KIT | KIT-Bibliothek | Impressum | Datenschutz

A quantum genetic algorithm for a parallel machine scheduling problem

Schwenzow, Tilmann ; Lehnert, Annika 1; Liebrecht, Christoph; Franke, Jörg; Reitelshöfer, Sebastian
1 Karlsruher Institut für Technologie (KIT)

Abstract:

Scheduling problems are a common challenge across various industries. This paper addresses a specific problem arising in printed circuit board (PCB) assembly: the parallel machines scheduling problem with sequence-dependent setup times. To address this challenge, we propose a hybrid quantum genetic algorithm (QGA) designed to solve this problem on an error-free quantum computer. The development focuses on three key aspects: efficient adaptability of the quantum circuit to different problem instances, feasibility of the measured circuit outputs, and efficient utilization of qubits. To compare the quantum algorithm with its purely classical counterpart, we introduce a novel key performance indicator to quantify a potential quantum speedup. Furthermore, we evaluate the convergence behavior of the solver across various problem instances. Our results demonstrate that the QGA exhibits strong convergence behavior, resulting in near-optimal solutions. Additionally, we identify a potential quantum advantage for solving this practical problem. The advantage increases as the population size grows.


Verlagsausgabe §
DOI: 10.5445/IR/1000186455
Veröffentlicht am 04.11.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Mathematik (MATH)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2025
Sprache Englisch
Identifikator ISSN: 1382-6905, 1573-2886
KITopen-ID: 1000186455
Erschienen in Journal of Combinatorial Optimization
Verlag Springer
Band 50
Heft 4
Seiten 33
Vorab online veröffentlicht am 18.10.2025
Nachgewiesen in Web of Science
OpenAlex
Dimensions
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page