  ,  np − 1} a distance dp (from the origin of the coordinate sys-
tem) is sampled from a normal distribution di ∼  N  (dm,  ds). Therefore, each 
point i can be placed on a circle with a radius di. The points are placed on the
corresponding circles so that the angle between the y axis of the coordinate
system and the line from the origin of the coordinate system to the point i is
roti = 2πi/np + shiftiπ/np where shifti ∼ U(0, 1) is a noise factor.

– get_spline_points(bpts) generates the B-spline based on po ints bpts.
– convex_hull(spts) returns a list of points that are the convex hull of points

spts.
– pol_area(*) returns the areas of polygons formed by spts and c hull respec-

tively.
– Generation algorithm keeps repeating as long as the resulting area ratio af 

(computed for a generated shape) does n ot fall into the range [afmin
, afmax

].
– scale(spts,  sfmin,  sfmax) scales generated points with a scaling factor sf ∼

U(sfmin, sfmax).

The graphical explanation of Algorithm 1 is shown in Fig. 2. 
The classes differ in the allowed values of af – the ratio of the polygon area 

to its convex hull area. For class 1, the allowed values ([afmin1 
,  afmax1 

]) are lower 
than for class 0 ([afmin0 

,  afmax0 
]). The ranges for different classes are disjoint 

– ‘mor e’ concave belong to class 1, whereas the ‘less’ concave to class 0. The
smaller and closer af ranges for classes, the more difficult it is to classify a
dataset.

In concavity, key patches (ground truth, GT) for class distinction can be 
defined in three ways: (1) background only, (2) foreground – polygon area (with-
out the edge), and (3) polygon edge (Fig. 3d). Each method provides enough
information for classification.
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Fig. 2. Concavity images generation process.

Fig. 3. Samples from two different classes of the concavity, onion,  and  points density 
datasets (a–c), along with exemplary ground truth patches outlined (d–f). The size of 
images can be different – width and height can be sampled from normal distribution
given mean and standard deviation.

Onion. An image from the onion dataset consists of a series of nested, light-grey 
regions, referred to as layers, surrounding a central area. Each layer is enclosed 
by a dark-grey boundary (called edge). In class 0, the layers are coaxial a nd share
the exact same shape, differing only in scale. In class 1, however, the shapes vary
across layers.

In Algorithm 2: 

– get_edge(eptsi ,  ew) returns a set of points constituting an edge shape that 
is constructed based on eptsi . The edge has a width of ew.
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Algorithm 2. Onion dataset generation (single image). 
edges ←  ∅  
epts0 ← spts 
for each i ∈  {0, 1,  .  .  .  ,  lc − 1} do 

edges ← edges ∪ get_edge(eptsi ,  e  w)
eptsi+1 ← transform(eptsi , lw, noisestd)

end for
draw_layers(edges)

– transform(eptsi ,  lw,  noisestd) returns transformed points being the input 
points for the next (inner) edge. The transformation is based on layer width 
(lw) and the normally distributed noise factor ns applied to points location,
ns ∼ N (1, noisestd) (ns = 1 means no noise is applied).

– spts are generated as for concavity dataset (Algorithm 1). 

The key parameter in the generation scheme is noisestd.  When  noisestd = 
0, the noise is not applied to the subsequent layers and all layers on a single 
image are of the same shape disregarding a scale (class 0). With noisestd �=  0  ,
subsequent layers differ both in a scale and shape (class 1). The lower noisestd,
the more difficult it is to properly classify images.

The important patches (ground truth) are all the patches that i nclude pixels
comprising layer edges (Fig. 3e). 

Points Density. The points density dataset refers to images where the distin-
guishing factor is the number of areas with a high density of points (Fig. 3c). 

Algorithm 3. Points density dataset generation (single image). 
r ← discrete_uniform({rmin, 2rmin,  .  .  .  ,  wrmin}) 
ptsbg ← get_background_points(nbg) 
centershd ← get_high_density_centers(Nhd) 
ptshd ←  ∅  
for each chd ∈ centershd do 

ptschd ← get_hd_neigh(chd, nhd, r)
ptshd ← ptshd ∪ ptschd

end for
draw(ptsbg), draw(ptshd)

In Algorithm 3: 

– get_background_points(nbg) returns nbg points (xbg,  ybg) uniformly dis-
tributed across the entire image, xbg, ybg ∼ U(0, 1).

– get_high_density_centers(Nhd) returns Nhd points (xhdc,  yhdc) that con-
stitute the centers of areas with high densities and are uniformly distributed 
across the image without border parts, xhdc, yhdc ∼ U(0.15, 0.85). A given
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minimal distance between centers (cdmin
) is preserved in order not to gener-

ate high-density areas in the same regions.
– get_hd_neigh(chd, nhd, r) returns nhd points (xhd,  yhd) that define the dense 

area around point chd(xhdc,  yhdc) and are normally distributed with scale r, 
xhd ∼  N (xhdc,  r), yhd ∼  N  (yhdc,  r). For each image, r is randomly sam-
pled from the discrete uniform distribution, r ∼ Ud({rmin, 2rmin, . . . , wrmin})
where w - maximal multiplicity parameter.

In the points density dataset, classes are distinguished by the number of 
dense areas (Nhd). The dataset difficulty can be controlled b y adjusting nhd –
lower values increase difficulty.

The key patches (ground truth) for decision-making in points density dataset 
are the ones that cover regions of a high density (Fig. 3f). 

4 ReasonSMIL Protocol 

We propose the ReasonSMIL evaluation protocol to investigate the attention-
based MIL models in a fine-grained manner to understand the model’s inter-
nal reasoning. The ReasonSMIL evaluation protocol has two components for 
the investigation of: (1) alignment between model reasoning and the important
patches (ground truth) and (2) consistency across models.

4.1 Investigation of Model Reasoning

The goal of ReasonSMIL-Reasoning (ReasonSMIL-R) is to verify if the model’s 
decision is based on the correct patches. Since the datasets are synthetic, we 
know the key rules for class distinction. The process involves (1) defining a 
ground truth (GT), (2) extracting attention scores per patch f rom the trained
model for each image, (3) using evaluation metrics to compare attention scores
with the GT, (4) averaging the metric values across all images.

Metrics. We propose using diverse metrics from two domains for a comprehen-
sive analysis – segmentation (Dice score) and classification (with binarization: 
balanced accuracy (BA C), Matthew’s correlation; without binarization: AUC,
PR AUC, Relevance Mass Accuracy (RMA) [3]). The Dice, BAC and Matthew’s 
coefficient scores are applied after binarizing the attention scores, while metrics 
like AUC and PR AUC handle continuous values. BAC and Matthew’s correla-
tion are useful for imbalanced datasets. Here, a dataset is a set of patches within
an image where in the case of weakly annotated data, a region of interest is often
small.

Binarization. To binarize the attention scores, we select the same number of 
top-scoring patches as there are important patches in the ground truth. Recall 
and precision are not used as they yield the same values as the Dice score with
this binarization method.
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4.2 Investigation of Models’ A greement

The ReasonSMIL-Agreement (ReasonSMIL-A) compares models trained on dif-
ferent data subsets during cross-validation, focusing on internal reasoning rather 
than global metrics like accuracy or AUC. It analyzes the correspondence of
attention scores, similar to inter-annotator agreement, using Fleiss’ kappa [10] 
(0 = no agreement, 1 = full agreement) and R MSE for attention score maps.

5 Experiments 

The ReasonSMIL protocol is versatile and applicable to any attention-based 
vision MIL model. We use CLAM and TransMIL to illustrate how ReasonSMIL 
and SyntheticSMIL can be employed to analyse a specific MIL architecture. 
Additionally, to demonstrate ho w these methods can facilitate the comparison
of different architectures, we conduct a comparative analysis between CLAM
and TransMIL.

For CLAM, we used default hyperparameters (except switching from Resnet-
50 to Resnet-32 due to datasets simplicity). In TransMIL, we used the same patch 
features as in CLAM, with default parameters except for points density, where
the learning rate was set to 1e-5.

We generated 3 versions of each of the datasets – concavity, onion, points 
density, for the experiments. The versions differ in difficulty level which was 
achieved by manipulation of dataset parameters: concavity (easy : areaf  min0 = 
0.90,  areaf  max1 =  0.89,  areaf  min1 =  0.80, medium: 0.93, 0.92, 0.86, hard : 0.97, 
0.96, 0.94); onion (easy : noisestd =  0  .07, medium: 0.06, hard : 0.05); points den-
sity (easy : nhd = 200, medium: 110, hard : 90) are specified in Table 10 (Sect. 
A.2). Each image is of size 8960 × 8960 pixels (40× 40 patches of size 224× 224). 
More statistics on data is provided in Table 11 (Sect. A.2). We fixed the image 
size as one degree of freedom to focus on dataset difficulty. In total, the dataset 
used during 5-fold cross-validation contains 300 images and the test set (same 
for all folds) comprises 100 images. The number of samples in the datasets were
inspired by the setup of the widely-used CAMELYON16 [9] dataset in digital 
pathology research on MIL models whic h consists of 270 training and 130 test
samples.

6 Results CLAM 

We provide the results (on test sets) of an illustrative investigation of the CLAM 
mo del trained on the proposed SyntheticSMIL datasets.

6.1 Global P erformance

The global classification performance of CLAM model trained on Synthetic-
SMIL datasets of various difficulty levels (defined by a set of parameters) are in
Table 1. As expected, easier datasets yield higher global performance (accuracy
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and AUC), with models showing stability across cross-validation folds (small 
standard deviations). The exception is the onion dataset (medium), where the 
standard deviation of accuracy is 0.16. Next, we apply the fine-grained Reason-
SMIL protocol for further investigation.

Table 1. The performance of the CLAM model on SyntheticSMIL datasets. Perfor-
mance metrics are reported as mean and standard deviation. Hereinafter red color 
means the most difficult dataset/the worst metric value within a given dataset; green
– the easiest dataset/the best metric value; yellow – in between.

dataset level accuracy AUC 
hard 0.66±0.03 0.73±0.03 

medium 0.77±0.02 0.88±0.01concavity 
easy 0.86±0.02 0.93±0.01 

hard 0.59±0.04 0.62±0.03 

medium 0.82±0.16 0.91±0.06onion 
easy 0.93±0.03 0.98±<0.01 

hard 0.55±0.05 0.60±0.02 

medium 0.66±0.05 0.73±0.01 

points 
density 

easy 0.99±0.02 1.0±<0.01

6.2 ReasonSMIL-R 

The results of ReasonSMIL-R for the CLAM model are shown in Table 2.  The  
highest values occur in the concavity dataset when the ground truth is ‘fore-
ground’. Lower values are found in the ‘edge’ variant of concavity and in points 
density, both of which have sparse ground truth. Negative Matthew’s correlation 
coefficients appear only in concavity when the ground truth is ‘background’.

Points Density. There is a clear link between higher global performance and 
higher fine-grained metrics, indicating that models are better at assigning cor-
rectly attention scores to important patches in easier datasets. However, in 
these easiest cases, despite near-maximal global performance, fine-grained met-
rics remain unsatisfactory, suggesting that models m ay focus on unimportant
patches.

Onion. For the most difficult onion dataset, the fine-grained metrics are signif-
icantly lower than for other variants (i.e. Dice score equals 0.04). However, in 
easier dataset variants, fine-grained metrics remain similar to each other despite 
varying global performance: (in contrary to points density dataset). Therefore, 
here the reasoning metrics are not in line with global accuracy. This can be 
attributed to two aspects. Firstly, sometimes there are more and less important
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Table 2. ReasonSMIL-R on CLAM. In the first column, different datasets (‘d’) are 
pointed out (‘c’ – concavity,  ‘o’  –  onion,  ‘p’  –  points density). In the ‘variant’ c olumn, 
different methods for defining the ground truth are indicated (‘bac k’ – background,
‘fore’ – foreground, ‘edge’).

d. level variant PR AUC AUC BAC Dice M. coeff. RMA 
hard back 0.69±0.16 0.31±0.37 0.42±0.31 0.51±0.26 −0.16±0.62 0.58±0.03 

medium back 0.78±0.18 0.47±0.45 0.57±0.36 0.66±0.29 0.14±0.73 0.63±0.04 

easy back 0.66±<0.01 0.14±0.01 0.3±<0.01 0.45±<0.01 −0.40±0.01 0.60±0.02 

hard fore 0.84±0.27 0.8±0.40 0.83±0.32 0.77±0.41 0.65±0.64 0.35±0.03 

medium fore 0.69±0.34 0.62±0.49 0.69±0.37 0.57±0.51 0.37±0.74 0.30±0.04 

easy fore 0.95±0.01 0.98±0.01 0.96±0.01 0.95±0.01 0.92±0.02 0.33±0.02 

hard edge 0.21±0.02 0.21±0.02 0.56±0.01 0.18±0.02 0.11±0.02 0.07±<0.01 

medium edge 0.26±0.06 0.27±0.04 0.58±0.03 0.22±0.06 0.16±0.07 0.07±<0.01 

c. 

easy edge 0.24±0.05 0.27±0.03 0.57±0.03 0.2±0.05 0.14±0.06 0.07±<0.01 

hard - 0.46±0.06 0.46±0.18 0.52±0.13 0.48±0.14 0.04±0.25 0.50±0.05 

medium - 0.53±0.02 0.63±0.01 0.57±<0.01 0.53±<0.01 0.14±<0.01 0.58±0.03o. 
easy - 0.53±0.01 0.63±<0.01 0.57±<0.01 0.53±<0.01 0.14±<0.01 0.60±<0.01 

hard - 0.06±<0.01 0.57±0.01 0.52±<0.01 0.08±0.01 0.03±0.01 0.04±<0.01 

medium - 0.11±0.02 0.6±0.01 0.55±0.01 0.13±0.02 0.09±0.02 0.05±<0.01p. 
easy - 0.29±<0.01 0.66±0.01 0.62±<0.01 0.28±<0.01 0.24±<0 .01 0.07±<0.01 

patches within ground truth. There are patches with a central density peak, as 
well as those scattered toward the periphery – potentially less relevant. However, 
some metrics in ReasonSMIL-R expect a binary decision if a patch is important 
or not. This could be mitigated by more selective choice o f GT patches. Secondly, 
the feed-forward layers may make wrong predictions even though the assigned 
attention scores to patches are reasonable.

Concavity. All models achieve very weak values in ‘edge’ variant in comparison 
with other GT variants. Adding to this very low standard deviations (stdevs), we 
can conclude that models tend to not choose ‘edge’ variant in its reasoning. For 
the two hardest versions of the dataset, we observe varying metric values and sig-
nificant standard deviations for both the ‘back’ and ‘fore’ GT variants. Such high 
standard deviations suggest that different cross-validation models select different 
GT variants, which can be further analyzed using ReasonSMIL-A. Notably, for 
the ‘back’ variant, the best metric values are observed for the medium dataset 
variant, while for the ‘fore’ variant, the worst metrics appear in the medium 
variant. For the easiest dataset variant, we see low metric values for the ‘back’ 
variant and very high ones for ‘fore’, both with low standard deviations–leading 
to the conclusion that the reasoning of all cross-validation models aligns with 
the ‘fore’ GT variant. Additionally, there is no clear relationship between global
accuracy and ReasonSMIL-R metrics for this dataset.
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For datasets with one possible definition of ground-truth important patches 
(such as points density, onion), the low ReasonSMIL-R metric value means the 
model does not reason in a correct way. For datasets with multiple possible 
ground truth variants (concavity), ReasonSMIL-R analysis becomes more com-
plex and insightful. Firstly, if a model for a given GT variant achieves a poor 
metric value, it does not necessarily mean that it reasons in an incorrect way – 
it could have learnt a pattern matching a different GT variant. Secondly, models 
trained on different cross-validation folds c an reason in line with different GT 
variant which directly impacts ReasonSMIL-R metrics calculated as averages of 
values from models trained on different cross-validation folds. To detect such 
phenomena, we c alculate the standard deviations for all ReasonSMIL-R metrics 
and introduce another component of ReasonSMIL – ReasonSMIL-A.

6.3 ReasonSMIL-A 

The results on reasoning stability are shown in Table 3. There is no clear rela-
tionship between ReasonSMIL-A metrics (Fleiss’ kappa, RMSE) and dataset 
difficulty: for points density and concavity the Fleiss’ kappa values are not in 
line with global accuracy, for onion such a relation can be observed. For concav-
ity, models achieve the lowest Fleiss’ kappa values for medium dataset in all GT 
variants. The small Fleiss’ kappa values in the medium dataset and mediocre 
in hard suggest that the models tend to r eason in line with different ground 
truth variants (Fig. 4 and Appendix B). The analysis of RMSE metric gives per-
spective on the topic of stability which does not depend on the definition of the 
ground truth variant (does not require binarization). Note that in the case of 
p oints density and onion, there is an alignment that the Fleiss’ kappa and RMSE 
for t he easiest dataset are the most favorable.

7 Results – TransMIL 

Global Performance. The results for TransMIL are provided in Table 4.  In  the  
case of concavity CLAM achieves better or similar performance than TransMIL 
unlike  in  the  case  of  onion.  In  points density, in a hard variant, CLAM outper-
forms TransMIL which is contrary to the situation in the medium variant. For the 
detailed comparative study between CLAM and TransMIL, we select datasets 
on which the models achieved similar performance ( concavity :  medium,  onion: 
easy, points density : easy). In the following analyses, we used the attention scores 
from the first multi-head self-attention module of TransMIL.

ReasonSMIL-R. TransMIL outperforms CLAM in the concavity ‘back’ variant in 
all metrics. In the ‘edge’ variant it is observed for all metrics except PR AUC and 
RMA. However, CLAM performs better than TransMIL in the concav ity ‘fore’ 
variant and across all metrics in onion and points density. T he exact results are 
in Table 5. 
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Table 3. ReasonSMIL-A on CLAM. 

dataset level v. Fleiss’ ↑ RMSE ↓ 
hard back 0.41±0.11 

hard fore 0.40±0.08 

hard edge 0.50±0.09 

0.11±0.02 

medium back 0.16±0.15 

medium fore 0.14±0.12 

medium edge 0.35±0.05 

0.07±0.02 

easy back 0.93±0.04 

easy fore 0.94±0.01 

concavity 

easy edge 0.69±0.14 

0.12±0.02 

onion hard - 0.69±0.06 0.10±0.01 

medium - 0.84±0.03 0.14±0.02 

easy - 0.88±0.02 0.06±0.01 

hard - 0.78±0.05 0.14±0.01 

medium - 0.70±0.05 0.13±0.01 

points 
density 

easy - 0.81±0.04 0.03±<0.01 

Table 4. The performance of the TransMIL mo del on Syn theticSMIL datasets. 

dataset level accuracy AUC 
concavity hard 0.55±0.05 0.61±0.06 

medium 0.78±0.06 0.84±0.09 

easy 0.80±0.11 0.86±0.10 

onion hard 0.94±0.03 0.99±0.01 

medium 0.96±0.02 0.99±<0.01 

easy 0.96±0.01 0.99±0.01 

points densit y hard 0.50±<0.01 0.76±0.02 

medium 0.84±0.02 0.96±0.01 

easy 0.95±0.01 0.99±<0.01 

Table 5. ReasonSMIL-R on TransMIL where the model achieved similar performance 
metrics a s C LAM. 

d. level variant PR AUC AUC BAC Dice M. coeff. RMA 
c. medium back 0.79±0.07 0.67±0.21 0.79±0.21 0.85±0.14 0.58±0.41 0.67±0.05 

fore 0.39±0.13 0.33±0.22 0.44±0.18 0.23±0.26 −0.13±0.35 0.26±0.05 

edge 0.10±0.03 0.46±0.09 0.64±0.13 0.32±0.25 0.27±0.27 0.07±<0.01 

o. easy - 0.41±0.02 0.37±0.03 0.23±0.07 0.16±0.08 −0.54±0.15 0.42±0.02 

p. easy - 0.07±<0.01 0.51±0.01 0.57±0.01 0.19±0.01 0.14±0.01 0.06±<0.01 
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ReasonSMIL-A. The  results  are  in  Tab  le  6.  In  the  case  of  concavity, TransMIL 
exhibits higher RMSE values compared to CLAM, which favors CLAM since, 
for RMSE, lower values indicate better performance. Regarding Fleiss’ kappa 
for concavity, the results are inconsistent and heavily influenced by the GT 
variant. In the ‘back’ and ‘fore’ variants, TransMIL achieves higher Fleiss’ kappa 
scores than CLAM, which is favo rable as higher Fleiss’ kappa values are better. 
However, in the ‘edge’ variant, TransMIL’s Fleiss’ kappa scores are lower than 
CLAM’s, giving an advantage to the CLAM mod el.

For onion, TransMIL yields lower Fleiss’ kappa scores and higher RMSE val-
ues than CLAM. In terms of points density, Fleiss’ kappa scores are c omparable 
between TransMIL and CLAM, while TransMIL shows a higher RMSE. 

Table 6. ReasonSMIL-A on TransMIL. 

dataset level att Fleiss’ ↑ RMSE ↓ 
concavity medium back 0.32±0.25 0.50±0.07 

fore 0.21±0.22 

edge 0.16±0.09 

onion easy - 0.62±0.06 0.11±0.04 

points densit y easy - 0.82±0.06 0.08±0.11 

Fig. 4. The important patches in the same test image, identified by the CLAM model 
but trained on different cross-validation folds. We selected the same number of patches 
as the ground truth in t he ‘fore’ varian t. 

8 Under the Lens 

Along with the analysis of ReasonSMIL metrics, we inspected visualizations of 
the important patches identified by CLAM and TransMIL models in the case 
when m ultiple GT variants are possible (conca vity). 

For the analysis of TransMIL in Sect. 7, we picked the attention scores from 
the first attention layer (att0 ) a s their visualizations seem less noisy than t he
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ones from the consecutive layer (att1 ) (Appendix – Fig. 5), It may be due to some 
additional high-level patch interactions (Appendix). The ‘edge’ variant is very 
rarely observed in reasoning (both in att0 and att1 ). Note that it ma y happen 
that in att0 the model follows another GT va riant than in att1 (App endix – 
Fig. 7). From now on, we focus only on att0. TransMIL tends to alternate its 
reasoning for different samples within the same cross-validation fold. 
It is observed mainly between the ‘fore’ and ‘back’ variants (Fig. 8b –Appendix). 
However, there are a few exceptions. In one fold in each of the dataset difficulty 
levels (easy, medium, hard), TransMIL reasons mostly in line with just one GT 
– t he ‘back’ varian t. 

The empirical analyses showed that the CLAM model reasons in general 
in line with one GT variant within one cross-validation fold (Fig. 8a  –  
Appendix). However, it turns out that the model tends to choose a 
different reasoning scheme across different folds (Fig. 4). From 5 differ-
ent cross-validation folds CLAM learnt to reason in line with the following GT 
variants depending on the dataset difficulty: hard (4/5 models – ‘fore’, 1/5 – 
‘back’), medium (3/5 mo dels – ‘fore’, 2/5 – ‘back’), easy (5/5 models – ‘fore’). 
In general, the most popular is ‘fore’ GT v ariant. 

Overall, we can conclude that the TransMIL model is less consistent than 
CLAM, as it shows less ability to consistently focus on a specific GT variant 
within a given fold. These observations are reflected in standard deviations of 
ReasonSMIL metrics averaged within each cross-va lidation fold. 

9 Role of Position Encoding 

In order to check the benefit of positional encoding (PE) in TransMIL, we run 
additional experiments. In TransMIL, the positional encoding is created in the 
PPEG module where convolutional layers with different kernel sizes are applied 
to input patch features to catch the information on neighbourhood at differ-
ent granu larities. We ran our evaluation pipeline on TransMIL with PE turned 
off meaning no convolutional kernels are applied and only identity op eration is 
preserv ed.

The global performance values in case with and without positional encod-
ing are given in Table 7. In general, positional encoding in all analysed cases 
improved global accuracy slightly (the biggest difference is in the case of con-
cavity). The fact that the differences are small aligns with the ablation study 
conducted by the authors o f TransMIL on Whole Slide I mages.

ReasonSMIL-R. The results are provided in Table 8.  For  concavity in the ‘back’ 
and ‘edge’ variants, PE improves most metrics, particularly PR AUC, AUC, and 
balanced accuracy (BAC). In contrast, the ‘fore’ variant experiences a decline in 
most metrics. The onion variant shows minimal improvement in PR AUC and 
AUC, while balanced accuracy, Dice, and Matthew’s co efficient slightly degrade. 
For points density, all metrics exhibit slight but consistent improvements with 
PE, indicating that PE generally enhances model alignment with ground truth 
patches.
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Table 7. Performance comparison of TransMIL with and w ithout positional enco ding 
(PE). 

dataset w/o PE w/ PE difference 
accuracy AUC accuracy AUC accuracy AUC 

concavity (medium) 0.73±0.06 0.83±0.09 0.78±0.07 0.84±0.09 +0.042 +0.008 
onion (easy) 0.94±0.02 0.99±0.01 0.96±0.01 0.99±0.01 +0.012 +0.001 
points density (easy) 0.94±0.01 0.98±0.01 0.95±0.01 0.99±0.01 +0.006 +0.006 

Table 8. ReasonSMIL-R comparison for concavity (medium) with and without posi-
tional enco ding (PE). 

metric w/o PE w/ PE difference 

back varian t 
PR AUC 0.79±0.11 0.80±0.07 +0.005 

AUC 0.66±0.28 0.67±0.21 +0.008 

BAC 0.78±0.28 0.79±0.21 +0.010 

Dice 0.84±0.22 0.85±0.14 +0.010 

Matthews Coeff. 0.56±0.57 0.58±0.41 +0.019 

Relevant Mass Acc. 0.68±0.09 0.67±0.05 −0.007 

edge varian t 
PR AUC 0.09±0.03 0.10±0.03 +0.005 

AUC 0.44±0.08 0.46±0.09 +0.015 

BAC 0.60±0.14 0.64±0.13 +0.036 

Dice 0.25±0.26 0.32±0.25 +0.068 

Matthews Coeff. 0.20±0.28 0.27±0.27 +0.072 

Relevant Mass Acc. 0.07±0.01 0.07±0.01 +0.001 

fore varian t 
PR AUC 0.40±0.19 0.39±0.13 −0.014 

AUC 0.34±0.30 0.33±0.22 −0.013 

BAC 0.47±0.30 0.44±0.18 −0.031 

Dice 0.28±0.41 0.23±0.26 −0.043 

Matthews Coeff. −0.07±0.60 −0.13±0.35 −0.062 

Relevant Mass Acc. 0.25±0.08 0.26±0.05 +0.006 

ReasonSMIL-A. The results are provided in Table 9. The shift from the ‘without 
PE’ to the ‘with PE’ scenario reveals that Fleiss’ kappa improves for concavity 
(all GT variants), while RMSE is worse (Table 11). In the onion variant, Fleiss’ 
kappa slightly drops, but RMSE improves significantly. For points density, Fleiss’ 
kappa shows a notable improvement, suggesting better agreement, while RMSE 
remains stable (Table 9). 
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Table 9. ReasonSMIL-A comparison of concavity (medium) with a nd without posi-
tional encoding. 

variant Fleiss’ Kappa 
w/o P E w/ PE difference 

back 0.27±0.15 0.32±0.25 +0.05 

edge 0.12±0.08 0.16±0.09 +0.04 

fore 0.16±0.12 0.21±0.22 +0.05 

RMSE 
variant w/o P E w/ PE difference 
back/edge/fore 0.45±0.04 0.50±0.07 +0.05 

10 Conclusions 

We propose a set of configurable synthetic datasets (SyntheticSMIL) comple-
mented with a comprehensive evaluation protocol (ReasonSMIL) for the investi-
gation of the attention-based vision MIL models. To justify their usefulness, we 
provide an illustrative investigation of the C LAM and TransMIL models. 

The results show that there is no straightforward mapping between the mod-
els’ global performance metrics and the models’ reasoning correctness evaluated 
using ReasonSMIL-R. It is observed that the maximal global performance met-
rics do not lead to maximal fine-grained metrics. It turns out that the reasoning 
of models in cases when they can base their prediction on different valid rea-
soning schemes (‘foreground’, ‘background’, ‘edge’) is surprising. CLAM model 
seems to reason consistently across all images when trained on a particular cross-
validation fold. However, this r easoning scheme may not be the same across folds. 
TransMIL in turn follows different reasoning patterns (GT) for different images 
even within a single model, trained on a given cross-va lidation fold. We can 
therefore conclude that the reasoning of the CLAM m odel is more consistent 
than the TransMIL’s.

The proposed tools give valuable insights into model’s internals and reason-
ing which may be useful in the early stage of SMIL architecture development 
(analogy to unit tests to explore program properties). 
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A Datasets 

A.1 Ground truth d efinitions 

Concavity Let pij be the patch of a given image, i ∈  {1, 2,  .  .  .  ,  N}, j ∈ 
{1, 2,  .  .  .  ,  M},  and  ptsscaled - as in Algorithm 1 (main paper). The procedure of 
selecting ground-truth important patches in the conc avity dataset is described 
in Algorithm 4. 

Algorithm 4. Setting ground-truth for a given image from concavity dataset. 
pol ← polygon(ptsscaled) 
bg ← background(ptsscaled) 
gtpatchesbg ←  {pij |pij ∩ pol = ∅} 
gtpatchespol ←  {pij |pij ∩ bg = ∅} 
gtpatches edge ←  {pij |pij ∩ pol �= ∅  ∧  p ij ∩ bg �= ∅} 

In Algorithm 4: 

– polygon(ptsscaled) returns a region determined by ptsscaled (together with 
the edges). 

– background(ptsscaled) returns the background of the region determined by 
ptsscaled (a complement of polygon(ptsscaled) in the context of the e ntire 
image). 

Onion Let pij be the patch of a given image, i ∈  {1, 2,  .  .  .  ,  N}, j ∈  {1, 2,  .  .  .  ,  M}. 
The procedure of selecting important patches (ground-truth) in onion dataset 
is described in Algorithm 5. 

Algorithm 5. Setting ground-truth for a given image from onion dataset. 
gtpatches ←  ∅  
for each i ∈  {1, 2,  .  .  .  ,  N} do 

for each j ∈  {1, 2,  .  .  .  ,  M  } do 
ncolors ← get_n_colors(pij) 
if ncolors > 1 then 

gtpatches ← gtpatches ∪  {p ij} 
end if 

end for 
end for

In Algorithm 5: 

– get_n_colors(pij) returns the number of different colors (pixel RGB values) 
presen t in a patch pij . 
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Points density Let pij be the patch of a given image, i ∈  {1, 2,  .  .  .  ,  N}, 
j ∈  {1, 2,  .  .  .  ,  M  },  and  centershd, ptschd 

- as in Algorithm 3 (main paper). 
The procedure of selecting important patches (ground-truth) in points density 
dataset is described in Algorithm 6. 

Algorithm 6 . Setting ground-truth for a given image from points density 
dataset. 

gtpatches ←  ∅  
for each chd ∈ centershd do 

xmin,  xmax ← min_x(ptschd), max_x(ptschd) 
ymin,  ymax ← min_y(ptschd), max_y(ptschd) 
centerneigh ← rect(xmin,  xmax,  y  min,  ymax) 
gtpatches ← gtpatches ∪  {pij |pij ∩ centerneigh �= ∅} 

end for 

In Algorithm 6: 

– min_x(ptschd
), max_x(ptschd

), min_y(ptschd
), max_y(ptschd

) return minimal 
and maximal x and y coordinates of a set of points pts chd

. 
– rect(xmin,  xmax,  ymin,  ymax) returns a rectangular area determined by ver-

tical (xmin, x max) and horizontal (ymin, y max) lines. 

A.2 Generation p arameters 

Table 10. The parameters of the SyntheticSMIL datasets used in the experiments. The 
values of the parameters in bo ld were modified to create datasets of differen t difficulty 
lev els. 

param value 
npmin 4 
npmax 10 
dm 1.5 
ds 0.4 
dvar 0.5 

afmax0 
0.99 

afm  i  n  0 
0.97/0.93/0.90 

afm  a  x  1 
0.96/0.92/0.89 

afm  i  n  1 
0.94/0.86/0.80 

sfmin 0.6 
sfmax 1.0 

param value 
ew 0.0555 
lw 0.1111 
c 4 

noises  t  d  0.05/0.06/0.07 

param value 
rmin 0.025 
w 1 

cdmin 0.15 
N hd0 1 
Nhd1 3 
nh  d  90/110/200 
nbg 20000 

(a) concavity (b) onion (c) p oints density
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Table 11. The number of ground truth patches (min, max, mean with standard devi-
ation) across datasets of different difficulty levels. The whole size of the image within 
the datasets is 1600 patches (40 × 40) . 

dataset level variant min max mean 

concavity hard back 464 1282 948±202 

medium back 445 1288 1003±177 

easy back 672 1289 1002±175 

hard fore 227 990 536±185 

medium fore 220 1013 483±162 

easy fore 221 794 480±159 

hard edge 84 149 116±18 

medium edge 84 148 115±17 

easy edge 90 153 117±18 

onion hard - 657 783 732±24 

medium - 644 783 730±26 

easy - 645 783 728±28 

points density hard - 25 121 70±35 

medium - 25 139 74±38 

easy - 30 160 86±46 

B Patches visualisations 

Fig. 5. TransMIL vs. ‘back’ GT variant green patches (first column). In the second 
column, there are visualisations of important patches based on att0 from TransMIL, 
whereas, the third column – att1. Dataset difficulty: hard, upper image: class 0; lower 
image: class 1, cross-validation fold: 0. In this case for the same image, the reasoning 
in att0 follo ws ‘edge’ whereas in att0 it is ‘foreground’. (Color figure online)
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Fig. 6. The comparison of important patches selected by TransMIL against the ‘fore’ 
GT variant in green (first column). In the second column, there are visualisations of 
important patches based on att0 from TransMIL, whereas, the third column – att1. 
Dataset difficulty: medium, upper image: class 0; lo wer image: class 1, cross-validation 
fold: 0. It is visible that for att0, the choice of important patches is more reasonable. 
(Color figure o nline) 

Fig. 7. TransMIL vs. ‘edge’ GT variant (green patches, yellow patches - selected by 
TransMIL: att0 – second column, att1 – third column). Dataset difficulty: medium, 
upper images: class 0; lower images: class 1, cross-validation fold: 0. GT ‘edge’ is rarely 
chosen in the performed experiments, here only visible in att0. W hen checking the ‘fore’ 
variant in the case of att1 (fourth column), it seems that indeed this is the reasoning 
in this model la yer. (Color figure online)
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Fig. 8. The choices of GT variants in the case of a model trained on a given cross-
validation fold shown on few samples (green patches – GT, yellow patches – selected by 
CLAM (a)/TransMIL - att0 (b)). Dataset difficulty: medium, two upper rows: class 0; 
two lower rows: class 1, cross-validation fold: 0. GT patches visualizations were selected 
to match models’ choices (‘fore’ or ‘back’). In all experiments, a giv en CLAM model 
trained on a given fold chooses a single GT variant in all test images. When trained 
on a particular fold, T ransMIL tends to alternate with different reasoning schemes for 
different images. (Color figure online)
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Abstract. As machine learning models are increasingly considered for 
high-stakes domains, effective explanation methods are crucial to ensure 
that their prediction strategies are transparent to the user. Over the 
years, numerous metrics have been proposed to assess quality of expla-
nations. However, their practical applicability remains unclear, in par-
ticular due to a limited understanding of which specific aspects each 
metric rewards. In this paper we propose a new framework based on 
spectral analysis of explanation outcomes to systematically capture the 
multifaceted properties of different explanation techniques. Our analysis 
uncovers two distinct factors of explanation quality-stability and target 
sensitivity–that can be directly observed through spectral decomposi-
tion. Experiments on both MNIST and ImageNet show that popular
evaluation techniques (e.g., pixel-flipping, entropy) partially capture the
trade-offs between these factors. Overall, our framework provides a foun-
dational basis for understanding explanation quality, guiding the devel-
opment of more reliable techniques for evaluating explanations.

Keywords: Explainable AI · Spectral Analysis · Stability · 
Sensitivity · Interpretability · Explanation Q uality · Transparency ·
Machine Learning

1 Introduction 

Machine learning (ML) models are being adopted in critical domains such as 
healthcare, finance, and media, often surpassing human capabilities in various 
tasks. However, their internal decision-making processes–particularly in artificial 
neural networks–are notoriously opaque, effectively making them ‘black boxes’.
As these models permeate high-stakes domains, the need for robust transparency
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and interpretability has grown. This lack of transparency has spurred the devel-
opment of Explainable AI (XAI), a field that focuses on extracting explanations
for the predictions of complex ML models.

A range of explanation methods have been proposed (see, e.g., [5, 6, 11, 21, 
34, 35, 41, 46, 47]), each of which has been shown to be useful in specific domains. 
Yet, with the large number of XAI methods, users face the challenge of selecting 
an appropriate method and assessing its quality. Additionally, evaluating the 
quality of XAI methods is essential not only for improving human interpretabil-
ity but also because heat maps have been reported to mislead users, a concern
heightened by their recent use in sensitive domain such as healthcare [18]  and  
industry [25]. For instance, adversarial attacks can m anipulate explanation meth-
ods [15], and models may base their predictions on spurious correlations rather 
than meaningful patterns, a phenomenon known as the ‘Clever-Hans’ effect [23]. 

Previous work [29, 43] highlights that evaluating an explanation’s quality is 
inherently multifaceted. While numerous evaluation techniques have been pro-
posed (e.g., [1, 13, 32]) to assess explanation quality, there is still limited clarity 
about which specific aspects each technique rewards. There has been longstand-
ing effort to holistically assess explanations (e.g., [17, 43]), yet this remains largely 
empirical. In contrast, we aim to develop a deeper theoretical understanding of
how evaluation techniques are interconnected.

In this paper, we seek a better theoretical understanding of the question of 
explanation quality. We propose a novel spectral analysis approach that applies 
Singular Value Decomposition (SVD) to a matrix containing input-neuron con-
tributions for each output neuron, thereby characterizing explanations via their 
singular values. We demonstrate that these singular values can reveal whether an
explanation meets specific desired properties: Sensitivity to the model’s output
(termed target sensitivity) or distinct identification of salient features (termed
stability).

Our spectral analysis is tested on two image datasets, MNIST and ImageNet. 
Specifically, we investigate how the explanation techniques and their hyperpa-
rameters relate to the sensitivity and stability properties identified in our spectral 
analysis. Our analysis also allows us to check whether parameters that perform 
well on both properties are consistent with those identified by pixel-flipping and
other commonly used evaluation techniques. Our results provide further support
for existing approaches for evaluating explanations.

In summary, our work unifies previously disparate explanation quality met-
rics and proposes a framework to guide the dev elopment of more robust evalua-
tion techniques.

2 Related Work 

In this section, we review two areas of XAI that are most related to the problem 
studied here, namely, the problem of evaluation, and the spectral analyses that 
operate on explanation techniques. For a broader discussion of XAI and its
applications, we refer to the review papers [4, 20, 33].
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2.1 Evaluation of Explainable AI Methods

Evaluating XAI methods has become a pressing concern, prompting the devel-
opment of a wide range of approaches (cf. [29] for a review). In the context 
of expert systems, [43] identifies a number of desiderata aimed at holistically 
characterizing what constitutes a good explanation. Other research efforts have 
focused on mathematically defining what makes a n explanation desirable, estab-
lishing specific axioms or unit tests that any effective explanation should satisfy
[1, 8, 27, 37]. 

Another category of work addresses the question of evaluating explanations 
by performing direct tests on the model, specifically testing whether removing 
features deemed relevant by the explanation results in a substantial c hange in
the output of the model. These methods include pixel-flipping and its many
variants [2, 5, 9, 31, 32]. Pixel-flipping tracks the change in the target prediction 
as individual pixels are removed (flipped) in order of relevance, from most to 
least relevant. Denoting i1,  .  .  .  ,  id the feature indices sorted by relevance, and 
x{i1,...,ik} a data point where the k most relevant features have been replaced 
with a placeholder value, a ‘pixel-flipping curve’ { φ(x{i1,...,ik})}d

k=1 is created,
where φ is the ML-model. The smaller the area under the pixel-flipping curve
(PF-AUC), the more successful the explanation was at identifying the truly
relevant features.

Another category of methods evaluates the consistency of an explanation 
against established ‘ground-truth’ knowledge, such as leveraging the outputs of 
a high-performing vision model. Several studies have proposed verifying whether 
the spatial distribution of relevance scores aligns with the regions corresponding
to visual objects detected by the model [13, 49]. 

In [ 45, 48], the authors suggest using Shannon entropy to assess whether the 
explanation is free of highly entropic noise patterns, which is a prerequisite for 
these explanations to be faithful and interpretable. The entropy can be quantified 
by first converting the explanation into a p robability vector R = |R|/1�|R| and
then calculating the entropy as −∑

i Ri · log(Ri).
Efforts have been made to develop benchmarks and software tools to enable 

a comprehensive, multifaceted evaluation of explanation techniques [17]. Finally, 
[16, 36] describes end-to-end evaluation settings where a human recipient is 
actively involved and w here performance metrics can be more easily defined.

2.2 Spectral Methods for E xplainable AI

Spectral methods have interacted with the field of XAI in several ways. Sp ectral
Relevance Analysis (SpRAy) [23] generates a collection of explanations from a 
dataset and uses spectral clustering to identify clusters of prototypical decision 
strategies. While both SpRAy and our approach rely on singular values, our 
approach differs by focusing on characterizing the explanation for a single data
point, rather than analyzing the broader decision strategies of an entire model.

Spectral methods are also employed in [12], where eigenvalues of a cross-
covariance matrix, which links model activations to responses, are used to assess
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the complexity of a decision strategy. While the techniques used are related, our 
work focuses on the distinct problem of evaluating an explanation.

The authors of [38] analyze the rank of explanations in propagation-based 
methods and observe a rank collapse under certain conditions, causing explana-
tions to lose their task specificity. While it shares the same general goal as our 
work of evaluating and better understanding explanation techniques, our w ork
differs in that it looks at the globality of the explanation spectrum and makes
connections to other properties of explanations, such as their stability.

3 Spectral Analysis of Explanation Quality 

In this section, we present our spectral analysis framework for analyzing model 
explanations. Its purpose is to gain better insight into the structure of explana-
tion quality, by uncovering underlying factors that contribute to it.

Our analysis will apply to ML models, typically neural networks, that map 
some input vector x ∈ Rd to some output z ∈ Rh via some function φ : Rd → Rh 

learned from the data. The model’s output may consist of h class logits or an 
abstract h-dimensional represen tation, suitable for linear readouts. We focus on
attribution-based explanation techniques, which assign a relevance score to each
input feature, indicating its importance in the model’s prediction.

Our framework begins by encoding the attribution from each output to each 
input in a d × h redistribution matrix R·|·. Each column is defined as: 

R·|j = 
E(zj) 

1�E(zj) 

for all j =  1  .  .  .  h.  Here  E(zj) ∈ Rd denotes the attribution of the model’s output 
zj at class j to the input features, given by the explanation method of interest 
at one specific data point. The matrix R·|· satisfies the property 1�R·|· = 1. In
particular, when its entries are non-negative, it acquires a probabilistic interpre-
tation, where its elements correspond to the percentage of each output that is
redistributed to each input of the network.

This redistribution matrix is particularly useful because it enables any quan-
tity y ∈ Rh at the network output to be propagated backward via matrix-vector 
multiplication E(y)  =  R·|·y, producing the desired explanation. For example, if 
the output of the network represents class logits, we can explain evidence for 
class j by defining y = ej � z where ej is a one-hot vector of the jth dimension, 
and then matrix multiplying by R·|·. Likewise, defining y =  (  ej −ej′)�z enables
to explain the log-likelihood ratio between two classes. In a general case, when
the output of the network is an abstract representation, defining y = w � z
enables to explain the readout with the weights w.

We now would like to characterize general properties of the explanation pro-
cess in a way that is independent on the exact prediction task. In particular, 
we analyze the inherent behavior of the multiplication of y by R·|·, and whether
it amplifies or attenuates the magnitude of the vector y it multiplies to. These
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amplification/attenuation properties can be characterized by the spectrum of 
R·|·, that is, the collection of singular values extracted by singular value d ecom-
position (SVD):

R·|·
(SVD)
=

K∑

i=1

σiuiv
�
i (1) 

with K = min(d, h) and σ1 ≥ σ2 ≥  · · ·  ≥  σK ≥ 0 are the singular values. The 
largest singular value σ1 is equivalent to the spectral norm of the redistribu-
tion matrix ‖R·|·‖2 and corresponds to the maximum amplification that can be 
experienced during the explanation process. In turn, σ 2, σ3, . . . represent second,
third, etc. largest amplification factors along orthogonal directions u2, u3, . . . and
v2, v3, . . . in both input and output space, respectively.

3.1 Stability of an Explanation

The stability of an explanation technique is defined by its ability to produce con-
sistent explanations that remain unaffected by factors irrelevant to the model’s 
prediction strategy. One manifestation of irreleva nt factors in the context of deep
neural networks is the shattered gradient effect [7], where strong variations of 
the ML-model manifest themselves only locally. Simple gradient-based e xplana-
tion techniques such as Gradient × Input (see [3]) are strongly affected by them 
and tend to produce noisy explanations that p erform poorly on explanation
benchmarks (e.g., [8]). 

Thus, the content of an explanation should be limited to what is strictly 
necessary to support the prediction y. Assuming our explanations E(y) satisfy 
the conservation property (1�E(y)  =  1�y), such an objective can be enforced 
with a small norm ‖E(y)‖,  wh  ere ‖ · ‖ represents any operator norm. If ‖E(y)‖
is small, we can generally assume that the heat map is rather smooth or stable.

Our spectral analysis is especially useful to quantify this property as it gives 
an upper bound on the norm of the explanation in terms of the first singular 
val ue σ1 of the redistribution matrix R·|·, i.e.:

‖E(y)‖2
‖y‖2 ≤ σ1 (2) 

In other words, it is desirable for an explanation technique to have a low σ1.
Similar relations to Eq. (2) can be stated beyond the spectral norm σ1 = ‖R·|·‖2 
for other norms of ‖R·|·‖p. We show in Sect. 3.4, in the context of the Layerwise 
Relevance Propagation (LRP) explanation method [5, 28], how ‖R·|·‖1 (and the 
resulting explanation stability) can be controlled by an a ppropriate choice of the
LRP parameter γ.

It should be noted, however, that a stable explanation like the aforemen-
tioned is not sufficient to ensure high quality explanations. A uniform redistri-
bution matrix of the type R·|· = 1/d,  has  a  very  small  σ1, but this results in a 
uniform redistribution over the input features, which is undesirable since it lacks
any sensitivity to the output, and thus fails to discriminate between features
contributing to different predicted outputs.
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3.2 Sensitivity of an Explanation

Sensitivity of the explanation to different outputs, in other words, the ability to 
distinguish attributions between classes, is an important additional property of 
an explanation, and its importance has been highlighted in several works (e.g.,
[1, 8, 29]). To illustrate how sensitivity can be related to the spectral properties of 
the explanation, let us consider two different output neurons j and j′, accessed by 
the readout functions y = ej�z and y′ = ej′�z. If the two output neurons encode 
different concepts, and the latter are supported by different input features, it is 
fair to say that the two explanations should be different. Using our spectral
analysis, we can express these two explanations and decompose them in terms
of the singular values extracted by our spectral analysis:

E(y) = R·|· y =
∑

i σiuiv
�
i y (3) 

E(y′)  =  R·|· y′ =
∑

i σiuiv
�
i y′ (4) 

A key observation in these equations is that the explanations of y and y′ are 
tightly controlled by the spectra of the network. In the extreme case, when σ2 = 
· · ·  = σK =  0, E(y) and E(y′) become mere rescalings of each other–the rapid 
decay of the singular value s pectrum severely limits the capacity to generate
explanations that accurately capture the diverse concepts present at the output.
This phenomenon has also been observed in [38] for certain backpropagation-
based techniques in deep networks. Maintaining large values for all singular 
values, which can be quantified by the norm ‖( σk)Kk=1‖2, is, therefore, essential
to ensure the sensitivity of explanations.

Fig. 1. Cartoon depiction of the two factors of explanation quality that can be derived 
from our spectral analysis and the SSM metric (Eq. (5)) that aggregates them. We pos-
tulate the existence of a ‘sweet spot’ where both explanation stability and sensitivity 
can be achieved. This can be reached by a subtle adjustmen t of explanation parame-
ters such as LRP’s γ and SmoothGrad’s standard deviation (as later shown in Figs. 3 
and 4). 

3.3 Stability-Sensitivity Metric 

Having singled out σ1, or more precisely its inverse 1/σ1, as a factor of expla-
nation stability,  and ‖(σk)Kk=1‖2 as a factor of explanation sensitivity, it comes
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quite natural to combine them into a single score, which we define as the ‘sta-
bility-sensitivity metric’ (SSM): 

SSM =
1
σ1

· ‖(σk)Kk=1‖2 (5) 

The SSM and the two factors on which it depends are sketched in Fig. 1 for 
a hypothetical explanation parameter that interpolates between a stable but 
insensitive explanation and a sensitive but unstable explanation. This explana-
tion quality metric and the two factors that make it up will be compared to 
existing evaluation metrics suc h as pixel-flipping in later experiments. The com-
putational complexity of evaluating the stability, sensitivity, and the SSM is
discussed in Appendix C. 

3.4 Linking LRP Parameters to Stability and Sensitivity

To demonstrate how the parameters of an explanation technique can influence 
the stability-sensitivity profile of an explanation method, we p erform a theo-
retical analysis for the case of the LRP [5, 28] explanation technique. LRP is 
an explanation technique that operates by propagating the output of a neural 
network layer-by-layer to the input features, where each p ropagation step con-
sists of the application of a purposely designed propagation rule. Extending the
framework of Sect. 3, we can characterize the LRP explanation process as a com-
position of multiple redistribution steps. In other words, it is achieved through 
a sequence of multiplications with redistribution matrices defined at each layer:

RLRP
·|· = R

(1)
·|· · R

(2)
·|· · · · · · R(L)

·|· (6) 

We specifically consider the case where the propagation rule LRP-γ (cf. [27]) is 
applied at each layer. At a given layer, let j and k denote the indices of input 
and output neurons, respectively. The LRP-γ rule then defines the resulting 
redistribution scheme: 

R (l) j|k :=
aj · (wjk + γw+

jk)
∑

j′ aj′ · (wj′k + γw+
j′k)

(7) 

where aj and ak are the neuron activations and wjk are the weights connect-
ing these neurons. The parameter γ emphasizes positive cont ributions, which is
instrumental in controlling the explanation behavior of LRP.

Next, to analyze the stability of RLRP 
·|· , we combine matrix norm identities

and the form of Eq. (6), to derive the following chain of inequalities:

‖E(y)‖p

‖y‖p 
≤ ‖RLRP 

·|· ‖p ≤ 
L∏

i=1

‖R
(l)
·|· ‖p (8) 

which hold for any p.  In  the  case  of  p =  2  the expression reduces to an expression 
involving spectral norms computed either globally or individually for each layer.
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If, instead, we choose p =  1, we get a closed-form expression where the layer-
wise terms can be written analytically as ‖R (l) ·|· ‖1 =  1  +  2c(l) /(1 − c(l) + γ) 
with c(l) = maxk |

∑
j [hjwjk]−|/∑

j [hjwjk]+ ∈ [0, 1) (the proof is given in the 
Appendix). This leads to the closed-form relation:

‖E(y)‖1
‖y‖1 ≤

L∏

l=1

(

1 +
2c(l)

1 − c(l) + γ

)

(9) 

This shows that increasing γ tightens the bound on the operator norm, promot-
ing stability.  As  observed in prior work (e.g., [12, 30]), small γ values result in 
noisy explanations and poor benchmark performance. Notably, both noise reduc-
tion and explanation stability are achieved rapidly, as Eq. (9) saturates relatively 
quickly with increasing γ.

4 Experiments 

In this section, we empirically evaluate our proposed XAI framework on neu-
ral networks trained for the MNIST [24] and ImageNet [14] vision tasks, using 
four different explanation methods. We then compare our results to established 
metrics, highlighting t he strengths and insights offered by our spectral analysis
approach.

4.1 Experimental Setup 

Machine Learning Models. We evaluate our approach on two established datasets 
of different sizes and characteristics. MNIST, containing gray-valued 28×28 
images for the task of digit classification, and ImageNet, with colored images 
of size 224×224 picturing everyday objects of 1000 classes. For ImageNet, we
download a pre-trained VGG16 model, specifically the IMAGENET1K_V1 weights
from the torchvision library [26]. The model achieves a Top-5 accuracy of 90% 
on images sampled from the ILSVRC 2012 validation set [14], meaning in 90% 
of the the predictions the correct class is within the most probable 5 class pre-
dictions. For MNIST, we use a Convolutional Neural Network (CNN) (11 layers; 
Top-1 accuracy 98%) whose artificially deep architecture makes it c hallenging to
explain. For more information on the training and architecture of the model on
MNIST we refer to Appendix D. 

Explanation Techniques. We employ multiple explanation techniques to compare 
our framework against existing evaluation techniques. Below, we detail h ow we
apply and parameterize the different explanation techniques.

Layer-wise Relevance Propagation (LRP): F or the LRP explanation
method [ 5], we follow the approach of [28]. Specifically, on the VGG-16 Ima-
geNet model, we use the LRP-γ rule in the first t hree blocks of the architec-
ture, and the zB-rule in the first layer. For the small MNIST-CNN, we use
LRP-γ for all layers except the last one. In our experiments, we analyze the
effect of varying γ on the different measures of explanation quality.
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SmoothGrad (SG):  For SG [39], we calculate the gradient of t he model 10
times, each time under a zero-mean Gaussian noise perturbation of the input.
In our experiments, we analyze the impact of different smoothing parameters 
s (i.e. standard deviation values for the noise).

Integrated Gradient (IG): In the explanation method IG [42], we appro xi-
mate the integral by 10 equidistant evaluations of the model. The reference
point in the integral is a black image.

Shapley Value Sampling (Shapley): We use the Shapley method [40]  a  s an
additional baseline, and limit the number of feature remo val cycles to 25.
The scheme we use for removing pixels and patches consists of filling them
with uniform black color.

XAI Evaluation Metrics. We compare our spectral analysis framework with the 
evaluation methods pixel-flipping [5, 32] and Shannon entropy. In pixel-flipping, 
we remove increasing sets of the most relevant features. We stop after 5% of the 
total features are flipped, and calculate the area under the curve (PF-AUC) as 
a summary of how faithful the explanation is to the model. The lower the PF-
AUC, the better the truly relevant features have been identified. Placeholder
values for flipped pixels in the input image are in-painted using the OpenCV
[10] implementation of the Fast-Marching algorithm [44], utilizing 3 and 5 pixels 
around the deleted section for MNIST and ImageNet inputs, respectively.

We then compare our spectral analysis to Shannon entropy, which is com-
monly used to detect noise and evaluate the overall readability of heat m aps.
We calculate the Shannon entropy according to the formula given in Sect. 2.1. 
Explanations are evaluated on 100 differen t input images each.

4.2 Comparison of XAI Evaluation Methods with S pectral Analysis

We first provide an qualitative description of heat maps that fulfill stability or 
sensitivity to build an intuition of how either manifest visually, and then show a 
quantitative analysis of the different properties we are interested in on a variety
of explanation methods.

Qualitative Assessment of Stability and Sensitivity. In Fig. 2,  we  see  
how the γ parameter in the LRP method influences the heat maps and how each 
heat map corresponds to specific properties, such as stability and sensitivity. 
For a small γ parameter (i.e., γ =  0.005), stability is low but the sensitivity is 
high. This means that the explanation may vary with small output perturbation, 
yet is distinguishable from different classes. Effectively, we see that the heat 
map looks relatively noisy and irregular, which aligns with our expectation, 
since a small σ−1 

1 does not limit the growth of noise in the explanation phase.
The other extreme is when γ is high (i.e., γ = 0.3), where we observe high
stability but low sensitivity. The absence of noise in the explanation gives it
high stability. However, its low sensitivity suggests that heat maps may not be



298 J. Maeß et al.

Fig. 2. Examples of explanations produced by the LRP explanation technique using 
the rule LRP-γ with different values of the parameter γ. An increase in γ is associated 
with an increase in explanation stability (visible here as the v anishing noise pattern
in the explanation). On the other hand, choosing too large a value for γ results in a
decrease in target sensitivity.

able to distinguish features specific to each class, thereby reducing its overall 
usefulness as an explanation. For the case when γ =  0.04, a ‘sweet spot’ is 
reached where both stability and sensitivity are high. The noise remains small
and the heat map is easy to interpret, while the sensitivity measure indicates
that heat maps are specific to each class.

Quantitative Comparison with Different Evaluation Methods. We con-
sider in our quantitative analysis the MNIST and ImageNet models described 
above, and apply to each model different explanation techniques and evaluations 
of these explanations. In addition to the LRP and SG explanation techniques, 
each of which come with a hyperparameter, we also include results for IG and 
Shapley va lue sampling for comparison. Note that we do not include the Shapley
value sampling method in the ImageNet experiments for computational reasons.
Results of our comparison are shown in Figs. 3 and 4. Exact numerical values 
are reported in Appendix A. 

For the LRP method, we observe in both models that as the γ parameter 
increases, the explanation stability increases while its sensitivity decreases. Our 
analysis suggests the existence of a ‘sweet spot’, where stability and sensitivity 
can be both achieved, as indicated by a high value for the sensitivity-stability 
metric (SSM). In the LRP case, this sweet spot corresponds to choosing an
intermediate value of the γ parameter (γ = 0.04 for ImageNet and MNIST,
cf. Appendix A). For the SG explanation method, we observe a trend similar to 
LRP, where increasing the smoothing hyperparameter s results in higher stability 
but lower sensitivity. For the ImageNet model, SSM exhibits a c lear preference
for a specific parameter, whereas on MNIST, the smoothing hyperparameter
seems to have no effect on SSM.

Comparing the result of our stability-sensitivity analysis with the pixel-
flipping evaluation, specifically, the PF-AUC score described above, we see that
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Fig. 3. Quantitative analysis of evaluation metrics for explanation methods on an 
ImageNet-trained model using 100 images. The top row shows exemplary heat maps for 
the class ‘sulphur-crested cockatoo’, one per method and parameter choice per dashed 
vertical line drawn in the main plot. Below, we present evaluation metrics (top to bot-
tom): stability & sensitivity (ours), SSM (ours), PF-AUC, and entropy. Explanation 
methods (left to right) include LRP, SG, and IG. For LRP, results for 11 γ values are 
shown, and for SG, 4 different noise levels. PF-AUCs are calculated after deleting 5%
of the image. Thick lines indicate the median, with shaded areas showing variability:
5% for SSM and PF-AUC, 25% for stability, sensitivity, and entropy. The star indicates
where explanation quality under the given metric is maximized.

both methods reveal a preference for intermediate values of γ. Extending the 
comparison to the entropy-based evaluation, we see that the entropy expresses 
a similar preference for intermediate values of the γ parameter in LRP. This 
close relation between SSM and entropy is particularly intriguing as the entropy 
was originally intended as a test for the presence of noise in the explanation, in 
other words, a measure of stability only. It turns out that the entropy metric
does more than that: Stable but insensitive explanations are also highly entropic
due to the spreading of relevance scores onto excessively many pixels. Thus, our
analysis suggests that entropy is a fairly holistic measure of explanation quality.
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Fig. 4. Quantitative analysis of evaluation metrics for explanation methods on an 
MNIST-trained model using 100 images. The top row shows exemplary heat maps 
for the class ‘8’, one per method a nd parameter choice per dashed vertical line drawn
in the main plot. The structure of this figure follows Fig. 3, with the following differ-
ence: The rightmost column includes results for the Shapley methods. The L RP curve
was obtained using 80 different γ parameters.

Furthermore, we observe that entropy fails in some cases in its original aim 
to characterize explanation stability (i.e. absence of noise). The SG explanation 
with low smoothing, which is objectively highly instable, appears not to be so 
when looking at its low entropy score. This discrepancy can be traced to the 
normalization step before the entropy computation, which tends to ignore the
magnitude of noise patterns, causing noise to be neglected when it is collocated
with very strong noise occurring only on few pixels.

Overall, our analysis has revealed that the SSM metric and most evaluation 
methods witness a subtle interplay between different factors of explanation qual-
ity such as stability and sensitivity. Explanation hyperparameters are shown to 
be effective in influencing those factors of explanation quality. However, these 
evaluation methods disagree on what precise hyperparameter values are optimal.
This imposes caution in drawing general conclusions from the results of specific
explanation evaluations.
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4.3 Expanded Explanations with Spe ctral Analysis

In this section, we show another use of our spectral analysis, which follows from 
the decomposition of the explanations it offers in terms of singular values; in 
particular, we recall that the explanation E(y) can b e rewritten as:

E(y) =
K∑

i=1

σiuiv
�
i y

︸ ︷︷ ︸
E(y; σi)

(10) 

Each term E(y; σi) of the sum has the same shape as the original E(y) and can 
therefore also be rendered as a heat map. Furthermore, the collection of heat 
maps sums to the original heat map and can thus be seen as a sum-decomposition
of the original explanation. This analysis is shown in Fig. 5 for an image predicted 
by the same model, but explained by two versions of LRP (with different γ
parameters).

Fig. 5. LRP explanations for the class ‘paddle’ decomposed into contributions of dif-
ferent singular values (cf. Eq. (10)). Heat maps visualize how bins of singular values, 
namely, the ranges (1, 1), (2, 10), (11, 100),  and  (101, 1000) contribute, with the norm of 
this partial result (as a percentage of the norm of the full heat map) denoted in brackets. 
The top row of heat maps corresponds to LRP with γ =  0.04 and the bottom row uses 
γ =  0.11. The plots on the right visualize the rise in the heat maps norm as it is pro-
duced with approximations of R·|· with increasing rank k: ‖ ∑k

i=1 E(y;σi)‖2 · ‖E(y)‖−1
2 .

Depending on the choice of γ, small singular values contribute little to heat maps and
their norm, indicating that explanations are sensitive to only a low number of patterns
in the data.

As the γ parameter increases, the bulk of the explanation is shifted to a 
smaller number of leading singular values. These are also associated with less 
noisy singular vectors. As a result, this shift–associated with an increase in γ–
causes both a denoising of the explanations and the effective degree of freedom
in which explanations vary to drop.
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5 Conclusion 

XAI was originally conceived to increase the transparency of complex, nonlinear 
machine learning methods. Over time, a wide array of evaluation metrics has 
emerged to assess the quality of explanations, yet this diversity has created 
new challenges in determining which metric is most appropriate for a particular 
application and in correctly interpreting the resulting scores. Consequently, it is
crucial to develop a better theoretical understanding of the underlying factors
that determine explanation quality, as well as how these factors are weighted in
different evaluation metrics.

In this work, we propose a novel formal analysis framework that elucidates 
the multifaceted nature of explanation quality. By applying a spectral analysis of 
the explanation-generating process, our approach mathematically characterizes 
two d istinct evaluation factors, explanation stability and explanation sensitivity,
which jointly contribute to achieving high-explanation quality.

Moreover, extensive simulations on MNIST and ImageNet models illustrate 
how the factors of explanation quality align with popular explanation metrics
such as pixel-flipping or the explanation’s entropy.

We also demonstrate how to operationalize our framework by decomposing 
explanations into their spectral components, distinguishing primary explanation 
factors from secondary effects or noise. Overall, these findings underscore the 
potential of our conceptual framework to guide the search for better, more con-
sistent explanations. 
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A Numerical results of explanation quality 

Table 1 provides numerical values for the stability-sensitivity metric (SSM), Pixel 
Flipping (PF-AUC), and Shannon Entropy metric displayed in Figs. 3 and 4.  On  
the LRP-γ and SG methods, we report the values for the optimal parameter
choice γ or σ (shown in brackets).
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Table 1. Explanation quality metrics for the ImageNet and MNIST datasets. We 
report the median score over 100 validation images. The values correspond to the best 
parameter setting for each method; parameter choices for LRP-γ and Smo othGrad are
denoted in brackets. (↑) The higher the better, and (↓) the lower the better.

LRP (γ) SG (s) IG Shapley 
ImageNet 
SSM (↑) 1.24 (0.04) 1.31 (0.32) 1.26 — 
PF-AUC (5%) (↓) 4.81 (0.3) 4.81 (0.1) 5.03 — 
Shannon Entropy (↓) 10.99 (0.30) 11.38 (0.03) 11.14 — 
MNIST 
SSM (↑) 1.18 (0.04) 1.00 (0.32) 1.00 1.18 
PF-AUC (5%) (↓) 3.53 (0.07) 5.10 (0.32) 4.58 3.49 
Shannon Entropy (↓) 4.61 (0.10) 5.80 (0.03) 4.60 4.60 

B Analytical form of LRP-γ operator norms

The LRP-γ rule leverages the preference towards positive contributions in reas-
signing relevance as a stabilizing effect in the creation of heat maps [28]. We now 
provide an analytical perspective on this heuristic, demonstrating that γ has a 
domain-specific regularization effect on the explanation process, reducing the 
operator norm of the conditional relevance matrix R·|·. In this section, we define 
pk :=

∑
j [ajwj,k]+ and nk :=

∑
j [ajwj,k]− as the sum of all positiv e or negative

inputs to the neuron k. We then focus on ReLU-activated neurons, denoting
their activation value by 0 ≤ |nk| < pk.

We first observe that every element of the conditional relevance matrix 
decreases monotonically in magnitude as γ increases, ultimately favoring smaller 
outputs in the matrix multiplication. Negative entries in the matrix have 
Rj|k =  [ajwj,k]−/((1 + γ)pk + nk); the conditional relevance goes towards 0 
because the denominator increases with γ. Positive entries of the matrix have 
Rj|k =  (1  +  γ)[ajwj,k]+ /((1 + γ)pk + nk) and the derivative ∂Rj|k(γ)/∂γ = 
[ajwj,k]+ · nk/((1 + γ)pk + nk)2 < 0 is negative (because nk < 0). The con-
ditional relevance decrease monotonically towards limγ→∞ Rj|k = aj [wj,k]

+

pk
.

Moreover, we establish a precise relationship between the L1 operator norm 
of LRP explanation steps and the γ parameter. The key observation is that 
LRP normalizes the total relevance leaving each neuron: while both positive and 
negative values of any magnitude are allowed, they must cancel each other so
that each column sums to 1, c.f. Section 2.1. This requirement aligns with the 
L1 operator norm’s role of measuring the sum of all absolute relevances going 
out of a neuron. Leveraging these parallels, we derive an analytical expression
for the L1 operator norm in terms of γ.



304 J. Maeß et al.

First, the L1 norm of a column k of the conditional relevance matrix is:

‖R·|k(γ)‖1 =
∑

j 
|Rj|k(γ)| =

∑

j 
| (1 + γ)aj [wj,k]+ + aj [wj,k]− 

(1 + γ)pk + nk 
| 

=

∑
j |(1 + γ)aj [wj,k ]+ + aj [wj,k]−|

(1 + γ)pk + nk

Then, using the fact that ([ajwj,k]+ =  0)  ∨ ([ajwj,k]− =  0)  for a given (j, k) 
we can pull the absolute value operation into the terms of the denominator and 
use our definition of the summed negative and positive contributions to a neuron
as pk and nk:

‖R·|k(γ)‖1 =
∑

j |(1 + γ)[ajwj,k]+| + |[ajwj,k]−| 
(1 + γ)pk + nk 

= 
|∑j(1 + γ)[ajwj,k]+| + |∑j [ajwj,k]−| 

(1 + γ)pk + nk 

= 
(1 + γ)pk + |nk| 
(1 + γ)pk −  |nk| =  1  +  

2|nk| 
(1 + γ)pk −  |nk| =  1  +

2 |nk|
pk

1 − |nk|
pk

+ γ

By defining ck := |nk| 
pk 

, we obtain a compact expression for the L1 column
norm in dependence of γ:

‖R·|k(γ)‖1 =  1  +  
2ck 

1 − c k + γ

The induced L1 operator norm is then simply the maximum over all 
columns k′ norms. While all column norms decrease with γ, the column index k 
of the column that is largest stays constant across the whole domain of γ.  This  
allows us to define a constant ‘coefficient’ c for the entire operator and write the
operator norm in a compact form. With c := maxk′,|nk′ |<pk′

|nk′ |
pk′ and k as the

argmax of the expression,

‖R·|·(γ)‖1 = max 
k′

‖R·|k′(γ)‖1 = ‖R·|k(γ)‖1 =  1  +  
2c 

1 − c + γ
. (11) 

When γ =  0, the L1 norm ‖R·|·(0)‖1 can become large if there is an acti-
vated neuron k in the layer, whose negative inputs are almost as large as it’s 
negative input: |nk| � pk ⇒ c � 1. The LRP-γ rule outweighs the positive con-
tributions when assigning relevance. If the positive inputs already dominate in
every neuron, the operator norm is not significantly changed by increasing the
γ-parameter.

Finally, we can bound the operator norms of the entire explanation 
method as a function of the LRP-γ parameters in the layers that use the rule.



Uncovering the Structure of Explanation Quality with Spectral Analysis 305

Simplifying to the case that every layer 0 ≤ t  <  T  of the network uses the LRP-
γ rule, and that the measured c(t) is the same for all layers t, we find that the 
operator norm of the entire explanation process is bounded by

‖A (0←T ) 
·|· (γ)‖1 ≤ 

T ∏

t=0

‖A
(t)
·|· (γ)‖1 =

(
1 +

2c
1 − c + γ

)T =
T∑

t=0

(
T

t

)
( 2c
1 − c + γ

)T

The operator norm bound decreases monotonically with γ. In fact, for large 
c ≈ 1, the bound can shrink rapidly, at a rate up to γ−T . Practitioners com-
monly o bserve this effect in deep networks explained with the LRP-γ rule across
multiple consecutive layers (e.g. [28, 30]). Specifying too high γ quickly leads to 
very high Stability and low Sensitivity. The explanations have a coarse-grained 
nature and can not d istinguish between classes anymore, as visualized in Sect. 4.3
(bottom).

C Computational Complexity of the Evaluation Methods 

Stability, as the largest singular value, can be computed efficiently using iterative 
methods such as the power iteration or Lanczos algorithms [22]. Assuming a net-
work with d inputs and h outputs, and its redistribution matrices as described
in Sect. 3, these methods have a computational cost of O(dh) per iteration. The 
number of iterations until the first singular value and vector are found depend 
on the desired precision and the spectral gap of the matrix. Sensitivity can be 
calculated as the square root of the sum of the squared entries of the redistri-
bution matrix, which is equivalent to its Frobenius norm. The computational
complexity for this calculation is O(dh).

Complexity of Constructing the Redistribution Matrix. In perturbation-based 
methods (such as Shapley), heatmaps for all classes–and thus the entire redis-
tribution matrix–can be created simultaneously by collecting each class’s output 
for every perturbed input. Therefore the complexity to create the redistribution
matrix is equivalent to the complexity of the explanation for one target output.

Propagation-based methods such as LRP and SmoothGrad require both for-
ward and backward passes per (perturbed) input to generate a heatmap. How-
ever, the forward computation can be reused to compute gradients for multiple 
classes. In summary, LRP scales with O(h) per input image, while SmoothGrad
with k noise perturbations scales with O(hk).

D MNIST CNN architecture 

The convolutional neural network (CNN) architecture used for the MNIST 
dataset is a small network with 6 convolutional layers containing ReLU acti-
vation functions. The full sequence includes 3 convolutional layers with kernel 
sizes 3× 3, 3× 3, and 5× 5 using 8 filters each, followed by a max-pooling layer
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with kernel size 2. This is followed by convolutional layers of kernel sizes 5 × 5, 
3×3,  and  3×3 and 16 filters each. After a second max-pooling layer (with a ker-
nel size of 2), the output is flattened and passed through a fully connected layer
to compute the 10 logit scores. The network is trained using the SGD optimizer
and a learning rate of 0.1 until convergence.

The data from the Kaggle Digit Recognizer dataset [19] is randomly split into 
a training and test set with a ratio of 80% to 20%. The network is trained on 
the 33,600 training data points using the SGD optimizer and a learning rate of 
0.1 until convergence. 100 images are drawn from the test set for the evaluation
of the explanation methods.
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Abstract. The explanations of large language models (e.g., where each 
word is assigned a relevance score) have recently been shown to be sen-
sitive to the randomness used during model training, creating a need 
to evaluate this sensitivity. While simple visualization tools such as box 
plots can provide a qualitative characterization, exploring the design 
space of the parameters influencing the explanation’s sensitivity to the 
training randomness may benefit from a more quantitative approach. 
First attempts in this direction explored simple (word-level univariate, 
first-order) explanations and proposed tentative information theoretic 
metrics such as the explanation’s signal, noise and Signal-to-Noise Ratio 
(SNR). They left the suitability of such metrics as an open question, 
which we tackle in this work. For this purpose, we start by identifying 
corner cases where they appear unable to capture intuitively desirable 
features of explanations corresponding to a different training random-
ness. Namely, the SNR does not reflect well the relative differences of 
relevance (between words). We next put forward that the correlation 
with a mean explanation provides a better treatment of these corner
cases, at the cost of being unable to reflect absolute differences of rele-
vance (for single words). We then discuss how to turn these observations
into a consolidated approach for analyzing the explanations’ sensitivity
to the training randomness. While there is no silver bullet that per-
fectly deals with the full complexity of this sensitivity problem, we argue
that design space exploration with the correlation metric and individual
model analysis with box plots provides a good tradeoff. Besides, we put
forward additional desirable features of the correlation metric (e.g., unbi-
ased estimation thanks to cross-validation and simple confidence inter-
vals).

1 Introduction 

In recent years, Large Language Models (LLM) like BERT [8]  or  GPT [9]  have  
led to significant performance improvements for a vast amoun t of Natural Lan-
guage Processing (NLP) tasks [1]. These improvements generally come from 
more complex architectures with more parameters, of which the training relies 
on randomized optimization techniques. As a result, it has been consistently
c© The Author(s) 2026 
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observed that the explainability of LLMs is a major challenge [14], which is 
especially important for applications implying c ritical (e.g., medical or legal)
decisions.

At high level, the explainability of LLMs relates to broad and hard-to-define
concepts like faithfulness [12, 16] and plausibility [11, 12]. Informally, faithfulness 
requires that an explanation accurately reflects the algorithmic reasoning process 
behind a model’s predictions, and plausibility requires explanations to be under-
standable and convincing to the target audience. In this paper, we are concerned 
with a more specific issue which has c onnections with both concepts. Namely, the
sensitivity of the explanations to the randomness used to train models, recently
put forward by Bogaert et al. [3, 6]. The main observation of this paper is that it 
is sometimes possible to produce many models of which the training only differs 
by the (indistinguishable) random seeds they u se, that are “equivalent” from the
accuracy viewpoint and nevertheless lead to different explanations.1 The authors 
then argue that this sensitivity to the training randomness must at least be char-
acterized, since in the extreme case where the explanations w ould be uniformly
distributed, any selection of explanation would be completely arbitrary.

The explanations’ sensitivity to randomness has for now been exhibited in 
the case of “simple” explanations, defined in [5] as word-level, univariate (i.e., 
assigning a single relevance value per word) and first-order (i.e., assuming readers 
are interested by mean explanations in case of sensitivity to randomness). W e
will use Chefer et al.’s Layerwise Relevance Propagation (LRP) method as our
running example [7]. Such simple explanations, next denoted as (1,1,1), are of 
course not expected to be perfectly faithful, although we assume they reflect the 
models’ reasoning to a sufficient extent. They are not expected to be the only 
plausible ones e ither. Yet, they provide a useful theoretical framework to answer
the question: how stable can the simple explanations of complex models be?

Evaluating the sensitivity to the training randomness of LLMs can be done 
qualitatively. For example, visualization tools like box plots provide a good intu-
itive understanding of single texts. Yet, more quantitative tools become useful 
to explore the explanations’ design space. For example, one could be interested 
to compare the randomness’ sensitivity of different texts, and for explanations 
assigning relevance scores for various number of words. One could also be inter-
ested to compare the randomness’ sensitivity of bigger vs. smaller models, for
various tasks, datasets or languages, or for different explanation methods. First
steps in this direction were made in [5], where the explanations’ signal, noise 
and Signal-to-Noise Ratio (SNR) are proposed as tentative explanation stability 
metrics. In this paper, we consolidate these investigations in three directions.

First, we highlight the limited ability of the SNR to reflect the relative dif-
ferences of relevance (between words) in a set of explanations corresponding to 
different (random) training seeds. We additionally show that the correlation with 
a mean explanation mitigates this issue, as to cost of being unable to reflect abso-
lute differences of relevance (for single words), which are better captured by the

1 Equivalent meaning that there is no statistically significant difference in their accu-
racies, implying that there is no “better” model from the accuracy viewpoint.
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SNR. Second, we discuss the consequence of these observations and argue that 
combining a design space exploration with the correlation metric and a more 
qualitative analysis thanks to box plots appears as a good tradeoff. The first 
one better captures relative differences within explanations, whereas the second 
one reflects absolute differences at the individual word level, exhibiting possibly 
interesting intuitions that the (quantitative) S NR metric may hide. We finally
put forward additional desirable features of the correlation metric such as easier
interpretation, unbiased estimation thanks to cross-validation and simple confi-
dence intervals thanks to a well-known statistical distribution.

Related Works. The quantitative evaluation of the sensitivity to the training 
randomness is quite related to t he problem of inter-annotator agreement – see
for example [2, 10]. One difference is that the explanations of LLMs provide con-
tinuous relevance scores (vs. more discretized ones for human annotators). The 
other is that, due to the (1,1,1) restriction, we can replace pairwise correlations, 
which are frequently used in the inter-annotator agreement literature but can 
become exp ensive as the number of random seeds under investigation increases
in our context, by the correlation with a mean explanation. Our study is also
related to [18]  which,  among  others,  performed  an  experiment  to  test  whether  
the words’ relevance obtained thanks to four different types of explanations were 
impacted by the random seeds used for model initialization. They used P earson’s
correlation for this purpose, but only considered two random seeds and did not
ensure model equivalence (nor input compatibility, as we define next).

2 Background 

2.1 Dataset, Model and E xplanation Method

We run our experiments on the InfOpinion dataset [4], composed of 10,000 french 
texts belonging to the information and opinion journalistic genres. This binary 
categorization relies solely on the articles’ annotation by their authors as either 
information or opinion. The dataset is split in 3 parts: a training set (80%), a 
validation set (10%) a nd a test set (10%). The classes are balanced among each
of these sets. The task is to predict the binary category of a given text.

The model we consider is the French pre-trained transformer model Camem-
BERT [15], in the two different setups presented in [8]. In the first one, that 
we denote as fine-tuned, we jointly train all the weights of the encoder blocks 
and the classification head during 2 epochs. In the second one, that we denote 
as frozen, we only train the classification head while freezing the encoder blocks 
(i.e., the model learns to use the embeddings without modifying them). We note 
that the m odel’s training randomness can be controlled via a seed parameter
that rules the initialization of the layers, the order of the training dataset and
the neurons that are deactivated by the dropout layers during the training.

Once our model is trained, we use Chefer et al.’s LRP method to generate 
word-level explanations for every text [7]. It back-propagates the relevance from 
the last layer of the network using conservation constraints, so that the relevance
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of each neuron is redistributed to the neurons of the previous layer based on their 
respective gradient. This principle is then followed through the whole network
up to the input layer in order to obtain word-level explanations.2

2.2 Equivalent Models’ Explanations

In a previous work [3, 6], Bogaert et al. showed that the training randomness of 
LLMs can have an impact on their explainability. To do so, and as illustrated
in Fig. 1, they trained many models with the same settings and on the same 
dataset, but with different random seeds.The accuracy of these models was then 
evaluated on a test set, and a subset of m most accurate models was selected, 
such that the difference between the b est (a) and worst (b) accuracies of the
models in the subset was not statistically significant. For this purpose, one can
computed the z statistic [13], which can detect whether two proportions (here, 
the accuracies a and b) are different:

trainingtraining and 
validation sets 

(possibly random) 
hyperparamters 

explanation 

test set 

test 

compatible inputs 

optional parameters 

equivalent 

Fig. 1. Setup for the generation of equivalent models and compatible inputs.

2 CamemBERT uses the roBERTa tokenization to work with word pieces. We post-
process explanations to get one weigh t per word instead of one per word piece.
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As Bogaert et al., we next consider that z values greater than 1.96 (p  <  0.025) 
mean that the accuracies of the best and the worst models in a subset are 
different. For lower z values, we conclude that these accuracies do not differ
significantly and therefore, we consider the models in the subset as equivalent
from the performance viewpoint. Starting from 200 models (see Sect. 2.1), a 
restriction to m = 100 was sufficient to reach model equivalence in the subset. 
We then selected so-called compatible inputs for which all models predict the
same class, and we computed explanations for each model on such inputs.

2.3 Explanation Stabilit y

The main observation in [3, 6] is that the explanations of equivalent models on 
compatible inputs can differ, raising a need to characterize their sensitivity to 
the training randomness. For this purpose, one can construct an explanation 
matrix of m rows (corresponding to different random seeds) and n columns (cor-
responding to different words), where each as,w corresponds to the relevance
value assigned by the s-th model (seed) to the word at the w-th position, as
showed in Fig. 2. The left part of the figure additionally shows the average curve 
which corresponds to the “simple” (wo rd-level, univariate and first-order) expla-
nations introduced in [5]. Word-level means that all m explanations of an n-word 
text display a weight for each word independently. Univariate means that each 
of these weights is a single v alue. First-order means that variable explanations
are summarized by their mean (i.e., a first-order statistical moment).

Fig. 2. Explanations of n =  4-word texts for m = 3 seeds and mean (dotted).

2.4 k-Words Explanations 

To capture the possibility that shorter explanations are more plausible, we can 
evaluate so-called k-word explanations, obtained by keeping only the 0 ≤ k ≤ n
highest relevance values of each explanation. To further simplify the individual
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explanations, one can also use k-word binary explanations, where only the k top 
words are considered relevant, without any distinction among them:

as,w =
{

as,w if as,w ∈ T  OPk(as,:), 
0 oth. as,w =

{
1 if as,w ∈ TOPk(as,:),
0 oth.

2.5 Signal, Noise a nd SNR

Simple (word-level, univariate and first-order) explanations naturally suggest 
simple quantities to capture their sensitivity to randomness. In [5], the explana-
tions’ signal (S), noise (N) and Signal-to-Noise Ratio (SN R) were suggested as 
tentative metrics for this purpose. Intuitively, the signal reflects the flatness of 
the average explanation, the noise reflects the va riation of the relevance scores
for each word (averaged) and the SNR is simply the ratio between both:

S = V̂ar 
n words

(

Ê 
m seeds

(

as,w

)
)

, N  = Ê 
n models

(

V̂ar 
m seeds

(

as,w

)
)

, SN R =
S

N
·

3 Metrics’ Corner Cases 

We next discuss the adequacy of the SNR metric to reflect the stability of expla-
nations in the setting of Fig. 2. For this purpose, we use illustrative hand-made 
examples and compare how the stability of some explanations is captured by the 
SNR and by an alternative simple metric, namely the (average) correlation with 
a mean explanation. We are in particular interested in the ability of these metrics
to reflect the relative differences of relevance between words and the absolute
differences of relevance for single words in a set of variable explanations.

3.1 Relative Differences (Between W ords)

Figure 3 illustrates two pairs of explanations such that the relevance of some 
words are swapped when moving from the left to the right plots. As a result, these 
left and right plots show quite disparate relative differences of relevance between 
words. Interestingly, the SNR metric is unable to reflect these relative differences. 
This is because the swaps do not affect the mean explanations (which are the 
same on the left and right plots, leading to the same signal) nor the absolute
difference between words (hence the noise). By contrast, the correlation metric
captures these relative differences: the explanations of the left plot are highly
correlated with the mean explanation; the ones of the right plot are not.

3.2 Absolute Differences (for S ingle Words)

A complementary situation is illustrated in Fig. 4, in which an offset δ was added 
to all the relevance values of one explanation and subtracted for the other. As
a result, the left and right plots show disparate absolute differences. This time,
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Fig. 3. Two pairs of explanations (� and ©), with the same absolute differences and 
different relativ e differences, with the mean explanation in dotted line.

Fig. 4. Two pairs of explanations (� and ©), with the same relative differences and 
different a bsolute differences, with the mean explanation in dotted line.

the correlation metric is unable to reflect the discrepancy between the left and 
right plots (because the correlation is invariant to the δ offset). By con trast, the
SNR reflects it because the noise of the left and right plots differs.

3.3 Discussion 

The two examples above suggest a quite natural tradeoff between the SNR and 
correlation metrics: the first one better captures absolute differences, the second 
one better captures relative differences. While this may encourage using both
metrics in parallel, Fig. 5 highlights additional limitations of the (noise compo-
nent of the) SNR metric. Namely, it illustrates that the noise metric is averaged 
over (possibly dependent) words, which may hide important intuition regarding 
which word is causing the noise. (By contrast, the correlation can be averaged 
over independent seeds). As a result, we suggest using the correlation metric for 
design space exploration and box plots for a qualitative analysis of the noise. As
will be experimented next, this appears as a relevant combination to character-
ize the explanations’ sensitivity to the training randomness, capturing both the
absolute and relative differences within these explanations.3

Besides, the SNR is also slightly less convenient to manipulate from the sta-
tistical viewpoint. First, it is a biased metric since small estimation errors in the 
mean explanations are considered as signal by definition. Second, its interpreta-
tion in case of small noise levels is not always intuitive (e.g., the SNR tends to
infinity when the noise tends to zero). Despite these drawbacks do not lead to
fundamental issues (i.e., the SNR bias decreases with the amount of seeds and

3 In Appendix A, we give additional arguments why the noise metric alone cannot 
be used for design space exploration. In appendix B, we give additional arguments 
why the signal metric alone i s making undesirable implicit plausibility assumptions.
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Fig. 5. Two pairs of explanations (� and ©), with the same (average) relative differ-
ences but distributing these differences differently among the words of a sentence.

can be corrected, intuition is just less direct), we show next that the correlation 
coefficient also comes with advantages in this respect. It can be estimated with-
out bias thanks to cross-validation, benefits from a well-known sample distribu-
tion leading to easy-to-obtain confidence intervals and its interpretation is direct.

4 Application to Case Studies 

We now apply the methodology proposed above to t he classification case study
described in Sect. 2. First, we detail how to estimate the correlation metric in
Sect. 4.1. Next, we show how it can be used for design space exploration in
Sect. 4.2. Finally, we illustrate how such a quantitative analysis is nicely com-
bined with a more qualitative one using box plots in Sect. 4.3. 

4.1 Estimation and Confidence Int erval

The examples of Sect. 3 suggest using the correlation of different explanations 
with their mean as a good way to q uantify the explanations’ sensitivity to the
training randomness.4 We next detail how correlation samples can be estimated 
without bias thanks to 10-fold cross validation, and possibly averaged.

For this purpose, the average explanation is first repeatedly computed using 
90% of the explanation matrix’s rows and the remaining 10% of the rows are 
repeatedly compared to these means in order to compute correlation samples
(one per explanation). Figure 6 shows a scatter plot of all the correlations to the 
mean (i.e., one per trained model, so 100 in our case study), highligh ting the
high disparity of the results depending of the training randomness.

Different quantities of the correlation distribution could then be considered 
to summarize the explanations’ stability. In the following, and for simplicity 
purposes, we suggest to use the average correlation. We note that while it is 
in general better to estimate the correlation between two variables based on 
a large set of samples than averaging correlations estimated from several smaller
sets of samples, this approach can serve as a useful heuristic in our context, if
interpreted carefully. Namely, as a way to capture a global tendency for many

4 Under the assumption of simple explanations formalized in [5] as (1,1,1) explana-
tions, computing the average correlation to a mean explanation rather than the 
average pairwise correlation allows significant speedups without intuition loss.
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Fig. 6. Scatter plot of the correlation to the mean for LRP explanations correspond-
ing  to  the  frozen (top) and fine-tuned (bottom) models in function of the number of 
words used per explanation, illustrated for a short (left) and a long (right) text. For
readability, only the values k = 10, 20, 30, ... are displayed for the long text.

explanations, possibly leading to different correlation values. For this purpose,
we follow [17] and first use the following “Fisher Z transformation”: 

F (ρ̂)  =  
1 
2 
ln( 

1  +  ρ̂ 
1 − ρ̂ 

) = arctanh(ρ̂), 

which projects the correlation samples in a space where they are normally dis-
tributed. We can then compute the average Fisher value F̄ ,  as  well  as  its  sample  
variance σ̂2. A confidence interval on the estimation of F̄ (e.g., 96%) is obtained 
by adding or removing 2 σ̂√

m to F̄ . Applying the inverse function ρ = tanh(F (ρ)) 
finally leads to 96% confidence interval for the average correlation:

[

tanh
(

F̄ − 2σ̂√
m

)

; tanh
(

F̄ +
2σ̂√
m

)]

.

This interval indicates that the average correlation is better estimated with more
models (i.e., large m values). By contrast, longer texts (i.e., large n values) lead
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Fig. 7. Average correlation to the mean (with confidence intervals) for LRP explana-
tions corresponding to the frozen and fine-tuned models in function of the number of 
w ords used per explanation, illustrated for a short (left) and a long (right) text.

to better estimated correlation samples, but do not necessarily decrease the 
variance σ̂, since the correlations of different explanations may differ.

4.2 Quantitative A nalysis

Figure 7 shows the average correlation to the mean for k-word explanations. 
Positing that shorter and more aligned explanations are more plausible, such an 
exploration can lead to identify relevant parameters to investigate more quali-
tatively. For example, we can see on the left plot that the average correlation 
to the mean increases up to k =  7  and then reaches a plateau . Hence, larger 
va lues of k (i.e., longer explanations) may not lead to a reduced sensitivity to
the training randomness. We next complete this observation with a qualitative
analysis for the explanations obtained for k = 7 and the maximum k = 51.

4.3 Qualitative A nalysis

Starting with the box plot for k =  7 displayed on Fig. 8, we can observe that, 
qualitatively as well, the LRP explanations of the frozen model are significantly 
less sensitive to the training randomness than the ones of the fine-tuned model. 
This is quite expected since the amount of network weights that are trained 
in these two models vastly differ. What is maybe less expected is that the the 
variability per word is also distributed very differently for both models. Namely, 
7-word explanations across the 100 seeds only c onsider 10 different words in
the frozen case, while most words are considered by the fine-tuned models. This
tends to justify our proposed methodology, where we do not analyze the absolute
difference with the noise metric (which is averaged over the words).

More interestingly, Fig. 9 shows the box plots obtained for the same models 
and k =  51. Its upper part is particularly relevant: it confirms that increasing
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Fig. 8. Box plot for k =  7  and the frozen (top) and fine-tuned (bottom) models.

Fig. 9. Box plot for k =  51  and the frozen (top) and fine-tuned (bottom) models.

the explanations’ length beyond k =  7  is not only discouraged by the correla-
tion metric, it actually also leads to harder to interpret first-order explanations
assigning non-zero relevance scores to most words, as the fine-tuned model.

5 Conclusions 

Our results provide consolidated tools for analyzing the sensitivity of the expla-
nations of LLMs to the training randomness, hopefully opening a path to their
better understanding and leading to various interesting open problems.

First, and maybe most importantly, the extent to which the stability of the 
explanations of LLMs is a requirement for their plausibility remains unknown. 
While we posit in the paper that shorter and more aligned explanations are easier 
to understand, it could also be that human explanations show variations t hat
are similar to the ones observed in this paper. Designing a real-world experiment
with human annotators would be interesting to contribute to this question.

Second, even if explanations appear unstable when considering their average 
correlation to a mean explanation as in this paper, it is possible that some 
clusters exist within these explanations. This would mimic a situation where 
a few groups of human annotators share v ery similar explanations within the
groups and have very different ones between the groups. In order to stimulate
research in this direction, Fig. 10 shows a TSNE visualization of 100 explanations 
used in our experiments. It would be interesting to investigate whether clusters 
an b e extracted from such plots and lead to more stable/aligned explanations.

Third, it would be interesting to investigate whether more complex explana-
tions (e.g., assigning relevance scores to tuples of words) or more complex models 
(e.g., generative ones) may lead to different outcomes, and whether a sensitivity
to the training randomness is observed for other tasks or data sets.
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Fig. 10. TSNE for k =  51  and the frozen (left) and fine-tuned (right) models.

Finally, our conclusion may also differ for other modalities than texts. For 
example, image explanations may be more stable due to the more correlated 
nature of adjacent pixels (compared to consecurive words in a text). 
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A The Noise Is Not Good for Design Space Exploration 

As illustrated in Fig. 11, we cannot use the signal or the noise alone to explore 
our design space, as their range is directly impacted by the amount of top words 
k. This is the case even for deterministic/random explanations, which lead to 
an hypothesis that selecting a certain ratio of word leads to more stable expla-
nations, even if all the mo dels perfectly agree on the relevance of every token.
This is not the case for the correlation metric that is always at its maximum for
the deterministic model, and at its minimum for the random one.

Fig. 11. Signal (left), noise (middle) and correlation (right) of deterministic (-)  and  
random (.) explanations, for the binary variant of k-word explanations.
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B Implicit Assumption of the Signal Metric 

As illustrated in Fig. 12, it is possible to obtain explanations such that their 
absolute and relative differences are identical, but their signal differs, because 
the signal is focused on the flatness of the mean explanation. It implicitly sug-
gests that m ore relative differences within this mean explanation lead to better
explainability, which may not be connected to a definition of plausibility.

Fig. 12. Two pairs of explanations (� and ©), with the same absolute and relative 
differences and differen t signal, with the mean explanation in dotted line.
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Abstract. Electroencephalographic (EEG) recordings are often con-
taminated with artefacts, such as eye blinks, which complicate their anal-
ysis. While various methods exist to address, identify, and mitigate arte-
facts, many require human intervention. This study introduces a novel, 
self-supervised, fully automated approach for identifying and reducing 
artefacts in EEG signals using a Variational Autoencoder (VAE) archi-
tecture. In detail, subject-specific VAEs, with convolutional layers, are 
trained from spatially preserved EEG topographic maps. A sample-wise 
strategy based on the negative log-likelihood of activated latent vectors 
from training data is proposed to identify anomalous topomaps. This 
assigns an anomaly score to each model’s input. The vectors of input 
topomaps above a chosen threshold are automatically clipped with a 
percentile-based approach of activated latent space components. Even-
tually, the reconstructed EEG signals are compared with a baseline built 
upon an offline ICA method with automatic detection of artefactual com-
ponents inspired by the FASTER methodology. Results show that the 
signal-to-noise ratio (SNR) and the peak signal-to-noise ratio (PSNR)
of the FP1, FP2, and other channels were higher, while the remain-
ing channels were similar to ICA Fast. Similarly, mean absolute error
(MAE), normalised root mean square error (NRMSE), and correlation
coefficients indicated comparable signals from both methods. In addition,
findings demonstrate the method’s strength in avoiding signal updates
in non-artefactual segments, preserving their neural dynamics. The con-
tribution to the body of knowledge is a fully automated, subject-specific
method for identifying and denoising EEG signals.
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interpretability · Artefacts removal · Deep learning · full automation ·
explainable AI

1 Introduction 

Electroencephalography (EEG) serves as a technique for capturing brain activ-
ity by employing electrodes positioned on the scalp [14]. EEG signals are impor-
tant because they can convey crucial information about brain functioning across 
frequency, temporal, and spatial domains. While they have proven valuable in 
diagnosing various mental disorders, the analytical process is c hallenging, and
decision-making poses difficulties due to factors such as low amplitude, intri-
cate data collection setups, and significant noise [29]. EEG noise sources include 
physiological artefacts such as eye blinks, muscle movement, and artefacts from 
the EEG equipment itself. The superimposition of these artefacts on the EEG 
data may obscure its interpretation. This is especially important in the medical 
industry, where EEG signals might be employed as the sole d iagnostic source,
and failure to recognise artefacts can seriously impact clinical judgements. Con-
sequently, artefact identification is the first and most important stage in EEG
signal processing before its mitigation.

It is widely recognized that EEG signals encompass crucial information across 
frequency, temporal, and spatial domains. EEG topography mapping is a neu-
roimaging approach using visual-spatial depiction to map the EEG signal [54]. 
The EEG data from the electrodes is collected and processed into topograph-
ical maps (topomaps). A topomap usually depicts raw EEG data of voltage
or power amplitude to topographic head visualisations [4]. Other studies have 
generated spectral topographic head maps for various EEG bands, aiming to pre-
serve s patial information while capitalising on the insights from the frequency
domain [49]. Topographic maps have also recently been used with deep learn-
ing for various tasks. For example, a 2D Convolutional Neural Network (CNNs) 
to autonomously l earn EEG features across diverse mental tasks without prior
knowledge has been designed in [5]. Similarly, a tensor decomposition-based algo-
rithm reduces the CNN input into a concise set of slices to improve computa-
tional efficiency and enhance the extraction of relevant EEG features for cate-
gorising epileptic seizures. Another example of works employing deep learning
with EEG data is Variational Autoencoders (VAEs) [32]. Autoencoders (AE) are 
self-supervised deep-learning neural network architectures that leverage unsu-
pervised learning to acquire efficient features without labelled inputs. These fea-
tures, part of a latent space, are often of lower dimension than the original input
and are employed to reconstruct it with high fidelity [8]. A variational autoen-
coder (VAE) is a specific version of AE that learns a probabilistic model of the 
input sample and subsequently reconstructs it based on that model, essentially
generating synthetic data [15]. For example, convolutional VAEs were used with 
topographic maps to learn prominent high-level f eatures of a lower dimension of
EEG signals [1– 3]. However, limited exploration exists to use autoencoders with
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EEG topography and understand the meaning of their latent represen tations for
artefact identification and reduction.

This research tackles this problem and focuses on developing an offline, self-
supervised approach using subject-specific VAEs trained with spatially preserved 
EEG topographic maps to detect and minimize artefacts in EEG signals fully 
automatically, specifically of an ocular nature. The proposed method is a novel 
contribution to the body of knowledge for reducing the amplitude of EEG sig-
nals during artefactual intervals. The detailed researc h question being addressed
is: Can a fully automated, offline denoising architecture for EEG signals using
Variational Autoencoders trained with EEG topographic maps perform better
or equal to traditional ICA-based methods for artefact detection and mitigation?

Fig. 1. The scope of this research is at the intersection of electroencephalography from 
the discipline of neuroscience, variational autoencoders (VAEs) from deep learning, a 
sub-discipline of artificial intelligence, a nd sensitivity analysis of the latent space of
such VAEs from the new discipline of explainable.

This research is at the intersection of neuroscience, Artificial Intelligence (AI), 
and Explainable AI (XAI) to address the problem of identification and mitiga-
tion of artefacts in EEG signals (Fig. 1). In detail, explainable AI techniques 
are used to perform sensitivity analysis on their latent components to better 
understand person-specific models trained using a deep variational autoencoder. 
It follows similar work on sensitivity analysis, where Receiver Operating Char-
acteristic (ROC) curves and Area Under t he Curve (AUC) metrics were used to
assess the discriminated performance of individual latent components involved in
capturing eye blink artefacts [18]. Similarly, interpreting the latent space could 
facilitate the generation of realistic, plausible representations of EEG dynamics, 
potentially paving the way for a more in-depth understanding [13]. 

The subsequent sections are structured as follows: Sect. 2 delves into prior 
research on VAE-based methods for handling EEG artefacts and the i nterpreta-
tion of their latent spaces. Section 3 outlines the empirical study and its method-
ology to address the earlier research question. Section 4 presents the experimen-
tal results, findings, and discussion. Finally, Sect. 5 concludes the manuscript, 
summarizing the contribution to the body of knowledge and outlining potential
directions for future research.
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2 Literature Review 

EEG data is widely used in research, including neuroscience, cognitive sci-
ence, cognitive psychology , neurolinguistics, and psycho-physiological studies
[53]. Unfortunately, various internal and external artefact sources overlap neural 
data in laboratory-based or naturalistic settings, hampering its analysis. Arte-
facts can be classified according to their origin. If the source is within the sub-
ject’s body, they are called physiological artefacts; outside, they are called exter-
nal artefacts. Physiological artefacts are caused by electrical activity in other 
regions of the subject’s body that disguise EEG signals. These include ocular or 
muscle artefacts among others. Ocular artefacts are generated by eye blinks or
saccades inducing a voltage change in the electrodes near the eyes, especially at
the Fp1-Fp2 (Fronto Parietal) electrode locations on the scalp. They generate
high-amplitude signals many times greater than the amplitude of the EEG sig-
nals of interest [20], especially in low-frequency EEG bands (0–12 Hz). Muscle 
artefacts are generated, for example, by chewing, swallowing, tongue movements, 
and grimacing, to mention a few. They mainly contaminate the high-frequency 
EEG bands (110–140Hz) and occur less frequently in sleep, overlapping with the
beta band (15–30Hz) [7, 50]. Cardiac artefacts are generated by the heart and 
are visible from an electrocardiogram (ECG) signal in the temporal left area. 
They are more prominent in subjects with s hort necks, overlapping with neu-
ral frequency around 1Hz, with amplitudes in the millivolt range [50]. External 
artefacts are derived from electronic devices, transmission lines, and environ-
mental lines, among other things. For example, phone artefacts are caused by 
a cell phone signal overlapping with the high-frequencies of EEG signals in a
spurious way [50]. Electrode artefacts are low-frequency types of noise caused by 
poor contact with the scalp. They are short transients localised to one e lectrode,
for example, caused by respiration that might move it [50]. Physical movement 
artefacts are generated by electrode contact loss caused by the sudden physical 
movement of a subject. Its morphology differs from that of an EEG [50]. 

Several methods exist to remove the above types of artefacts. Regression 
methods are the most basic and widely used to remove them from EEG sig-
nals by modelling a nd subtracting the unwanted components based on their
linear relationship with reference signals [10, 19, 25]. Adaptive filtering is based 
on the assumption that there is no relationship be tween the true EEG signal
and artefactual activities [46]. The objective of an adaptive filter is to adapt the 
coefficients of a selected linear filter and, therefore, of its frequency response to 
generate a signal similar to the noise present in the actual EEG signal to be 
filtered. Blind source separation (BSS) refers to a group of techniques to sepa-
rate mixed signals into their original, independent sources without prior knowl-
edge of the mixing process or the sources themselves. In EEG signal processing, 
BSS methods include independent component analysis (ICA), principal compo-
nent analysis (PCA), and canonical correlation analysis (CCA) primarily. ICA
separates multichannel EEG data from several sources into independent com-
ponents (ICs). The selection of artefactual independent components is usually
done by visualising topographic maps and time series of ICs and hence is largely
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dependent on the researcher’s experience [42]. PCA is a statistical method that 
uses an orthogonal transformation to turn time-domain observations of pos-
sibly correlated variables into values of linearly uncorrelated variables [42]. It 
has been reported that PCA o utperforms regression-based artefact reduction
[9]. In contrast to the ICA approach, which uses higher-order statistics, canon-
ical correlation analysis employs second-order statistics, requiring less process-
ing effort. CCA distinguishes components from uncorrelated sources, whereas 
ICA distinguishes components from statistically independent sources. Empirical 
Mode Decomposition (EMD) is well-suited for analyzing and processing EEG 
signals due to its ability to handle non-stationary, non-linear, and stochastic 
processes. It breaks down the signal into a series of intrinsic mode functions
(IMFs), each representing simple oscillatory modes, which facilitates the analysis
of complex EEG data [27]. In recent years, researchers have increasingly focused 
on leveraging the strengths of various techniques by combining them into a sin-
gle, hybrid method for artefact detection and removal [27]. Artefact reduction 
methods are manual, automatic, offline and online [36]. Manual methods often 
require manual detection of artefact-contaminated EEG, typically performed by 
a panel of experts. They can be challenging and time-consuming, especially for
large amounts of data [31]. Therefore, classifying independent components (ICs) 
may be the most challenging step in manually removing EEG artefacts [31]. Sev-
eral methods improved this by the proposal of automatic or semi-automatic IC 
classification. For example, using spectrum properties, topographic m ap prop-
erties, or an analysis of each IC’s contribution [38]. Offline methods are those 
applied only when the whole observation dataset is available. Online methods 
are more challenging because they need to denoise EEG signals in real time, thus
requiring sophisticated strategies that humans cannot supervise.

Recent advances in deep learning with applications in neuroscience and elec-
troencephalography have demonstrated how offline automatic methods can be 
developed with high accuracy. These methods are like source separation methods. 
They take advantage of the recorded EEG data and learn high-level represen-
tations through training neural networks similar to independent and principal
components analysis [37]. However, like source separation methods, they suffer 
from the understanding of the high-level representations [35], the latent com-
ponents, and which of these are responsible for artefacts, or not [2, 3]. Human 
intervention is often required, and like source separation methods, such higher-
level representations require a degree of interpretation. This is also because they 
can be lower in number than the number of o riginal EEG channels. Examples
include the family of autoencoders (AEs), with variational (VAEs) being the
most adopted with EEG data [1, 3, 12, 17, 18, 24, 57]. Similarly, recent research on 
VAE with EEG has focused chiefly on data augmentation, emotion prediction, 
and feature representation. In most research, VAE is employed a s an EEG data
generator and provides classification models with a substantial amount of data
[16, 21, 56]. VAE is also utilized in other investigations to extract features such 
as influential elements from EEG data [33, 55]. A VAE model gives a closed-
form latent space representation of the distribution underlying the input data,
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which is ideal for unsupervised learning to understand the impact and impor-
tance of each latent component for capturing the number of true generative 
factors. Research towards establishing the ideal dimension of the laten t space of
an autoencoder trained with EEG data is still in its infancy. For example, the
preliminary study conducted in [1] focused on examining various latent space 
dimensions of person-specific autoencoders trained with spectral topographic 
maps of different frequency bands from different overlapping EEG time windows
[1]. Similarly, research on understanding the reconstruction capacity of autoen-
coders is preliminary. For example, the analysis conducted in [22]  was  focused  on  
visualising the disentangled representation of VAE to grasp its decision towards 
reconstruction capacity. The disentanglement is a condition of the latent space in 
which each latent v ariable is sensitive to changes in only one feature while insen-
sitive to changes in the others [8]. The disentangled latent variables have been 
applied successfully in various applications, including face recognition, video
prediction, and anomaly detection [26]. Here, the disentangled representations 
of the VAE are mainly interpreted to determine which one helps capture data 
artefacts. An example of such an in terpretation method is based on determining
the latent variable’s out-of-order distribution (OOD) [43]. Employing the KL 
divergence metric, the OOD latent components of a variational autoencoder’s 
latent space are determined. This is the difference between the generated latent 
distribution and the standard normal distribution (μ =  0,  σ  =  1). Therefore, 
manually adjusting the VAE’s latent space component enables a user to examine 
how different latent values affect the model’s outcome. Scholars also illustrated
how a VAE model’s latent space might be more explainable by utilising latent
space regularisation to force some selected dimensions of the latent space to map
to meaningful musical qualities [6]. Similarly, a sensitivity analysis of the VAE 
latent space is conducted using Receiver Operating Characteristic (ROC) curves 
and Area Under the Curve (AUC) metrics to assess the discriminating perfor-
mance of individual latent components involved in capturing eye blink artefacts
[17]. 

Despite the increasing use of VAE with EEG signals, designing an offline and 
automatic method for EEG artefact identification and reduction using the spatial 
information of EEG data is not a trivial task. This is because of two main chal-
lenges. The first is determining the smallest size of topographic maps that can 
preserve spatial information concerning the number of electrodes employed while 
achieving maximum dimensionality reduction without losing meaningful infor-
mation. The second approach manipulates the latent space of a subj ect-specific
VAE, trained on spatially preserved EEG topographic maps. Boundaries for each
component can be set using the standard approach on normal distribution, since
99.7% of data in it lies within ±3 standard deviations, thus identifying values
likely associated with irregularities in the data [45]. The above gaps motivated 
this research study and informed the design of a VAE trained with spatially 
preserved topographic maps extracted from raw signals to leverage spatial infor-
mation and mechanistic, automatic interpretation and manipulation of its latent
components for artefact reduction.
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3 Methodology 

This research aims to design, develop and test an offline, fully automated, self-
supervised approach using VAEs trained with spatially preserved EEG topo-
graphic maps. This is tested against detecting and minimising artefacts, with a 
special fo cus on blink-related artefacts in EEG signals. A high-level design of the
layers of this research is illustrated in Fig. 2, and the following sections describe 
its components.

Fig. 2. A novel fully automated method for identifying and reducing artefacts from 
EEG signal based on convolutional variational autoencoders. (A) Multi-variate EEG 
recordings are selected; (B) Spatially-preserved EEG topographic head maps of size 
40 × 40 are formed for the entire EEG recording, at each time step; (C)  A  convo-
lutional, variational autoencoder architecture is trained with topographic maps; (D) 
An automated analysis of the variational autoencoder (VAE)’s latent space is per-
formed after training, and a clipping strategy is implemented for anomalous input via
a sample-wise strategy; (E) A reconstruction of anomalous topographic maps and their
transformation into the time domain is performed for each original electrode record-
ing; (F) The model’s performance (EEG topomaps reconstruction capacity and signals
reconstruction fidelity) is evaluated.

The specific research hy pothesis is:

IF a person-specific VAE is trained with spatially preserved EEG topo-
graphic maps, achieving a high SSIM and lower MSE, MAE, and 
MAPE, AND a procedure to manipulate the latent components based
on percentile-clipping
THEN the SNRs and PSNRs of EEG channels are expected to be equal to
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or higher than the ICA-Fast (baseline), reflecting similar or improved arte-
fact suppression, especially for ocular artefacts AND the mean absolute 
error (MAE), normalised root mean square error (NRMSE), and correla-
tion coefficients (Corr) are expected to have equal or higher signal fidelity
compared to the baseline, indicating effective artefact reduction without
significant distortion of the underlying EEG signals.

3.1 Dataset 

The DEAP dataset was chosen to train the proposed method for detecting and 
reducing artefacts because it contains multi-channel EEG recordings with many 
participants and tasks. EEG data were collected from 32 people who watched
40 one-minute music video clips [30]. The 10–20 electrode position system was 
applied with the following channels: Fp1, AF3, F7, F3, FC1, FC5, T7, C3, CP1, 
CP5, P7, P3, Pz, PO3, O1, Oz, O2, PO4, P4, P8, CP6, CP2, C4, T8, FC6, FC2, 
F4, F8, AF4, Fp2, Fz, and Cz. Data was acquired with a sampling rate of 500 Hz 
and downsampled to 128 Hz for ease of subsequent computations. A lo w/high-
pass filter with a frequency range of 0.1 to 50Hz was applied to remove slow
drifts and DC offsets, and average channel referencing was executed to create a
more electrically neutral reference point [40]. 

3.2 Spatially Preserved EEG Topographic Maps Generation 

Raw EEG signals are employed to construct spatially preserved EEG topo-
graphic maps, 128 per second, as the sampling rate. Empirical evaluations were 
conducted to ascertain the minimum dimension of such maps and reduce the 
computational time required for model training. This preserved the spatial dis-
tance between EEG electrodes in proportion to the distance as per the 10–20 
electrode position standard. In other words, the goal was to transform EEG 
signals into plausible, spatially preserved topographic maps of minimal dimen-
sion. The conversion of the electrode recordings over time into topographic maps 
involves, firstly, transforming 3D polar coordinates to 2D cartesian coordinates. 
Such transformation can distort the original distance among electrodes as set 
by the 10/20 electrode placement standard if topomps are small. Thus, a grid
search was performed among varying square-size topomaps, and the one that
minimises such size but with closer average Euclidean distances among all the
pairs of electrodes to those of the 10/20 standard was chosen. Such a grid search
indicates that the ideal resolution of a topomaps with 32 electrodes resulted in a
40×40 pixels topomap (Fig. 3). Subsequently, such a 40×40 map of initial zeros 
was filled with the power magnitude of each of the 32 electrodes at their spe-
cific locations. Eventually, cubic interpolation was performed to fill all the other
empty pixels, creating the final full topographic maps as illustrated in Fig. 2,  B  .

3.3 Designing and Training a Variational Autoencoder (VAE) 

After generating the topographic maps, a VAE is trained. This turns input data 
into probability distribution parameters, including the mean and standard devi-
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Fig. 3. Electrodes placement of the 10/20 standard in the 2D coordinate space (left) 
Electrodes coordinates in a topomap of 40 × 40 (middle left) Scattered power values 
at each electrode p osition in the 40 × 40 topomap (middle right) Cubic interpolated
topomap (right).

ation of Gaussian distributions. It provides a continuous, structured latent space. 
The VAE architectural design is made up of two networks. First, the encoder
is a neural network that takes an input tensor (as in Fig. 2, C). It defines the 
approximate posterior distribution Q(Z | x),  where  x is the i nput tensor and
Z is the latent space. The architecture (Fig. 2, C) consists of four 2D convo-
lutional layers, each of which is followed by a max pooling layer to reduce the 
dimensions of the feature maps. ReLU is used as the activation function in each 
convolutional layer. Second, the decoder of the VAE is a generative network t hat
takes a latent space Z as input and outputs the parameters for the conditional
distribution P (x | Z) of the observation (as shown in the right part of Fig. 2,  C).  
Similarly, like the encoder network, the decoder consists of four 2D convolutional 
layers, each followed by an up-sampling layer to reconstruct the data to the shape 
of the original input. Such a VAE is trained using topographic maps generated
with the procedure described in Sect. 3.2, based on a randomly selected 70% (28 
out of 40) of 1-minute videos from a single participant. The remaining 30% of 
videos are split equally into validation and testing sets (15% each). The latent 
space dimension of the VAE must be carefully tuned to maximise reconstruction 
qualit y while capturing the true generative factors in the data. However, identify-
ing the minimum sufficient latent dimensionality remains an open challenge [34]. 
Following  the  approach in [1, 11], the VAEs were trained on EEG topographic 
maps to preserve spatial information, using latent dimensions ranging from 25 
to 800. Reconstruction performance is measured using SSIM, MSE, MAE, and 
MAPE. Findings show that such metrics improve as latent dimensionality gets 
closer to 40 (with 40× 40 images). Beyond t his threshold, additional dimensions
yield minimal reconstruction improvement. Therefore, a latent dimension of 40
is selected as optimal, offering a balance between reconstruction accuracy and
preserved essential information.

3.4 Latent Space Interpretation and Update 

This section details the strategy for automatically and globally interpreting the 
latent space of a person-specific variational autoencoder (VAE) model. It also
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presents a percentile-based clipping strategy for EEG artefact denoising. The 
goal is to understand which parts of each latent component are rare and thus 
poten tially corresponding to an anomalous input, and to manipulate such a
latent component accordingly.

By design, each latent space’s component is a Gaussian distribution. After 
training a person-specific VAE model, the topographic maps in the training set 
are re-input, and the activated latent space Z is read for each of them (Fig. 2 -
D1). This leads to 40 distributions, for each latent component zi,  with  a  mean  
and standard deviation. A parametric density estimator is then used to estimate
probability distributions for each latent component, leading to 40 probability
distributions (Fig. 2 - D2). For each input topographic map in the training set, 
its activated latent space Z (a vector of N=40 activated zi scores) is read. The 
probability of each of s uch zi is extracted from the related probability distribu-
tion, and inputted to a ξ function (Eq. 1). Such a function returns the negative 
log of the input zi if such negative log is above a threshold λi, otherwise zero. 
This process is repeated for all the zi scores and their sum is taken to com-
pute an anomaly score AS for an input topomap (2). A threshold λi is set to 
each latent component’s 98th percentile of each probability distribution. This 
high percentile was chosen to ensure that only the most extreme outliers, the 
tail of the distribution (anomalies), would contribute to the computation of the
anomaly score. Such a threshold is often used in outlier detection to minimise
false positives while capturing rare and potentially meaningful anomalies [52]. 

ξ(zi)  =

{
− log(zi), if − log(zi) >  λ  i
0, otherwise

(1) 

The anomaly score for a given sample is then obtained by summing the 
retained log-likelihood values across all N activated latent vectors (Fig. 2 - D3, 
equation, similarly to the approach in [39]. This method provides a cumula-
tive measure of how strongly a sample’s latent representation deviates from the 
average, based on the behaviour of its individual component activations. A final 
threshold γ is set to the 98th percentile to discriminate average topomaps from 
those anomalous. Intuitively, the higher this pe rcentile, the less the anomalous
topomaps, and vice versa. This threshold is fixed, and can now be used for any
input topomaps, even those from the test set (unseen).

AS = 
N∑
i=1 

ξ(p(zi)) (2) 

After identifying the anomalous topomaps via the above strategy, that means 
those with an anomaly score exceeding γ is passed through a clipping strategy. 
Such a strategy is implemented, using the standard procedure of ±3 standard 
deviations of the distribution of the activations of each latent component. In
detail, two boundaries are set, δLi and δUi , corresponding respectively to 0.03%
and 99.7%, (Fig. 2, step D1). If every component zacti of an anomalous topomap
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exceeds the upper boundary δU 
i of its latent space distribution, then it is clipped 

to such boundary, otherwise is left intact. Likewise, if it falls below the lower 
boundary δL 

i , it is clipped to it. This procedure is mathematically described by
the function clip(zacti , δL, δU ), as shown in Eq. 3 (Fig. 2, D5). 

clip(zact i ,  δL ,  δU )  =  

⎧⎪⎨ 

⎪⎩ 

δL 
i if zact i <  δL 

i 

δU 
i , if zact i >  δUi

zacti , otherwise
∀zacti ∈ Zact (3) 

This ensures that the latent variables contributing to extreme deviations are 
constrained within the boundaries established, thereby enhancing the model’s 
robustness in mitigating anomalous input topomaps, likely the noisy inputs con-
taining artefacts.

3.5 Artefacts Identification and Removal Using an Automatic 
Baseline 

The FASTER pipeline, used primarily for ERP-based studies, systematically 
identifies artefactual trials (epochs) and try to corrects, or discard EEG por-
tions containing artefacts [41]. It is built upon five data dimensions: channels, 
epochs, independent components (ICs), single-channel single-epochs, and aggre-
gated datasets (for example across participants). The methodology involves com-
puting statistical parameters for e ach dimension and flagging artefacts based on
outlier detection, defined as a z-score beyond ±3 standard deviations [41, 44]. 
This threshold was selected after comparing several alternatives.

EEG channel artefacts often result from poor electrode contact, movement 
during recording, or hardware issues like damaged wires. Such artefacts can 
introduce irregularities int o the signal. To detect these, three statistical features
were computed for each channel:

– Spatial Kurtosis - This metric quantifies the ‘tailedness’ of the component’s 
amplitude distribution over time. High kurtosis may indicate sharp, transient 
artefacts (for example, muscle bursts or eye blinks), whereas lower values
suggest more regular, brain-related activity.

– Spectral slope from Power Spectrum (SL-F) - The power spectrum is com-
puted using the real value Fast Fourier Transform (rFFT), and the spectral 
slope is estimated by averaging the gradient of the resulting spectrum. This
feature captures how power decreases across frequencies. Flatter slopes may
reflect noise or artefactual components.

– Correlation with EOG - This metric assesses how strongly an independent 
component (IC) aligns with eye movement activity. In the DEAP dataset, 
EOG signals are estimated by combining the signals from two electrodes, one 
placed above and one below the right eye (EXG3 and EXG4). Their absolute 
sum provides a measure of eye activity. A high correlation between this signal
and an IC suggests that the component may represent ocular artefacts, such
as blinks or vertical eye movements.
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– Median Gradient (MG): This feature was calculated by first computing the 
gradient of the component’s time series, which estimates the rate of change 
between successive time points. The median of these gradient values w as then
taken to summarize the typical rate of change in a way that is robust to noise
and outliers.

– Hurst Exponent - This parameter captures long-range temporal dependencies 
in EEG signals. Normal EEG activity usually yields a Hurst exponent around
0.7; significant deviations suggest artefacts.

Such a baseline method, now referred to as ICA-F, was implemented because 
ICA is the reference method for EEG denoising, but it requires visual human 
inspection of components. However, the metrics borrowed from the FASTER 
methodology fully automate artefactual component selection, thus avoiding
human intervention. In such methodology, parameters were corrected for ref-
erence offset as described [28]. Channels identified as noisy were excluded and 
replaced through spherical spline interpolation (with EEGLAB), e nsuring con-
tinuity and signal integrity.

3.6 Evaluating the Performance of Trained Person-Specific VAEs 

The proposed training architecture is evaluated at two different stages. Firstly, 
the reconstruction capacity of VAE for generated EEG topo maps is assessed 
using the SSIM, MSE, and MAE metrics. SSIM is a perceptual metric that 
measures how much image quality is lost due to processing, i ncluding data com-
pression. It is an index of structural similarity (in the real range [0, 1] between
two images, the topographic maps) [47]. Values close to 1 indicate that the two 
topographic maps are very structurally similar, whereas values close to 0 suggest 
they are exceptionally dissimilar and structurally different. MAE is the average 
variance between the significant values i n the dataset and the projected values in
the same dataset and is defined as the mean absolute error (MAE) [48]. MSE is 
defined as the mean (average) of the square of the difference between the actual 
and reconstructed values: the lower value indicates a better fit. In this case, the
MSE involves the comparison, pixel by pixel, of the original and reconstructed
topographic maps [47]. 

Secondly, SNR, PSNR, MAE, NRMSE, and the correlation coefficient are 
applied to the architecture’s final output (topographic maps) after being con-
verted back into the time domain (reconstructed EEG signals) for evaluation to 
assess how well the reconstructed EEG signals align with the signal pro duced
by the baseline method. In order to identify artefactual segments containing
eye-blinks, an offline semi-automatic threshold-based approach is employed [51]. 
In detail, a peak detection algorithm has been adopted to identify the peak 
locations of eye-blinks, which requires a threshold. This threshold value is auto-
matically computed using the algorithm described in [23]. The pseudo-code of 
this approach is presented in algorithm 1. In such algorithm, the K-value is a 
hyperparameter, and its tuning is required because varying it can lead to more
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or less true positives and false positives peaks. To improve the accuracy of cor-
rectly identified peak locations, another strategy is employed by computing the 
Z-scores of each electrode’s values at a particular location in time, and then
ranked.

Algorithm 1. Algorithm for threshold identification for ocular artefact locations. 

Require: Array of pre-processed Fp1 and Fp2 EEG channels, [data] 
Ensure: Threshold for detecting the ocular artefacts 
1: [ data abs ] ← abs([ data ]) 
2: [ data sqrt ] ← sqrt ([ data abs]) 
3: [ data max] ← max ([ data sqrt ])
4: std ← std([ data ])
5: Threshold ← data max − std/k

In EEG signal recordings, eye-blinks are captured primarily by the frontal 
electrodes, Fp1 and Fp2, due to their proximity to the eyes. If the Z-scores of Fp1 
and Fp2 are top-ranked, followed by AF3 and AF4 when compared to the z-scores 
of the remaining electrodes, then such location in time can b e safely considered
as containing a true, plausible blink peak. In other words, this process generates
a list of locations where plausible blink peaks likely exist in the time domain.

4 Results and Discussion 

This section outlines the empirical findings for hypothesis testing grouped by 
the previous two stages: model reconstruction capacity and ocular artefact mit-
igation.

4.1 VAE Model’s Reconstruction Capacity 

The VAE’s reconstruction capacity is evaluated based on the reconstructed topo-
graphic maps and EEG signals. Tables 1 and 2 presents the SSIM, MSE, MAE, 
and MAPE scores for the both training and unseen test data. The SSIM val-
ues approach close to one, while the MSE, MAE, and MAPE values approach 
close to zero. Furthermore, the evaluation incorporates an analysis focused exclu-
sively on the reconstructed topographic maps at the 32 electrode positions in 2D
space, offering additional insight into the VAE’s effectiveness. Figure 4 presents 
a selection of original and corresponding reconstructed topographic maps from 
the test data of a randomly chosen participant. The visual similarity between 
the reconstructions and the originals demonstrates the VAE’s ability to preserve 
spatial patterns effectively. Furthermore, the reconstructed EEG topomaps are 
con verted back into time series to evaluate the temporal reconstruction perfor-
mance of the trained VAE. As illustrated in Fig. 5 for the Fp1 and Fp2 channels, 
also summarized in Tables 1 and 2, the reconstructed signals exhibit a perfect 
positive correlation (close to 1) with the originals.
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Fig. 4. Original and reconstructed topographic maps from the VAE models trained 
with top ographic maps from a random participant.

Fig. 5. The reconstruction capacity of the Variational Autoencoder model of a random 
subject f or Fp1 and Fp2 channels.

Table 1. Reconstruction capacity of 10 Variational Autoencoder models from random 
participants using SSIM, MSE, MAE, MAPE on topographic maps and 32 coordinate
values (c), and correlation coefficient (Training Data).

Part SSIM MSE MAE MAPE SSIM (C) MSE (C) MAE (C) MAPE (C) CORR 
1 0.999 5.69E−09 5.40E−05 8.65E−05 1 2.26E−14 9.81E−08 0.139 0.999 
2 0.999 1.04E−08 7.71E−05 401.9231 1 3.91E−14 1.34E−07 0.154 0.999 
3 0.999 6.29E−09 6.14E−05 0.0002 1 4.30E−14 1.58E−07 0.107 0.999 
4 0.998 1.52E−08 4.56E−05 402.0 1 3.27E−14 7.19E−08 0.345 0.999 
5 0.999 7.91E−09 0.002 259.13 1 5.866E−15 5.98E−08 0.099 0.99 
6 0.999 1.52E−08 5.15E−05 215.95 1 6.18E−13 3.33E−07 0.347 0.999 
7 0.999 5.74E−09 6.66E−05 0.0002 1 5.06E−14 1.89E−07 0.145 0.998 
8 0.998 1.62E−08 9.91E−05 314.007 1 1.213E−14 8.791E−08 0.099 0.998 
9 0.999 7.80E−09 5.66E−05 249.163 1 5.66E−15 5.28E−08 0.103 0.999 
10 0.991 1.01E−07 0.001 153.565 1 1.99E−12 8.71E−07 1.284 0.996 

4.2 Identifying and Reducing the Artefacts 

As mentioned in the design Sect. 3.6, this experiment specifically considered the 
Fp1 and Fp2 channels, given that ocular artefacts a re predominantly captured in
the frontal electrodes [20]. A random segment of EEG signals was selected for the 
FP1 and FP2 channels to evaluate the impact of manipulating the VAE’s latent
space and compare it with the existing baseline approach. This included the raw
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Table 2. Reconstruction capacity of Variational Autoencoder models using SSIM, 
MSE, MAE, MAPE on topographic maps and 32 coordinate values, along with corre-
lation coefficient (Test Data).

Part SSIM MSE MAE MAPE SSIM (C) MSE (C) MAE (C) MAPE (C) CORR 
1 0.999 5.57E−09 5.19E−05 8.30E−05 1 3.93E−14 9.48E−08 0.204 0.999 
2 0.999 1.883E−08 8.026E−05 9.94E−05 1 8.17E−14 1.41E−07 0.194 0.998 
3 0.999 2.08E−08 7.81E−05 0.002 1 1.74E−13 2.11E−07 0.118 0.998 
4 0.999 1.78E−08 6.02E−05 0.002 1 3.16E−13 4.67E−07 0.170 0.995 
5 0.997 2.34E−08 5.31E−05 0.005 1 2.54E−13 1.03E−07 0.096 0.999 
6 1 4.38E−09 4.09E−05 9.84E−05 1 2.16E−13 2.67E−07 0.270 0.996 
7 0.999 1.67E−08 7.04E−05 0.002 1 2.78E−13 2.03E−07 0.126 0.999 
8 0.998 2.23E−08 0.001 0.001 1 1.98E−14 9.21E−08 0.102 0.999 
9 0.999 7.91E−09 5.54E−05 0.001 1 6.70E−15 5.19E−08 0.0712 0.999 
10 0.995 6.12E−08 0.001 0.005 1 1.21E−12 8.02E−07 0.603 0.999 

data, the baseline output, the modified VAE latent space (VAEm), and the stan-
dard VAE (V AE, no latent space manipulation) reconstructions, as illustrated
in Fig. 6. In contrast to the raw and regular VAE signals, both the VAEm and 
the baseline’s outputs exhibit a noticeable reduction in amplitude during periods 
of ocular artefacts. Outside these artefact intervals, the signals closely resemble 
the original data, suggesting that latent space modification selectively targets
artefactual information while preserving the integrity of the neural signal.

Fig. 6. An illustration of a random segment from the Fp1 and Fp2 channels and their 
reconstructions by the baseline method, the VAEm, and VAE autoencoders.

Subsequently, SNR and PSNR metrics were computed individually across all 
channels for the raw, baseline VAEm, and standard VAE signals to support a
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more detailed evaluation. The results, illustrated in Fig. 7, demonstrate notice-
ably higher SNR and PSNR values for the FP1, FP2, and few other channels, 
while the remaining channels exhibited performance comparable to the baseline. 
These findings suggest that the proposed approach effectively suppresses the
artefacts without compromising signal quality elsewhere.

Fig. 7. SNR and PSNR computed for Raw and reconstructed signals outputed from 
ICA Faster, VAEm, and VAE for all channels.

Additionally, to assess the impact of latent space manipulation, MAE, 
NRMSE, and correlation coefficients were computed between the original sig-
nal test data and those reconstructed using ICA-Faster, VAEm, and VAE. The
results, presented in Fig. 8, show that VAEm yields lower MAE and NRMSE val-
ues for most channels, suggesting it effectively preserves the signal while reducing 
artefacts. In contrast, ICA-F reduces artefacts but also introduces distortions in 
other parts of the signal, as indicated by the higher MAE and NRMSE values for 
sev eral channels. Correlation coefficients were computed for the FP1 and FP2
and the average of all channels for each combination of signals. As shown in
Fig. 9, the correlation between the raw and VAEm signals is consistently higher 
than between the raw and ICA-F signals, with VAEm closely resembling the 
original data. This indicates that latent space manipulation in VAEm signifi-
cantly improves signal reconstruction, maintaining more of the original content 
than ICA-F, which reduces artefacts and distorts other parts of the signal. This
supports the notion that latent space manipulation enhances signal quality while
effectively reducing ocular artefacts.

Subsequently, for enhanced analysis, a specific segment of the ocular artefacts 
in the Fp1 and Fp2 signals, spanning from −0.2 ms before to +0.5 ms after the 
blink peak, was plotted for both original and reconstructed EEG signals. This
interval captures the temporal dynamics of ocular related distortions and their
reconstruction through latent space manipulation. Figure 10 displays four rows, 
each corresponding to different percentile thresholds used to define the lower and 
upper bounds of each latent component distribution. In each row, the original 
topographic map at blink peak (top-left) is compared with the reconstructed 
map (top-right), while the corresponding original and reconstructed Fp1 and
Fp2 signals are shown below. In the first row, with bounds set at the δL =
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Fig. 8. MAE, NRMSE, and correlation coefficient computed for between the original 
signal and t hose reconstructed using ICA-Faster, VAEm, and VAE.

Fig. 9. Correlation coefficients between the raw and reconstructed EEG signals for Fp1 
(left), Average of all channels (middle), a nd Fp2 (right), illustrating the effect of latent
space manipulation.

0.25th and δU = 99.75th percentiles (approximately ±3 standard deviations), 
the impact of latent space modification is minimal on reducing the artefacts, as 
evidenced by the near identical topographic maps and signal amplitudes. Reduc-
ing the percentile spread to δL =  1.0st and δU =  99.0th percentiles in the second 
row does not introduce any noticeable changes in the reconstructed outputs, 
indicating that the latent space modification has little to no effect. More pro-
nounced effects begin to emerge when narrowing the thresholds to δL =  2.0nd 

and δU =  98.0th percentiles, where only subtle and mild changes are observed.
Further tightening to δL = 3.0rd and δU = 97.0th results in noticeable alter-
ations in the reconstructed topographic maps, particularly around the frontal
electrodes, and the Fp1/Fp2 signals exhibit clearer attenuation during the blink
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interval. However, additional restriction to δL =  4.0th and δU =  96.0th does not 
yield further improvement, suggesting a saturation point where increased latent 
space modification no longer significantly enhances artefact suppression. These 
findings highlight that percentile-based manipulation of the latent space can 
selectively modulate reconstruction behaviour, with tighter bounds enhancing 
artefact removal while preserving overall spatial and temporal signal integrity.
Changing percentile values through latent space manipulation impacts the recon-
structed signals by progressively improving artefact reduction, with a saturation
effect observed at higher constraints.

Figure 11 presents MNE topographic maps across the blink peak in six rows. 
The first row displays the original maps, while the remaining five rows show 
reconstructions under progressively narrower latent space percentile boundaries. 
The second row, with δL =  0.25th and δU =  99.75th, shows reconstructed maps 
that closely resemble the originals, indicating virtually no impact from latent 
space modification. Similarly, the third row (δL =  1.0st, δU =  99.0th) exhibits 
minimal to no noticeable change. Subtle and mild changes begin to appear in 
the fourth row using δL =  2.0nd and δU =  98.0th, suggesting a mild influence of 
latent constraint. In the fifth row (δL =  3.0rd, δU =  97.0th), the reconstructed 
outputs display noticeable differences, particularly around the frontal electrodes,
with clearer attenuation in the Fp1/Fp2 signals during the blink interval. Finally,
in the sixth row (δL = 4.0th, δU = 96.0th), the impact is comparable to that of
the previous setting, indicating a saturation point where further tightening of
the percentile thresholds does not yield substantial additional improvements in
artefact suppression.

Table 3. Performance metrics for Raw (SNR and PSNR only), and all metrics for
ICA-F and VAEm across participants

Participant Raw ICA-F VAEm 
SNR PSNR SNR PSNR Corr MAE NRMSE SNR PSNR Corr MAE NRMSE 

P1 33.07 18.26 34.05 17.56 0.8 0.36 0.024 43.48 13.66 0.89 0.20 0.02 
P2 41.36 13.04 32.47 13.32 0.93 0.25 0.028 41.70 11.89 0.98 0.10 0.017 
P3 37.60 12.14 29.12 12.71 0.92 0.22 0.029 37.89 11.71 0.98 0.11 0.019 
P4 35.63 14.91 30.09 15.58 0.86 0.22 0.02 41.00 12.72 0.87 0.24 0.03 
P5 42.68 12.91 23.46 12.75 0.97 0.12 0.023 45.69 12.46 0.95 0.13 0.02 
P6 41.35 13.81 27.87 13.88 0.96 0.17 0.02 41.76 13.21 0.98 0.09 0.01 
P7 35.83 14.02 33.45 13.570 0.90 0.11 0.05 37.48 13.29 0.97 0.06 0.01 
P8 39.44 14.78 13.96 14.72 0.89 0.28 0.02 40.62 13.55 0.98 0.09 0.00 
P9 38.66 13.01 28.99 13.23 0.87 0.23 0.02 39.73 12.53 0.94 0.14 0.01 

The findings illustrate that training a person-specific VAE with (40, 40) topo-
graphic maps derived from 32 electrode values, resulting in a tensor of 1600
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Fig. 10. Original and reconstructed MNE topomaps and Fp1/Fp2 signals from −0.2 
ms to 0.5 ms around the blink peak, using different percentile thresholds. Each row
shows the original (left) and reconstructed (right) data.

values, enables a significant reduction in map size—up to 99%—without losing 
essential information. The VAE learns a latent space representation by encoding 
1600 values into a compact form, preserving essential features. This is validated
through metrics such as MSE, MAE, RMSE, and MAPE, confirming the accu-
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Fig. 11. Original and reconstructed topographic maps from −0.2 ms to 0.5 ms around 
the b link peak, using different percentile thresholds.

racy between the original and reconstructed tensors. The impact of latent space 
modification is further explored using SNR, PSNR, MAE, NRMSE, and correla-
tion coefficients. The VAEm method shows higher SNR and PSNR values for FP1 
and FP2 signals than ICA-F, suggesting a better reduction of ocular artefacts 
while maintaining signal integrity. The correlation coefficient between the r aw
and reconstructed signals further supports the effectiveness of the latent space
manipulation in artefact suppression. Data from 9 randomly selected partici-
pants were used to assess the model’s generalizability. Table 3 shows the average 
channel-wise metrics across these subjects. VAEm yields higher SNR than Raw 
and ICA-Faster, with a stronger correlation to the original signal. Addition-
ally, the lower MAE and NRMSE values indicate that VAEm better preserves 
the non-artefactual portions of the signal, maintaining closer resemblance to 
the original data. In contrast, ICA-F tends to alter other parts of the signal. 
This method also offers flexibility, adapting to datasets with different electrode 
configurations and generating topographic maps of various sizes. The ability to 
interpret the latent space enhances understanding of the VAE’s has learnt salient
high-level representations of multi-variate EEG data, helping to identify artefac-
tual components. Importantly, the model is trained on the training data, with
distribution boundaries computed from it, ensuring robustness when applied to
unseen data. Regarding the effect of modifying latent space boundaries, Figs. 10 
and 11 shows that noticeable changes in the reconstructed topomaps only occur 
after reducing the distribution to δL =  3.0rd and δU =  97.0th (fifth row). These 
results highlight that tighter latent space boundaries lead to more significant
reductions in ocular artefacts.
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5 Conclusion 

Electroencephalogram (EEG) recordings are often contaminated with artefacts 
that hinder analysis. This study introduces a novel, subject-specific VAE-based 
automated artefact identification and reduction method within a self-supervised 
framework, minimising the need for human intervention. Unlike traditional 
approaches relying on vector representations, this method leverages spatially 
structured EEG topographic maps to retain spatial information during recon-
struction. A key approach component involves analysing the latent space after 
training a VAE. Boundaries for each latent component were estimated using 
percentile-based thresholds, and probability distributions from training data 
were used to compute anomaly scores. Test samples were flagged as anoma-
lous if their scores exceeded the 98th percentile of training scores. These sam-
ples were then corrected by clipping and adjusting their activated latent values 
within the established boundaries. Results demonstrate that person-specific VAE 
models effectively reduce artefacts while preserving signal structure and spatial 
integrity. Mo difying latent space boundaries using percentiles further improves
artefact suppression, especially ocular artefacts, with noticeable improvements
seen at narrower thresholds. In summary, the proposed method offers a practical
and generalizable solution for EEG artefact reduction, maintaining signal fidelity
while minimising human input. Future work will aim to validate the technique
across datasets with varying electrode configurations and explore more profound
insights into latent components responsible for different artefact types, enhanc-
ing interpretability and robustness.
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Abstract. Class activation mapping (CAM) is a widely adopted class 
of saliency methods used to explain the behavior of convolutional neu-
ral networks (CNNs). These methods generate heatmaps that highlight 
the parts of the input most relevant to the CNN output. Various CAM 
methods have been proposed, each distinguished by the expressions used 
to derive heatmaps. In general, users look for heatmaps with specific 
properties that reflect different aspects of CNN functionality. These may 
include similarity to ground truth, robustness, equivariance, and more. 
Although existing CAM methods implicitly encode some of these prop-
erties in their expressions, they do not allow for variability in heatmap 
generation following the user’s intent or domain knowledge. In this paper, 
we address this limitation by introducing SyCAM, a metric-based app-
roach for synthesizing CAM expressions. Given a predefined evaluation 
metric for saliency maps, SyCAM automatically generates CAM expres-
sions optimized for that metric. We specifically explore a syntax-guided
synthesis instantiation of SyCAM, where CAM expressions are derived
based on predefined syntactic constraints and the given metric. Using
several established evaluation metrics, we demonstrate the efficacy and
flexibility of our approach in generating targeted heatmaps. We com-
pare SyCAM with other well-known CAM methods on three prominent
models: ResNet50, VGG16, and VGG19.

Keywords: Explainability · Class activation mappings · 
Oracle-guided inductive synthesis

1 Introduction 

Convolutional Neural Networks (CNNs) have enabled the development of effi-
cient solutions for a wide range of challenging vision problems, such as object
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detection in autonomous vehicles [11], facial recognition through semantic seg-
mentation [19], and medical image analysis [18, 28]. Despite their advantages, 
CNNs, like other neural models, suffer from an opaque decision-making process, 
making it challenging to build trust in their predictions. For instance, physi-
cians using a CNN for X-ray classification require more than just a diagnosis; 
they need to understand which specific part of the X-ray led to that diagnosis. 
Similarly, in autonomous vehicles, debugging and emplo ying CNN-based object
detectors requires insight into which parts of an image triggered a classifica-
tion. The growing need to explain CNN behavior has led to the development of
various explainability techniques [4, 6, 32, 36]. However, with each new method, 
it is becoming increasingly clear that more systematic approaches are needed 
to generate explanations that adapt to the specific intents and needs of end
users [14]. 

In this paper, we address the challenge of incorporating intent by propos-
ing a metric-based approach to generating explanations for CNNs, i.e., where 
explanations are optimized for a predefined metric. Specifically, w e study this
problem in the context of explainability methods based on class activation map-
pings (CAM) [37]. CAM methods are one of the most adopted methods for 
generating saliency maps, i.e., heatmaps that highlight the regions of an input 
most relevant to the CNN’s prediction. The definition of releva nce differs from
one method to another, and thus, each method may result in different heatmaps.
Figure 1, shows example heatmaps generated by a set of different CAM methods. 
In the figure, the heatmaps highlight slightly different image regions across the 
different techniques. Heatmaps produced by CAM are the result of computing a 
linear combination of the feature maps from the convolutional layers of a CNN. 
CAM methods generate heatmaps by weighting feature maps based on their con-
tribution to the class s core. They differ in how they calculate the weights, each
offering a unique expression for computing them. Selecting the most appropriate
CAM method depends on the specific application and the level of detail in the
activation map.

For example, GradCAM [32] tends to favor larger activation regions in the 
activation maps, highlighting the most prominent part of an image that influ-
ences classification. In an image with multiple swans (see Fig. 1, first row), Grad-
CAM primarily highlights the two more visible swans on the right. However, if 
these swans are removed, the model m ay still classify the image correctly based
on the partial swan. In contrast, GradCAM++ [4] incorporates all activation 
regions, highlighting also the partial swans as influential in the CNN’s decision. 
Depending on the user’s intent, whether they seek to understand the model’s 
overall behavior or identify the most influential part of a specific image, they 
may prefer one method over the other. Choosing the right CAM method is, 
therefore, often a complex task, traditionally relying on human intuition and
empirical experimentation. A non-expert user may not know which CAM expres-
sion is most suitable for their application, and a systematic approach to guide
the generation of optimal CAM expressions, with respect to certain predefined
metrics, is missing.
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Fig. 1. Saliency maps generated using different CAM methods (GradCAM [32], Grad-
CAM++ [4], ScoreCAM [36], AblationCAM [6], and one using an expression synthe-
sized by our SyCAM framework) for three models different CNNs trained on three
different data sets ImageNet [5], COVID-QU-Ex [34] and ImageNette [13]. The first 
row of images shows heatmaps for GradCAM and GradCAM++. The second row of 
images shows how SyCAM guided by a ground truth metric, captures the ground truth 
more accurately than the other methods. The last row shows how SyCAM guided by
the insertion metric generates a heatmap that closely mimics that of the dominant
CAM method, ScoreCAM in this case.

Our framework, SyCAM, presents a metric-based framework for the auto-
matic synthesis of CAM expressions. From a given class of expressions, SyCAM 
can synthesize expressions tailored to specific properties captured via a fi t-
ting evaluation metric. For instance, metrics capturing the overlap between a
heatmap and the ground truth mask [33] or the pixel intensity of the heatmap 
in such overlap [9] guide towards the generation of CAM expressions that gener-
ate heatmaps with higher similarity to ground truth. Metrics like the Deletion or
Insertion metrics [27] lead to CAM expressions that generate heatmaps highlight-
ing what the model is truly paying attention to (independent of the correctness
of the prediction).

Consider the heatmaps shown in the second row in Fig. 1, where different 
saliency methods have been applied to explain why a CNN classified an X-ray 
image as a COVID case. Here, we used SyCAM to synthesize an expression opti-
mized toward the ground truth, i.e., during synthesis, expressions are evaluated 
based on whether they highlight pixels that also match the ground truth. From 
the figure, we can see that the heatmap generated according to the SyCAM
synthesized expression captured the ground truth more accurately. In contrast,
all other methods failed to do so, producing significantly less accurate represen-
tations of the ground truth region.

We applied SyCAM using different metrics to study their impact on heatmap
generation. In Fig. 1, in the last row, we present another example where SyCAM
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was applied using the insertion metric [27]. The insertion metric evaluates how 
the highest-scoring pixels in the heatmap influence image classification. In this 
case, ScoreCAM achieved the highest score compared to GradCAM, Grad-
CAM++, and AblationCAM. SyCAM generated an expression that closely 
resembled ScoreCAM and achieved a very similar score. This demonstrates that
when a particular method outperforms others based on a given evaluation metric,
SyCAM produces expressions that align with the dominant approach.

Our results are based on an instantiation of SyCAM, adapting techniques 
from the syntax-guided synthesis literature (SyGuS) [2], which searches a space 
defined by a grammar of potential CAM expressions. This is done via an oracle-
guided inductive synthesis (OGIS) approach [15]. In OGIS, a learner explores 
the space of possible solutions, guided by oracles that give feedback and evalu-
ate the correctness of solutions generated by the learner. Here, the learner is a 
synthesis process that searches the space of possible CAM expressions, guided 
by two oracles: one that can remove equivalent solutions and another that eval-
uates the candidate solution according to a given evaluation metric. We show 
that, while a monolithic enumerative approach can be used to synthesize CAM 
expressions, it comes with the limitation of not taking into account any of the 
image properties, such as the image class. To overcome this limitation, we p resent
an adaptation of the synthesis approach leveraging a class-based decomposition
of the problem. Specifically, our approach allows for case splits, thereby synthe-
sizing a set of CAM expressions for each class of properties. This is showcased
in our experiments, where we use SyCAM to synthesize CAM expressions for
three prominent models: ResNet50, VGG16, and VGG19 [22], and compare them 
with those of established methods like GradCAM, GradCAM++, ScoreCAM,
and AblationCAM.

In summary, SyCAM provides a general framework for the systematic gener-
ation of CAM methods, with flexibility in two dimensions: first, the user can pro-
vide an evaluation metric to suit their use case; and second, the user can provide 
a syntactic template or grammar that defines the space of possible expressions, 
giving the poten tial to provide user intuition to the search algorithm. SyCAM
will then find an expression that is dominant with respect to the given evaluation
metric. Our primary contributions can be summarized as follows:

– We introduce the problem of synthesizing CAM expressions for CNNs opti-
mized for specific evaluation metrics.

– We present a framework for solving the problem following the OGIS a pproach,
adapting enumerative techniques from SyGuS.

– We present a thorough experimental evaluation demonstrating the efficacy of 
our framework in synthesizing CAM-expressions f or the prominent classifica-
tion models ResNet50, VGG16, and VGG19.

– We evaluate our framework over a COVID-19 benchmark, where the expres-
sions incorporate metrics that favor expert knowledge.
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Fig. 2. Overview of a CNN-based model that classifies X-ray images into COVID-19 
positive or negative, and a CAM-based method that explains each classification.

2 Background 

2.1 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) have proven highly effective in pattern 
recognition tasks, especially in image processing [11, 17, 19]. The typical archi-
tecture of a CNN is illustrated in Fig. 2. The fundamental building blocks of a 
CNN are the convolutional layers, which are used for identifying features within 
an image. These layers work by iteratively applying filters, so-called kernels, 
to the input image. These filters are learned during the training phase. Each 
layer applies multiple filters to the output of the previous layer, starting with 
the input image. The output produced by applying a filter is known as a fea-
ture map. As the network deepens, the feature maps define increasingly complex 
features. While the initial layers may focus on basic elements, such as colors 
and edges, deeper layers recognize larger patterns. In classification tasks, these 
higher-level features are usually passed to a fully connected layer used for classi-
fying the image. To reduce the size of these feature maps while preserving critical
information, pooling layers are introduced after each convolutional layer. Com-
mon pooling methods include average pooling and max pooling, which reduce a
portion of a feature map into its average or maximum value, respectively.

2.2 Class Activation Mapping 

Saliency maps are visual artifacts that highlight the regions of an image most 
relevant to a model’s prediction. Class Activation Mapping (CAM) is a promi-
nent set of methods for generating these saliency maps. The core idea of CAM 
is to compute a saliency map, the class activation map, via a weighted linear
combination of the feature maps of the last convolutional layer [37]. This layer 
is chosen because it captures high-level features that are most relevant for the 
classification. The map is always generated for a certain class and points to the
parts of an image the network focuses on when predicting that particular class.
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The general concept of CAM is illustrated in Fig. 2. Formally, for an output 
class c and a convolutional layer l, the saliency map Lc can  be  defined  as:  Lc =∑

k α
c 
kAl 

k,  where  Al 
k denotes the k-th  feature  map  of  the  layer  l, i.e., the two-

dimensional array resulting from applying the k-th convolutional filter of the
layer l to its input, and the weights αc

k depend on the CAM method chosen.
Each feature map highlights specific aspects of the image. High values in a 

feature map point to the presence of a feature; low values hint at its absence. 
Since each feature map contributes differently to the scores of individual classes, 
the linear combination is weight ed to reflect the influence of each feature map
in producing the final class activation map. These influences are represented by
the weights α1, . . . , αn.

Different CAM methods are distinguished by how they calculate the weights. 
In the original CAM, the weights were defined via the learned w eights cor-
responding to different classes. Methods like GradCAM or GradCAM++ [21] 
compute the weights by using the gradients of the score for a specific class with 
respect to the feature maps of a convolutional lay er. Further gradient-based
approaches building on the latter two include Smooth GradCAM++ [26], 
Augmented GradCAM [24], and XGradCAM [10]. Gradient-free approaches 
determine the importance of different regions in the input image for a specific 
class without relying on gradients. These include perturbation-based approaches
like ScoreCAM [36]  and  AblationCAM [6], attention-based methods like 
Attention-Guided CAM [20], and methods like EigenCAM [25], that apply 
principal component analysis to create the class activation map. For a compre-
hensive survey, we refer the reader to [14]. So far, no systematic approach has 
been used to determine the optimal weight expression for a given task. Our 
work addresses this challenge by introducing an automated approach capable of
synthesizing both gradient-based and gradient-free expressions if the grammar
allows it.

2.3 Heatmaps Evaluation Metrics 

Several metrics have been introduced in the literature to evaluate saliency meth-
ods [16]. Some of these methods are perturbation-based, i.e., they evaluate the 
effect of masking regions highlighted by CAM methods on the mod el’s perfor-
mance. Examples of such metrics include Average Drop % [4], AOPC [31], ROAD 
[30], IROF [29], and the Deletion and Insertion [27] metrics. Another category of 
metrics is ground-truth-based. These metrics measure the distance of the expla-
nation to the ground-truth e xplanation data. Some examples of these metrics are
the mGT metric defined in [33], the Segmentation Content Heatmap (SCH) met-
ric [9], CEM [7], and CLEVR-AI [3]. SyCAM is agnostic to the chosen metric, 
and CAM-weight expressions can be synthesized by SyCAM with respect to any 
of the aforementioned metrics. Each evaluation metric focuses on different prop-
erties of the heatmaps, e.g., similarity to ground truth, robustness, and more.
The synthesized expressions are, in consequence, based on well-founded criteria,
guided by quantitative evaluation metrics. The resulting expressions generate
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optimized saliency maps according to these metrics, thus allowing us to elimi-
nate any human biases and to select a CAM method more suitable for a given 
context. An extensive s tudy on the correctness of XAI techniques in generating
the true explanations, the so-called fidelity, can be found in [23]. 

In the following, we provide a detailed introduction to key evaluation metrics 
that w e also use later in our experiments.

Average Drop % : The intuition behind this metric is one that checks whether 
removing parts not highlighted by the heatmap of an image reduces the clas-
sification confidence of the model. Removing parts of an image that are not 
relevant shouldn’t heavily impact the confidence drop. To check if the most rel-
evant parts of an image i are preserved, the product of the heatmap and the 
image is computed. T hen, the resulting image h is classified to measure the con-
fidence drop. A low confidence drop implies that the heatmap contains the most
relevant features of the image, so the lower the metric value, the better.

Given a dataset I, the Average Drop % is expressed as
∑

i∈I 
max(0,yc 

i −hc 
i ) 

yc 
i 

·100, 
where yc 

i is the classification score for image i ∈  I  and class c,  and  hc 
i is the

classification score for the product of image i and the generated heatmap for
such image, and class c.

Deletion and Insertion Metrics: The Deletion metric measures the drop in the 
classification score when the most relevant pixels of the image are gradually 
removed, while the Insertion metric measures the rise in the classification score 
when they are iteratively added to a blank image. In this paper, we use modified 
versions of the Deletion and the Insertion metrics. Given a model M , an image 
x, a limit on the number of perturbations P , and a saliency map H over x,  the  
process recursively modifies the image according to the following formula: 

x(0) = x ∀ 1 ≤ j ≤ P : x(j) = g(x(j−1) , x, rj) 

For the Deletion metric, the function g gradually replaces the most relevant 
pixels rj , ordered by the saliency map Lc 

M [e],  and  their  neighborhoods  with  
the corresponding parts of a highly blurred version of x, denoted by x.  The  
neighborhood of a pixel is given by the feature maps used to compute the saliency 
map. If the feature maps Ak have size w × h, we split the image into a grid of
w × h neighborhoods. For the Insertion metric, the process is analogous, but
the most important pixels are added to the highly blurred version of the image
instead. The metrics are then defined by:

μdeletion =
1
|I|

∑

x∈I

1
P + 1

( P∑

j=0

M(x(0))c0 − M(x(j))c0
)

μinsertion =
1
|I|

∑

x∈I

1
P + 1

( P∑

j=0

M(x(j))c0 − M(x(0))c0
)
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where c0 is the output class of M(x(0)), M (x)c0 is the output score for class c0, 
and |I| is the number o f images in the set I. Unlike for other similar metrics
[12], no artifacts are added through this procedure, and x is generated using 
deterministic filters, so the influence of random perturbations over the metric is
also avoided. The purpose of using these versions instead of the originals [27]  is  
to avoid adding artifacts, to make sure that the computed scores are relative to 
the initial score of the model M over the base image, and to make them work
so that the higher the values, the better.

Intuitively, higher values of the metrics imply higher variations in the classi-
fication score during the perturbation process, i.e., higher relevance of the pixels 
highlighted by the saliency map. We may get some insights about the datasets 
employed using these metrics. For example, when the confidence drop for the 
Deletion metric is much lower for a subset than for the others, it means that 
the model is still confident in its classification ev en after masking portions of
the objects. This may imply that the objects occupy most of the image or that
the model identifies the objects through the background. In such cases, it is
important to improve the dataset.

Ground Truth Similarity Metrics: Some evaluation metrics are focused on mea-
suring the similarity of the heatmap to a ground-truth mask.

Given a heatmap H and a ground-truth mask HGT with p pixels, the mGT 
metric takes the p most relevant pixels of H and counts how many of those 
pixels are part of the ground-truth mask. This is, if n of the p most relevant 
pixels of H are part of the mask HGT ,  then  mGT (H, HGT )  =  n/p. While the 
mGT metric measures the similarity between a heatmap and the ground truth, 
it doesn’t provide information about the intensity of the heatmap pixels. The 
SCH metric, on the other hand, solv es this problem. The SCH metric is given
by:

SCH (H,HGT ) =

∑

i,j

Hi,j · Mi,j

∑

i,j

Hi,j

Intuitively, the SCH metric measures how concentrated the heatmap is in the
ground-truth mask. The more concentrated the pixels are and the higher their
relevance, the higher the metric will be, so the higher, the better.

Notice that a strong assumption of ground-truth similarity metrics is that the 
models are making classifications based on the ground-truth part of the image. If 
the models are not doing so, and are making decisions based on other information 
found in the input data, these metrics would return low values independently of
how well the heatmaps are explaining what the models are paying attention to.

2.4 Syntax-Guided Synthesis 

Syntax-Guided Synthesis (SyGuS) [2] is the problem of generating a function 
that both satisfies a semantic specification and is contained within a language
described in a context-free grammar (CFG).
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Definition 1 (Context-Free Grammar). A context-free grammar G is 
defined as as a set of terminal symbols T and a set of nonterminal symbols 
N  T  , a start symbol S, and a set of production rules R ⊆ NT × (T ∪NT )∗ which
describe the way programs may be constructed iteratively from the grammar.
Definition 2 (SyGuS problems). Formally, a SyGuS problem is a 4-tuple
〈T, G, φ, F 〉 such that T is a first-order theory, G is a context-free grammar, φ is 
a first-order formula, and F is a function symbol that may occur in φ. A solution 
to a SyGuS problem 〈T, G, φ, F 〉 is a function f such that T |= φ[F 	→ f ] and
f ∈ L(G), where φ[F 	→ f ] denotes replacing all occurrences of F in φ with f .

Later in the paper, we study a SyGuS instantiation of CAM expression syn-
thesis, where the specification is that the resulting CAM method must perform 
better than a given threshold function. This is described in detail in Sect. 4.  The  
most common approach for solving SyGuS problems is Oracle Guided Inductive
Synthesis (OGIS) [15]; a family of algorithms that alternate between a learner, 
which attempts to learn a solution to the synthesis problem, and an oracle, which 
guides the learner via means of queries and responses, the simplest of which is a 
correctness query (the learner asks “is this candidate program correct?”, and the 
oracle replies with “ yes” or “no”). There is a broad variety of learners in the lit-
erature, but the most common are enumerative techniques. We take inspiration
from some of the most common enumerative learners [1] when implementing o ur
approach.

3 CAM Expression Synthesis 
3.1 Problem Statement 

Let t[?] define an expression with holes, known as a template, where holes in the 
expression are marked by the symbol ?. For an expression e, the expression t[e] 
results from replacing every a ppearance of the symbol ? in t with e. Following
the definition of CAM as given in Sect. 2.2, we define a CAM template as Lc[?] =∑

k? · Al 
k.  The  ? is a placeholder for an expression that defines how the weights 

αc 
k are computed for a class c. We refer to such expressions as CAM-weight

expressions. We refer to the set of all instantiations of Lc[?] by FCAM.

Problem 1 (CAM expression synthesis) Let M =  (I  →  R|C|) be a 
set of CNN-based classifiers defined over a space of images I and  a  set  of  
classes C. Given M ∈  M, a set of images I ⊆  I, a threshold function 
λ : M  ×  I  →  R , a set of CAM-weight expressions E, and an evaluation
function μ : FCAM × M × I → R, synthesize an expression e ∈ E s.t.
μ(Lc[e],M, I) > λ(M, I).

In our problem statement, the role of the threshold function λ is  to  set  a  lower  
bound on the quality of synthesized expressions with respect to the evaluation 
function μ. As we will see in our experiments, the threshold function can be given 
as a fixed number or as a function of any other CAM function. The evaluation
function μ defines a metric for evaluating CAM functions and can be realized
by implementing known CAM evaluation metrics from the literature.
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3.2 Oracle-Guided Synthesis of CAM-Weight Expressions 

Now that we have a formally defined problem statement, we can discuss the 
SyCAM framework, an oracle-guided synthesis approach for the synthesis of 
CAM-w eight expressions. Let us initially assume we have access to two oracles:

– an equivalence oracle: this oracle receives as input a set of expressions ε, 
which may contain semantically equivalent expressions, and returns a set 
of expressions ε′ ⊆ ε suc h that no two expressions in ε′ are semantically
equivalent; and

– a correctness oracle: this oracle receives a single CAM-weight expression as 
input, and returns a boolean which is true if the CAM-weight expression 
results in a saliency map that scores ab ove a pre-defined threshold on a pre-
defined metric, for a given set of images and classification model.

We will define the SyCAM framework assuming access to these oracles, but 
we should note that these oracles are performing tasks that are, in general, unde-
cidable (equivalence checking) or at least computationally expensive (evaluating 
a given CAM weight expression across a large set of images). We will address
the practical implementation of each of these oracles in Sect. 4. 

The general workflow of SyCAM is depicted below. SyCAM is composed 
of two main procedures, the synthesis phase (which is guided by the equivalence 
oracle) and the evaluation phase (the correctness oracle). Candidate expressions 
produced by the synthesis procedure are generated from a space of expressions
defined by an input grammar G, as described in Sect. 4. The expressions are 
then forwarded one by one to the evaluation process. An expression is evaluated 
using a correctness oracle, defined in terms of the given evaluation metric μ 
and a threshold function r,  over  a  set  of  images  I. If a candidate passes the 
evaluation process, it is returned as a solution to the overall synthesis process. 
If the evaluation fails, another expression is selected out of the current list of
candidate expressions, and the same evaluation process is repeated for the new
expression. If all candidate expressions have been evaluated with no success, the
synthesizer is triggered again to generate a new set of candidates.

synthesize 

Equivalence 
Oracle 

Correctness 
Oracle

solutionG

ε

×
ε ε′

Synthesis Phase: The task of the synthesis phase is to enumerate expressions 
using the feedback given by the oracles. The algorithm we use is b ased on a
classical program synthesis technique: the bottom-up search algorithm [1]. For 
the algorithm, we require an input grammar G, which defines an initial set 
of expressions (terminals) and production rules R that allow us to combine
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Algorithm 1. Bottom-up Search 
function Search(G, λ, M , I, μ) 

exprs ←  ∅  
exprs ′ ← G.Term 
while True do 

solution ← Eval(exprs ′,  λ,  M,  I,  μ) 
if solution �= nil then 

return solution 
exprs ← exprs ∪ exprs ′

exprs ′ ← Expand(expr ,  G) 
exprs ′ ← elimEquiv(exprs, exprs ′,  I) 

function Expand(E , G) 
E′ ←  ∅  
for r ∈ G.R do 

if r is 1-ary then 
for e1 ∈ E do 

E ′ ← E′ ∪ r{e1}
else if r is 2-ary then

for e1, e2 ∈ Prod(E, E) do
E′ ← E′ ∪ r{e1, e2}

return E′

expressions to synthesize new ones (synthesize block). The synthesis phase calls 
the equivalence oracle, elimEquiv, in order to reduce the exponential g rowth
in expressions. This bottom-up search algorithm is shown in Algorithm 1. 

Initially, we populate exprs with all expressions for Term. At each iteration
of the Algorithm 1, the search process deploys the Expand function to iter-
ate through the production rules of the grammar, and generates all possible 
new expressions that use the elements in exprs to replace the non-terminals in 
each production rule and adds them to exprs.  We  use  r{e1,  .  .  .   ,  en} to indicate
the result of taking the rule r ∈ R and replacing the first nonterminal symbol
occurring in r with e1, the second with e2, and so on.

Oracles: The equivalence oracle ElimEquiv then reduces the set of expressions, 
by removing all semantically equivalent expressions. At each iteration, the cor-
rectness oracle Eval checks the current list of programs to see if it contains 
a program that it deems c orrect (i.e., a program that performs above a given
threshold on the evaluation metric). If so, the program is returned as a solution.

4 An Instantiation of SyCAM 

Our approach is customizable to any grammar. In this section, we give an instan-
tiation of our framework for a grammar defining gradient-based expressions, and 
expressions based on ScoreCAM and AblationCAM. We use a grammar with 
non-terminals N  T  = {Expr, T erm, Grads}, and starting category S = {Expr}. 
The set of production rules R is defined as follows: 

Expr := Term | Expr + Expr | 2 · Expr + Expr | Expr · Expr | ReLU (Expr ) 
Term := Grads | top5(Grads) | top10(Grads) | top20(Grads) | top50(Grads) 

| CICScores | AblScores 

Grads := GP (
∂Y c

Ak
) for any c ∈ C and k ∈ K.

where ReLU is the element-wise function max{·, 0}. Inspired by algorithms like
GradCAM, we use as terminals the gradients, denoted by Grads, of the score for
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the predicted class c with Y c = M(x) with respect to the feature map activations 
Ak of the last convolutional layer, i.e. GP (∂Y c 

Ak 
) where GP denotes the global 

average pooling operation, for each feature map k in the set of feature maps K 
and for each class c in the set of classes C. We also include as terminals the
functions topn(Grads) that nullify all but the highest n elements of Grads and
are denoted by topn.

Inspired by ScoreCAM, we include as terminals (CICScores)  the  channel-
wise Increase of Confidence (CIC) [36]. For each feature map k, each image x,  a  
baseline input image xb,  and  a  model  M, the CIC is defined as CIC(Ak)  =  M(x◦ 
Hk) −  M(xb) where Hk = s(U  p(Ak)), U  p  denotes the upsample operation that 
upsamples Ak into the input image size, and s(·) is a normalization function to
the range [0, 1]. We assume that ∃xb : M(xb) = 0, and use C(Ak) = M(x ◦Hk).

AblScores represent the weights used in the definition of AblationCAM [6]. 
For each feature map k of a model M, and each image x,  these  weights  w are 
defined by wc 

k = y
c−yc 

k 

yc ,  where  yc = M(x) and yc 
k is the result of setting all the

activation cell values of Ak to zero and classifying again the x.
Notice that the terminals of the grammar are vectors with number of elements 

equal to feature maps in the last convolutional layer of M, and ev ery expression
generated by this grammar produces vectors with the same size as the terminals.

4.1 Equivalence Oracle 

In general, determining the equivalence between two expressions is undecidable. 
We thus use an appro ximation, referred to as observational equivalence.

Definition 3 (Observational Equivalence). Formally, two expression e1 and 
e2 are observational equivalent on a finite set of images I, according to an eval-
uation metric μ and a model M iff μ(Lc[e1],M, I) = μ(Lc[e2],M, I).

If two expressions are observationally equivalent, we can remove one of these 
expressions from the pool of expressions used to build subsequent programs 
provided the semantics of the program fragment do not depend on context. That 
is, given two expressions e1 and e2, and a set of images I,  if  e1 and e2 give the 
same result on the set of images, then so will C[e1] and C[e2] where C[e1] is
a program that uses e1 as a subexpression, and C[e2] is the same program but
with e2 in place of e1.

CAM-weight expressions are arithmetic expressions so this property is true, 
for the set of images I. However, since evaluating the expression on all the images 
in our dataset is time-consuming and impractical, our observational equivalence 
oracle uses a smaller subset of the full dataset. Thus, if this set is not repre-
sentative of the full dataset, the observational equivalence oracle may remove 
expressions that we subsequently may need. As a consequence of this approxi-
mation of equivalence, SyCAM may fail to find some possible solutions, but this
trade-off is worth it to prune the exponential growth of the search space.
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4.2 Correctness Oracle 

Recall that we wish to synthesize an expression e such that the following is 
true; μ(Lc[e],  M,  I) >  λ(M, I),  for  a  given  I and M . Unlike many domains 
where OGIS is used, it is not possible for us to reason about this expression 
symbolically using techniques like SMT solvers, since this would require us to 
reason about the weights of the model and the pixels of each image. We must 
therefore use testing, executing each generated CAM method on the images in 
the set I. Expressions are then c hecked one by one for their correctness. If an
expression passes the correctness test, the overall synthesis process terminates,
returning this expression as a solution. As we will see in the experiments, this
process is modified to run for a fixed amount of time and then return the best
expression synthesized instead.

4.3 Class-Based Decomposition 

A limitation of the algorithm presented in the previous section is that the gram-
mar we use does not contain any expressions that can perform case splits, e.g., 
an “if” expression, or any logical expressions that can define when to apply a 
specific CAM method to a particular image. This means that the function we 
synthesize is applied uniformly to all images, regardless of the properties of that 
image. In this section, our goal is to extend this grammar to permit case splits. 
One obvious way of doing this would be to introduce an “if-then-else” statement 
into the grammar G, as well as expressions for identifying features or charac-
teristics of different images. This, however, results in a significantly expanded 
search space, and an intractable synthesis problem. In this section, thus, we 
break down the synthesis method into two parts: a classification model M,  and  
a set of CAM-weight expressions, synthesized using the enumeration approach 
described previously, that should be applied to each class. Th us, for a given set
of classes, the end CAM-weight expression will be an expression in the grammar
given by G extended with the following production rule:

Expr := (Y ci = max(Y c1 , . . . Y cn)) ?Expr : Expr

where Y ci is the confidence score for class ci, and {c1, . . . cn} is the set of classes
generated by the model M. It would be possible to use any classifier in this step,
but we take advantage of having a classifier that can choose the expression for
each image: the model M.

One advantage of this approach is that it prevents the rejection of good 
expressions that do not perform well only for small subsets of images. However, 
an important disadvantage is that the algorithm has to be executed once for 
each output class. If the number of output classes of a model is in the order of
thousands, this method requires considerable computing power.

5 Experiments 

In this section, we present three sets of experiments that show the efficacy of
SyCAM:
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– E1 - Sanity check: We show the ability of SyCAM to synthesize known 
dominant CAM expressions for a given metric, or better ones if the grammar 
allows for more expressive expressions. We apply SyCAM to one Pytorch
model, VGG16 trained over the PASCAL VOC 2007 dataset [8]. 

– E2 - Enumeration vs class-based decomposition: We compare SyCAM 
to the classical approaches of GradCAM, GradCAM++, ScoreCAM, and 
AblationCAM. Here, we particularly compare the enumerative and class-
based decomposition approaches and show how the latter improves over the 
former. SyCAM is applied to three PyTorch models: ResNet50, VGG16, and
VGG19, trained over the Imagenette dataset [13]. 

– E3 - Incorporating ground truth: This experiment is an application of 
SyCAM to show that, in contrast to standard methods, SyCAM allows us to 
incorporate expert knowledge into the generation of saliency maps, resulting 
in better saliency maps. SyCAM is applied to a ResNet50 model trained over
COVID-19 X-ray images from the COVID-QU-Ex dataset [34]. 

All experiments were run using an NVIDIA T4 with 16 GB RAM. The code
used can be found in https://github.com/starlab-systems/SyCAM. The compu-
tations were enabled by resources provided by the National Academic Infrastruc-
ture for Supercomputing in Sweden (NAISS), partially funded by the Swedish
Research Council through grant agreement no. 2022-06725.

5.1 Experimental Setup 

As established in Sect. 3.1, the goal is to find an expression e such that 
μ(Lc[e],  M,  I) >  λ(M, I), for a given image set I and a model M by follow-
ing Algorithm 1. We adapt Algorithm 1, to one that instead of stopping the 
computation the moment we find an expression e that beats a threshold λ,  to  
one that continues the search, always saving the so-far best expression found, 
and taking the value μ(Lc[e],  M,  I) for the best expression as the new threshold 
λ. We start with λ = 0. We let the experiments run for a fixed amount of time
and return the best expression synthesized during that time.

Grammar: The grammar used for the experiments is defined in Sect. 4.  Com-
puting the weights generated by terminals CICScores and AblScores is compu-
tationally expensive. In the case of ResNet50, VGG16, and VGG19, they are 
required to compute 512 classifications per image. To reduce the computation 
overhead, for each dataset and evaluation metric, we precompute the weights
produced by these terminals beforehand for each image in the dataset.

Synthesis Phase: The set of expressions generated grows exponentially. Because 
we have 7 terminals in the grammar, and we are enumerating solutions that can 
be produced with the rules defined, more than 1000 expressions were generated
in only three applications of the Expand function (see Algorithm 1)  even  after  
discarding equivalent expressions using observational equivalence (Sect. 4.1). By 
the fourth application of the Expand function, we would generate more than

https://github.com/starlab-systems/SyCAM
https://github.com/starlab-systems/SyCAM
https://github.com/starlab-systems/SyCAM
https://github.com/starlab-systems/SyCAM
https://github.com/starlab-systems/SyCAM
https://github.com/starlab-systems/SyCAM
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106 expressions. To prevent spending too much time just discarding equivalent 
expressions without evaluating them, instead of generating a whole new set of 
expressions with Expand before evaluating, we generate and yield expressions 
one by one. E ach expression is evaluated just after being generated by the equiv-
alence oracle and, if not discarded, by the correctness oracle.

Equivalence Oracle: The function ElimEquiv of Algorithm 1 employs a subset 
with 10 images, one of each class of the dataset, to ensure this subset is as repre-
sentative as possible. We also tested subsets of size 20 and 30 of the Imagenette 
dataset, and we confirmed that the number of expressions discarded decreases 
(by 1.5% and 7.2%, respectively) with the number of images in the subset. How-
ever, the expressions synthesized were the same, and there is a trade-off with 
the computation time dedicated to generating expressions and discarding those 
equivalents, so we maintained the original size of 10 images. 
Correctness Oracle: It would be t ime-consuming to test every generated CAM
method on every image in the dataset I. For example, it takes around 18min to
compute the Deletion metric for ResNet50 and a single expression over a dataset
of 4000 images. To overcome this computation overhead, we implement the cor-
rectness oracle as follows, aiming to discard expressions as early as possible.

The evaluation is done by applying an evaluation procedure on the candi-
date expression defined in terms of an evaluation metric μ and over increasingly 
large sets of images I1 ⊂ I2 ⊂ .  .  .  ⊂ I. If a candidate expression e is evaluated 
over the set Ii and results in a score larger than that computed by a threshold 
function λ over at least half of the images in Ii, and the average score is better, 
i.e. μ(Lc[e],  M,  Ii) >  λ(M, Ii), it is then evaluated over the next largest set of 
images, Ii+1. Otherwise, the candidate is discarded. If a candidate expression 
e is evaluated on the set I and achieves a score higher than that computed by 
the threshold function over at least half of the images, and the average score 
is higher, then e is the best expression found, and λ is updated with the new 
threshold d efined by e. With this multi-layered approach, we can quickly elimi-
nate programs that already fail evaluation on smaller sets of data, thus speeding
up the search for solutions. It is possible that a candidate may perform poorly
on a subset Ii and then perform better than the threshold function on a subset
Ii+1, and thus be discarded early. This risk is small since our subsets are rela-
tively large and are uniformly sampled from the full set of images, so likely to
be representative.

The oracle checks if the candidate expression e is better than the best solution 
found for at least half of the images because the goal is to find an expression 
that works w ell for as many images as possible, i.e., that generalizes well, and
at the same time has a higher score.

Lastly, we set a timeout of 6 h for experiment E1 and 24 h for E2 and E3, i.e., 
the returned expression is the best expression found within these time bounds. 
We note that within this timeout, we were able to reach the fourth iteration 
of the algorithm, but despite the optimizations, we are not able to cover all
the 106 expressions of that iteration. This results in a limitation on the size of
the expressions that can be synthesized. However, we show later that SyCAM
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manages to synthesize better expressions than widely known CAM methods. 
Furthermore, once the SyCAM expression is synthesized, the computational 
cost of generating saliency maps is similar to that of other CAM expressions, so 
it is reasonable to spend time on generating the best possible expression. The 
cost depe nds on the terminals used. For example, the cost of generating saliency
maps for an expression that computes the CICScores as part of the expression
is similar to the cost of ScoreCAM.

5.2 Experiments E1: Sanity Check 

“Show the ability of SyCAM to synthesize known CAM expressions if they are 
dominant for a given metric, or even better ones if the grammar allows for more
expressive expressions”

In this experiment, we applied SyCAM to a VGG16 model trained over the 
training subset of the PASCAL VOC 2007 dataset, and using the Av erage Drop
% metric: one of the settings described in the original GradCAM++ paper [4]. 
The dataset I contains 2510 images distributed in 20 classes. For the correctness 
oracle, we use three subsets of images, I ⊃ I2 ⊃ I1.  The  s  et I2 is a subset of
1000 randomly chosen images, and I1 contains 100 randomly chosen images.

We applied SyCAM using two grammars for a fixed time of 6 h each:

– G1: A grammar defined by: 

Expr := Term | Expr + Expr | 2 · Expr + Expr | Expr · Expr | ReLU (Expr ) 
Term := Grads | top5 (Grads) | top10 (Grads) | top20 (Grads) | top50 (Grads) 

Grads := GP( 
∂Y c 

Ak
) for any c ∈ C and k ∈ K .

– G2: The grammar G1 adding the terminals CICScores and AblScores.  Thi  s
is, the grammar described in Sect. 4. 

Using grammar G1, SyCAM can only synthesize expressions that employ gra-
dients, so SyCAM can’t synthesize ScoreCAM, AblationCAM, or other similar 
expressions. By incorporating the CICScores and AblS cores terminals into G2,
SyCAM can generate more diverse expressions. Figure 3 illustrates the results 
obtained by SyCAM using both G1 and G2. When G1 was used, SyCAM man-
aged to synthesize GradCAM++, represented by ReLU (Grads) [21], guided by 
the Average Drop % metric, and did not synthesize a better expression before 
the timeout. However, when G2 was used, SyCAM was able to synthesize 
even better expressions, with a reduction of the Average Drop % metric of 5%. 
This shows that SyCAM can synthesize the dominant known expression, or
even better expressions if there is a possibility of doing so, and the grammar
allows it.
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Fig. 3. SyCAM application to a VGG16 model trained over the PASCAL VOC 2007 
dataset and the Average Drop % metric (lower is better). If only gradients-related 
terminals are included in the grammar, SyCAM synthesizes GradCAM++. Better
CAM expressions are synthesized for an expanded grammar.

5.3 Experiments E2: Enumerate & Class-Based Decomposition 

“Show the efficacy of SyCAM, and that the class-based decomposition approach 
can p erform better than the enumerate approach.”

We use this set of experiments to show the efficacy of SyCAM in comparison 
to other well-known CAM methods: GradCAM, GradCAM++, ScoreCAM, and 
AblationCAM. We also show how t he class-based decomposition allows us to
obtain better results than the simple enumerative approach.

In general, whilst the average value-wise improvement in the score obtained 
by SyCAM in each experiment may look only marginally better than the base 
methods, this marginally b etter score already results in more targeted saliency
maps for a significant number of images. In Fig. 4, while the SyCAM score shows 
minor improvement, SyCAM gets a better saliency map that does not highlight 
the right dog as GradCAM and GradCAM++ do and highlights the body of the 
left dog more than ScoreCAM and AblationCAM. This implies that the model is
making the classification of the image mostly based on the left dog, specifically
the head and the upper body.

In the following, we give more details about our findings for both the en u-
merative and class-based decomposition approaches.

Results for the Enumerative Approach. We use a reduced version of ImageNet ,
namely the Imagenette dataset [13] that includes images for 10 classes out of the 
1000 classes of ImageNet. Specifically, we use the validation dataset, with 3925 
images distributed evenly into the 10 output classes. The evaluation metric in 
all the experiments is the Deletion or the Insertion metric. The experiments run 
for a fixed time of 24 h. Then, they return the best expression found. For the
correctness oracle, we use three subsets of images, I ⊃ I2 ⊃ I1. The set I2 is a
subset of 1000 images: 100 from each class. I1 contains 100 images: 10 per class.

As explained in Sect. 5.1, the evaluation of each candidate over the whole 
dataset can lead to scalability issues. Around 1020 candidate expressions are
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Fig. 4. Saliency maps generated by GradCAM, GradCAM++, ScoreCAM, Ablation-
CAM, and the SyCAM expression for ResNet50, the class “2. English springer”, and 
the Deletion metric (P =  30, higher is better). The scores for each method are 0.2141, 
0.2414, 0.2419, 0.2343, and 0.2441, respectively. SyCAM gets a better score and a 
saliency map t hat does not highlight the right dog as much as GradCAM and Grad-
CAM++ do and highlights the body of the left dog more than ScoreCAM and Abla-
tionCAM.

generated in three iterations of Algorithm 1, and it takes ∼0.3s to evaluate the 
Deletion or the Insertion metric (P =  10) over a single image. The computation 
time of the evaluation of a candidate expression over eac h subset for the Deletion
and Insertion metrics (P = 10) is ∼18 m, ∼5 m, and ∼27s, respectively.

In Table 1, we present our results for all three models. We show the expres-
sions synthesized by SyCAM, and provide a comparison with GradCAM, Grad-
CAM++, ScoreCAM, and AblationCAM, showing the average scores for each 
method when evaluated using the Deletion and the Insertion metrics. In general, 
SyCAM synthesizes expressions better than the base methods. In some cases, 
SyCAM synthesizes GradCAM (Grads), ScoreCAM (CICScores), or Ablation-
CAM (AblScores). We point to the fact that AblationCAM performs better than 
the rest of the base methods for the Deletion metric, but not for the Insertion 
metric, for which it is almost always surpassed by ScoreCAM. This emphasize 
the necessity of using a framework like SyCAM to synthesize the best expression 
for each context. For P =  15  and P =  30, the computation time grows propor-
tionally to P . There are some exceptions because of the correctness oracle. In the 
worst case, every expression is better than the threshold for I1 and I2 but worse 
than I and must be evaluated over the three sets. Note that both metrics depend
on the ratio between P and the size of the feature maps in the last convolutional
layer. Because the feature maps are bigger in VGG-16 and VGG-19 (14 × 14)
than in ResNet50 (7 × 7), this dependency makes the values obtained by both
metrics larger for ResNet50 than for VGG-19 and VGG-16 when comparing the
same CAM methods. Larger values of P are correlated with better metric scores
when comparing the same CAM methods.

Results for the Class-based Decomposition Approach. For each of the ten classes, 
the correctness oracle will use a subset I, which contains approximately 390 
images each, and I1 ⊂ I, which contains 100 images each. The t ime needed for
evaluating an expression over each subset is ∼2 m 10 s and ∼30 s, respectively.

To make a fair comparison between the enumerate and the class-based decom-
position approach, we established a timeout of 2.4 h per class. Although this 
limits the size of the expressions synthesized for each class, we can see in Table 2
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Table 1. Enumerative approach for the models ResNet50, VGG-16, and VGG-19 over 
the Imagenette dataset using our variants of the Deletion and Insertion metrics (higher
is better). G=GradCAM, G+=GradCAM++, S=ScoreCAM, A=AblationCAM.

Deletion metric (P=10) Insertion metric (P=10) 

Model G G+ S A SyCAM SyCAM Exp. G G+ S A SyCAM SyCAM Exp. 

ResNet50 0.3559 0.3479 0.3523 0.3601 0.3619 

5 · Grads 

+ top50 

+ ReLU (Grads) 

+ AblScores 

0.2287 0.2204 0.2243 0.2219 0.2296 
top50 

∗ CICScores 

VGG-16 0.1722 0.1718 0.1727 0.1836 0.1883 

2 · Grads 

+ top5 

+ CICScores 

+ AblScores 

0.0167 0.01850.0320 0.0204 0.0320 CICScores 

VGG-19 0.1736 0.1713 0.1744 0.1824 0.1825 
top10 

+ AblScores 
0.0260 0.02100.0346 0.0237 0.0346 CICScores 

Deletion metric (P=30) Insertion metric (P=30) 

Model G G+ S A SyCAM SyCAM Exp. G G+ S A SyCAM SyCAM Exp. 

ResNet50 0.6075 0.6010 0.6017 0.6049 0.6079 
Grads 

+top10 

0.5435 0.5289 0.5349 0.5402 0.5435 Grads 

VGG-16 0.3344 0.3382 0.3385 0.3523 0.3579 

4 · Grads 

+ top5 

+ CICScores 

+ AblScores 

0.0957 0.10750.14220.1160 0.1422 CICScores

VGG-19 0.33370.33640.33400.3454 0.3454 AblScores 0.0996 0.1105 0.1422 0.1146 0.1424
2 · Grads

+ ReLU (Grads)

+ CICScores

that, for ResNet50, the average scores of SyCAM per class show improvement 
over the enumerative approach except for the Deletion metric for L = 10 case. 
For certain images, SyCAM resulted in scores higher than those of GradCAM, 
GradCAM++, ScoreCAM, and AblationCAM. In other cases, SyCAM was out-
p erformed. This is because other methods may get much higher scores for a small 
subset of the data, but not for the rest. As explained in Sect. 5.1, our goal is to 
find expressions that are better than the best one found in at least half o f the 
images and that have a h igher average score.

5.4 Experiments E3: Incorporating Ground Truth 

“Show how to incorporate expert knowledge into the generation of saliency maps.”
We use the COVID-QU-Ex dataset [34], which consists of 5826 chest X-

ray images with infection segmentation data distributed between 1456 normal 
(healthy) images, 2913 COVID-19 images, and 1457 non-COVID images with 
other diseases. Ground-truth COVID-19 segmentation masks are provided. We 
fine-tuned a ResNet50 model to correctly classify the test dataset with accuracy 
higher than 95%, a nd precision and recall higher than 92% for each class.

We consider a set I with only the 2913 COVID-19 X-ray images and the asso-
ciated ground-truth COVID-19 segmentation masks. For the correctness oracle,
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Table 2. Class-based decomposition approach for ResNet50 over the Imagenette 
dataset using the Deletion and Insertion m etrics (higher is better). G=GradCAM, 
G+=GradCAM++, S=ScoreCAM, A=AblationCAM.

Deletion metric (P=10) Insertion metric (P=10) 

Model G G+ S A SyCAM SyCAM Exp. G G+ S A SyCAM SyCAM Exp. 

1.Tench 0.4329 0.4286 0.4203 0.4258 0.4358 
Grads 

+top5 

0.2307 0.2209 0.2188 0.2346 0.2367 
CICScores 

∗AblScores 

2.English springer 0.4293 0.4193 0.4413 0.4513 0.4406 
Grads2 

+top50 

∗CICScores 
0.1741 0.16390.1786 0.1706 0.1741 Grads 

3.Cassette player 0.2755 0.2719 0.2698 0.2577 0.2766 top50 0.1584 0.1517 0.1514 0.1201 0.1663 top10 

4.Chain saw 0.4360 0.43010.4439 0.4432 0.4404 top10 0.2524 0.24250.2536 0.2327 0.2524 Grads 

5.Church 0.2634 0.2468 0.2505 0.2799 0.2640 
2 · Grads 

+top20 

0.0859 0.0803 0.0880 0.0862 0.0891 top20 

6.French horn 0.3891 0.3849 0.3831 0.3972 0.3891 Grads 0.2550 0.2441 0.2460 0.2693 0.2550 Grads 

7.Garbage truck 0.3757 0.3643 0.3650 0.3779 0.3757 Grads 0.2411 0.2390 0.2412 0.2328 0.2438 
Grads 

+top20 

+Grads2 

8.Gas Pump 0.3405 0.3262 0.3369 0.3470 0.3405 Grads 0.0508 0.04720.0570 0.0464 0.0508 Grads 

9.Golf ball 0.3309 0.3272 0.3206 0.3279 0.3356 top10 0.4149 0.4047 0.3953 0.4200 0.4167 top50 

10.Parachute 0.2855 0.28050.2918 0.2897 0.2858 
2 · Grads 

+top10 

0.4343 0.4205 0.4231 0.4129 0.4343 Grads 

Average 0.3559 0.3480 0.3523 0.3598 0.3584 0.2287 0.2215 0.2253 0.2226 0.2308 

Deletion metric (P=30) Insertion metric (P=30) 

Model G G+ S A SyCAM SyCAM Exp. G G+ S A SyCAM SyCAM Exp. 

1.Tench 0.7215 0.7170 0.7120 0.7148 0.7236 
top50 

∗CICScores 0.6415 0.6310 0.6297 0.6398 0.6415 Grads 

2.English springer 0.6360 0.6290 0.6365 0.6447 0.6416 
top50 

∗CICScores 0.4815 0.4672 0.47460.4855 0.4815 Grads 

3.Cassette player 0.4374 0.4336 0.4323 0.4169 0.4385 top10 0.3404 0.3256 0.3324 0.2932 0.3427 
Grads 

+top5 

4.Chain saw 0.6711 0.6667 0.6694 0.6504 0.6730 top10 0.5896 0.5698 0.5863 0.5678 0.5896 Grads 

5.Church 0.4677 0.4548 0.4580 0.4755 0.4692 
2 · Grads 

+top 20 
0.3488 0.3319 0.34420.3632 0.3501 

2 · Grads 

+top20 

6.French horn 0.6464 0.6412 0.6363 0.6527 0.6476 top50 0.5968 0.5816 0.58670.6126 0.5968 Grads 

7.Garbage truck 0.6676 0.6619 0.6622 0.6681 0.6676 Grads 0.6072 0.5972 0.60300.6091 0.6072 Grads 

8.Gas Pump 0.6286 0.6223 0.6288 0.6341 0.6286 Grads 0.4049 0.3862 0.4008 0.4045 0.4050 
2 · Grads 

+top5 

9.Golf ball 0.5865 0.5791 0.5649 0.5875 0.5895 top10 0.7158 0.7072 0.69870.7224 0.7158 Grads 

10.Parachute 0.6041 0.59720.6090 0.5930 0.6041 Grads 0.70840.69240.6928 0.6982 0.7084 Grads

Average 0.60750.6010 0.6017 0.6049 0.6091 0.54350.52890.5349 0.5402 0.5438

we use three subsets of images, I ⊃ I2 ⊃ I1.  The  set  I2 is a subset of 1000 images, 
while I1 contains 100 images. W e apply SyCAM using two metrics: the mGT and 
the SCH metrics defined in Sect. 2.3. Because these metrics give importance to 
the ground truth COVID-19 masks, the SyCAM expressions incorporate expert 
knowledge into the saliency maps generated. Since we are only considering a 
binary classification, we employ the enumerative approach. For both metrics 
defined abov e, we let the experiments run for 24 h. In this experiment, evaluat-
ing m GT or SCH takes around 0. 05s per image.

The results are presented in Table 3. We can observe that, for both metrics, 
SyCAM synthesizes expressions whose basis is o f the form expn,  w  ith  exp a
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terminal and n ∈ N: CICScores4 for the mGT metric, and Grads5 for the SCH 
metric. This may indicate that dominant expressions have this form, which highly 
reduces the values lower than 1 and gives more i mportance to the h igh values.

Examples of saliency maps generated by SyCAM are included in Figs. 1, 
5a  and  5b. We can observe in the X-ray images of Fig. 1 that the saliency map 
generated by SyCAM is more concentrated on the ground-truth mask, while the 
rest of the CAM methods fail to do so. In fact, we can see that GradCAM++ and 
ScoreCAM give high importance to a region outside of the body in the bottom 
right. Something similar happens in Fig. 5a. In Fig. 5b, because the SyCAM 
expression is 2 · Grads5 , the heatmap obtained is a more compact version of the 
GradCAM heatmap. This reduces the importance of areas outside of the ground 
truth, achieving a higher SCH score.

Table 3. Enumerative approach for the fine-tuned model ResNet50 over the COVID-19 
benchmark. The metrics used are the mGT and the SCH metrics (higher is be tter).

Metric GradCAM GradCAM++ ScoreCAM AblationCAM SyCAM SyCAM Exp. 
mGT 0.1861 0.1712 0.1512 0.1876 0.1972 Grads ∗top20 ∗CIC4 

SCH 0.1567 0.1491 0.1458 0.1524 0.1610 2 · Grads 5 

Fig. 5. Saliency maps generated by GradCAM, GradCAM++, ScoreCAM, Ablation-
CAM, and t he SyCAM expression synthesized f or ResNet50.
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6 Discussion and Future Work 

We presented SyCAM, a metric-based synthesis framework for automatically 
generating CAM expressions. SyCAM offers advantages in tailoring CAM 
expressions to specific syntactic restrictions, datasets, and evaluation metrics. 
However, our approach still has limitations that we plan to address in future 
work. One key limitation is the high computation time required to gener-
ate expressions, which stems from the complexity of the synthesis algorithms. 
Improvements in synthesis methods will directly enhance our approach. However, 
we emphasize that generating a SyCAM expression is a one-time process, and 
the computation time for generating saliency m aps remains reasonable. Addi-
tionally, the SyCAM framework relies on enumerating expressions and verifying 
their validity. Future work will explore ways to guide this search process more 
efficiently, thereby r educing computation time. Lastly, we also aim to extend our 
study to multi-objective settings [35], incorporating multiple evaluation metrics 
simultaneously and identifying P areto-optimal expressions as solutions. 
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Abstract. Self-Supervised Learning (SSL) for Vision Transformers 
(ViTs) has recently demonstrated considerable potential as a pre-training 
strategy for a variety of computer vision tasks, including image classifica-
tion and segmentation, both in standard and few-shot downstream con-
texts. Two pre-training objectives dominate the landscape of SSL tech-
niques: Contrastive Learning and Masked Image Modeling. Features (or 
tokens) extracted from the final transformer attention block –specifically, 
the keys, queries, and values– as well as features obtained after the 
final block’s feed-forward layer, have become a common foundation for 
addressing downstream tasks. However, in many existing approaches, 
these pre-trained ViT features are further processed through additional 
transformation layers, often involving lightweight heads or combined with 
distillation, to achieve superior task performance. Although such meth-
ods can improve task outcomes, to the best of our knowledge, a compre-
hensive analysis of the intrinsic representation capabilities of unaltered 
ViT features has yet to be conducted. This study aims to bridge this 
gap by systematically evaluating the use of these unmodified features 
across image classification and segmentation tasks, in both standard and
few-shot contexts. The classification and segmentation rules that we use
are either hyperplane based (as in logistic regression) or cosine-similarity
based, both of which rely on the presence of interpretable directions in
the ViT’s latent space. Based on the previous rules and without the use of
additional feature transformations, we conduct an analysis across token
types, tasks, and pre-trained ViT models. This study provides insights
into the optimal choice for token type and decision rule based on the
task, context, and the pre-training objective, while reporting detailed
findings on two widely-used datasets.
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1 Introduction 

Vision transformers [14, 18, 21, 23, 37], have shown exceptional performance in 
addressing complex computer vision and multi-modal tasks [8, 32, 39, 40]. How-
ever, their effectiveness is highly dependent on the size of the training dataset, 
requiring an extensive amount of data to generalize effectively and avoid over-
fitting. Training these models from scratch is resource-intensive, both in terms 
of computational power and processing time. Given that related tasks, such as 
classification and segmentation, often share foundational knowledge, training 
separate models for each task from scratch is inefficient. Therefore, it h as been
proposed to train a large model once, using substantial data and resources to
capture general knowledge, and then specialize or distill this model for specific
downstream tasks by leveraging the knowledge acquired during the initial train-
ing phase.

Self-supervision, based on Masked Image Modeling (MIM) [2, 7, 19]  or  Con-
trastive Learning (CL) [6, 7, 11], has been proposed as a way for ViTs to capture 
this general knowledge from large datasets without the need for explicit lab els.
However, to achieve top performance, in most approaches [17, 20, 42, 43] the pre-
trained ViT features undergo further transformations before the final prediction, 
in order to align the feature representations with the solution of the downstream 
task. Moreover, different methods utilize various feature types –such as query-
key-value pairs from the last attention block, or the output tokens of the final 
feed forward layer– and employ diverse decision rules, being either hyperplane-
based or direction similarity-based. Ev en though these approaches have demon-
strated their effectiveness in solving downstream tasks, yet to our knowledge, a
comprehensive evaluation of the intrinsic representation capabilities of unaltered
self-supervised ViT features is missing from the literature.

In this work, we present a comprehensive analysis of the representational 
power of unaltered features from two self-supervised ViTs, pre-trained on a large
dataset [35] using the previously mentioned self-supervision objectives [6, 19]. To 
the best of our knowledge, this is the first study to examine all of the following 
aspects simultaneously: a) two ViTs pre-trained with different self-supervised 
objectives b) the five possible token types from the last transformer layer – 
keys, queries, values, and features before and after the final feed-forward block– 
c) two downstream tasks: image classification and segmentation, across b oth
standard and 1-way-k-shot contexts and d) two commonly used prediction
methods (or, as otherwise mentioned, decision rules), based on either hyper-
plane separation (linear probing) or cosine similarity.

We find that the hyperplane decision rule is more effective in semantic sep-
arability across most experiments, indicating that the cosine similarity between 
the tokens of these pretrained models is a suboptimal semantic proximity met-
ric. Furthermore, our experiments indicate that the optimal token type depends 
heavily on the pre-training objective, task, context and decision rule –with some
previously overlooked tokens proving to be the most effective. Beyond practical
guidelines, our work challenges existing intuitions about ViT token interpreta-
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tions and underscores the need for a deeper understanding of the role of eac h
computational block within ViT layers.

2 Related Work 

Self-Supervised Pre-Training. Self-supervised pre-training [44] stands out 
as the leading method towards developing vision, vision-language, and v arious
multi-modal foundation models [5, 39, 48]. The core strategies in this field involve 
CL, MIM, or an integration of both. On the one hand, CL methods [7, 10, 11, 
41] utilize image augmentation techniques to generate views with similar or 
dissimilar semantic content, which, in turn, are considered for feature alignment.
On the other hand, representation learning in MIM methods [2, 30, 40] is driven 
by masking patches a nd then reconstructing pixels or features.

Within ViTs, MIM approaches, largely represented by Mask ed Autoencoders
(MAEs) [19, 45], typically require supervised fine-tuning to achieve compet-
itive performance on downstream tasks [2, 19, 27, 45, 50, 53]. These models tend 
to exhibit narrow self-attention receptive fields [49] and capture texture-based 
features, making them best suited for d ense prediction tasks such as object
detection [29]. They also tend to exhibit great scaling with an increasing num-
ber of parameters which can be attributed to the high attention-map variance 
between transformer h eads, meaning that a larger portion of the network can
being utilized during fine-tuning [29]. 

ViTs trained with a CL framework, such as DiNO [6], generate semantic-level 
feature representations [1], allowing them to serve as universal feature extractors
without further fine-tuning [38]. Similar to other contrastive learning meth-
ods, the self-attention maps of a ViT pre-trained with a DiNO objective, have 
a broad receptive field, effectively c apturing global patterns, but CL also faces
the challenge of collapse into homogeneity [29], leading to similar self-attention 
maps for all heads. This limitation has motivated the development of hybrid 
SSL techniques that combine M IM and CL learning objectives to address their
respective limitations [24, 28, 29, 31]. 

Transfer-Learning Self-Supervised ViTs on Downstream Tasks. In dense 
prediction tasks, the patch tokens of the final encoder layer a re commonly used
as regional embeddings [19, 39, 47], while the corresponding class token ([CLS]) 
remains the standard representation for image classification [6, 14, 50]. The ability 
of DiNO to induce discriminative saliency maps in t he self-attention mechanism
of ViTs [6] has inspired the extraction of features directly from the self-attention 
blocks. Beyond the vanilla approach that uses the class token for image classifi-
cation tasks, various techniques have been explored that leverage the key tokens 
in the self-attention block of a frozen DiNO backbone (a ViT pre-trained with
the DiNO objective), to tackle unsupervised segmentation and localization tasks
[36, 42, 43], often employing a cosine similarity-based signal. Alternative methods 
that utilize a similar backbone seek to distill its knowledge in both standard [17] 
and few-shot [20] contexts through lightweight heads, using the backbone as a 
means to detect semantic similarities within the data.
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Unlike CL which is able to build strong frozen backbones, MIM pre-training 
is best capitalized with task-specific fine-tuning. In [50], a MAE is pre-trained on 
a face dataset and subsequently fine-tuned on a dataset with facial expressions 
for facial a ffective analysis. In the medical domain, where annotated data are
more scarce, self-pre-training [53] has been proposed as the paradigm of pre-
training a MAE directly on the data of the downstream task. Subsequently, the 
learned encoder can be combined with a trainable linear head or a convolutional 
decoder to demonstrate superior performance compared to supervised baselines 
or baselines pre-trained on out-of-domain data. Beyond masking pixels, the MIM 
objective c an be utilized to train lightweight student models that learn to recon-
struct masked features from a larger state-of-the-art teacher, providing efficient
solutions to solve the downstream segmentation task [46]. 

Relation to the Present Work. In contrast to other studies that shed light 
on self-supervised ViTs from varying perspectives [11, 26, 29, 33, 49], our research 
adopts a latent space probing approach, regularly explored in mechanistic inter-
pretability [13, 15, 16, 34, 51]. To our knowledge, this study is the first to rigor-
ously evaluate the effectiveness of tokens derived from a frozen MAE to solve 
downstream tasks. This is even without taking into account the extensive breadth 
of this study on variation in token types, decision rules, and downstream tasks 
and contexts. Instead, previous work tends to prefer DiNO features for seg-
mentation tasks with works considering frozen MAE features being almost non-
existent, possibly due to the known fact that MIM works better when fine-tuned. 
Yet, a quantitative evaluation of the effectiveness of MAE’s features compared
to DINO’s is currently missing, and our work addresses this gap with a detailed
analysis. Our findings suggest that for semantic segmentation, while the down-
stream performance of MAE’s features is inferior to DINO’s, in some aspects the
gap between them is not as large as one might initially believe.

Regarding DiNO, methods such as [1, 17, 20, 36, 42, 43] address the unsuper-
vised segmentation task using token feature transformations derived from a 
frozen backbone. In our work, we differentiate and take a step back to meticu-
lously assess the effectiveness of DiNO’s vanilla tokens (without any transforma-
tions or extra processing) on d ownstream tasks using annotations, revealing to
some extent the best starting point of those previous approaches. Furthermore,
many previous approaches [17, 20, 36, 42, 43] have applied the cosine similarity 
rule to the tokens of a frozen DINO backbone, utilizing it as an implicit super-
visory signal for semantic similarities. However to our knowledge, a rigorous 
assessment of its potential is missing from the literature and our work aims to 
address this, by being the first to assess the effectiveness of DiNO’s features 
with the cosine rule on semantic tasks with ground-truth labels. Our work is 
also unique in providing a thorough study o ver the representation power of dif-
ferent token types, being either the attention layer’s queries, keys, values, or
tokens from either side of the final feed forward transformer block, expanding on
the shallow analysis of [6]. In principle, our findings are aligned with previous 
work that prefers to use the attention la yer’s key tokens for semantic segmenta-
tion [1, 36, 42, 43] but also highlights a detailed comparison with the alternative
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tokens. Finally, image classification based on the two SSL approaches i s also less
explored in the literature [6, 20], and our work provides a detailed analysis, in 
terms similar to the segmentation task.

3 Approach 

As briefly stated in the preface, our work aspires to address the following ques-
tions that i nnately arise when employing pre-trained ViTs in downstream tasks:

– Which self-supervised pre-training objective (MIM, CL, implemented by 
MAE and DiNO respectively) produces frozen backbones, which are more
aligned to each downstream task (classification, segmentation)?

– Which ViT token types (queries q,  keys  k,  values  v from the final ViT’s 
self-attention block or tokens x1, x2 from either side of the transformer feed
forward block) provide semantically meaningful representations?

– Which decision rule (hyperplane based, cosine similarity based) should be 
utilized to separate the f eature space into semantic regions?

Additionally, we also consider two downstream contexts: standard (where a 
plethora of labeled examples are available for learning a decision rule) and few-
shot (where only a limited number of samples are available for the same purpose). 
In the following subsections, we aim to clarify these research questions by con-
ducting experiments with combinatorial variability across pre-trained models,
tasks, contexts, decision rules, and token types.

3.1 Self-supervised Pre-Training Objectives 

This study concentrates on two well-known SSL ViT architectures: MAE [19] 
and DiNO [6]. MAE is part of the group of pre-training techniques focused on 
masked image modeling, whereas DiNO aligns with self-distillation and con-
trastive learning approaches. For the sake of computational efficiency, we opted
for the smallest pre-trained ViT models accessible to the public (DiNO: ViT-S/8
21M parameters, MAE: ViT-B/16 86M parameters).

3.2 Downstream Tasks 

We investigate the semantic representation power of ViT tokens in two exem-
plary downstream tasks: image classification and semantic segmentation. In t he
context of image classification, we develop a subset of ImageNet [35] resembling 
ImageNet-Tiny [22], constructed by randomly selecting 550 samples for each 
of ImageNet-Tiny’s 200 classes. For image segmen tation, we utilize the Bro-
den dataset [3], which consolidates multiple datasets that a re densely annotated
[4, 9, 12, 25, 52]. Broden encompasses 1197 concepts distributed across approxi-
mately 63K images within 5 distinct concept categories (object, part, material, 
texture, color). In this research, we have excluded the color category to focus
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on the remaining categories which are deemed to hold greater semantic signifi-
cance. Figure 1 demonstrates the extensive annotations present in Broden, which 
incorporate low-level concept categories, such as material and texture, alongside
high-level concepts, such as object and scene.

Fig. 1. Broden samples. Each image in the dataset is associated with multiple segmen-
tation maps, covering six primary categories (color, object, part, material, scene, tex-
ture). For instance, the image in the left has a color and a material category-mapping
whereas the image on the right a color and an object segmentation map.

We address both tasks through a unified binary classification framew ork, tak-
ing inspiration from [51]. Using independent binary classifiers offers a straight-
forward yet effective learning scheme suited for Broden’s multilabel annotation 
structure. For image classification, we use the [CLS] token as a global feature rep-
resentation of the entire image, whereas for semantic segmentation, we leverage 
the corresponding patch tokens to represent individual regions. Consequently, 
each object –whether the entire image for classification or an image-region for 
segmentation– is r epresented by a single feature vector, which serves as input to
a set of binary classifiers. In other words, beyond the typical image classification
task, the segmentation task is tackled by treating it as a patch classification
problem.

3.3 Token Types 

In our analysis we account for various token types derived from the final trans-
former layer to address the downstream tasks. We consider the query q , key k,
and value v tokens of the self-attention block (Fig. 2 top), the output of the 
self-attention block, denoted as x1 and the output tokens of the feed forw ard
block (MLP), referred to as x2 (Fig. 2 bottom).
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Fig. 2. (Top) Multi-head attention schematic diagram. q, k, v ∈ RD depict the queries, 
keys, values tokens respectively, with D representing the ViT’s embedding dimension. 
(Bottom) Schematic diagram of the transformer’s final layer, where LN denotes layer 
normalization and SA represents the multi-head self-attention mechanism. Note that 
the final normalization layer (LN) is applied exclusively at the last transformer lay er.
We denote x1 ∈ R

D the transformer tokens prior to the MLP and the second layer
normalization layer, while x2 ∈ R

D the output-tokens after the MLP (layer output).

3.4 Classifier Decision Rules 

We examine the semantic separability of ViT tokens using two different decision 
rules: hyperplane-based and cosine similarity-based. As illustrated in Fig. 3,  each  
classification rule is associated with a distinct decision boundary, dissecting t he
feature space into two disjoint subspaces.

Specifically, the hyperplane rule is comprised of a normal vector w and a 
bias term b, defining the orientation and position of the hyperplane respectively. 
A feature vector z is classified positively if wT z − b ≥ 0. In contrast, the cosine 
decision rule defines a convex cone via a conical axis v ector α and an angular
threshold θ, such that z is positively classified if arccos( z

‖z‖2
· α

‖α‖2
) ≤ θ, with ·

denoting the dot product.

Fig. 3. Classifier decision rules. (Left) Hyperplane classifier (w,  b). (Right) Cosine sim-
ilarity classifier (α,  θ). Each classifier dissects the feature space into two disjoints sub-
spaces. Positively classified samples are depicted in blue, while negatively classified
samples are illustrated in red. (Color figure online)
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Concept Templates: Both decision rules are associated with a class-specific (in 
image classification) or concept-specific (in semantic segmentation) directional 
vector, a threshold and a projection function, which altogether may be utilized 
to classify a feature vector for the downstream task. We use the term concept 
template to encompass these attributes and also refrain from making explicit dis-
tinction regarding the label type of each downstream task (image class vs patch 
concept) as we treat both tasks within a common framework of similar princi-
ples. In the rest of the paper we will mostly refer to the downstream task’s labels
as concept labels, when in fact for image classification these labels correspond to
image classes.

Fig. 4. Hyperplane decision rule: The class token represents the global image content, 
while individual image regions are represented by their corresponding patch tokens. A 
hyperplane is learned for each image class or semantic concept to distinguish positive
samples from negative ones.

Formally, given the dimensionality of the embedding space D, a feature vector 
z ∈ RD and a concept c ∈ N, the concept template is a triplet τc :=  (d,  t,  f), 
where d ∈ R

D is the directional vector, t ∈ R is the threshold and f(z;d) :
R

D → R is the projection function.
The concept template τc detects the existence of concept c in the feature 

vector z (p ositive classification) if:

f(z;d) ≥ t (1) 

In the case of a hyperplane decision rule: d := w,  t  := b and f(z; w) := wT z, 
while for a cosine decision rule: d := α, t :=  cos(θ) and f(z; α) := 1

‖α‖2 ‖z‖2 
αT z. 

Based o n the underlying decision rule, we distinguish two cases of concept tem-
plates: hyperplane-templates and cosine-templates.

3.5 Analysis Framework 

This section provides details on how we learn the concept templates. In this and 
the rest of the sections, we often use the terms concept template and classifier 
interchangeably, preferring the former to emphasize its geometric interpretation
and the latter to focus on its functional application.
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Fig. 5. Cosine similarity decision rule: In the few-shot context, the concept template’s 
direction is derived by averaging intra-class token representations extracted from the 
support set. Specifically, a token originating from the query image set i s classified
positively if the cosine similarity between the token and the template’s direction exceeds
a threshold θ.

Hyperplane Templates: To compute hyperplane templates, for each concept, 
we learn a hyperplane classifier (w, b) with the process illustrated in Fig. 4. 
Given a training feature dataset Df : {(zi,  ci),  i  =  1,  .  .  .  ,  N},  where  zi ∈ RD 

represents the feature vector of an object (image/image-region) and ci ∈ N 
represents its ground-truth label, we construct a positive sample pool for each 
concept c, denoted as D+ 

c = {zi | (zi,  ci) ∈ Df ,  ci = c}, and a corresponding 
negative sample pool, D− 

c = {zi | (zi,  ci) ∈ Df ,  ci �= c},  where  |D− 
c | � |D+ 

c |.  In  
semantic segmentation, when forming the negative sample po ol for a concept ci,
we only consider concepts within the same primary category as ci. To manage the
significant class imbalance between the two sample pools, we initially limit the
size ratio of D−

c : D+
c to be no more than 20 : 1 by random subsampling. During

template learning, we conduct five rounds of hard negative mining, following
[51]. In each of these rounds, the hyperplane template is fitted to the mined 
dataset over 3 epochs, ensuring a positive-to-negative sample ratio of 1  :  2. 
The evaluation of each learned template is performed on a reserved test-set 
(approximately 10K image samples for ImageNet and 18K image samples for
Broden from its validation split) via a set of balanced binary classification
metrics.

Cosine Templates: Since the cosine decision rule is frequently utilized in unsu-
pervised settings [17, 20, 36, 42, 43] including few-shot contexts, we explicitly 
consider learning cosine-templates in a few-shot regime by constructing support-
query image sets for template learning and evaluation. The directional vector α 
and similarity threshold t .= cos(θ) of cosine templates, are computed in a non-
parametric 1-way-k-shot setting. For a concept c ∈ N,  we  construct  a  support 
image set Sc,k by randomly sampling k training images that contain c. Sc,k 
is further processed to construct the respective positive and negative support
feature pools D+

c,k,D−
c,k; Notice that for image classification D−

c,k = ∅, as every
image in the support set is mapped to a single feature vector ([CLS] token).
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The cosine template’s directional vector α is then computed by averaging the 
positive support features: 

α =
1

|D+
c,k|

∑

z∈D+
c,k

z (2) 

while the angular threshold θ is computed by maximizing the F1-score of the 
classifier τc on the support feature set :

θ = argmax
θ̂

(F1(θ̂, Dc,k;α, f)) (3) 

where F 1 is the F1 score of a classifier τc =  (α,  t,  f) computed on the support 
feature set Dc,k = D+ 

c,k ∪ D− 
c,k, given the directional vector α and the cosine-

similarity p rojection function as f . Due to the fact that we use an empty D−
c,k

for image classification, in Eq. (3) we consider the smallest possible angle θ that 
maximizes F1 score. The overall process is illustrated in Fig. 5.  Furthermore,  we  
vary k ∈  {1, 5, 10, 50, 100, 500}, leveraging different proportions of the available 
data. Finally, the templates are evaluated on a balanced randomly sampled query 
test set of 50 positive and 50 negative images using the same set of balanced 
binary classification metrics as in the hype rplane templates. Due to the stochastic
nature of this 1-way-k-shot setting, we average and present the results from
N = 10 independent trials reporting mean scores and their standard deviation.

4 Experimental Results 

The subsequent subsections detail the outcomes of our comprehensive exper-
imental evaluation, structured by downstream task and decision rule. In our 
analysis, the term token performance is used to denote the efficacy of concept 
templates that incorporate a particular token. It is important to highlight that 
for image classification tasks, the mentioned tokens refer to the [CLS] tokens,
while for image segmentation, they pertain to patch tokens. Lastly, we underline
that all the binary performance metrics presented in this work are balanced.

4.1 Task: Classification. Rule: Hyperplane 

TLDR: We observe a substantial disparity in the classification performance of 
the hyperplane template between the pre-trained MAE and DiNO models. While 
MAE tokens resemble the performance of random classifiers, DiNO demonstrates 
exceptional classification capacity. Specifically, DiNO’s x2 token is particularly
well-suited for classification tasks via linear probing, while MAE should not be
considered in this context.
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Fig. 6. Hyperplane-template classification: (Left) Accuracy between DiNO and MAE 
tokens. (Right) Precision, recall and F1 metrics for DiNO tokens.

Details: Figure 6 (Left) compares MAE and DiNO tokens in terms of accuracy. 
Most of MAE tokens approximately score an accuracy of 0.5, which is equivalent 
to a random classifier. This may be attributed to the fact that the [CLS] token 
is not participating in the MAE’s loss function. In contrast, DiNO attains its
maximum accuracy with x2 (0.946). A detailed analysis of DiNO’s token per-
formance is presented in Fig. 6 (Right). We observe near-perfect precision for 
q, k, v,  and  x2 (> 0.99), while x1 achieves a precision of 0.96. This enables 
the construction of a hyperplane with minimal false positives (FP) across all 
tokens. Furthermore, x2 exhibits the highest recall (0.89), followed by v (0.80),
q (0.72) and k (0.65). These results indicate that x2 provides the optimal linear
separability of semantic concepts.

Notably, x1 demonstrates the lowest performance across all evaluated met-
rics. To better understand this phenomenon, we also assess the performance of 
x1 after layer normalization, which we denote as xn. Table 1 presents the impact 
of the normalization layer on DiNO’s x1 hyperplane classification metrics. Layer 
normalization positively affects the semantic linear separability of the feature 
space. However, a more detailed a nalysis of the effects of layer normalization is
beyond the scope of this work.

Table 1. Layer normalization effects on DiNO’s x 1 performance metrics.

DiNO Accuracy Precision Recall F1 
x1 0.714 0.959 0.427 0.550 
xn 0.940 0.997 0.884 0.935 
x2 0.946 0.997 0.894 0.941 

4.2 Task: Classification. Rule: Cosine 

TLDR: Similar to hyperplane-based classification, DINO outperforms MAE 
under the cosine similarity decision rule. Notably, DINO’s x1 token achieves the
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highest accuracy and F1 scores. Furthermore, MAE shows substantial improve-
ment with cosine templates compared to the hyperplane decision rule, with its k 
token yielding the highest accuracy and F1 score in this context. Finally, increas-
ing t he support set size beyond 50 samples results in diminishing gains in average
accuracy and F1 scores for both models.

Fig. 7. Cosine-template classification with k = 500 support samples per concept. (Left) 
Precision and recall comparison between MAE and DiNO tokens. (Right) Accuracy 
and F1 s core comparison. The error bars denote the standard deviation across 10
independent trials.

Details: Figure 7 shows the classification metrics for DiNO and MAE tokens 
using the cosine decision rule, averaged over 10 independent trials with k = 500 
support images per concept. DiNO’s x1 emerges as the optimal token, achiev-
ing the highest accuracy (0.958 ± 0.01) and F1 score (0.958 ± 0.01), while q 
and k perform similarly. Although all DiNO tokens demonstrate high precision, 
v and x2 exhibit the lowest recall in this setting. For MAE, k achieves the
highest accuracy (0.812 ± 0.03) and F1 score (0.824 ± 0.02), while q and v
demonstrate similar performance. Notably, x2 exhibits the highest recall (0.929
± 0.02), making it particularly well-suited for critical risk detection applications
where minimizing false negatives (FN) is essential.

Fig. 8. Cosine-template classification accuracy for k ∈  {1, 5, 10, 50, 100, 500} support 
samples per concept, for DiNO (Left) and MAE (Right). Error bars denote standard
deviation across 10 independent trials.
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Figure 8 illustrates the impact of k (number of support samples used to com-
pute cosine-templates) on model accuracy. Notably, performance gains diminish 
significantly beyond 50 samples. However, increasing the number of s upport sam-
ples leads to a more representative support set, thereby reducing the standard
deviation across trials.

4.3 Task: Segmentation. Rule: Hyperplane 

TLDR: Both MAE and DINO demonstrate strong and comparable hyperplane-
template accuracy, yet inferior to the scores for image classification. Between the 
two pre-trained models, DINO achieves a higher overall F1 score. Notably, k is 
the optimal token in terms of overall accuracy and F1 score for both models. 
However, while k consistently yields the highest F1 score across all concept cat-
egories in DINO, MAE shows a slight advantage for x2 over k when considering
textures, objects, or scenes.

Fig. 9. Hyperplane-template segmentation: (Left) Precision and recall comparison 
between MAE and DiNO tokens. (Right) Accuracy and F1 score comparison between
MAE and DiNO tokens.

Details: Figure 9 presents the overall hyperplane-template segmentation perfor-
mance of DiNO and MAE tokens. Among DiNO tokens, k achieves the highest 
accuracy (0.721) and F1 score (0.684), while v attains similar accuracy (–0.001) 
but a slightly lower F1 score (–0.01). DiNO’s x2 exhibits the highest preci-
sion (0.899) making it particularly well-suited for quality assurance applications 
where minimizing false positives (FP) is essential. MAE’s k achieves the highest 
accuracy (0.721), while x2 attains the highest F1 score (0.645). Comparing the 
two, k appears to be the optimal choice, with a significantly higher accuracy 
(+0.07) and only a slight reduction in F1 score (–0.01). On the other hand, 
v demonstrates the highest precision (0.899), while x2 excels in recall (0.716).
Notably, x2 shows a substantial precision drop compared to x1 (–0.24), coupled
with a significant recall increase (+0.27). This suggests that critical semantic
information may be lost in x2, likely in favor of low-level textural patterns, as
x2 tokens are processed through a decoder for masked patch reconstruction.
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Figure 10 presents the F1 scores of hyperplane templates, grouped by seman-
tic category. DiNO’s k token consistently outperforms others regardless of the 
semantic category. Among all concept categories, DiNO performs better in part 
(0.817), material (0.786), and texture (0.765) but is less effectiv e in object (0.682)
and scene (0.637) categories. This pattern suggests that DiNO’s k token excels at
segmenting fine-grained semantic concepts, aligning with prior findings [1]. For 
MAE, the k token achieves the highest F1 scores in part (0.734) and material 
(0.727), whereas x2 leads in object (0.606), scene (0.676), and texture (0.734). 
Notably, the most significant disparity occurs in the part category, where k sig-
nificantly outperforms x2 (+0.08). Interestingly DiNO achieves higher F1 score
compared to MAE, in all categories except for scene (–0.13).

Fig. 10. F1 score for DiNO (Left) and MAE (Right) templates, grouped by label 
category. The scores for each concept template, are grouped and a veraged according
to their Broden primary semantic category (material, object, part, scene, texture).

Fig. 11. Precision (Top) and recall (Bottom) for DiNO (Left) and MAE (Right) tokens,
grouped by label category.
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Figure 11 further examines precision and recall across concept categories. In 
terms of precision, DiNO’s x2 token achieves the highest overall score (Fig. 9), a 
trend that persists across most categories, except for texture, where x1 exhibits 
superior precision (+0.09). For MAE, v achieves the highest precision in object 
and part categories, while x1 is the most precise in material, scene, and texture. 
Notably, MAE’s x1 consistently outperforms x2 in precision across all Broden 
categories. When analyzing recall, DiNO’s k token demonstrates the b est per-
formance in material, object, and part categories, whereas q and v emerge as
the top-performing tokens for scene and texture, respectively. Regarding recall
for MAE, x2 consistently performs best across all categories.

Cross-model comparisons reveal that MAE’s v or x1 tokens achieve higher 
precision than DiNO in part, scene, and texture categories, while DiNO tokens 
exhibit superior precision in material and object categories, reinforcing its
strength in segmenting individual structures.

4.4 Task: Segmentation. Rule: Cosine 

TLDR: For both MAE and DiNO, the utilization of the cosine-decision rule is 
evidently inferior to hyperplane-templates, as their overall accuracy across all 
concepts is not significantly superior to a random-classifier (≈ 0.6). However,
both models can achieve notable accuracy and F1 scores for textural concepts.

Details: Figure 12 presents the overall segmentation metrics for DiNO and MAE 
tokens under the cosine decision rule, averaged over 10 trials with k = 500 sup-
port images per concept. In both models, q tokens achieve the highest accuracy 
(DiNO: 0.574, MAE: 0.622) and F1 scores (DiNO: 0.419, MAE: 0.464). While 
MAE outperforms DiNO, both models perform significantly worse compared to
the hyperplane decision rule, highlighting the limitations of the cosine decision
rule in this setting.

Fig. 12. Cosine-template segmentation with k = 500 support samples per concept. 
(Left) Precision and recall comparison between MAE and DiNO tokens. (Right) Accu-
racy and F1 score comparison. The error bars denote the standard deviation across 10
independent trials.
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Figure 13 shows the accuracy and F1 scores for cosine templates, grouped 
by semantic category. Notably, both models perform well on textural concepts, 
and partially well (low accuracy, but higher F1 score) on scenes. MAE’s q token 
achieves an average accuracy of 0.840 and an F1 score of 0.844, while DiNO’s x2

token reaches an average accuracy of 0.744 and an F1 score of 0.765. Figure 14 
illustrates the impact of k (number of support samples used to compute cosine-
templates) on model accuracy. Similar to c osine-template classification, perfor-
mance gains diminish significantly beyond 50 samples.

Fig. 13. Cosine-template segmentation with k = 500 support samples per concept. 
(Top) Accuracy for DiNO (Left) and MAE (Right) tokens, grouped by label category. 
(Bottom) F1 score for DiNO (Left) and MAE (Right) tokens, grouped by label category.
The error bars denote the standard deviation across 10 independent trials.

Fig. 14. Cosine-template segmentation accuracy for k ∈  {1, 5, 10, 50, 100, 500} sup-
port samples per concept, for DiNO (Left), MAE (Right). Error bars denote standard
deviation across 10 independent trials.
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4.5 Qualitative Results 

In the following subsection, we qualitatively examine the segmentation capa-
bilities of learned concept templates on unseen image samples. Based on our 
previous analysis, we use the k tokens f or hyperplane templates and the q tokens
for cosine templates for both DiNO and MAE.

Fig. 15. Segmentation visualizations for DiNO and MAE templates using cosine 
(DiNO-C, MAE-C) and hyperplane (DiNO-H, MAE-H) decision rules. Each figure 
showcases five unseen images from a specific concept category (material, object, part,
scene, texture).
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In Fig. 15, we present image samples organized by their primary category 
(material, object, part, scene, texture). Within each category, we select five rep-
resentative concepts, and examine one image sample per concept. The selected 
concepts are chosen to ensure a balanced representation of DiNO hyperplane 
template performance, incorporating both the highest and lowest F1 scores. To 
improve visualization clarity, the representative image is selected from the test 
set based on the largest area coverage of the corresponding concept. Addition-
ally, for each image sample, we provide its ground truth segmentation mask (GT
Mask) alongside the predicted masks generated by hyperplane-based (DiNO-C,
MAE-C) and cosine decision rule-based (DiNO-C, MAE-C) template models.

Fig. 16. Segmentation visualizations for DiNO and MAE utilizing cosine and hyper-
plane decision rules. Each figure presents segmentation masks of unseen samples, pro-
duced by a particular model (DiNO, MAE) and decision rule (cosine, hyperplane). We
showcase five samples per concept, highlighting the top five concepts with the highest
F1 scores.

In Fig. 16, we present segmentation visualizations for the concept labels with 
the highest F1 scores. Specifically, for each model (DiNO, MAE) and decision
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rule (hyperplane, cosine), we identify the top-five concept labels based on their 
F1 scores. For each selected concept, we showcase segmentation masks for fiv e
image samples where the template achieves the highest intersection over union
(IoU).

4.6 Summary 

Our post-hoc concept direction analysis provides insights into the representation 
power of pretrained DiNO and MAE models, offering guidelines for practical 
applications while raising questions for future work. A key observation is that the 
hyperplane classification rule consistently delivers better semantic separability 
than the cosine counterpart in both classification and s egmentation downstream
tasks. While MAE’s [CLS] tokens seem to be an exception to this finding, we
demonstrated that cosine distance between tokens is a suboptimal intra-class
similarity metric.

Additionally, we showed that depending on the downstream task, context, 
and pretraining objective, different ViT tokens –some of which had not been 
extensively explored in the literature– yield better semantic separability. This 
challenges current intuitions regarding the interpretation of query, key, and value 
tokens within transformer architectures and highlights the importance of under-
standing the role of each block within a transformer layer.

Furthermore, when utilizing pretrained DiNO and MAE models in down-
stream tasks, the following observations should be mentioned: For image clas-
sification, DiNO’s x2 token combined with the hyperplane classification rule 
results in optimal classification results. Respectively, MAE’s tokens should not 
be considered in this context as they produce random image classifiers. When 
labels are sparse and a few-shot context is required, DiNO’s x1 is better aligned 
with the cosine classification rule compared to other token types. We also observe
that a support set size of 50 samples represents the point at which performance
gains begin to significantly diminish.

For semantic segmentation tasks, the models achieve their highest scores 
when leveraging their respective k tokens and the hyperplane decision rule. 
While DiNO outperforms MAE, the latter’s strong performance in this con-
text highlights that masked image modeling could serve as an important pretext 
(sub)task in the development of foundational vision transformers. Furthermore, 
DiNO’s k tokens achieve the highest performance across all object categories, a 
trend t hat’s not evident in MAE. Finally, in a few-shot context, both models’
overall performance across all concept categories is inadequate. However, the
q token for both DiNO and MAE provides excellent separability for textural
concepts.

5 Limitations 

While our study provides a thorough analysis of self-supervised ViT properties 
across various pre-training objectives, token types, decision rules, downstream
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tasks, and contexts, it has certain limitations. A primary constraint was compu-
tational resources, which restricted our evaluation solely to ViT tokens extracted 
from the final transformer layer. Additionally, we treat image segmentation as a 
non-overlapping patch-level classification rather than pixel-level classification.
Since ViT-based segmentation methods using frozen backbones [17]  perform  
spatial interpolation of the feature maps to restore the spatial dimensionality 
of the input space prior to classification, our approach does not significantly 
deviate from this norm. Finally, regarding classification via the cosine decision 
rule, we did not account for feature-space centering prior to the computation of
cosine-similarity between features. While it would be interesting to investigate
its effects, we will consider it in future works.

6 Conclusion 

Our work conducted an in-depth post-hoc concept direction analysis to evaluate 
the representational power of pretrained DiNO and MAE token types in classifi-
cation and segmentation downstream tasks. We examined their performance in 
both standard and few-shot learning contexts, utilizing hyperplane and cosine-
similarity decision rules. Our findings show that the cosine decision rule –often 
used in unsupervised learning approaches– consistently results in inferior seman-
tic separability compared t o its hyperplane counterpart. We also demonstrate
that the optimal token type selection is highly dependent on these factors, while
confirming that masked modeling effectively constructs competent backbones for
image segmentation tasks.

Future research toward the development of foundational vision architectures 
should focus on deepening our understanding and interpretation of ViT tokens 
(arising from the unintuitive and possibly unexpected efficiency of key and 
query tokens, disproving the hypothesis that value tokens possess superiority), 
as well as assessing the efficacy of transformer layers, particularly under self-
supervised pretraining objectives. Additionally, in unsupervised learning appli-
cations –where the cosine distance between ViT tokens is commonly used as 
an intra-class similarity metric– exploring semantic proximity metrics beyond 
cosine similarity could enhance downstream task performance. Alternatively, a 
possible future research direction could be to work towards p re-training meth-
ods that will enforce interpretable concept alignment through the cosine rule,
offering imminent enhancement of many existing unsupervised works that rely
on a self-supervised backbone.
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Abstract. In recent years, Explainable AI (XAI) methods have facil-
itated profound validation and knowledge extraction from ML mod-
els. While extensively studied for classification, few XAI solutions have 
addressed the challenges specific to regression models. In regression, 
explanations need to be precisely formulated to address specific user 
queries (e.g. distinguishing between ‘why is the output above 0? ’  and  ‘why 
is the output above 50? ’). They should furthermore reflect the model’s 
behaviour on the relevant data sub-manifold. In this paper, we introduce 
XpertAI, a framework that disentangles the prediction strategy into mul-
tiple output range-specific sub-strategies and allows the formulation of
precise queries about the model as a linear combination of those sub-
strategies. XpertAI is formulated generally to work alongside popular
XAI attribution techniques, based on occlusion, gradient integration, or
reverse propagation. Qualitative and quantitative results demonstrate
the benefits of our approach.

Keywords: XAI · Post-hoc attributions · Regression · Mixture of 
exp erts · Contrastive explanations

1 Introduction 

Machine learning has provided powerful predictive models for numerous scien-
tific and industrial applications. As the use of ML models for critical autonomous 
decisions increases, there is a growing demand for establishing trust while main-
taining their predictive capabilities. Explainable artificial intelligence (XAI) has 
emerged a s a step towards enhancing transparency and allows for insights into
the inner workings of these highly complex AI models [5, 40]. XAI can be utilized 
for both, model validation against expert intuition as well as for obtaining new
insights into the data-generating processes under investigation [23, 24]. 
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Fig. 1. Top: Conceptual overview of our proposed XpertAI approach. We add a layer 
of range expert neurons, each responsible for mimicking the original model behaviour 
on a range-specific sub-manifold of the data. During inference, the outputs of all range 
experts are added up and result in the original model output. When explaining, we 
isolate output-range-specific effects by querying only the respective or a combination of 
range experts. Bottom: While the naive application of attribution methods typically 
answers questions from a generic poin t of view (grey) our approach enables answers
to more nuanced questions as defined by the user (red). For the tasks of wine quality
prediction and attributing losses of a wind turbine, we see significant structural changes
in the explanations. For details see Sects. 4.2 and 4.3. (Color fi gure online)

So far, the predominant focus within XAI has been placed on understanding 
the decisions made by classification models [6, 7, 38, 49, 51]. The widely used fam-
ily of post-hoc attribution methods aims to achieve this by allocating evidence 
for a particular class across the corresponding input features. In doing so, they 
indicate the extent to which each feature has contributed to the model output. 
In this process, the model’s decision boundary serves as a natural point of refer-
ence for the explanation. In regression, on the other hand, the equivalent to the 
decision boundary needs t o be defined for every single query, since it is a priori
unknown which of the two questions ‘why is the output above 50? ’ or ‘why is
the output above 0? ’ is most relevant for the user [26]. Moreover, in non-linear 
problems, sub-manifolds on which the model builds specific responses are to be
expected, for example, for different output values.
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To address these challenges, we propose our XpertAI framework. The basic 
idea is to decompose the output of the regression model into a set of additive basis
functions, the so-called range experts (compare Fig. 1, top). Each range expert 
is dedicated to capturing the model behavior within a specific, output-range-
dependent sub-manifold. Subsequently, the user can query the range experts 
with any state-of-the-art attribution method to obtain explanations that are 
contextualized to the individual explanatory needs. We demonstrate the bene-
fits of our method on several (controlled and real-world) problems (see Fig. 1, 
bottom). We, for example, find that a model considered the price the most impor-
tant input feature to distinguish an excellent wine from a bad one. But when 
explaining with respect to decent alternatives (close-by-reference values), other 
quality-related features become much more important. In another case study, we 
used attributions to monitor the performance of a wind turbine. There, we find 
that our contextualized explanations more faithfully capture the performance
losses, which enables better maintenance decisions in practice. In addition to
these qualitative insights, we report improved faithfulness through better con-
textualization with XpertAI. An implementation is available online.1

2 Related Work 

Our proposed method relates to several specific areas of XAI, which we will 
briefly discuss within this chapter (see e.g. [5, 40] for XAI reviews).

2.1 Mixture of Experts 

The Mixture of Experts (MoE) framework [14, 20, 35] follows a divide-and-
conquer strategy, commonly used to enhance model performance. Recent work 
has applied MoEs f or transparency by combining interpretable linear experts
[19]. In contrast, our approach utilizes MoEs for explaining models in a post-
hoc manner, without restriction on the structure of the model, and steering 
the expert to become ‘range experts’ focusing on specific value ranges. This is 
achieved by dividing the data into sub-manifolds according to the output range
of a regression model, a way of domain-informed gating, and explaining the
model strategy within these specific regions.

2.2 Context in XAI Attribution Methods 

Generally speaking, every explanation requires context to be meaningful. When 
explaining the outcome of a classification model, the decision boundary serves 
as a natural point of reference. Contrastive explanations h ave been proposed
to better incorporate user-specific context into the explanation [21, 28, 43]. For 
regression models, on the other hand, explanations depend on the reference out-
put relative to which we seek an explanation [26]. XAI attribution methods

1 https://github.com/sltzgs/XpertAI. 

https://github.com/sltzgs/XpertAI
https://github.com/sltzgs/XpertAI
https://github.com/sltzgs/XpertAI
https://github.com/sltzgs/XpertAI
https://github.com/sltzgs/XpertAI
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allow for the incorporation of context through baselines, which depending on 
the method have to be chosen in input space [29, 45] or latent space [26, 31, 41]. 
Each baseline then corresponds to a respective reference value (ỹ). In practice, 
the choice of baselines represents a challenge with fundamental impact on the 
outcome of the explanation. In this work, we therefore propo se a practical solu-
tion that ensures contextualization by design for regression models and, as a
result, increases robustness against suboptimal baseline choices.

2.3 Disentangled XAI and Virtual Layers 

While refining the question to be asked is essential in a regression setting, many 
works have focused on independently refining the explanation itself (mainly in 
a classification context). Specifically, enriching explanations by identifying its
multiple components, associated with distinct abstract concepts. These can be
obtained in a supervised manner [22, 50], in an unsupervised manner [9, 46], or 
by directly inspecting neurons [2, 49, 51]. This kind of analysis often involves 
an informed transformation of latent representations to obtain a meaningful 
or relevant ’concept space’, followed by the inve rse transformation to leave the
overall model behaviour intact [48]. Therefore, these approaches are referred t o as
virtual layers. [9], for example, extract sub-concepts that jointly contribute to the 
explanation of an overall class concept. Likewise, [47] generates a Fourier basis 
on which the prediction of speech samples can be analyzed more efficiently, and
[27] introduces a virtual PCA layer, which disentangles verified from unverified 
factors of variation and subsequently prune the latter for increased robustness. 
We extend these efforts to the broad domain of regression, by introducing a 
novel technique that aims to disentangle global phenomena that exert influence
consistently across the entire range of potential regression outputs from more
localized context-specific patterns (see Fig. 1, top). 

3 Our Method: XpertAI 

In the following, we introduce our novel method, called XpertAI for explaining 
neural network regression models. Our approach is inspired by the MoE concept 
and consists of appending range experts to a given ML model, thus allowing the 
user to formulate precise queries for which range they need an explanation. This 
appendage can be seen as a virtual la yer inserted in the neural network, which
– while leaving the overall prediction function intact – enriches it by providing
the basis for query formulation and explanation. Figure 2 conceptually depicts 
the method and its notation, with d etails in the following sections.

3.1 Adding Range Experts 

We abstract the ML model as a function f mapping the input x to  a  real-
valued output y. The model may either be a pure black-box or a neural network
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Fig. 2. Diagram of our two-step approach for obtaining fine-grained explanations from 
an existing regression model. The first step consists of adding a collection of range 
experts to the model. The second step synthesizes a query q from those range experts 
and produces a corresponding explanation (the exemplary query on the right is sig-
moidal with the ML model’s output but linear with the experts).

with multiple layers. We define the range experts as the following collection of 
functions building on the output of the ML model: 

z = 

⎛ 

⎜ 
⎜ 
⎜ 
⎝ 

ρ0,τ (y)
ρ0,τ (y − τ)
ρ0,τ (y − 2τ)
...

⎞

⎟

⎟

⎟

⎠

(1) 

where ρ0,τ (y) = min(max(y, 0),  τ) clips the input to the interval [0,  τ ].  A  low  
τ corresp onds to more specialized experts. The kind of transformation in Eq.
(1) is also known as thermometer coding. The architecture that results from 
appending these experts is shown in Fig. 2. Assuming the values of y are always 
positive (which we can ensure through offsetting) we can reconstitute the output
prediction by summing the experts’ outputs:

y =
∑

m zm (2) 

The mapping from y to z and back to y can be seen as a virtual layer which does 
not affect the input-output mapping, but that provides additional functionality.
Unlike previous formulations of virtual layers [47], ours is placed at the output, 
enabling a disentanglement of the explanation in terms of output ranges.

Consider now the task of attribution. Classical explanation techniques would 
attribute y to the features of x (something we denote by E(y, x)). The virtual 
layer allows us to compose two attribution steps:

Rm = E(y, z)m
Rim = E(Rm, x)i
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where Rm denotes the contribution of expert m to the output y (in our case we 
simply have Rm = zm), and Rim can be interpreted as the contribution of input 
feature i through expert m. The overall explanation can be s een as a matrix
of size # features · # experts, from which it will be possible to formulate and
answer precise user queries.

3.2 Querying/Explaining 

Whereas the disentanglement performed above provides a more detailed view of 
the prediction behaviour than a simple explanation, the user is often interested 
in particular aspects of it. Our approach lets t he user formulate a query (or
‘explanandum’) as a linear combination of the range experts:

q =
∑

m wmzm (3) 

An example of such a query is given in Fig. 2 (right). For example, if the user 
is interested in what makes a prediction y =  60  larger than a reference value of 
50,  the  query  q can b e shaped in the form of a sigmoid centred at the reference
value 50.

Once a query has been prepared (i.e. once the weights wm have been defined), 
an explanation to that query E(q, x) can be generated by any state-of-the-art
attribution method:

E(q, x) = E(
∑

m wmzm, x
)

(4) 

Note that for explanation techniques that fulfil the linearity axiom w.r.t. the last 
layer of representation, we can further develop the e xpression of the explanation
as:

E(q, x) =
∑

m

wmE(

zm, x
)

(5) 

It shows that the explanation is a linear combination of the explanations of all 
basis elements zm. This formulation can be advantageous when the explanation 
is associated with many different queries or when the query arrives in real-time, 
in whic h case the explanation basis can be pre-computed. We note that our
approach satisfies some key desirable properties of an explanation:

Proposition 1 (Conservation). If ∀m :
∑

i E(zm,  x)i = zm, then
∑

i E(q, x)i = q, in other words, if each range expert zm can be attributed to 
input features in a conservative manner, then explanations of any query q are
also conservative.

Proposition 2 (Irrelevance). If ∀m : E(zm,  x)i =  0, then E(q, x)i =  0,  in  
other words, if we verify that for a given data point, the feature is irrelevant for 
all range experts, then it is also irrelevant for a ny query built on those experts.

These two results are easily retrievable by observing the specific structure o f
the explanation given in Eq. (5). Proofs can be found in Appendix A.
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3.3 Structural Disentanglement 

When the underlying explanation method relies not directly on the ML model’s 
output but on its computational graph (e.g. LRP), the latter must be disen-
tangled. Clearly, such a structural disentanglement is missing as the mapping 
from activations a to the expert’s outputs z passes through a o ne-dimensional
bottleneck y (the original real-valued output). We propose to replace the original
mapping a �→ (zm)m by a learned surrogate model (sm):

a θ�−→ (sm)m �→ (ẑ m)m

where the second part of the mapping is given by ẑm = ρ0,τ (sm), a hard-coded 
saturation forcing the surrogate and true experts to produce outputs in the same 
range. We then build for each expert the loss function:

�(sm,  zm)  =  

⎧ 
⎨ 

⎩ 

max(0,  sm) zm ≤ 0 
|sm − zm| 0 <  zm <  τ  
max(0,  τ  − sm) zm ≥ τ 

which encourages that the surrogate’s output is correct within-range and on the 
correct side outside-range. We then solve minθ E[

∑

m �(sm,  zm)] with E[·] denot-
ing the expectation over the training data. To preserve not only the prediction
output of the original model but also its prediction strategy (i.e. the feature
it uses) further steps are needed. One approach is to enforce the loss function
not only on the data but also on perturbations of the data [44]. For example, 
activations can be randomly turned off (with a probability chosen between 0 
and 1). This perturbation scheme ensures in particular that the Shapley value 
explanations of the original and disentangled models become similar (i.e. that 
they predict the same for the same reasons). Furthermore, we find that freez-
ing the bias in the output layer is important to achieve the desired structural
disentanglement.

3.4 XpertAI Evaluation 

We evaluate our proposed approach qualitatively (Sect. 4) and quantitative ly
(Sect. 5). In both cases we rely on either a (constructed) problem that allows 
for validation against some sort of ground truth, or the observation of model
behaviour under attribution-guided, meaningful input perturbations. [13]  pro-
posed a regression-specific metric called the area between the curves (ABC). 
The ABC is defined as the area between the model output when occluding a 
sample’s features in the order of attribution magnitudes and a straight line con-
necting f(x) and f(x′) (which corresponds to random sorting). Since sorting
ascending and descending can result in asymmetrical curves, we sum over both
areas [8]. For a balanced result, we normalize by the distance between the sample 
and the baseline when averaging. Higher values of ABC are better.
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Furthermore, the challenge of including context i n attribution methods
(Sect. 2.2) naturally extends to occlusion-based evaluation (ergo, what to occlude 
with?). To ensure that we evaluate attributions within the relevant output range 
of function f(x), where w e account for context-specific (local) effects, we occlude
with a domain-specific counterfactual [3, 13]. Therefore, we sample conditional 
x′ = D(x|y = ỹ) from the available data set D with which we then occlude and 
a verage the respective ABCs over multiple draws.

4 XpertAI-Opinion: Insights Into Model Behaviour 
on Sub-manifolds 

We now demonstrate how our XpertAI approach can help users disentangle 
local and global effects for meaningful insights in differen t case studies. First,
we uncover output-scale-specific strategies for image regression problems (4.1). 
Then, we explain the quality of red wine (4.2) and the production losses of a 
wind turbine due to a technical malfunction (4.3). For each of the problems, we 
briefly introduce the dataset, model and XpertAI setting, before presenting the 
insights. We present results from using both, Integrated Gradients and L ayer-
wise Relevance Propagation (LRP). Details on all case studies can be found in
Appendix C. 

Fig. 3. Examples from three classes of the MNIST dataset for handwritten digit recog-
nition (left) mapped to a real-valued scale with the help of a one-dimensional t-SNE 
embedding (right). Digits populate c ontinuous ranges of the new target, and sorting
within the digit ranges corresponds to digit rotations.

4.1 Uncovering Output-Scale-Specific Strategies 

First, we adopt the well-known MNIST [11] dataset and transform it into a 
regression problem (rMNIST ). For simplicity, we take the subset of only three
digits (4,5, and 6) and calculate a one-dimensional t-SNE representation [30], 
which henceforth serves as a new label for each sample. Additionally, we ensure 
labels are distributed uniformly between values of zero and one. As a result, the
individual digits populate continuous parts of the output dimension (in our case
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sorted by digit magnitude, which facilitates interpretation) while sorting within 
each digit bin is based on the respective digit’s rotation (compare Fig. 3). We 
now train a vanilla CNN model architecture to learn this mapping from image to 
output scale. For contextualized insights, we train three range experts (one f or
each digit range). We first discuss qualitative results and present its quantitative
evaluation in Sect. 5. 

Fig. 4. Mean attributions over different cohorts of samples (columns) and basis func-
tions (rows). The bottom row represents naive attributions. The top row corresponds 
to the respective range-specific expert Xp ertAI bases. Note, how only the latter exposes
the digit rotation within the digit ranges (orange/blue). (Color figure online)

Figure 4 shows a comparison between the standard and the XpertAI expla-
nations for both, LRP and IG. We contrast the average naive attributions over 
all samples within the respective output range (bottom row) with the explana-
tions obtained with the respective range experts (top row). The explanations 
for the digit range 4 remain the same since both implicitly assume the same 
reference value (zero on the output scale). The expert attributions for the upper 
digit ranges (marked in orange and blue), enable more granular insights. It is
visible how the range experts focus specifically on the rotation of the digit: a
rotation to the right is associated with lower values (negative attribution, blue)
and vice versa. See [Fig. 10] (Appendix C) for more basis functions. In Sect. 5,  we  
will see that these qualitative differences in attributions also result in improved
quantitative evaluation scores for attribution faithfulness.

Now, let’s consider an illustrative regression task closer to real-world applica-
tions: biological age estimation from facial images [1, 4, 15] (see Fig. 13 Appendix 
C) for model and data set details. Intuitively, the explanation for a person with 
a high age should be structurally different when being contrasted with a much 
younger age or an only slightly younger one. We, therefore, focus on a high-
age cohort (individuals predicted to be above 77 years) and train three range
experts (τ = 38.5 years). Figure 5, left, shows LRP attributions for the origi-
nal model, averaged over the respective samples. Our proposed approach now
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allows us to disentangle these further using the respective age-specific basis func-
tions. As expected, the explanation relative to the ’young’ basis (centre) overall 
contains much more positive evidence than the one with respect to the closer 
reference value of 77 years (right). Additionally, we can see that the latter is more 
fine-grained with a remaining focus on the person’s eyes and, surprisingly, we
discovered a sign-flip for the oronasal region with a particular focus on lips and
teeth. While the mouth has been reported to be an area particularly vulnerable
to biases in age estimation from facial images [12], we put the faithfulness of 
these particular explanations to the test.

Fig. 5. Comparison of average attributions for standard LRP (left) and two different 
XpertAI basis functions. Red indicates positive, and blue negative evidence. We can 
see that the disentangled explanations allow for much more fine-grained conclusions. 
Interestingly, the sign flip o f the mouth area was masked by the strong attributions
with respect to the original basis. We test for its faithfulness in Fig. 6 (Color figure 
online).

In Fig. 6, we compare the effect of occluding the respective parts (eyes and 
mouth) of people’s faces with a generic average over all images. One example 
of each is shown at the right of the figure. Recall that this means we mask the 
eyes and mouth section with a relatively ’younger’ version. The chart shows the 
respective change in the model’s output. In line with intuition, and the expla-
nations, age is indeed consistently decreased when occluding the eyes. Masking
the mouth area with relatively ’younger’ mouths, however, indeed results in an
increase of the model’s average prediction in many cases. The XpertAI -basis
therefore constitutes the more faithful explanation since the attributions cor-
rectly captured the sign flip in model behaviour.

In conclusion, the disentangled basis explanations enabled more detailed 
insights into the model’s inner workings for both, the rMNIST and the age-
prediction cases. They revealed effects that were not apparent from the naive
explanations of the original model, since their highly aggregated nature did not
allow for more fine-grained insights.
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Fig. 6. Validation of findings from disentangling age prediction (compare Fig. 5). We 
occlude relevant parts of the image according to the disentangled explanations (eyes 
and mouth) with the dataset-wide average face (two examples on the right). We then 
observe the effect on the model output relative to the original model prediction. For 
the high-age cohort, the two areas have distinctly different effects. Occluding the eyes 
with a relatively younger pair results in a consistent decrease in the predicted age.
Occluding the mouth region, however, results in an increase for many of the samples.
This model behaviour is in line with our insights from the disentangled explanations.

4.2 What Sets Apart a Good Wine from an Excellent One? 

As noted in the introduction, we now explore a more hedonistic and tangible 
example - red wine q uality. We utilize Kaggle’s Spanish red wine dataset2 which 
contains several thousand wine samples. They are described by five numerical 
(year, price, as well as body, acidity, and quality scores) and four categorical 
(name of the winery and the wine, grape, region) features. The quality score, 
which is an ‘average rating’ given by thousands of testers (rating binned into 
8 d iscrete quality levels), is our regression target. After data-pre-processing
around 1700 samples are left. We have trained a small fully-connected ANN
which achieved an R2 of around 0.7.

We now want to learn what, according to the model, sets apart a good wine 
from an excellent one. We define wine as good when it belongs to the top 10% 
and excellent when it belongs to the top 1.5 % of the model output range. We
train three range experts (τ = 0.33) and compare the respective attributions
obtained from standard IG with its application within the XpertAI framework.
Figure 7 shows the decomposition of the excellent wine attributions into the

2 https://www.kaggle.com/datasets/fedesoriano/spanish-wine-quality-dataset. 

https://www.kaggle.com/datasets/fedesoriano/spanish-wine-quality-dataset
https://www.kaggle.com/datasets/fedesoriano/spanish-wine-quality-dataset
https://www.kaggle.com/datasets/fedesoriano/spanish-wine-quality-dataset
https://www.kaggle.com/datasets/fedesoriano/spanish-wine-quality-dataset
https://www.kaggle.com/datasets/fedesoriano/spanish-wine-quality-dataset
https://www.kaggle.com/datasets/fedesoriano/spanish-wine-quality-dataset
https://www.kaggle.com/datasets/fedesoriano/spanish-wine-quality-dataset
https://www.kaggle.com/datasets/fedesoriano/spanish-wine-quality-dataset
https://www.kaggle.com/datasets/fedesoriano/spanish-wine-quality-dataset
https://www.kaggle.com/datasets/fedesoriano/spanish-wine-quality-dataset
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respective expert bases. Aside from the natural change in attribution scales, the 
most prominent difference in the explanations is the contribution of the price 
to the model outcome. For the naive IG attributions, the price is the by far 
most important feature (meaning high prices alone are the main indicator for 
excellent wines). The contextualized XpertAI attributions, on the other hand, 
give a much more balanced picture. Here, the outcome suggests that the price 
is the most important feature only for the low-quality range expert (meaning 
what distinguishes an average from a poor wine, blue). The relative importance 
of the price, however, is significantly reduced when compared to average wines 
(orange) and almost vanishes when compared to good wines (green). There, the 
sum of all other quality criteria is much more important than the price of the
wine itself. This directly translates to some actionable (and intuitive) insight: if
you next time buy a wine in the supermarket, don’t go cheap to ensure you buy
a decent wine. When looking for an excellent one though, you might be better
off with the expert judgement of your local wine seller.

Fig. 7. Decomposition of naive explanations (grey) for samples from the high output 
range (’excellent’ wines) with respect to low, medium and high-quality reference values 
(colourful). The XpertAI explanations allow for nuanced insights into what makes 
an excellent wine better than the worst (blue), a decent (orange) or a good (green)
alternative. (Color figure online)

To make sure, our insights are not based on intuitive but unfaithful attribu-
tions, we also compare quantitative faithfulness for the and observ e an average
increase in the ABC metric by more than 10 % (see Sect. 5). 

4.3 Why Does the Wind Turbine Produce Less Than Expected? 

Wind power is one of the pillars of decarbonizing energy systems around the 
world. Wind turbines are often placed in remote locations and need to be oper-
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ated and monitored from a distance, using data from their Supervisory Con-
trol and Data Acquisition (SCADA) system. E ffectively leveraging this data is
an active area of research [18], with the primary focus on detecting and diag-
nosing underperformance as the central challenge [33]. However, the detection 
of underperformance is always context-specific since the implicit question is: 
‘underperformance relative to what operational state?’ In the wind turbine case, 
it is the condition without the presence of a malfunction, given the context of
prevailing ambient conditions.

We utilize data from a 2 MW wind turbine and a meteorological met-mast 
from an onshore wind farm on the Iberian peninsula3. SCADA data is available 
for two years and includes ambient conditions as well as technical turbine param-
eters as 10-minute averaged values (50,000 data points after pre-processing). We 
have trained a small fully-connected MLP to predict the turbine output from 
wind speed, air density, and turbulence intensity. The model achieves a compet-
itive RMSE of less than 36 kW. Additionally, we have augmented the data with 
so-called yaw-misalignment losses. They occur when a turbine does not perfectly
face the incoming wind direction, which reduces the effective area of the rotor.
Detecting yaw-misalignment is an ongoing field of research [34, 37] and attribut-
ing it by XAI methods has recently been proposed as an effective solution [25]. 
For such an approach to work, we need our XAI methods to faithfully attribute 
the losses induced by yaw-misalignment to the respective feature (difference of 
nacelle and wind direction). In our setup, we can directly compare attributions
with the respective ground-truth-losses.

Fig. 8. Quantitative faithfulness when attributing yaw-misalignment losses to the 
respective feature with standard LRP (grey) and XpertAI -LRP (red) against the true
losses (dashed line). (Color figure online)

We trained three range experts across the different operational regions of the
turbine (see Fig. 13, Appendix C). Figure 8 shows the comparison of attributing 
the yaw-misalignment induced losses to the respective yaw-feature with standard
3 https://opendata.edp.com. 

https://opendata.edp.com
https://opendata.edp.com
https://opendata.edp.com
https://opendata.edp.com
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LRP and our XpertAI-LRP variant. We can observe that the naive LRP appli-
cation attributes exhibit a systematic overestimation (larger negative values) of 
losses caused by incorporating phenomena from outside the respective opera-
tional regime. Our proposed novel attributions obtained from the range-experts, 
on the other hand, are on average much closer to the g round truth. For turbine
operators, this directly translates to better operation and maintenance decisions
and therefore highlights the benefit of using sub-manifold-specific explanations
in industrial or engineering applications.

5 Quantitative Evaluation and Sanity Checks 
of XpertAI-Faithfulness 

After having presented some intriguing insights enabled through our XpertAI 
approach in the previous chapter, we now conduct a systematic evaluation of 
explanation faithfulness. Details on the respective experiments and additional
insights for obtaining faithful range experts can be found in Appendix B and C. 

5.1 Are XpertAI Attributions Faithful? 

To answer this question quantitatively, we utilize the ABC score as introduced
in Sect. 3.4.  Tab  le 1 reports the ABC scores of our XpertAI approach relative 
to a naive application of LRP and IG on the previously intro duced data sets as
well as several popular regression benchmarks [36]. For each of them, we trained 
three range experts and evaluated samples from the top range (see Appendix C). 
Overall, we see consistent improvements in ABC scores across all settings which 
means that our approach indeed can generate more faithful attributions with 
respect to a user-specific query. Note, that the advantage is significantly larger 
for LRP where our approach corresponds to a data-driven root-search strategy 
whereas naively, there is no such option. For IG we have already leveraged its 
inherent contextualization capabilit y to some extent by utilizing the mean over
all input samples as a starting point for the integration path. Our approach is
still able to further refine the attributions towards a better contextualization.

Table 1. Comparison of faithfulness for different attribution methods applied naively 
and within the XpertAI framework. Relative improvement of ABC over naive a pplica-
tion. Standard deviation over 5 different retraining runs for LRP.

dataset LRP IG 

rMNIST +50.7 % ±3 .5 +7.2 % 
WINE +19.8 % ±1 .2 +10.6 % 
FRIEDMAN +12.6 % ±0 .4 +1.9 % 
CALIFORNIA +2.5 % ±0 .9 +9.7 % 
DIABETES +3.8 % ±1 .6 +4.4 %
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5.2 How Many Range Experts? 

One practically relevant question is, how many range experts to train, which 
includes the choice of their respective ranges (τ ). Conceptually, the method 
works best if every distinct sub-region of the output is covered by at least one 
range expert. In practice, these can either be domain-informed and therefore 
known apriori, or inferred by analyzing activation patterns (from an activation 
vs. f (x) scatter plot, for example). In the context of our rMNIST case, selecting 
one range exp ert for each digit range, therefore three range experts in total
appears to be the most intuitive choice. Since in practice, we might not know
where exactly these boundaries lay, we compare settings for three, five, six, and
nine equally spread range experts.

Table 2. Results for pixel flipping experiments for regression MNIST. Results within 
ranges: sample-flipping baseline pairs are within one expert range. ABC values are 
normalized by flipping distance. Values for naive methods differ because of the normal-
ization. High values are better.

# LRP LRP IG IG 

experts N  aiv  eXpertAI N  aiv  eXpertAI 

3 0.40 0.56 ± 0.02 0.93 1.00 ± 0.05 
5 0.47 0.70 ± 0.01 1.16 1.20 ± 0.01 
6 0.46 0.75 ± 0.01 1.22 1.23 ± 0.01 
9 0.49 0.78 ± 0.01 1.32 1.36 ± 0.01 

In Table 2 we see that our approach improved the ABC score across all set-
tings. Also, we can see that LRP benefits in particular from adding extra range 
experts while IG results are more consistent across the number of experts. Note, 
that this also holds if the expert ranges are not aligned with known sub-concept 
ranges (as is the case for 5 equally distributed experts). In practice this means
that the limit for the number of experts depends on the specific problem, com-
putational considerations as well as the resolution of the available data.

5.3 (Diss-)aggregate XpertAI-Attributions 

From Proposition 1, we can in principle derive an alternative way to obtain dis-
entangled and contextualized attributions with respect to ỹ. Instead of adding up 
the respective expert attributions, we subtract them from the original explana-
tion in reverse order. Intuitively, only information relevant to higher-range bins 
should remain. We test this hypothesis empirically on the rMNIST dataset. 
We flip pixels to zero according to the order of the difference of attributions 
E(y, x)−∑

m E(zm, x). Intuitively, the more evidence associated with lower-range
concepts we subtract, the more evidence for higher values should remain, and
therefore the flipping curve should decrease more slowly. In the ideal case, the
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only information with positive attributions is the one relevant for values larger 
than ỹi and the flipping curve should therefore remain around that value for as 
long as possible. When testing this empirically, we indeed see such a behaviour
(Fig. 9). Note also, that the plateaus of the different range experts do not clus-
ter around the digit-transitions (0.33 and 0.66). This means, that despite the 
strong global concept shifts present in the data, the range experts were able to
capture more subtle, local effects that guide f(x) in the context of the respective
reference values.

Fig. 9. Mean occlusion curves over all samples from the top bin of a six-expert-basis. 
When successively subtracting range-expert attributions from the original explanation 
and flipping pixels according to the remaining explanations, the flipping curves saturate
in the proximity of the respective reference values.

6 Discussion and Conclusions 

In this paper, we have proposed the XpertAI framework to achieve contextual-
ized and disentangled attributions when explaining regression models. Inspired 
by the MoE approach, the framework divides the data into sub-manifolds, each 
of which corresponds to a certain predicted output range. Such a division is 
achieved by building a collection of ra nge experts, which we equip with explain-
ability. It enables for the first time a disentanglement along the output of the
prediction strategy and the resolution of specific user-defined queries.

Empirically, we find that our XpertAI framework can distill locally relevant 
explanations from highly aggregated global standard attributions, as demon-
strated by several quantitative experiments based on occlusion tests. Explana-
tions associated with each expert range can be precomputed, so that exact user
queries can be answered very quickly as a linear combination of the precomputed
explanations.
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Our approach can be interpreted within the framework of virtual layers, 
which has been instrumental in achieving various forms of explanation disentan-
glement. Furthermore, our approach provides an alternative to the more common 
approach of extracting reference points or counterfactuals and bypasses some 
of the challenges , such as their multiplicity and the need to search for them.
Also, our approach differs from self-interpretable generalized additive models,
by remaining applicable to a broad range of ML models, including deep neural
networks.

We have demonstrated that our method can work alongside various expla-
nation techniques, in particular, gradient-based techniques such as Integrated 
Gradients, or propagation-based techniques such as LRP. While this enables a 
seamless integration into existing explanation pipelines our approach naturally 
inherits potential shortcomings of these methods. Furthermore, it is necessary 
for propagation-based techniques to structurally disentangle the range experts. 
While we have proposed a surrogate modeling approach for this step, these sur-
rogates need to be carefully trained and regularized to maintain the original 
model’s prediction output as well as its prediction strategy. Also, retraining 
implies additional computational cost. Hybrid approaches, with the top layers
handled by perturbation-based techniques and the lower layers with propagation,
may eliminate the need for structural disentanglement while at the same time
retaining high accuracy and computational efficiency. Enhanced approaches,
inspired by model distillation or formally equivalent neural networks, could also
be considered.

Overall, our work has highlighted the need to precisely formulate “what to 
explain” (the explanandum) and proposed a practical and flexible solution in the 
context of regression. The MoE idea our method builds upon, however, is more 
general, and our framework could be extended in the future to other decom-
position of the predicted output, e.g. for structured output tasks such as time 
series prediction. Additional future work could furthermore focus on automating 
the optimal number of experts in a data-driven way. While w e have shown that
for sufficiently populated ranges of the output adding more experts improves
contextualization, there certainly are limitations arising from data availability
and computational constraints. Lastly, the application and evaluation to more
complex models, such as regression foundation models [16], should be considered 
in the future. 
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A Proof of Propositions 1 and 2 

Proposition 1 stating the conservation property of the proposed query explana-
tion can be demonstrated through the chain of equations:

∑

i E(q, x)i =
∑

i

∑

m wmE(zm, x)i (6) 
=

∑

m wm

∑

i E(zm,  x)i (7) 
=

∑

m wmzm (8) 
= q (9) 

where in (6), we have injected the expression of the explanation in (5). From (6) 
to (7)  we  have  permuted  the sums. From (7)  t  o (8), we have used the conservation 
property of the explanation of zm. From (8)  t  o (9)  we  have  identified  the  weighted  
sum as being the query. Likewise, for Proposition 2, if some feature i satisfies 
∀m : E(zm,  x)i =  0,  then  

E(q, x)i =
∑

m wmE(zm, x)i (10) 
=

∑

m wm · 0 (11) 
=  0 (12) 

B How to Train and Select Good Range Experts? 

In practice, we need to select appropriate range experts for the XpertAI approach 
to enhance contextualization. This process may vary based on the respective XAI 
attribution method being employed. F or occlusion- and gradient-integration-
based methods, which do not require additional structural disentanglement (see
Sect. 3.3), a simple shift-and-clip strategy is sufficient. For propagation-based 
methods, however, we need to learn the surrogate a �→ (zm)m (see Sect. 3). Here, 
we want to highlight the need for appropriate regularization to avoid overfitting, 
which in the case of range experts would result in unfaithful model attributions. 
Analogously to regular model selection, w e aim to choose the least complex range
expert, that can sufficiently learn the respective mapping.

In case the latent representation a is already adequately disentangled, it is 
sufficient to fit a linear range expert (without bias term). We have observed 
this to work well for some of our low-dimensional benchmark datasets. Other-
wise, we need to gradually increase range-expert complexity (adding neurons and 
reducing L2-regularization) until the mapping is learned sufficiently. Moreover, 
we have observed that instead of additional layers, (copying and) fine-tuning 
the top layer(s) on the range-expert targets zm with small learning rates is a
good strategy since it ensures the solution lays in relative proximity to the orig-
inal model. If a new layer is added, initializing the weights with a projection
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to the latent principal components conditioned on the respective output range 
(P  CA(X|zm)) was found to speed up training and e nsure good results. Fur-
thermore, the Shapley-style data augmentation (cf. Sect. 3) is another crucial 
ingredient to prevent our experts from adhering to spurious correlations (that 
our original models did not use). This can be conveniently implemented with 
the help of a dropout layer on the surrogate input a. Lastly, we can enforce the 
saturation of range experts outside t heir area of expertise by adding an explicit
combination of ReLU functions that clip sm to the desired range. These measures
together ensure faithful and computationally efficient range experts.

C Details on Evaluation (Sect. 4 and 5) 

C.1 Details Face-Age Regression Example 

For this analysis, we have made use of a dataset containing ∼ 20k facial images
associated with biological age4 (biased toward younger ages). Each image is pre-
processed so that all of them have the same size (200 × 200) and the faces are
aligned and centred. We used a VGG-16 [42] model pre-trained on ImageNet
[10, 39] as a feature extractor followed by one ReLU layer with 256 neurons, a 
dropout-layer, and a final linear layer mapping the 256 neurons to a real-valued
age prediction. In all cases we used LRP-α1β0 rule [6, 32] in the convolutional 
layers and LRP-ε rule [6] (where biases are ignored) for the fully connected layers.

C.2 Details Quantitative Evaluation 

Here, we describe the details of our quanitative experiments. For the rMNIST 
experiments, we utilized a vanilla CNNs with two convolutional, ReLU and pool-
ing layers, followed by three fully connected layers. The convolutional blocks 
were kept frozen, and only the fully connected layers were re-trained as experts, 
starting from their original model weights. The other problems (Wind, Wine, 
California and Diabetes) are based on tabular data. Here, we utilize a 4 layer-
MLP with 20 neurons in each hidden layer. The last two were re-trained for 
each exp ert. Moreover, we utilized the PCA initialization trick, described above
(Appendix B). wm was selected to be 1 for all expert ranges between reference
value and sample output, and 0 otherwise. More specific information on the
implementation can be found in the published code repository5. Details, such as 
target distributions, model performance, and range-expert-performance across 
experimental setting can be found in Figs. 10, 11, 12 and 13. 

C.3 Augmenting Wind Turbine SCADA Data with Yaw-
Misalignment 

We randomly add yaw misalignment of up to 15◦ to our data SCADA set, and 
adjust the respective targets (turbine output) with a yaw misalignment factor
4 https://www.kaggle.com/frabbisw/facial-age. 
5 https://github.com/sltzgs/XpertAI. 

https://www.kaggle.com/frabbisw/facial-age
https://www.kaggle.com/frabbisw/facial-age
https://www.kaggle.com/frabbisw/facial-age
https://www.kaggle.com/frabbisw/facial-age
https://www.kaggle.com/frabbisw/facial-age
https://www.kaggle.com/frabbisw/facial-age
https://www.kaggle.com/frabbisw/facial-age
https://github.com/sltzgs/XpertAI
https://github.com/sltzgs/XpertAI
https://github.com/sltzgs/XpertAI
https://github.com/sltzgs/XpertAI
https://github.com/sltzgs/XpertAI
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Fig. 10. Mean attributions over different cohorts of samples (columns) and basis func-
tions (rows). Equivalent plot to Fig. 4 but for six range exp ert basis functions.

Fig. 11. Overview of model performance on the rMNIST problem for 3, 6 and 9 range
experts (top to bottom).
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Fig. 12. Overview model performance for the regression benchmarks (Sect. 5). 

Fig. 13. Overview model performance wind turbine example (Sect. 4.3). 
cymis,i = cos3(Δyaw),  if  vw,i <  vw,rated. This approximation can be easily derived 
from static flow equations and geometric considerations, for more details on how
yaw misalignment affects turbine output see [17]. After training and evaluation of 
the model on the augmented data, we can compare the magnitude of attributions
to the ground truth.
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Abstract. Machine learning models tend to learn spurious features – 
features that strongly correlate with target labels but are not causal. 
Existing approaches to mitigate models’ dependence on spurious features 
work in some cases, but fail in others. In this paper, we systematically 
analyze how and where neural networks encode spurious correlations. We 
introduce the neuron spurious score, an XAI-based diagnostic measure to 
quantify a neuron’s dependence on spurious features. We analyze both 
convolutional neural networks (CNNs) and vision transformers (ViTs) 
using architecture-specific methods. Our results show that spurious fea-
tures are partially disentangled, but the degree of disentanglement varies
across model architectures. Furthermore, we find that the assumptions
behind existing mitigation methods are incomplete. Our results lay the
groundwork for the development of novel methods to mitigate spurious
correlations and make AI models safer to use in practice.

Keywords: vision models · spurious correlations · disentangled 
feature learning · debugging models

1 Introduction 

Machine learning models in classification tasks tend to learn spurious features 
that have strong relationships with the target labels are not causal. Models that 
rely on spurious correlations for their predictions would, for example, classify a 
bird as landbird based on the background feature, fail to recognize a cow on the
beach, or predict the presence of pneumonia based on background features (see
Fig. 1 for some examples). Especially in high-risk domains, such models could 
have serious consequences: a CNN predicting skin cancer using the presence of
a color calibration patch (see Fig. 1, rightmost image) as a spurious feature fails 
to detect 68% of malignant cases when the color patch is absent [19]. 

During training, models heavily influenced by spurious correlations tend to 
learn these relationships and memorize samples from so-called minority groups 
where the spurious correlation is not present or which have inverse relation-
ships [26]. This mechanism helps the models to achieve high average perfor-
mance during training but leads t o poor generalization on the minority group.
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Fig. 1. Examples of variety shortcut types including backgrounds, texture and artifacts. 
The leftmost image is from the Waterbirds dataset, the three center images are from
[7], and the rightmost image is from the ISIC dataset.

Therefore, the key objective of methods that mitigate spurious correlations is to 
improve the performance of minority groups.

Methods such as deep feature re-weighting (DFR) [11] and others [9, 21]  have  
successfully improved the performance of minority groups without extensive 
training to minimize group loss, even when models are trained in the presence of 
spurious correlations. These approaches assume that machine learning models 
are able to learn sufficient information about all features. Thus, by adjusting 
only the weights of the classification layer while leaving the learned represen-
tation unchanged, the performance of the minority group can be improved. On
the other hand, other work [12] shows that DFR [11] works similarly to a last-
layer pruning method, removing a large fraction of neurons that encode spurious 
features. However, even after re-weighting the classifier weights through DFR,
the model still retains spurious information. The analysis in [12]  provides  some  
initial evidence that spurious features are not completely disentangled in the last 
layer, but a systematic analysis o f how and where spurious features are encoded
within models is still lacking.

In this work, we complete the investigation of the learning of spurious features 
in vision models by analyzing the phenomenon in both CNNs and ViTs mod-
els. We re-confirm the influence of spurious correlations and imbalanced data 
distribution. Further, we investigate the influence of spurious features within 
the networks, starting from the learned representation space and going deeper 
into the neurons and compo nents of the models. We show the limitations of the
underlying assumptions of existing spurious mitigation work and explain why
they work and how they might fail. Specifically, our contributions are:

1. We show that both ViTs and CNNs learn spurious features and that this 
behavior can be explained by the representations in latent space (Sect. 4). 

2. We introduce the neuron spurious score (s-score), an XAI-based metric to 
measure a neuron’s reliance on spurious features (Sect. 3). 

3. We show that the level of spurious feature disentanglement in neurons within 
the latent space differs between CNNs and ViTs. In CNNs, some neurons 
exclusively encode spurious features, while others encode both spurious and
core features (Sect. 5). In contrast, in ViTs it is more difficult to find a clear 
set of neurons only encoding spurious features (Sect. 6).
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4. We show that spurious features are encoded in different parts of the network, 
and that these neurons are not only located in the last layer but also in com-
ponents of the neural network comprising multiple layers (Sect. 5 for CNNs 
and Sect. 6 for ViT s).

Our results provide evidence that unlearning spurious correlations is a com-
plex task. While identifying and pruning spurious encoding components can be 
effective, it may not be sufficient due to the entangled nature of learned represen-
tations. Furthermore, pruning methods need to account for architecture-specific
aspects, as spurious features are encoded differently in CNNs and ViTs.

The structure of this paper is as follows. First, we in troduce the notion of
spurious features (Sect. 2). We then describe the general setup of our experi-
ments to analyze spurious correlations and introduce the s-score as an XAI-
based inspection criterion (Sect. 3). Section 4 empirically shows that CNNs and 
ViTs are prone to learning spurious features and provides evidence that this is
due to data manifold in representation space. Section 5 and Sect. 6 extend the 
analysis of representation space to all layers of neural networks using inspection 
techniques specific to CNNs and ViT, respectively. We discuss the main results
in Sect. 7, review related work in Sect. 8 and conclude in Sect. 9. 

2 Background 

Spurious features S refer to statistically informative features that do not have 
a causal relationship with the target labels Y [7, 25]. Models that learn spurious 
features often achieve impressive accuracy on the training dataset by exploiting 
spurious correlations present in the training data. In a dataset containing target 
labels Y and spurious features S, we partition the data into groups based on the 
combination of labels and spurious features, denoted as G = Y  ×  S. In general, 
within G of the training set, there exists at least one group that significantly 
has smaller size than others and does not contain the corresponding spurious 
features to the label, referred to as the minority group. Models that learn spu-
rious correlations usually fail to predict this particular group during test time.
For example, in the task of classifying bird types, where bird types are highly
correlated with the background scene in the images, models tend to learn eas-
ier background features rather than bird characteristics (cf. Figure 1, leftmost 
image). A model that predicts based on background features performs well on 
the training (and i.i.d. test) data since most labels align with the background, 
and the model only needs to ignore or memorize a few remaining samples from
minority group [26]. However, such models fail to generalize to birds on other
backgrounds during test time.

Some types of spurious features can be easy to detect for h umans, such as
background and color [25], or artifacts in domain-specific settings [19]. However, 
some spurious features, such as texture or frequency patterns, may be imp ercep-
tible to the human eye [8, 14]. Figure 1 shows examples of shortcuts1.
1 Following related work, we use the terms ‘spurious features’ and ‘shortcuts’ inter-

changably.
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Table 1. Overview of the Waterbirds and ISIC datasets. Percentages in #  Train  
presents the proportion o f that group within the class Y.

3 Experimental Setup 

In this study, we analyze the robustness of various models to spurious correla-
tions. In this section, we provide details on the datasets, the vision models, and 
the evaluation metrics.

3.1 Datasets 

We consider two datasets: Waterbirds [ 25]  and  ISIC [3]. Examples and data 
distribution for both datasets are presented in Table 1. 

Waterbirds is a benchmark dataset for studying spurious correlations in 
learning. The task is to classify birds as either water birds or land bir ds.  It  is  
an artificially constructed dataset where bird images from the CUB dataset [29] 
are placed onto backgrounds from the Places-365 dataset [32]. To in troduce
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spurious correlations, in the original training set, 95% of water birds are placed 
on water backgrounds, and 95% of land birds are placed on land backgrounds. 
However, in the test set, this ratio is balanced to evaluate model generalization. 
The four groups of the dataset are denoted as G0, G1, G2 and G3 with two minorit y
groups G1 and G2 as in Table 1. 

ISIC is a real-world data set for skin cancer detection. The d ata are obtained 
from the official website2 and labeled as either benign or malignant. Prior stud-
ies [22] suggest that the dataset may contain several spurious correlations, such 
as color patches, rulers or surgical marks, black borders, etc. In this work, we 
focus on the color patch feature, which appears exclusively in the benign class in 
nearly 50% of cases. For evaluation, we construct an artificial test set where color 
patches are inserted to balance the spurious correlation. T he four groups of the 
dataset are denoted as BwoP (benign without patch), BwP (benign with patch), 
MwoP (malignant without patch) and MwP (malignant with patch), with MwP
representing the minority group.

3.2 Models and Hyperparameters 

We evaluate both convolutional neural networks (CNN) and Vision Transformer 
(ViT) models. As representatives for CNNs, w e use differently sized Resnet mod-
els, namely ResNet-18, ResNet-50 [10], and ResNeXt [ 30]. We evaluate two differ-
ent ViT, namely ViT-B/16 [6], and DeiT [ 28]. All models use pre-trained weigh ts 
from ImageNet-1K [24]. We do not adjust the hyper-parameters to optimize the 
worst-group accuracy. We follow the finetuning method of previous work [11, 25] 
and use the following hyperparameter settings: each model is trained for 100 
epochs with learning rate 0.001, weight decay 10−4 and SGD optimizer [23]. We 
adapt the batch size to the image input size to accommodate memory size and 
use 32 for Waterbirds and 64 for ISIC.

3.3 Evaluation Metrics 

In our experiments, we use the standard metrics for evaluating reliance on spu-
rious correlation: average accuracy and worst-group accuracy. To quantify the 
reliance o f single neurons on a spurious input feature, we i ntroduce the s-score.

Worst-group and Average Accuracy. In general, a model’s robustness is mea-
sured by average accuracy—the proportion of correct classifications out of all 
predictions. Models that exploit spurious correlations often achieve high average 
accuracy (AVG) but perform significantly worse for a particular group within 
G. The accuracy of this group is called worst group accuracy (WGA). Addition-
ally, we denote the difference between AVG and WGA as GAP. A smaller GAP
indicates greater robustness to spurious correlations.

2 https://www.isic-archive.com. 

https://www.isic-archive.com
https://www.isic-archive.com
https://www.isic-archive.com
https://www.isic-archive.com
https://www.isic-archive.com
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Fig. 2. Visualization of the s-score derivation by examples on ISIC dataset (left) and 
Waterbirds (right). A binary mask of the spurious feature (color patch or background) 
is obtained from the annotations in the training data set (top row). We use G radCam to 
obtain a feature attribution heatmap from a neuron and intersect its binarized version 
with the segmentation map (bottom row).

Neuron Spurious Score. In Sect. 5 and Sect. 6, we investigate whether there exist 
neurons in the penultimate layer that purely encode the spurious features. To 
measure the extent to which a neuron focuses on the spurious region in the 
input, we introduce the s-score. We consider a model f constructed by a feature 
extractor fenc : X  →  Rd and a linear classification layer h : Rd →  Y. Given the 
input xj , its corresponding penultimate representation fenc(xj)  =  zj ∈ Rd and 
the spurious segmentation mj given by a binary matrix (e.g., patch segmentation
in ISIC), we use GradCAM [27] to compute the heatmap attribution over input, 
denoted as ai 

j , from neuron i of zj . To emphasize the highly focused region 
identified by neuron i, we set a threshold α and binarize the heatmap ai 

j into 
bi j . The neuron spurious score, s-score, measures the proportion of the neuron’s 
focusing region that corresponds to the region of the spurious feature. The s-score 
of neuron i is calculated by averaging over N samples 

si = 
1 
N 

N∑

j=1

∑
bi j � mj∑

bi j 

The neuron s-score si ranges between [0, 1],  where  si =  0  indicates that either the 
neuron does not activate any input region or none of the focus regions overlap 
with the spurious segmentation. We consider a neuron with a high s-score a 
spurious feature-encoding neuron in the representation space. Examples of t he
input image, the segmented mask, the heatmap of a neuron and the s-score
attribution of a single neuron are shown in Fig. 2. 
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4 Learning Spurious Features 

In this section, we investigate the extent to which convolutional neural networks 
(CNNs) and vision transformers (ViTs) are susceptible to learning spurious cor-
relations. First, we analyze the performance of the models for different groups 
in the data and with varying ratios of spurious correlations (Sect. 4.1). Second, 
we investigate whether this behavior can be explained by t he representations in 
latent space (Sect. 4.2). 

4.1 Performance on Groups 

We fine-tune pre-trained CNNs and ViTs models on two datasets: Waterbirds 
and ISIC. The effect of spurious features is shown by the difference betw een the 
worst-group accuracy and the average accuracy during test time. Table 2 shows 
the testing performances across different models. Overall, all vision models tend 
to learn spurious correlations as shown by the significant gap (GAP) between 
the average accuracy (AVG) and the worst-group accuracy (WGA).

Table 2. Average (AVG) and worst-group accuracy (WGA) across 5 different runs on 
the test set for both CNN and ViT models trained on Waterbirds and ISIC. Showing 
mean and standard deviation.

Waterbirds ISIC 

AVG WGA↑ GAP↓ AVG WGA↑ GAP↓ 
ResNet18 0.83 ± 0.01 0.46 ± 0.02 0.37 0.84 ± 0.01 0.37 ± 0.01 0.47 
ResNet50 0.88 ± 0.00 0.63 ± 0.02 0.25 0.83 ± 0.01 0.22 ± 0.01 0.61 
ResNeXt 0.89 ± 0.00 0.70 ± 0.02 0.19 0.86 ± 0.01 0.42 ± 0.01 0.44 
ViT-B/16 0.87 ± 0.01 0.65 ± 0.01 0.22 0.83 ± 0.01 0.16 ± 0.01 0.67 
DEiT 0.88 ± 0.00 0.66 ± 0.01 0.22 0.83 ± 0.01 0.12 ± 0.01 0.71 

To analyze the extent to which models react to the presence of spurious 
correlations, we train a ResNet18 by varying the proportion of minority groups 
in the Waterbirds dataset during training (cf. Table 3). A minority ratio of 
50% means that there is no spurious correlation in this modified dataset, and a 
ratio of 0% means that there is no minority sample in the training set. In the 
test set, we take the same number of samples from each group (i.e., a balanced 
subset). The two groups with an identical class label share the same foreground 
images, while the background is either water or land. Table 3 shows that the 
performance of the minority group gets worse as its proportion in the training 
data decreases (cf. G1 and G2), while the majority group performance remains 
nearly unchanged and consistently high—above 90% and even higher than when 
training without spurious correlations. However, even in the worst-case scenario 
(0% minority groups in the training set), the models can still correctly predict
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Table 3. Influence of the correlation ratio of the spurious feature. ResNet18 on Water-
birds. We keep the number of samples in the training set fixed (same as in the original 
dataset) and vary the percentage of the minority groups G1 and G2 within its corre-
sponding class (originally 5%). In the test set, t he two groups in each pair (G0, G1) 
and (G2, G3) share the same foreground images (the birds) while adapting to different
backgrounds (water or land).

Minority Ratio G0 G1 G2 G3 AVG GAP↓ 
50% 0.98 0.98 0.84 0.83 0.91 0.08 
25% 0.99 0.95 0.74 0.90 0.94 0.20 
5% 0.99 0.78 0.46 0.91 0.84 0.38 
0% 0.99 0.34 0.22 0.94 0.65 0.43 

out-of-distribution (O.O.D.) samples in the test set, though with less than 50% 
accuracy. This shows that models not only learn spurious features but also cap-
ture core features.

Takeaways. Vision models are susceptible to spurious correlations but still retain 
generalization abilit y.

4.2 Analyzing Latent Space 

We analyze the feature representations from the penultimate layer of the train-
ing data set of both CNN (ResNet18) and ViT (ViT-B/16). To visualize all data 
points, we show a t-SNE [16] projection of the output from the feature extrac-
tor fenc of each model. In the ViT visualizations (Fig. 3, right column), both, 
ISIC and Waterbirds show a clear trend that samples with the same spurious 
features across classes blend in the representation manifold (BwoP and MwoP 
in ISIC; waterbird on water and landbird on water in Waterbirds). In the 
ResNet18 representation, we observe that even the boundaries between classes 
are separated in both cases, within each class, the data clusters according to spu-
rious features. Note that in all cases, the models achieve close to 99% training 
accuracy. We hypothesize that depending on the model architecture, the spuri-
ous features are learned differently, however, in all cases, those features are well
recognized and have a high impact on the classification result.

Takeaways. In both ResNet18 and ViT-B/16, we observe an identical phe-
nomenon that samples with the same spurious features tend to lie closer to 
each other in the representation space, even with high training accuracy.

5 Encoding of Spurious Features in CNNs 

In Sect. 4 we showed that the latent representations in the last layer of ViT and 
CNNs are gov erned by spurious features, i.e., clusters in latent space are defined
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Fig. 3. Visualization of representation of last layers. Clusters are mainly defined by 
the spurious attribute (patch for ISIC, land/water for birds) and n ot by the classes 
(malignant/benign for ISIC and landbird/waterbird for birds).

more by the spurious features than by the target labels. In this section, focusing 
on CNNs, we analyze the extent to which this behavior can be attributed to 
individual neurons in different neural network lay ers. We begin by examining the 
disentanglement and entanglement of neurons in the penultimate layer (Sect. 5.1 
and Sect. 5.2). For CNN-based models, we we investigate whether models learn 
disentangled information for different data groups (Sect. 5.3) using techniques 
for subnetwork extraction (so called network modulars) [5]. 

5.1 Neuron Disentanglement 

We analyze single neurons in the last layer to test whether any of them are 
highly related to the spurious region. In each dataset, we compute the neuron 
spurious score s-score (cf. Section 3) over 50 random t raining s amples.

On ISIC,  the  s-score of neurons ranges from 0.0 to 0.8. Visualization of 
three neurons from different score ranges is shown in Fig. 4. We determine the 
s-score ranges based on the proportion of the heatmap that overlaps with the 
mask segmentation of spurious features. A neuron receives a low s-score if on 
average less than 20% of the heatmap overlaps with the spurious mask (s-score 
< 0.2), and a high s-score if more than 70% of the heatmap focuses on the 
spurious region (s-score > 0.7). Otherwise, the neuron receives a mid-range
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Fig. 4. Neuron heatmaps overlaid with original images, illustrating the activation of 
three different neurons (rows) across five sample i mages (columns).

s-score. For neurons with high or low s-score, the main focus region (more red 
areas) consistently highlights either the patch (spurious feature) or the lesion 
(core feature). Meanwhile, the neurons in mid-range s-score shift their focus 
between spurious and core features depending on the sample.

Table 4. Group accuracy of ISIC after pruning some sets of neurons in the last lay er 
based on the neuron spurious score (s-score).

BwoP BwP MwoP MwP AVG 
ResNet18 0.92 0.99 0.57 0.37 0.84 
Pruning (s-score > 0.7) 0.90 1.00 0.59 0.40 0.85 
Fine-tune last-layer weights with g roup balanced set
ResNet18 0.81 0.99 0.75 0.51 0.84 
Pruning (s-score > 0.7) 0.81 0.99 0.77 0.56 0.85 

Influence of Spurious-Encoding Neurons. By setting the weights connecting 
spurious-encoding neurons to the classes to zero, we observe a slight improve-
ment in the WGA (Table 4, rows 1–2). 3 To reduce the influence of a highly 
imbalanced data distribution on the classifier, we additionally fine-tune the lin-
ear classifier using a group-balanced dataset in two cases: baseline ResNet18 
and ResNet18 with spurious-encoding neurons deactivated (Table 4, rows 3–4).
3 Here, we set the weights to z ero without an y retraining.
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Table 5. Performance of applying DFR on ResNet18 for two datasets ISIC and 
Waterbirds. Pruneh denotes the pruning ratio of the classification layer w eights.

Model WGA AVG Pruneh Avg. s -score 

ISIC 
Baseline 0.37 0.85 – 0.40 

DFR 0.71 0.79 80% 0.39 

Waterbirds 
Baseline 0.46 0.83 – 0.45 

DFR 0.82 0.87 52% 0.42 

Fine-tuning after pruning some spurious-encoding neurons results in a slightly 
higher improvement in WGA compared to fine-tuning the baseline, indicating 
that the pruned representation better captures invariant features. From these 
experiments, we conclude that even though we can find some critical neurons 
(using labels and annotations of t he spurious feature), we do not know how 
neurons interact with each other and, therefore, can not find a complete set of
neurons that encode spurious features.

Takeaways. Our analyses in this section show that spurious features are repre-
sented and to some extend disentangled in the representation space a nd simply 
turning off those neurons improves r obustness to spurious correlations.

5.2 Neuron Entanglement 

Also in the direction of not retraining feature extractor fenc, deep feature re-
weighting (DFR) method [11] and the subsequent analysis [12] suggest that 
using a group-balanced dataset to select essential neurons in the representation 
space and disabling a ll other neurons might make models more robust to spurious
correlations.

DFR Method. DFR keeps the learned representation of trained models 
unchanged, retraining only the classification layer with a group-balanced val-
idation set using logistic regression. The logistic regression hyperparameters are 
optimized for group performance with another group-balanced dataset. Under 
the assumption that trained models learn sufficient information despite the exis-
tence of spurious correlations, this approach uses a group-balanced set to seek 
the optimal neuron combination that is not influenced by spurious correlations.

Table 5 shows the effectiveness of the DFR method on CNN models trained 
with ISIC. DFR significantly improves the WGA while zeroing a large number 
of weights in the classification layer. This means that there is only information 
encoded in a small number of neurons of the embedding layer that is necessary 
for classification, a nd removing them makes models more robust. However, con-
trary to the naive approach of eliminating neurons that are strongly focused
on spurious regions (cf. Table 4), our analysis shows that DFR removes a large 
number of unnecessary neurons while maintaining the same s-score distribution
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Fig. 5. Average s-score of ResNet18 and DFR trained on ISIC (left) and Waterbirds 
(right).

(cf. Table 5 and Fig. 5). This indicates that DFR does not change the diversity of 
the learned features, whether they are spurious or not. With a similar underlying 
hypothesis, the method of [9] also uses both learned core and spurious features 
in the latent space. This approach succeeds in improving the WGA by searching 
for a single weight of the classification layer that most activates for the minority 
group and editing only that weight.

We hypothesize that instead of genuinely selecting core features encoded in 
the representation space, the effectiveness of these classifier adaptation meth-
ods comes from learning new classifier weights to fit the new non-spurious 
data (group-balanced). This suggests that interactions between neurons strongly 
influence classification and t hat optimizing a subset of neurons and connection 
weights can improve group-specific performance. Howev er, in alignment with the
findings in [12], we conclude that these approaches do not truly eliminate the 
learned s purious correlations.

Takeaways. Without adapting the learned information, but the interaction 
between the representation neurons, we can significantly improve the perfor-
mance of a particular group. However, there is n o guarantee that the spurious 
correlations learned by the m odels will be completely eliminated.

5.3 Disentangled Components 

As we showed in Sect. 5.2, retaining neurons with medium or high s-score while 
adjusting their influence on the classifier can reduce the impact of spurious fea-
ture learning. Therefore, we hypothesize that there are additional conditions or 
signals earlier in the network that allow the model t o use these neurons more 
effectively in certain cases. In the following, we apply pruning and subnetwork
learning to analyze their effect on spurious correlations.

Task-Oriented Pruning. We investigate whether pruning neurons in deeper 
network layers can help reduce reliance on spurious features. PruSC [13]  and  
DCWP [ 20] are two pruning methods designed to mitigate spurious correla-
tions. Notably, both methods prune neurons based on frozen trained weights by 
learning a mask on the weights, i.e., they refine the learned features instead of
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re-learning from scratch. Applying PruSC to ResNet18 with the ISIC dataset 
results in pruning 65% of the neurons in the last layer and 48% of the neurons 
across the entire model. Comparing the average s-score before and after prun-
ing (cf. Figure 6), we observe that pruning effectively reduces the connections to 
spurious features. While improving performance for the worst-case group, PruSC 
yields a significantly l ower average s-score, indicating a shift towa rd using less
spurious features.

Fig. 6. s-score distribution. Pruneh denotes the pruning ratio of the classification layer 
weights, Prunef denotes t he pruning ratio of the entire model.

Group-Specific Components Learning. We further investigate how the relation 
between core and spurious features is encoded and whether those spurious fea-
tures are learned and disentangled within the network. The ISIC dataset with 
training set D contains three groups: BwoP, BwP, and MwoP. We train model
f fully on D.

Applying a similar technique as [5], we freeze all the weights of f , and train 
a binary mask on each weight of f with a subpopulation of the training data. To 
avoid trivial results in a binary classification task, we can not remove an entire 
class as in the original paper. However, we hypothesize to obtain a subnetwork 
that removes all the relevant components that are purely responsible for a specific 
group. We conduct the study on two sub-dataset: D\{BwP} and D\{BwoP} by 
removing the group data BwP and BwoP from the training respectively. After 
pruning the model to 80% of the total number of weights4, we evaluate the 
resulting model with the official test set. The results are shown in Fig. 7. 

Case 1: Removing purely benign cases. By removing the entire group BwoP,  the  
accuracy of this group drops significantly from 92% to 18%, while the perfor-
mances of other groups are unchanged or increased. It proves that the group 
BwoP or the features belonging to the benign class are encoded and d isentan-
gled within the network, forming a benign-encoding component. Thus, deleting 
this component can lead to a significant drop in the performance of a particular
group.

4 We ensure that no layer is entirely pruned. 
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Fig. 7. Group accuracy of a subnetwork trained with D  \  {  BwP} and D  \  {  BwoP}.

Case 2: Removing patches-containing cases. By removing the group BwP,  we  
systematically test whether we can eliminate all the patch-encoding components 
within the trained network. The resulting performance after pruning is nearly 
identical between the two groups within a class (both groups of the benign class 
obtain 99% accuracy, and both groups of the malignant class obtain approxi-
mately 49% accuracy). This suggests that the removed connections are indeed 
responsible for encoding the existence of feature patches. However, we observe 
that when these connections encoding patches are removed, the performance 
of group MwoP drops. This means that the removed patch-encoding compo-
nent not only con tains information about the patches feature but also important
information for predicting the malignant class.

Notably, the group BwP can be predicted by using either the patch-encoding 
or the benign-encoding componen t, and therefore, the group accuracy remains 
high in both cases.

Takeaways. We conclude that i) task-oriented pruning is a promising approach 
for mitigating spurious correlations by turning off connections that contribute to 
the spurious features, and ii) pruning methods are most effective when models 
learn features i n disentangled subnetworks.

6 Encoding of Spurious Features in ViTs 

In this section, we focus on analyzing the entanglement learning of spurious 
features in ViT models. Following a similar approach to C NNs, we begin by 
examining neurons in the penultimate layer (Sect. 6.1). Next, due to the unique 
multi-heads self-attention learning mechanism in ViTs, we focus on analyzing 
spurious features learned in attention heads (Sect. 6.2). 
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6.1 Last-Layer Representation in ViTs 

In this section, we present the results of the analysis of whether there are 
spurious-encoding neurons in the representation space of ViTs. Figure 8 shows 
some examples of neuron heatmaps visualized with GradCam [27]  (left)  and  the  
distribution of s-score averaged over 50 training inputs (right). We observe that 
even though there are some cases where the neuron focuses more on the core 
or spurious feature (more red region), the focus region of neurons in ViTs t ends 
to be more distributed when projecting to the input. This leads to low over-
all s-score, i.e., 0.23 for ISIC and 0.14 for Waterbirds (cf. Table 6) - which  
are both in low-range s-score. We hypothesize that this phenomenon is due to 
the ability of global learning from the multi-heads self-attention of ViTs. This 
mechanism allows the model to simultaneously attend to both core and spu-
rious features across the entire input, distributing the learned representations.
In Sect. 6.2, we present an example in ISIC that under the influence of highly 
spurious correlations, ViTs show a clear entangled relationship b etween core and 
spurious objects in some p articular attention head.

On the other hand, in alignment with the conclusion for mitigation methods 
that leave the latent space unchanged in CNNs (cf. Section 5.2), DFR [ 11]  works  
well with ViT-B/16 (cf. Table 6). While significantly improving WGA in both 
ISIC and Waterbirds, the average s-score of models before and after applying 
DFR are nearly identical. This again confirms that DFR indeed changes the 
way neurons interact with each other to improve the performance of a particular 
group rather than truly eliminating the learned spurious features.

Table 6. Application DFR on ViT-B/16 

Model WGA Pruneh Avg. s -score 

ISIC 
Baseline 0.16 – 0.23 

DFR 0.76 89% 0.26 

Waterbirds 
Baseline 0.66 – 0.14 

DFR 0.86 37% 0.14 

Takeaways. With ViTs, we can not find a similar phenomenon of clear spurious-
encoding neurons in the last layer as in CNNs. However, adapting neuron interac-
tions w orks, suggesting the group-beneficial patterns when re-combining n eurons
in its representation.

6.2 Spurious Features in Attention Heads 

The multi-head attention mechanisms in ViTs are designed to capture global 
information more effectively. We, therefore, investigate whether s purious and 
core features are disentangled in ViTs’ attention heads.
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Fig. 8. Examples heatmap of neurons in the penultimate layer of V iT-B/16 (left) and 
s-score distribution (right).

Fig. 9. Attention scores in ViT-B/16 of image patches corresponding to a) a spurious 
input feature and b) a core input feature. The feature maps in the middle show the 
scores per layer averaged over all attention heads. For the spurious patch (b), the 
highest average attention scores are from other spurious patches, making the outline of 
the spurious input part visible in the attention map. For an image patch from a lesion 
(a), the highest average attention scores are from image patc hes representing skin or 
lesions. However, there are layers that encode both core and spurious features because 
some attention heads are focused on the spurious feature (e.g., attention heads 4,5,6,
and 12 in layer 9, highlighted with a red border). (Color figure online)
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We analyze how much influence each image patch has on the encoding of one 
specific image patch, which either encodes a spurious (Fig. 9a) or a core feature 
(Fig. 9b). To visualize the attention map for a specific patch, we compute the 
attention weights in the transformer layers (averaged over multi-attention heads) 
when forwarding the input image through the model. From the atten tion weight 
matrix, we take the target row (indicating the target input patch) and visualize
it as a heatmap. Figure 9 shows the visualizations across all transformer layers 
and single heads for a core feature in layer 9. We o bserve that even though the 
target patch is a core feature (see Fig. 9 a), some specific layers of ViT-B/16 
show high attention to the spurious region (e.g. layer 8, layer 9) and that some 
neurons focus on the spurious region (e.g., attent ion heads 4, 5, 6, 12).

Takeaways. Under the influence of spurious correlations, we observe that ViT 
jointly e ncodes information of core and spurious features.

7 Discussion 

This section summarizes and discusses our findings from t he experiments in 
Sects. 4 to 6; a concise overview is given in Table 7. 

Vision Models Exploit Spurious Correlations. We find that both CNNs and 
ViTs are susceptible to learning spurious features, and the ratio of minority and 
majority groups also affects the wo rst group accuracy. We also found that the 
spurious features can strongly define the representation space.

To Some Extent, There Are Disentangled Spurious-Encoding Components. In the 
representation layer, s-score can be used to determine whether neurons in the 
penultimate layer of the models can be separated into highly s purious-encoding 
neurons. Considering the deeper layer of the models, previous work [5]  proves  
that within a trained model there are sets of neurons that are solely responsible 
for a specific class of data. Using a similar technique, our result shows that it 
is possible to extract components (in CNNs) that are responsible for specific 
groups or features. Therefore, with a careful experimental design, we can find a 
component that, when removed, mainly eliminates the effect of spurious features. 
In ViTs, due to the lack of an equivalent technique, we cannot further analyze 
whether there really exist spurious-encoding components. The existence of dis-
en tangled spurious-encoding components leads to a simple pruning approach to
eliminate the learned spurious correlations.

Without Removing Spurious-Encoding Neurons, Adjusting The Interaction 
between Neurons Can Effectively Improve Performance. We found that the effec-
tiveness of last-layer re-weighting methods does not come from really eliminating 
the learned spurious features, but from reconstructing the interaction between 
neurons. These methods may remove unnecessary neurons, but not necessar-
ily spurious-enco ding neurons. This leads to the assumption that the way neu-
rons are combined during learning and predicting is important for generalization
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Table 7. Overview of shortcut learning in C NNs and V iT.

CNNs ViTs 
Prevalence of shortcuts 

Learn spurious correlations, shown by a large gap between 
w orst-group and average accuracy.

Shortcut features in latent 
space 

Classes separate clearly, but 
minority g roups are c lustered.

Latent space is more defined b y 
spurious features than classes.

Last-layer spurious-encoding 
neurons 

Neurons show a wide range of 
s-score, m aking 
disentanglement e asier.

Spurious-encoding neurons are 
harder to detect, with a verage 
low s -score.

Spurious neuron combinations 
in last layer Adapt neurons interaction, not necessarily remove 

spurious-encoding neurons, can form a more robust combination 
against spurious correlation.

Disentanglement in earlier 
comp onents 

Exist components encoding 
both spurious feature and 
uncorrelated c lass.

Exist attention heads show high 
attention score between core 
and spurious patc h regions.

ability. However, we do not yet fully understand t he patterns when c ombining
neurons.

There are also Components that Encode Multiple Features and Cause Models to 
Mis-learn. In the representation space, there is a large proportion of neurons 
with mid-range s-score. While this may be due to the limitations of the XAI-
based technique (cf. Appendix A), previous work [ 12] has presented a qualitative 
example. In deeper components within CNNs, we find that removing spurious-
encoding components also decreases the performance of the uncorrelated class. In 
multi-headed self-attention mechanisms, we find explicit cases where models fail 
to distinguish between core and s purious features. This suggests that in addition 
to a disentangled set of neurons encoding only core or spurious features, there
are still neurons that activate both patterns.

Limitations of Existing Methods for Mitigating Spurious Feature Learning. Con-
sidering existing post-hoc spurious reduction methods, we hypothesize that: (i) 
last-layer re-weighting methods could prune a large fraction of neurons, but 
in fact still need information from all types of encoded features, such as core 
and spurious. Therefore, these methods would fail in the severe case that models 
under-learn information, which is hard to detect when the overall performance is 
still high based on learning spurious features. Furthermore, unmodified represen-
tation learning is ultimately not optimal because these methods cannot correct 
the earlier disentanglement of the model. (ii) Fo r post-hoc pruning methods, we 
might prune some components or connections that are important for both core 
and spurious features. This could lead to the trade-off of improving WGA by 
reducing sensitivity to spurious features, but degrading performance for other
groups by removing neurons that contribute to invariant features.
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8 Related Work 

A large body of work is based on the hypothesis that machine learning models 
tend to learn spurious features while under-learning invariant features. There-
fore, a straightforward direction to mitigate the spurious correlations in learn-
ing is to f ocus on training group-robust models. Multiple approaches rely on 
human-annotated group labels and train models to minimize group loss [1, 2, 25]. 
To reduce the cost of collecting human-annotated group labels, many stud-
ies propose estimating pseudo-group information using predictions from early-
stopped ERM models, f ollowed by training a second robust model with pseudo-
group labels [4, 15, 17, 18, 31]. Those methods assume that samples mis-classified 
by early-stopped ERM models are not holding spurious features. While these 
methods effectively improve the group-specific accuracy, t hey require expensive 
retraining, particularly when the existence of spurious information is unknown
beforehand.

Recent studies have shown that despite the strong correlation between spu-
rious features and target labels, machine learning m odels can successfully learn 
high-quality spurious and core features [11]. Therefore, post-hoc spurious miti-
gation or eliminating spurious correlations of trained models without extensive 
feature learning can be sufficient. Leaving the learned representation unchanged, 
existing work re-weights the classifier weights based on a group-balanced held-
out dataset [11] or searches for and only adjusts a single weight that affects the 
minority group most [9]. Alternatively, it is possible to extract a subnetwork 
from a trained model that is more robust to spurious correlations [13, 20]. These 
works empirically demonstrate the potential of models to learn both core and 
spurious features. However, it remains unclear whether these features are truly 
disentangled and to what extent the underlying assumptions hold.

9 Conclusion 

In this paper, we showed that both CNNs and ViTs are susceptible to spurious 
correlations. We provide evidence that models can learn to disentangle spurious 
features, allowing us to extract neurons or subnetworks within a trained net-
work that are specifically responsible for these features. However, models may 
also encode a mixture of core and spurious features or fail to learn perfect dis-
entanglement. Based on the results, this paper shows how and why methods 
mitigating spurious features that either leave the representation unchanged or
extract only subnetworks from frozen trained weights may fail.
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A Limitation of s-score 

Fig. 10. Neuron with low score but p oten-
tially high spuriousness. 

In this section, we discuss the lim-
itations of using post-hoc explain-
able AI methods to calculate s-score. 
Explanation methods sometimes fail 
to capture fully what models are truly 
encoding. While heatmap attributions 
can visualize where the m odel is focus-
ing within the input, they do not 
reveal what features t he model is
learning. For example, in Fig. 10,  the  
s-score is low because the neuron’s 
focus region has little overlap with 
the patch itself. However, to a human 

observer, i t seems that the neuron is actually focusing on the edge of the patch.
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