KIT | KIT-Bibliothek | Impressum | Datenschutz

Modelling dependent censoring in time-to-event data using boosting copula regression

Strömer, Annika ; Klein, Nadja ORCID iD icon 1; Keilegom, Ingrid Van; Mayr, Andreas
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

Survival analysis plays a pivotal role across disciplines, including engineering, economics, and social sciences-not just in biomedical research. In many of these applications, incomplete observations due to censoring are common, arising from limited follow-up periods, study dropouts, or administrative constraints. A standard assumption in such settings is that the censoring mechanism is independent of the survival process. This assumption primarily holds when censoring occurs at the end of the observation period. However, there may be dependence between event and censoring times. For example, if a patient's health deteriorates and they withdraw due to poor prognosis, the time of censoring depends on their health status, leading to dependent censoring as sicker patients are censored earlier. To address such situations adequately in statistical analyses, we propose a model-based boosting approach using distributional copula regression. Our approach models the joint distribution of survival and censoring times by linking unknown marginal distributions through an unknown parametric copula. All distribution parameters of the resulting joint distribution are estimated simultaneously as functions of potentially different covariates. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000186472
Veröffentlicht am 04.11.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2025
Sprache Englisch
Identifikator ISSN: 1380-7870, 1572-9249
KITopen-ID: 1000186472
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in Lifetime Data Analysis
Verlag Springer
Band 31
Heft 4
Seiten 994–1016
Vorab online veröffentlicht am 21.10.2025
Nachgewiesen in Web of Science
Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page