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A B S T R A C T

Integration of geothermal systems into buildings is imperative for a sustainable energy transition. Coupled 
simulation of building energy systems and geothermal technologies can support reliable and efficient 
geothermal-based system design, while ensuring thermal comfort inside the building. While co-simulation has 
been widely applied, a comprehensive review of existing approaches and applications is still lacking. This study, 
therefore, reviews co-simulation of building energy and geothermal systems covering modeling techniques, 
coupling approaches, software options, as well as existing case studies. A total of 141 co-simulation studies were 
identified, mostly conducted using one single software such as TRNSYS (58 %), EnergyPlus (9 %), IDA ICE (8 %) 
and Modelica (5 %) by incorporating simplified semi-analytical geothermal models. Only few studies coupled a 
building energy tool with a high-fidelity physical model of the subsurface for co-simulation (< 10 %). Studies 
mainly focused on borehole heat exchangers (BHE) (65 %), followed by borehole thermal energy storage (BTES) 
(19 %), ground heat exchangers (GHE) (8 %), aquifer thermal energy storage (ATES) (3 %) and energy piles (EP) 
(2 %). Over 80 % of research investigated residential, commercial and institutional buildings, largely for heating 
applications. Co-simulation revealed high potential of geothermal systems in buildings, with COP of 4 ± 1, 
discomfort times of 6 % ± 4 %, payback period of 14 ± 9 years, and CO2 savings of 40 % ± 27 %. The literature 
review showed an evolution from early feasibility analyses to detailed physics co-simulation and hybrid 
geothermal energy systems. Several opportunities are highlighted for future research in the field regarding 
software coupling, geothermal model validation and system design. Specifically, creating a co-simulation 
framework for optimal design of building integrated geothermal systems is the key opportunity for advancing 
geothermal technology application.

1. Introduction

Clean energy investments have been effective in damping increase of 
CO2 levels. However, emissions continue to rise on a global scale, mainly 
due to growing energy consumption. Currently, the building sector is 
responsible for over one-third of global final energy consumption, ac
counting for 26 % of energy-related emissions [1]. Implementing passive 
strategies to reduce building energy demands, along with replacing 
conventional supply systems with clean and energy-efficient technolo
gies, is essential for decarbonizing the building sector.

Heat pumps (HP) offer a large potential for energy transition in the 
building sector by supplying low-emission heating and cooling. HPs 
currently provide around 10 % of energy demand [1]. Yet installations 
would have to triple over the next five years in order to meet the Net 
Zero Emissions (NZE) goal by 2050 [1].

Geothermal heat pumps (GHP) and air-source heat pumps (ASHP), 
which exploit underground energy and ambient air, respectively, are 

common types of HPs. GHPs were shown to be superior to ASHPs in 
terms of long-term economic benefits [2], superior life cycle perfor
mance [3], alleviating subsurface urban heat island [4], and reducing 
peak electricity grid loads [5,6]. Shallow geothermal energy is also 
considered a key component in 5th-generation district heating and 
cooling networks, operating close to or lower than ambient temperature 
[7,8]. Although high installation costs remain a challenge for wide- 
spread application of geothermal-based systems [9]; integrating them 
with other energy systems can improve their profitability [10].

Shallow geothermal systems can be classified into closed and open 
systems. In closed systems, heat transfer occurs through the circulation 
of a working fluid within buried pipes, while open systems use 
groundwater directly as the heat transfer medium. Horizontal ground 
heat exchangers (GHE) and vertical borehole heat exchangers (BHE), 
both also called ground-source heat pumps (GSHP), as well as energy 
piles (EP) are common closed systems, while groundwater heat pumps 
(GWHP) are common open system geothermal technology. All 
geothermal systems can be intentionally charged for seasonal energy 
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storage or for replenishing the ground temperature. The most common 
closed and open underground thermal energy systems (UTES) are 
borehole thermal energy storage (BTES) and aquifer thermal energy 
storage (ATES) [11,12].

There is ample literature on the fundamentals of geothermal energy 
systems [13–15], testing and performance analysis [9,16–18], techno
logical advances [19–23], policy aspects [24–26], modeling approaches 
[27–29], geothermal potential [11,30] and applications for heating and 
cooling in the building sector [31–34]. However, there are few studies 

that review co-simulation of building energy and geothermal technolo
gies. Do & Haberl [35] presented multiple GSHP models along with 
software for whole-building energy simulation including TRNSYS, 
EnergyPlus, DOE-2, eQUEST and EnergyGauge USA. More recently, 
Lyden et al. [36] reviewed modeling tools for co-simulation of BTES and 
ATES with a focus on integrating seasonal thermal energy storage into 
district-scale smart energy systems. A structured review on co- 
simulating building energy and various geothermal systems is still 
lacking. Such a review study is essential as modeling and simulation play 

Nomenclature

Abbreviations
AHU Air handling unit
API Application programming interface
ASHRAE American Society of Heating, Refrigerating and Air- 

Conditioning Engineers
ATES Aquifer thermal energy storage
BBD Box–Behnken design
BHE Borehole heat exchanger
BPNN Back-propagation neural network
BTES Borehole thermal energy storage
CHP Combined heat and power
CLI Command-line interface
COMFIE Calcul d’Ouvrages Multizones Fixé à une Interface Experte
COP Coefficient of performance
CTF Conduction transfer function
DH District heating
DGC Direct ground cooling
DHW Domestic hot water
DSHP Dual source heat pump
DST Duct ground heat storage
DVGW Deutscher Verein des Gas- und Wasserfaches
EED Earth Energy Designer
EHP Electric heat pump
EP Energy pile
FC Fuel cell
FCS Finite cylindrical source
FDM Finite difference method
FEM Finite element method
FVM Finite volume method
GA Genetic algorithm
GHE Ground heat exchanger
GHP Geothermal heat pump
GSHP Ground source heat pump
GUI Graphical user interface
HSRM Hybrid step response model
HVAC Heating, ventilating and air-conditioning
ICE Internal combustion engine
ILS Infinite line source
LCC Life cycle cost
LTG Long-term g-function
MFLS Moving finite line source
MPC Model predictive control
MRST MATLAB Reservoir Simulation Toolbox
N/A Not known
NC Not considered
NGB Natural gas-fired boiler
NPV Net present value
ORC Organic Rankine cycle
PBD Platform-based design
PCM Phase change material
PVT Photovoltaic thermal

RBC Rule-based control
RPC Remote procedure call
RSM Response surface methodology
SE Stirling engine
SPF Seasonal performance factor
STC Solar thermal collector
STG Short-term g-function
TAB Thermally activated building
TCP/IP Transmission control protocol/internet protocol
TESPy Thermal engineering systems in Python
TRM Thermal resistance model
TRCM Thermal resistance capacitance model
WPB Wood pellet boiler
WT Wind turbine
1D One-dimensional
2D Two-dimensional
3D Three-dimensional

Variables
C Volumetric heat capacity
h Hydraulic head
k Thermal conductivity
K Hydraulic conductivity tensor
P Sink/source power
q Heat flux
q Flow flux vector
Q Thermal load
S Specific storage
t Time
T Temperature
V̇ Volumetric flow rate
W Work power
y Simulation output

Subscripts
b Building
disp Dispersion
ext External
f Fluid
g Ground
GWF Groundwater flow
i Inlet
int Internal
o Outlet
m Porous medium
N Time step
s Subsurface
t Thermal
w Groundwater

Superscripts
k Iteration number
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a significant role in the integration of GHPs into buildings by improving 
system performance and efficiency, as well as reducing installation and 
operational costs [37,38].

The objective of this study is therefore to review co-simulation of 
building energy and geothermal systems, focusing on modeling tech
niques, coupling approaches, software options and applications, along 
with highlighting challenges and providing an outlook to promote future 
research in the field. The rest of this study is structured as follows: 
Section 2 describes governing equations for building energy and 
geothermal systems modeling. Section 3 introduces co-simulation con
cepts and commonly used software tools. Section 4 reviews co- 
simulation case studies and identifies research trends. Section 5 dis
cusses software and models used for co-simulation in the literature. 
Section 6 presents current challenges. Finally, section 7 concludes with 
the study findings, knowledge gaps, as well as recommendations.

2. Physics for modeling building energy and shallow geothermal 
systems

Fig. 1 summarizes the physics involved in modeling building energy 
and common shallow geothermal systems. Conduction, convection and 
radiation from different building components determine thermal loads 
required to maintain comfortable conditions inside the building. Heat
ing, ventilation, and air conditioning (HVAC) systems, which are used to 
supply those thermal loads, are typically connected to a GHP operating 
based on the refrigeration cycle. This cycle consists of four basic ther
modynamic processes: compression, condensation, expansion and 
evaporation. On the source (external) side, the GHP is connected to a 

closed or open geothermal system, which is modeled by accounting for 
different heat transfer mechanisms in the subsurface such as axial, 
lateral and land surface heat fluxes, as well as advection by groundwater 
flow (Fig. 1). The following subsections describe above-ground and 
subsurface models in more detail.

2.1. Building energy modeling

This section discusses energy modeling techniques for the building 
envelope, GHP, integrated energy systems and control strategies.

2.1.1. Building envelope
There are several standards for calculating building thermal loads 

such as the international ISO 13790 [39], the American ANSI/ASHRAE 
Standard 140–2023 [40] and the European EN 15265 [41], which adopt 
various formulations and techniques.

According to the energy balance, total building thermal load (Qb) can 
be evaluated as the sum of internal (Qb,int) and external (Qb,ext) loads 
[42,43]: 

Qb = Qb,int + Qb,ext . (1) 

The internal loads can be obtained from different heat transfer processes 
inside the building thermal zones: 

Qb,int = qceiling + qfloor + qpartition + qzones + qsurf + qlight + qequipment + qoccupants,

(2) 

where qceiling, qfloor and qpartition are the conductive heat fluxes through the 

Fig. 1. Fundamental physics of the building energy and subsurface including basic closed and open shallow geothermal systems.
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ceiling, floor and interior partitions, respectively. qzones represents the 
convective heat flux from air exchange between zones. qsurf is the radi
ative heat exchange between zone surfaces, while qlight, qequipment and 
qoccupants are the internal gains from lighting, equipment and occupants, 
respectively.

Similarly, external loads can be calculated using Eq. (3): 

Qb,ext = qroof + qground + qwalls + qopenings + qinfiltration + qsolar + qdiffuse + qtransmitted,

(3) 

where qroof , qground, qwalls and qopenings are conductive heat fluxes through 
the roof, ground floor, external walls and openings, respectively. 
qinfiltration refers to the convective heat flux from air exchange between 
building zones and the ambient environment. qsolar is solar radiation, 
qdiffuse includes reflected solar irradiance, as well as radiation from the 
surroundings (e.g., ground and adjacent buildings), and qtransmitted is 
radiative heat flux passed through openings.

Various models exist for calculation of the above-mentioned heat 
fluxes [44]. Along with the detailed physics-based heat balance 
approach (white-box), reduced order models (gray-box) [45] and ma
chine learning techniques (black-box) [46] are available for fast thermal 
load estimation.

2.1.2. Geothermal heat pump
The performance of GHPs is typically measured by the coefficient of 

performance (COP) [47]: 

COP =
Qb

W
, (4) 

where W is electric power consumption. According to the energy bal
ance of GHP, ground thermal load (Qg) is expressed in Eq. (5) [47]: 

Qg =

{
Qb − W heating,
Qb + W cooling. (5) 

By combining Eqs. (4) and (5), ground load can be derived as a function 
of building energy demand and COP: 

Qg =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Qb

(

1 −
1

COP

)

heating,

Qb

(

1 +
1

COP

)

cooling.
(6) 

Also, based on energy conservation for the subsurface system, inlet 
(Tf ,i) and outlet (Tf ,o) temperatures of working fluid in the ground-loop 
are related according to Eq. (7) [48]: 

Tf ,o =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Tf ,i +
Qg

Cf V̇
heating,

Tf ,i −
Qg

Cf V̇
cooling,

(7) 

where Cf and V̇ are the volumetric heat capacity and flow rate of heat 
carrier fluid, respectively.

There are different mathematical models for COP estimation: 

Constant

This is the simplest model, where the COP is assumed to remain 
constant during operation, based on the assumption of an unlimited 
source capacity. While this model requires minimal computational 
effort, it neglects the effects of transient building loads, limiting its 
applicability for detailed performance analysis. Therefore, it should be 
used cautiously and only in cases where short-term dynamic effects can 
be ignored (e.g., in the preliminary design of seasonal energy storage 
applications) [49]. 

Regression

Regression (equation-fit) models predict COP as a function of load- 
and source-side conditions (temperature, part load ratio, etc.) by curve 
fitting to experimental or manufacturer’s performance data. They are 
widely used in building energy modeling tools due to high accuracy and 
low complexity. Several mathematical models with linear and nonlinear 
regression are available for predicting COP [50,51]. However, regres
sion models are often limited to a specific HP model, require extrapo
lation outside reported operating ranges (off-design conditions), can be 
unreliable with small catalogue datasets, and are highly dependent on 
manufacturer data of uncertain origin [50]. 

Thermodynamic

Thermodynamic models employ mathematical representations of 
each component (compressor, condenser, expansion valve and evapo
rator) in the HP cycle to determine the COP. They can be divided into 
steady-state and transient models. The former use simplified equations 
to model the refrigerant cycle based on several assumptions (e.g., fully 
saturated phases and negligible pressure losses), while the latter employ 
detailed dynamic models that can capture transient effects, making them 
suitable for system control design and fault diagnosis [52]. Despite high 
potential, widespread application of thermodynamic models is limited 
because of high complexity, detailed operational input data re
quirements and computational cost [53]. 

Machine learning

Machine learning (ML) methods can predict COP by training on a 
dataset without requiring any physical information about the HP. 
Recently, various ML techniques have been used to predict the COP of 
GHP, more commonly artificial neural networks [54], random forest 
[55], support vector machine [56] and decision tree ensemble [57]. 
While they offer great potential for performance prediction of complex 
physical systems, they have lower explainability and may produce 
spurious or accidental results [58]. Also, their prediction accuracy and 
computational cost are highly dependent on the training model 
employed [57,59].

2.1.3. System components and control
Energy simulation facilitates analyzing the application of various 

components in buildings [60]: 

- Thermal (solar thermal collectors (STC), phase change materials 
(PCM), district heating, chillers, dry coolers, etc.)

- Electrical (photovoltaic (PV), wind turbines (WT), fuel cells (FC), 
batteries, etc.)

- Thermo-electrical (photovoltaic thermal (PVT), combined heat and 
power (CHP) technologies like internal combustion engines (ICE) 
and organic Rankine cycles (ORC), etc.)

The energy flow management for these components is typically 
conducted using rule-based controllers (RBC) or model predictive con
trollers (MPC). RBC employs fixed, pre-set rules for managing energy 
flow between components, offering simple implementation and fast 
solutions. MPC, on the other hand, generates control commands by 
applying a predictive model over a finite time horizon to optimize the 
current and future behaviors of the system. Recently, MPC has become 
popular for designing control strategies in various building applications 
due to its significant potential for energy cost savings [61,62].

2.2. Subsurface modeling

Thermo-hydraulic modeling of the subsurface for geothermal sys
tems is mostly performed based on the governing equations of porous 
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media [63,64]. Heat transport considering conduction, groundwater 
advection and mechanical dispersion can be expressed as follows: 

∂(CmT)
∂t

= ∇ •
[
km + kdisp∇T

]
− ∇ • (CwqT)+Pt , (8) 

where T is temperature, Cm and km are the volumetric heat capacity and 
thermal conductivity of porous medium, respectively, kdisp is the 
dispersion thermal conductivity, Cw is the volumetric heat capacity of 
groundwater, q is flow flux vector and Pt is the thermal production/sink 
term.

Also, fluid (groundwater) flow equation based on Darcy’s law is 
formulated in Eq. (9): 

S
∂h
∂t

= ∇ • [K∇h] +Pf , (9) 

where h is hydraulic head, S is specific storage coefficient, K is hydraulic 
conductivity tensor and Pf is fluid production/sink term.

While this is the most common approach for representing the sub
surface in applications of shallow geothermal energy systems for 
buildings, there are also models for incorporating solid mechanics and 
chemical reactions, as well as fractured network in subsurface using the 
cubic law [65].

3. Co-simulation approaches and software

This section introduces a concept for categorizing co-simulation 
approaches by model coupling, followed by an analysis of correspond
ing building and subsurface software packages along with presenting 
available coupling options.

Existing simulation approaches specifically for building energy and 
geothermal systems can be grouped into following categories (Fig. 2): 

- Separate simulation
- Co-simulation using single software
- Co-simulation using multiple software (software coupling)

In the separate simulation case, building energy and geothermal 
systems are simulated independently, with the building thermal loads 
serving as boundary conditions for the subsurface simulation (Fig. 2a). 
Real-time analysis of the whole building–geothermal system is not 
feasible, as the building energy and subsurface models are not simulated 
concurrently. In spite of limitations due to the static nature of this 
coupling approach, many studies adopt separate simulation to estimate 
energy performance of geothermal systems and to analyze subsurface 
temperature changes [66–71].

Co-simulation involves dynamic coupling of both building and 
geothermal models throughout whole simulation time. Energy, eco
nomic, environmental, and exergy (4E) analyses, as well as thermal 
comfort assessments, are possible because of a holistic modeling 
approach. Co-simulation also facilitates analyzing geothermal-based 
hybrid energy systems and real-time analysis for designing physics- 
based controllers [72–74]. Given its significant potential, co- 
simulation is increasingly adopted in multi-physics fields for a wide 
range of building energy and geothermal applications [75,76].

Several energy simulation tools include both building and 
geothermal models for co-simulation (e.g., TRNSYS, EnergyPlus and 
Modelica) (Fig. 2b). However, these software, also known as whole- 
building tools, typically adopt a simplified model for the subsurface 

Fig. 2. Simulation of building energy and geothermal systems: (a) separate simulation, (b) co-simulation using a single software and (c) co-simulation using two or 
more specialized software.
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and are limited to specific geothermal systems, mostly BHE (see Ap
pendix A).

Co-simulation can also be performed using multiple software by 
coupling specialized building energy and subsurface tools (Fig. 2c). This 
approach not only maintains all the benefits of whole-building energy 
tools, but also enables detailed subsurface modeling for various 
geothermal systems and therefore facilitates reliable design of the 
overall system based on a high-fidelity model. However, it often comes 
with an increased computational cost and potential errors [77].

3.1. Co-simulation techniques

Fig. 3 illustrates general techniques for co-simulation in a multi- 
physics system (Figs. 2b and c). Models can be coupled using strong 
(governing equations) [78] and weak (discrete variables) interfaces [79] 
(Fig. 3a). In the strong coupling approach, a single solver can be used to 
perform co-simulation. The discrete variable approach, on the other 
hand, requires at least two solvers, which increases computational time 
and numerical errors. Nevertheless, it is the most common approach for 

Fig. 3. Concepts of multi-physics co-simulation: (a) general coupling methods, (b) data exchange techniques and (c) synchronization schemes. Data exchange and 
synchronization apply only to weak coupling.
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co-simulation of building energy with geothermal systems.
Weak coupling requires data exchange between software for co- 

simulation (Fig. 3b). The simplest data exchange approach is to read 
and write text files in the workspace without any direct interaction be
tween software. This method involves creating additional files and 
format change during co-simulation, which increases the overall simu
lation time. Alternatively, data can be exchanged directly between 
software tools using network communication or calling an embedded 
function. Network communication involves establishing a client–server 
architecture in which coupled software exchange information by 
sending and processing requests remotely based on internet protocols. 
Remote procedure call (RPC) and transmission control protocol/internet 
protocol (TCP/IP) are commonly adopted frameworks for enabling data 
exchange in co-simulation [80–82]. In the embedded function approach, 
one software is encapsulated in a master software like a dynamic linked 
component, and data is exchanged by calling a local function. Functional 
mock-up interface (FMI) standard, for instance, can facilitate dynamic 
model exchange between software tools [83]. Application programming 
interface (API) can be used for creating and adapting these linked blocks 
[84]. Although direct data exchange is more advanced than the indirect 
method, it requires complex programming and depends on the exten
sibility potential of the corresponding software. For instance, FMI exists 
for only a few programming languages, may require specific licenses, 
and could contain malicious code, which hinders sharing of simulation 
models across tools. On the other hand, network-based communication 
tools (i.e., RPC and TCP/IP) provide greater flexibility for data exchange 
between various simulators, but they require manual synchronization 
planning, error handling and interface consistency, which can be error- 
prone and time-consuming [85].

A synchronization scheme is also necessary in the case of weak 
coupling (Fig. 3c). Various techniques are available with different run- 
time and accuracies including parallel, sequential and iterative syn
chronization. The parallel scheme reduces co-simulation time by 
enabling simultaneous simulation of the building and subsurface soft
ware, but it increases transmission error per communication (macro) 
time steps due to data extrapolation. Sequential synchronization lowers 
error by interpolating building data for subsurface simulation, but 
inaccuracies remain as building simulation outputs (e.g., injection 
temperature and mass flux) are considered constant during subsurface 
simulation (quasi-dynamic coupling). Iterative synchronization offers 
the least error, comparable to fully-dynamic (strong) coupling, for an 
equal communication time step, with the highest computational cost. 
However, it is possible to achieve more accurate co-simulation results 
through parallel synchronization with small communication time steps, 
under a fixed total simulation time constraint. Therefore, devising an 
optimal coupling approach is essential to balance computational cost 
and accuracy in a co-simulation.

3.2. Software for building energy modeling

Table 1 compares the features of building energy software that are 
common for co-simulation. In the following, the capabilities of each 
software are summarized. Also, a comprehensive list of available 
geothermal models with solution techniques in these tools is provided in 
Appendix A. 

TRNSYS

TRNSYS is a modular simulation environment widely used for hybrid 
energy systems modeling due to an abundant number of built-in com
ponents (so-called Types) [86]. TRNSYS also allows developing new 
modules with special functionality using FORTRAN and C codes, based 
on its suite of tools like TypeStudio. It has advanced and simplified 
options for thermal load calculation along with detailed building en
velope model and daylight illuminance library. It includes several 
models for GHE, BHE, EP and ATES (Appendix A). The main merits of 
TRNSYS are its flexibility, extensibility, and suitability for system-level 
integration studies involving multiple energy technologies [87]. How
ever, traditional load-based controllers and simple regression GHP 
models are limitations of TRNSYS, making it less suited for studies 
requiring advanced control strategies. 

EnergyPlus

EnergyPlus is an open-source, comprehensive software package for 
building envelope modeling, thermal load and daylight illuminance 
calculations [88]. It also provides several advanced semi-analytical 
models for GHE and BHE simulations. EnergyPlus is particularly well 
adapted for detailed building-scale studies where the focus is on enve
lope performance, HVAC operation and energy efficiency analysis 
[89,90]. However, it has constraints in terms of district-scale analysis, 
application of real-world controllers and innovative piping systems for 
simultaneous heating and cooling [91]. Furthermore, it lacks any 
available models for EP and ATES simulations. 

IDA ICE

IDA Indoor Climate and Energy (IDA ICE) is a commercial software 
based on the neutral model format (NMF) language [92]. It adopts 
advanced models for thermal load calculation with daylight extension 
integrated into a comprehensive library of energy systems and plants. 
IDA ICE has shown strong applicability in building–geothermal design 
studies and indoor thermal comfort assessments [93,94]. It can only 
model closed systems GHPs using a regression-based approach, control 
systems focus on building components (e.g., terminal units, windows 
and lights), and is rarely coupled with tools like GenOpt for system 
optimization [95]. 

Modelica

Modelica is an object-oriented, equation-based, modeling language 
with Dymola and OpenModelica serving as commercial and free front- 
ends, respectively [96]. Modelica is widely used for multi-domain 
modeling in various engineering fields [97]. It allows development of 
physics-based control strategies to advance building digitalization by 
simulating real-world controllers based on temperature measurements. 
Numerous coupling and solver options are further notable strengths. 
Limited and inefficient building envelope models and HVAC compo
nents, as well as lack of daylight calculation tools are the main draw
backs for building energy modeling using Modelica, although they are 
some recent efforts for improvements [91]. 

Table 1 
Comparison of building energy modeling software regarding different aspects. Level of capability is indicated by the number of ● symbols: basic (●), moderate (●●) 
and advanced (●●●).

TRNSYS EnergyPlus IDA ICE Modelica Simulink DOE-2 ESP-r COMFIE TESPy

Building ●●● ●●● ●●● ●●○ ●●○ ●●○ ●●○ ●○○ ○○○
Geothermal heat pump ●●○ ●●○ ●○○ ●○○ ●○○ ●○○ ●○○ ○○○ ●●○
System components and control ●●○ ●●○ ●●○ ●●● ●●○ ●○○ ●○○ ●○○ ●●○
Coupling ●●● ●●● ●○○ ●●● ●●● ●○○ ●●○ ●○○ ●●●
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Simulink

There are four well-known toolboxes developed in MATLAB/Simu
link for building performance simulation: CARNOT [98], carnotUIBK 
[99], HAMBASE [100], and ALMABuild [101]. These tools have limited 
functionality in thermal load calculation [44], as well as GHP and en
ergy system modeling. However, discrete and continuous solvers, 
extendibility and abundant coupling options are main advantages of 
these tools linked to the Simulink object-oriented language. Therefore, 
they are well-suited for performing co-simulation and control studies 
[102,103]. 

DOE-2

DOE-2 is a building energy and cost analysis tool [104]. It uses 
surface heat transfer and conduction transfer function for thermal load 
calculation, however it cannot model air heat balance within thermal 
zones [105]. GHPs are modeled using a regression-based approach as 
function of part load ratio, and only few HVAC components (e.g., 
cooling tower, chiller and boiler) can be integrated in building using 
empirical formulae. Also, its solver cannot couple equations; loads, 
systems and plants modules can only be simulated sequentially [106]. 
While it allows customization by user functions, no co-simulation with 
software coupling has been reported [105]. DOE-2 engine is incorpo
rated into several building energy analysis programs due to its 
compatibility with building information modeling (BIM) tools 
[107,108]. 

ESP-r

ESP-r is an open-source package for energy and acoustic performance 
simulation of buildings with basic HVAC and electrical components 
[109]. Although it facilitates modeling of multi-zone buildings with 
inter- and intra-zone airflow, its energy simulation engine is less 
advanced compared to TRNSYS and EnergyPlus [110]. Specifically, ESP- 
r/HOT3000 module can model GHP [111] and STC [112] in buildings. 
Recently, the integration of ESP-r with digital twins and building 
decision-making tools has gained attention [113]. 

COMFIE

COMFIE is primarily designed for fast calculation of thermal loads 
and comfort assessments in multi-zone buildings based on a simplified 
reduced order model (modal analysis), which is widely used in France 
[114]. It has a modular design created with the Delphi object-oriented 
language, which allows implementing new components and coupling 
with specific software that supports the Delphi interface. For instance, 
building energy models in COMFIE are coupled with microclimate and 
optimization tools [115,116]. Nevertheless, it has insufficient capabil
ities for system-level simulation. 

TESPy

TESPy is a Python toolkit designed for performance simulation of 
thermal energy plants [117]. It enables simulating HPs, district heating 
and CHP technologies, yet lacks the capability to model building ther
mal loads or geothermal systems. TESPy can perform thermodynamic 
analysis of HPs and thermo-hydraulic simulation of fluid networks, 
making it ideal for modeling large GHPs with complex piping systems. 
Although it is primarily based on steady-state analysis and single-phase 
behavior, its open-source object-oriented structure allows system ex
tensions and advanced control implementation. However, TESPy is 
prone to convergence challenges, especially at extreme or rapidly 
changing operating conditions [118,119].

3.3. Software for subsurface physical processes

A variety of numerical tools is available for detailed analysis of the 
subsurface. Table 2 lists numerical software commonly applied to 
geothermal systems. Most packages employ finite volume method 
(FVM) or finite element method (FEM) with a graphical user interface 
(GUI) to facilitate simulation, except for MODFLOW and TOUGH that 
adopt finite difference method (FDM) and command-line interface (CLI), 
respectively.

ANSYS Fluent, COMSOL, FEFLOW and TOUGH are the pioneering 
tools for geothermal numerical modeling; however, they are commercial 
products, which makes their codes less transferable for widespread use. 
More recent programs like MATLAB Reservoir Simulation Toolbox 
(MRST), OpenGeoSys (OGS), as well as MODFLOW are free and open- 
source tools, which also possess great potential for subsurface simula
tion. Specifically, MSRT is a research package offering extensive 
computational techniques and physical models with data sets for 
reservoir simulation. OGS is an open-source project written in C++ for 
simulating thermal, hydrological, mechanical, and chemical processes 
which can be solved in a fully coupled manner or in a sequential way. 
Additionally, MODFLOW includes Fortran-based, object-oriented 
models for groundwater flow, as well as multi-species solute transport 
(MT3DMS) [120] and heat flow (SEAWAT) [121].

3.4. Coupling interfaces for different software packages

In general, software can be coupled using built-in or user-developed 
tools. For instance, software tools supporting FMI standard are capable 
of exporting models for use in a corresponding program as embedded 
functions, commonly known as functional mock-up units (FMU), which 
are reported to exist for over 200 tools. Furthermore, Building Controls 
Virtual Test Bed (BCVTB) program allows coupling various software 
including EnergyPlus, Matlab/Simulink, Modelica, ESP-r, TRNSYS, as 
well as FMUs [129]. Similarly, Spawn engine facilitates co-simulation of 
building energy model in EnergyPlus (OpenStudio) with HVAC and 
control libraries in Modelica [91].

In addition to built-in tools, users can couple software through their 
programming interfaces. TRNSYS–FEFLOW [130], Modelica–OGS 
[131], Modelica–TOUGH [132], TESPy–OGS [133], Python–MODFLOW 
[134] and COMFIE–MATLAB [135] were successfully coupled in such 
way. Furthermore, some software tools can be coupled through a third- 
party program. For instance, Dahash et al. [136] coupled COM
SOL–Dymola (Modelica) using both MATLAB and TSIC Suite, while 
Ferroukhi et al. [137] linked TRNSYS and COMSOL using MATLAB 
(middleware).

Fig. 4 depicts available coupling schemes associated with building 
energy and subsurface numerical software. Most subsurface tools, except 
for MATLAB and Fluent which can both function as FMU, have limited 
or no built-in coupling options, while there are various choices for 
coupling building energy tools. Specifically, Modelica, the building 
simulation tool with the highest coupling capability, can only be linked 
to four subsurface numerical tools.

4. Current research and modeling development

This section provides a comprehensive overview on co-simulation 
studies in the literature, focusing on case studies, energy systems and 
research trends.

To identify relevant co-simulation studies, a literature review was 
conducted in Scopus database using three search strings as follows: 

- Building energy (TITLE–ABS–KEY: “building*” OR “office*” OR 
“house*” OR “district heating” OR “district cooling” OR “HVAC*”) 
AND

- Geothermal systems (TITLE–ABS–KEY: “ground heat exchanger*” OR 
“borehole heat exchanger*” OR “energy pile*” OR “foundation pile*” 
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OR “borehole thermal energy storage” OR “aquifer thermal energy 
storage” OR “ground source heat pump*” OR “ground water heat 
pump*” OR “ground* heat pump” OR “geothermal heat pump*”) 
AND

- Co-simulation (ALL: “co-simulation” OR “cosimulation” OR “func
tional mock-up” OR (“coupl*” AND “simulat*”))

The last search was updated in March 2025 without any filtering on 
publication year and language. Scopus search results were then exam
ined in detail to only include studies that have carried out co-simulation 
(as defined in Section 3).

4.1. Co-simulation case studies

A total of 141 co-simulation research articles were identified, pre
senting 242 case studies. Fig. 5 visualizes the global distribution of these 
case studies. Co-simulation of geothermal systems and building energy 
was mostly conducted in Europe (47 %), the USA (23 %) and China (11 
%), while the rest of the world accounts for less than 20 %. Studies 
focused on BHE (65 %), followed by BTES (19 %), GHE (8 %), ATES (3 
%) and EP (2 %). Hybrid geothermal systems such as GHE + BHE, GHE 
+ BTES and BHE + BTES, alongside GWHP, each contribute to less than 
1 % of the research. Over two-thirds of BTES studies were conducted in 
Europe and China, while EP was only investigated in USA [138] and 
Canada [139]. Co-simulation of open geothermal systems was examined 
exclusively in European countries: ATES in Germany [140,141] and the 
Netherlands [142,143], and GWHP in Italy [144]. Moreover, hybrid 
geothermal systems are solely investigated in USA [145], China [47], 
Italy [146,147] and Norway [148].

Fig. 6 summarizes the application of co-simulation studies in the 
building energy sector. Over 80 % of the studies focused on individual 
residential, commercial and institutional buildings, while only 19 
studies (8 %) were performed on district scale (only with closed 
geothermal systems). Some studies analyzed other building types 
including the German Parliament [140], a historical library [149], data 
centers [141], multi-purpose/load sharing buildings [150,151], an earth 
shelter [152] and a municipal building [74]. Geothermal systems are 
mainly used for heating & cooling (73 %), followed by heating-only (21 
%) and cooling-only (6 %) applications, indicating little co-simulation 
research in warm, cooling-dominated regions.

4.2. Energy systems analysis in co-simulation

Fig. 7 outlines hybrid geothermal-based energy systems examined in 
co-simulation studies so far. Moreover, the exact system configurations 
for all case studies are provided in Appendix B. Integrating shallow 
geothermal systems with GHP was the most common approach 
[139,142,153,154]. The performance of BHE was extensively investi
gated with a variety of energy components, such as dual (air + ground) 
source HP (DSHP) [155–158], district heating [93,159], PCM [74,160] 
and hybrid renewable energy systems [161,162].

Most BTES studies involved thermally recharging of BHE using solar 
technologies, also known as solar assisted GSHP (SAGSHP) [163–169], 
or waste heat sources [170,171] to alleviate ground temperature drops. 
Also, BTES was modeled using two independent BHE fields for seasonal 
energy storage [10]. In addition to BHE, EP-based geothermal systems 
were recently considered for modeling BTES [172,173]. Open 
geothermal systems have so far only been integrated with few types of 

Table 2 
Feature comparison of common numerical software for geothermal systems. The following subsurface processes are considered: thermal (T), hydraulic (H), mechanical 
(M) and chemical (C).

Software User interference License Numerical solver Subsurface processes

CLI GUI Commercial Open-source FDM FVM FEM T H M C

Ansys Fluent [122] ○ ● ● ○ ○ ● ○ ● ● ● ○
COMSOL [123] ○ ● ● ○ ○ ○ ● ● ● ● ●
FEFLOW [124] ○ ● ● ○ ○ ○ ● ● ● ○ ●
MRST [125] ○ ● ○ ● ● ● ● ● ● ● ●
OGSa [126] ● ○ ○ ● ○ ○ ● ● ● ● ●
MODFLOWb [127] ○ ● ○ ● ● ○ ○ ● ● ○ ●
TOUGH [128] ● ○ ● ○ ○ ● ○ ● ● ○ ○

a DataExplorer program is developed to provide a GUI for OGS.
b Including MT3DMS and SEAWAT models.

Fig. 4. Available software coupling options for co-simulation in the field of building energy and geothermal systems.
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thermal energy systems including GHP [142,143], STC [144], chiller 
[140] and cooling tower [141]. It is worth noting that most EP and BTES 
studies also modeled a typical BHE case for comparison 
[138,139,161,163,164,166,174].

Fig. 8 gives an overview on the different performance indicators 
commonly applied in co-simulation studies. Techno-economic and 
environmental results of co-simulation studies show a system COP of 4 

± 1, discomfort time of 6 % ± 4 %, payback period of 14 ± 9 years and 
annual CO2 emission savings of 40 % ± 27 %. This implies a wide range 
of system performance, especially for economic and environmental 
metrics, emphasizing that the efficiency and attractiveness of 
geothermal systems are highly dependent on system characteristics and 
climatic conditions. A distinction of geothermal systems performance is 

Fig. 5. Spatial distribution of co-simulation research for various geothermal systems.

Fig. 6. Classification of co-simulation studies by buildings, geothermal systems and energy supply. Heating includes space and/or water heating supply.
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not provided, as it could lead to incorrect conclusions for technology 
comparison due to operation under different systems and climates.

It is also important to note that only a few studies conducted thermal 
comfort assessment for heating and cooling of buildings using 
geothermal systems, either by simply analyzing unmet hours when the 
indoor temperature is outside the set-point comfort range 
[150,163,175–177] or by applying the standard Fanger’s PMV-PPD 
model [147,178–180]. This implies that indoor comfort condition is 
currently not the main focus of the application of co-simulation.

4.3. Research trends in co-simulation

Fig. 9 summarizes the progress of co-simulation in literature, from 
initial feasibility studies to advanced research, categorized into four 
phases: 

First phase (2005–2010)

The first phase involves few simplified feasibility studies on basic 
geothermal systems including GHE, BHE and GWHP with traditional 
building energy tools. For instance, eQUEST and VisualDOE (DOE-2 
based tools) were employed for modeling and performance analysis of 
BHE and GWHP, respectively [144,181]. In this period, only one opti
mization study was found for a limited design space by incorporating co- 
simulation in TRNSYS [182]. 

Second phase (2010–2015)

In the second phase, approaches became more detailed for specific 
geothermal cases. Montagud et al. [183] developed a valid TRNSYS 
model for a real GSHP system installed in a university office building. 

Fig. 7. Integration of geothermal systems with thermal, electrical and thermo-electrical technologies in co-simulation studies.

Fig. 8. Technical, thermal comfort, economic and environmental results of co-simulation studies. The cross and circle symbols represent the mean values and 
outliers, respectively.
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Diersch et al. [130] coupled TRNSYS with FEFLOW for fully discretized 
3D modeling of a BTES system in a co-simulation study. Another design 
study was identified for finding optimal configuration of a hybrid BTES 
+ STC system based on a few TRNSYS co-simulation runs. In a novel 
study, Wang et al. [47] analyzed a hybrid system consisting of both BHE 
and BTES to supply cooling and heating loads, respectively. Addition
ally, a simplified technical analysis on ATES emerged using TRNSYS 
[140]. 

Third phase (2015–2020)

The third stage covers co-simulation for various geothermal tech
nologies in greater detail. For instance, Kwag & Krarti [138] imple
mented a validated EP model for co-simulation in EnergyPlus. Also, 
Bozkaya et al. [142] linked TRNSYS with numerical model of ATES in 
COMSOL. Nord et al. [148] analyzed the feasibility of BTES with a GHE- 
based ventilation system. Moreover, few design studies were conducted 
for GHE [184], BHE [185] and BTES [10,165], primarily in TRNSYS and 
EnergyPlus. 

Fourth phase (2020–2025)

Since 2020, research has progressed to an advanced level. Specif
ically, various building and subsurface tools are coupled for more ac
curate system analysis with multiple software co-simulation 
[131,186,187]. Many hybrid geothermal-based energy systems are 
analyzed and designed using single- and multi-objective optimization 
[188,189]. For instance, Ferrara & Fabrizio [167] used GenOpt opti
mization toolbox for multi-objective design of a SAGSHP system 
developed in TRNSYS using global cost and seasonal performance factor. 
Some research also focused on optimizing control strategies for the 
application of geothermal systems in buildings [190–192]. Recently, 
Hermans et al. [193] showed that MPC results in up to 17 % cost re
ductions for a district-scale GSHP compared to traditional RBC. Ap
pendix C contains a comprehensive presentation of all optimization 
studies with main findings.

5. Software and model usage

A variety of software tools and geothermal models are used in the 
literature for conducting co-simulations (Appendix D). TRNSYS has been 
the primary software for performing co-simulation of building- 
integrated geothermal systems (58 %). Studies predominantly applied 
the duct ground heat storage (DST) model for BHE and BTES simula
tions. However, due to the modeling limitations of DST, some research 
developed new modules [194–196] or combined multiple components 
to simulate a single geothermal system. For instance, DST model was 
integrated with a heat exchanger component (Type 997) to simulate the 
underground pipes connecting the BHE with the GHP [197]. Also, 
Allaerts et al. [10] incorporated both DST and EWS (a transient BHE 
model) modules to simulate cold and warm borefields of a BTES system, 
respectively.

Co-simulation studies with other whole-building tools, except for 
IDA ICE, have mostly adopted g-function based techniques (thermal 
response factors) for BHE and BTES modeling. IDA ICE, however, con
tains FDM models for interacting boreholes [173,198], as well as a 
simplified GHE model assuming a constant or scheduled ground tem
perature for heat collection and disposal [148]. It is worth mentioning 
that software often employ various response factors: steady-state long- 
term g-function (LTG) [185,199], enhanced LTG by extrapolation of g- 
functions to shorter times accounting for transient effects [200,201], as 
well as combination of LTG with short-term g-function (STG) [152,175] 
(see Appendix A). Different approaches are available for determination 
of STG and LTG [202–205].

16 studies conducted co-simulation using multiple software (11 %), 
mainly for employing a high-fidelity subsurface model [130,131,186]. 
However, some studies coupled multiple software to develop advanced 
controllers [206]. For instance, Cucca & Ianakiev [207] imported 
building energy model developed in EnergyPlus into Modelica (Dymola) 
as a FMU to test various control logics for the energy system

Fig. 10 summarizes physical mechanisms accounted for modeling 
closed geothermal systems in co-simulation studies using single and 
multiple software. Single software approaches were solely based on heat 
transport modeling in the subsurface, considering the effects of axial 
heat flux (91 %), thermal interaction (90 %) and geothermal mass for 
transient response (26 %). However, software coupling facilitated 

Fig. 9. Research focus of co-simulation studies in the literature.
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detailed physics subsurface simulation by modeling fluid transport 
[130,131,142,143,186,187,208,209], ground heterogeneity 
[130,131,186,208,209] and groundwater advection 
[130,131,186,187,208]. Only a very few studies modeled underground 
hydronic circuits of geothermal systems in co-simulation studies 
[187,197,208]. This could affect the validity of subsurface models by 
ignoring underground heat losses, especially in large geothermal sys
tems with complex series and parallel piping networks.

Existing co-simulation research on open systems are based on sub
surface models with significant simplifying assumptions. Specifically, 
Ferrari et al. [144] modeled a GWHP with a constant predefined 
groundwater temperature. Also, current ATES studies adopted 2D 
axisymmetric models with thermo-hydraulically independent wells 
[140–143].

6. Challenges of co-simulation

This section presents current challenges in the field of co-simulation 
with a focus on computational issues of software coupling, as well as 
results validation.

6.1. Computational and software coupling issues

Fig. 11 shows coupling approaches adopted in co-simulation studies 
using multiple software. Coupling is primarily conducted using text files 
[132,143,209], which is also the most error-prone and time-consuming 

method, followed by network connections [130,131,210] and 
embedded functions [206,207]. For instance, Bozkaya et al. [142] 
exchanged input/output data between TRNSYS and COMSOL during co- 
simulation using a common database with text files. Adebayo et al. 
[139] developed a user defined function (UDF) in Ansys Fluent to create 
a coupling interface with EnergyPlus. Diersch et al. [130] established 
RPC connection between TRNSYS and FEFLOW, while Randow et al. 
[131] linked Modelica with OGS through TCP/IP. Alaie et al. [211] 
imported the MATLAB code of a BHE model into TRNSYS using Type 
155 as an embedded function. Similarly, Kharbouch et al. [212] used 
BCVTB platform to exchange data between EnergyPlus and MATLAB 
during co-simulation.

Notably, no research so far employed parallel synchronization; only 
one used iterative synchronization [135], while the remaining studies 
applied non-iterative sequential synchronization (Fig. 3c). Furthermore, 
Modelica and TRNSYS have not been coupled with any subsurface tool 
using FMI standard, highlighting the limited number of subsurface tools 
currently offering FMU option. Some robust subsurface tools like 
MODFLOW and MRST have not been used for co-simulation despite 
available coupling options (see Table 2 and Fig. 4). This emphasizes the 
sophistication involved in establishing a coupling scheme between 
software tools.

Table 3 reports the run-time and transmission error of co-simulation 
studies. Annual simulation is carried out within half an hour for semi- 
analytical geothermal models [132,135], but can take over 4 h for 
high-fidelity, fully discretized models [131]. Transmission errors in 
software coupling ranged from 0.2 % to 26 %, depending on the 
communication (macro) time step. Clearly, a short communication 
length reduces data transmission errors, but on the other hand, it leads 
to longer simulation times by requiring more subsurface solves. These 
transmission errors and computation times can impede the extensive use 
of detailed co-simulation with multiple software for model validation 
and system design purposes.

6.2. Validation in co-simulation

Validation involves assessing the model’s accuracy by comparing 
simulation results with actual data to determine how well the model 
represents the real-world system. Validation can be performed graphi
cally or with statistical methods. Graphical methods identify where 
simulation outputs differ from measured values, but they are not able to 
quantify the error as basis for comparison of different simulation results.

Statistical methods, on the other side, can be applied for error 
quantification. Mean relative error (MRE), mean bias error (MBE), root 
mean square error (RMSE) and coefficient of variation of root mean 
square error (CV(RMSE)), are common error metrics for validation 
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Fluid transport

Geothermal mass

Ground heterogeneity

Thermal interaction

Groundwater advection
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Percentage of models considering each mechanism
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Fig. 10. Summary of subsurface modeling fidelity for closed geothermal sys
tems in co-simulation studies with single and multiple software.

Fig. 11. Adopted coupling approaches in existing studies for co-simulation of building energy and geothermal systems.
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purposes, defined in Eq. (10)–(13), respectively: 

MRE =

∑n
i=1(si − mi)/mi

n
, (10) 

MBE =

∑n
i=1(si − mi)
∑n

i=1mi
, (11) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(si − mi)
2

n

√

, (12) 

CV(RMSE) =
RMSE

m
,m =

∑n
i=1mi

n
, (13) 

where n is the number of data points used, and mi and si refer to 
measured and simulated data, respectively.

MRE and MBE report actual data discrepancy, but they can be 
misleading because positive and negative errors may cancel each other 
out (offsetting error). On the other hand, RMSE shows the spread or 
variability of discrepancy without an offsetting error by summing the 
squared differences. Moreover, CV(RMSE) gives a relative measure of 
error for clearer comparison of different scenarios by normalizing RMSE 
based on mean of observed data. Combining graphical methods with 
quantitative error metrics can highlight the points where errors exist, as 
well as their direction and magnitude.

There are several standards for model validation. ASHRAE Guideline 
14–2014 [213] and International Performance Measurements and 
Verification Protocol (IPMVP) [214] are widely used in the literature for 
validation of the whole-building model. Overall, IPMVP sets stricter 
thresholds compared to ASHRAE, especially for data with an hourly 
sampling period (Table 4).

Fig. 12 presents the results of validation efforts in co-simulation 
research using experimental data. A few studies validated their models 
(< 10 %), which were limited to closed systems. All models were re
ported to be well calibrated based on the abovementioned criteria. On 
average, validation studies reported MBE as 4 % ± 2 %, RMSE as 1 ◦C ±
0.2 ◦C and CV(RMSE) as 10 % ± 5 %. However, validation is focused on 
the whole building–geothermal model, by analyzing indoor temperature 
[168,215] or energy consumption [146,216]. Also, graphical error 
analysis showed that significant differences between measured and 
simulated data could occur, mainly because of using steady-state 
geothermal models [168]. For instance, Cho & Mirianhosseinabadi 

observed up to 600 kWh discrepancy between measured and simulated 
monthly electricity consumption [217]. Therefore, great care should be 
taken when using simplified semi-analytical models for geothermal- 
based system design [182].

7. Conclusions and outlook

This review presented the current status of co-simulation between 
building energy and geothermal systems, highlighting modeling ap
proaches, coupling methods, software tools, as well as their application 
in case studies. Considering the increasing interest in the field, it is 
crucial to address the following research gaps and areas for improve
ment to strengthen co-simulation in future studies: 

Geothermal systems

Two-thirds of co-simulations focused on BHE systems, while less than 
5 % investigated energy piles and ATES, despite their high efficiency. 
This is because building energy tools lack built-in packages for modeling 
such sophisticated systems. Hence, it is imperative to develop libraries 
for modeling these efficient geothermal systems, especially in Modelica, 
due to its modular environment and capabilities for designing real-world 
controllers and district-scale simulations. 

Software coupling

Although many tools are available for detailed co-simulation 
through software coupling, only 10 % of studies conducted co- 
simulation using multiple software. This could be due to a lack of 
knowledge about existing tools, as well as the complexity of coupling 
schemes. This study explored various techniques for software coupling, 
including simple data exchange methods by reading and writing text 
files during co-simulation, which can be easily implemented in the 
corresponding software by developing user objects.

Long run-time along with transmission errors are currently the main 
challenges for co-simulation with software coupling. Therefore, 
improved coupling algorithms (synchronization schemes) and software 
options should be devised to reduce these computational issues. Such 
optimized approaches can then be applied to advance co-simulation case 
studies, which will enable reliable performance analysis of geothermal 
systems in building energy applications. 

Model validation

Most validation studies adopted an all-encompassing calibration 
approach for the entire system by applying semi-analytical geothermal 
models in whole-building tools. Such models should only be used for 
initial feasibility studies. A step-by-step validation approach (i.e., 
starting with the subsurface, followed by the building, and then the 
entire system) is a prerequisite for developing an accurate model for 

Table 3 
Reported simulation time and error in co-simulation studies with software coupling.

Software Model type Geothermal system Communication time step (h) Yearly simulation time (min) Transmission error (%) Reference

COMFIE-MATLAB LTG 26 × 26 BHE 0.5 8 N/A [135]
Modelica HSRMa Single BHE 1 19 N/A [132]
Modelica-TOUGH 2D FVM 23
Modelica-FEFLOW MoBTES 18 BHE 2.2b 40 2.0–26.2c [187]

3D FEM 156
Modelica-OGS 3D FEM 3 BHE 1 282 0.17 [131]

6 60 0.23
12 36 0.48
24 24 6.49

a Semi-analytical built-in Modelica package for BHE modeling, as described in Appendix A.
b Average value for different cases changing communication time step from 2 min to 1 day.
c Depending on the coupling variable and strategies for system operation and communication time step control.

Table 4 
Thresholds of different protocols for model validation using hourly and monthly 
data.

Standard CVRSME (%) MBE (%)

Hourly Monthly Hourly Monthly

ASHRAE Guideline 14 ±30 ±15 ±10 ±5
IPMVP ±20 ±15 ±5 ±2
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design purposes.
There are different standards for subsurface model validation, which 

could be employed in calibration efforts [218]. For instance, the German 
Water and Gas Association (DVGW) provides guidelines for ground
water model calibration [219].

This however requires models with detailed representation of the 
subsurface. This can be done by coupling building energy software with 
a subsurface numerical tool or implementing more accurate semi- 
analytical geothermal models in whole-building tools. For instance, 
thermo-hydraulic modeling of underground distribution networks of 
geothermal systems can be done by coupling OGS with TESPy [220]. 
Also, there are high-fidelity semi-analytical models, such as moving 
finite line source (MFLS), accounting for both groundwater advection 
and ground surface effects, which can be incorporated in whole-building 
tools for fast subsurface model validation [221,222]. 

Optimization

Geothermal systems are often designed based on a separate simula
tion approach by specific design tools such as GLHEPro and EED 
incorporating thermal loads obtained from a building energy software. 
Such decoupled approaches cannot ensure indoor thermal comfort and 
are not capable of operation optimization or hybrid geothermal-based 
system design.

20 optimization studies based on a co-simulation approach were 
identified. However, because of high computational costs and lack of 
optimization modules, most studies considered a very limited design 
space, linked whole-building software with optimization tools such as 
GenOpt and MOBO, or used statistical and machine learning methods for 
system optimization based on outputs of a few co-simulation runs.

In this regard, developing a platform-based design (PBD) framework 
[223] for the optimization of geothermal-based systems, considering a 
co-simulation approach, is of decisive importance. Such a framework 
can facilitate the integration of optimal geothermal systems into build
ings across various types and scales.
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Appendix 

A. Summary of available components and modules in building energy software for simulation of geothermal systems along with a brief description. 
Abbreviations: conduction transfer function (CTF), duct ground heat storage (DST), finite cylindrical source (FCS), hybrid step response model 
(HSRM), infinite line source (ILS), long-term g-function (LTG), thermal resistance model (TRM) and thermal resistance–capacitance model (TRCM).

Geothermal 
system

Software Component/library Model Note Ref

GHE TRNSYS Type 997a FDM - straight tubes with variety of flow configurations (parallel, counter flow, 
serpentine, etc.)

- shallow trenches with evenly spaced identical pipes
- modeling variable ground surface boundary, building interaction and distinct soil 

layers

[224]

Type 460b Hypocaust - straight tubes
- air-to-soil GHE
- modeling latent and sensible heat exchange inside the tube, diffusion in soil, 

internal pressure drop and condensed water flow using analytical formulae

[225]

Type 556b TRM - straight tubes
- 2D symmetric model considering conduction in the radial and circumferential 

directions

[196]

EnergyPlus GroundHeatExchanger: 
Surface

Modified CTF - straight tubes
- fast/simplified model for simulating heat rejection using hydronic tubes located 

at very shallow depths (< 1 m)

[226]

Pipe:Underground FDM - straight tubes with parallel flow
- 2D rectangular conduction model with axisymmetric heat transfer near pipes

[226]

PipingSystem: 
Undergroundc

FVM - straight tubes with different flow configurations and trench layouts
- detailed fully 3D model with dual coordinate system
- allowing mesh modification, variable surface boundary conditions and building 

interaction

[226]

GroundHeatExchanger: 
Slinky

LTG - horizontal and vertical slinky tubes with uniform length, equidistant and single 
layer trenches

- modeling slinky tubes as multiple detached rings with g-function technique

[226]

DOE-2 HORIZ-STRAIGHT-LOOP TRM - straight tubes with 6 pre-set tube configurations (single, two- and four- pipe with 
series and parallel flow)

- modeling soil temperature by superposition of undisturbed soil temperature 
(transient cosine function of depth and soil properties) and a sink/source term 
due to heat pulses imposed by GHE

[227]

HORIZ-SLINKY-LOOP TRM - horizontal and vertical slinky tubes with multiple parallel trenches in a single 
ground layer

- modeling slinky tubes with equivalent U-bend heat exchanger

[227,228]

ESP-r H4, HS, SL ILS - straight and slinky tubes with three configurations (two pipe in single layer, two 
pipe in two layer and horizontal slinky)

- modeling based on ILS with daily calculation

[111]

BHE TRNSYS Type 557a, d DST - U-tube BHE with uniform distribution within a cylindrical storage duct
- steady-state model based on the superposition of solutions for local (near 

boreholes) and global (ground storage and losses) heat transfer processes
- only one borehole field per model

[229]

Type 257b Enhanced 
DST

- modified DST code allowing to model two independent borefields [230,231]

Type 281b LTG - U-tube BHE with arbitrary distribution
- steady-state model based on the classical Eskilson’s LTG

[232]

Type 451b EWS - single U-tube BHE
- transient model based on TRCM and ILS

[233]

EnergyPlus GroundHeatExchanger: 
Vertical

LTG + STGe - U-tube BHE with arbitrary distribution
- transient model based on long- and short-term g-function

[226,234]

Modelica UTube TRCM + CTF - single U-tube BHE
- transient model based on TRCM and CTF

[235,236]

HSRM TRCM + LTG - U-tube BHE with parallel distribution
- transient model based on TRCM and long-term g-function (based on uniform heat 

flux approach)

[235,237]

gFunction FCS + ILS +
LTG

- U-tube BHE with arbitrary distribution
- transient model by combining long-term g-functions with finite cylindrical- and 

infinite line source solutions

[238–240]

MoBTES Modified DST - U-tube BHE with arbitrary distribution
- integrating equivalent radii approach and TRCM into DST approach

[241]

IDA ICE Boreholesd FDM - U-tube BHE with arbitrary distribution
- transient model based on 1D heat transfer within and 2D heat conduction outside 

BHE

[242,243]

DOE-2 VERT-WELL-FIELD LTG - U-tube BHE with predefined configurations (single, line, L-shaped, U-shaped and 
rectangle)

- steady-state model based on the classical Eskilson’s LTG

[227,244]

VERT-WELL-NEW Enhanced 
LTG

- U-tube BHE with available configuration (single, line, L-shaped, U-shaped and 
rectangle)

- transient model based on modified Eskilson’s LTG (linear extrapolation of g- 
functions to shorter times)

[227,244]

ESP-r V1 ILS - single U-tube BHE
- transient model based on the ILS with daily calculation

[111]

EP TRNSYS Type 80b TRNVDSTP - U-tube BHE with uniform distribution within a cylindrical storage duct [245]

(continued on next page)
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(continued )

Geothermal 
system 

Software Component/library Model Note Ref

- modified DST by accounting for different ground layers, groundwater flow and 
piping over the ground surface

ATES TRNSYS Type 345b TRNAST - two-well ATES
- 2D axisymmetric model for thermally and hydraulically independent wells 

without groundwater flow

[246]

a In new TRNSYS TESS library v18, Types 548 and 999 were introduced to allow modeling multiple fields/instances of GHE and BHE, respectively, per project.
b Non-standard/user written components.
c The object GroundHeatExchanger:HorizontalTrench inherits the model of PipingSystem:Underground with simpler inputs by sacrificing several features such as mesh 
refinement and modeling trenches with different depth and distance.
d Able to model EP by changing ground boundary conditions.
e Depending on the user input for g-functions, boreholes may be modeled by only LTG.

B. Geothermal-based systems investigated in co-simulation studies. Abbreviations: dual source heat pump (DSHP), electric heat pump (EHP), fuel 
cell (FC), geothermal heat pump (GHP), heat pump (HP), internal combustion engine (ICE), organic Rankine cycle (ORC), phase change material 
(PCM), photovoltaic (PV), photovoltaic thermal (PVT), solar thermal collector (STC), Stirling engine (SE) and wind turbine (WT). 

GHE BHE EP BTES GWHP ATES GHE +
BHE

GHE 
+

BTES

BHE +
BTES

Stand-alone  
[212,247]

Stand-alone [94,248–250] GHP 
[139]

GHP [173] GHP 
+ STC 
[144]

GHP 
[142,143]

GHP +
dedicated 
HP [146]

GHP 
+ STC 
+

boiler 
[148]

GHP +
STC 
[47]

GHP 
[153,251]

GHP [135,149,154,175,176,180– 
183,185,191,193,195,197,198,200,211,215–217,252–265]

GHP +
chiller 
+

boiler 
+ DHW 
heater 
[138]

GHP + STC 
[163–168,174,266–270]

​ GHP +
cooling 
tower 
[141]

GHP +
STC + PV 
[147]

​ GHP +
STC +
gas 
heater 
[145]

GHP + dry 
cooler 
[184,194]

DSHP [155–158] ​ GHP + dry cooler [10] ​ Chiller 
[140]

​ ​ ​

GHP + PV 
[271,272]

GHP + EHP [150] ​ GHP + PVT [189,273] ​ ​ ​ ​ ​

STC +
biomass- 
fired 
heater +
absorption 
chiller +
ORC +
battery 
[196]

GHP + STC [177,199,274–277] ​ GHP + ORC [171] ​ ​ ​ ​ ​

​ GHP + cooling tower [179,275] ​ GHP + thermal ideal 
source [190]

​ ​ ​ ​ ​

​ GHP + boiler [192] ​ GHP + solar chimney +
PVT [278]

​ ​ ​ ​ ​

​ GHP + PCM tank [74,160,279] ​ GHP + STC + ORC [280] ​ ​ ​ ​ ​
​ GHP + dry cooler + district heating [93,159] ​ GHP + STC + PCM tank 

[169]
​ ​ ​ ​ ​

​ GHP + STC + desiccant wheel [281] ​ GHP + PVT + battery 
[172]

​ ​ ​ ​ ​

​ GHP + STC + chillers (vapor compression/absorption) +
cooling tower + auxiliary heatera [282]

​ GHP + PV + PVT +
boiler [283]

​ ​ ​ ​ ​

​ Chiller + cooling tower + dry cooler [206] ​ GHP + diesel furnace +
PV + battery [208]

​ ​ ​ ​ ​

​ STC + chillers (vapor compression/absorption) + cooling 
tower + auxiliary heatera [284]

​ GHP + WT + FC + PVT 
+ battery [188]

​ ​ ​ ​ ​

​ GHP + PV [152,178] ​ STC [130] ​ ​ ​ ​ ​
​ GHP + FC [151] ​ STC + boiler [285] ​ ​ ​ ​ ​
​ GHP + EHP + PV [286] ​ STC + industrial waste 

heat [170]
​ ​ ​ ​ ​

​ GHP + chiller + PV [287] ​ STC + boiler + ICE + SEa 

[288]
​ ​ ​ ​ ​

​ GHP + boiler + PV [289] ​ STC + boiler + PV + ICE 
+ SE + batterya [290]

​ ​ ​ ​ ​

​ GHP + PV + battery [207,291,292] ​ STC + adsorption chiller 
+ cooling tower + boiler 
+ PV + battery [293]

​ ​ ​ ​ ​

(continued on next page)
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(continued )

GHE BHE EP BTES GWHP ATES GHE +
BHE 

GHE 
+

BTES 

BHE +
BTES

​ GHP + WT + battery [294] ​ ​ ​ ​ ​ ​ ​
​ GHP + STC + PV + battery [161] ​ ​ ​ ​ ​ ​ ​
​ GHP + STC + chiller + boiler + PV [295] ​ ​ ​ ​ ​ ​ ​
​ GHP + PV + PVT + electric heater [162] ​ ​ ​ ​ ​ ​ ​
​ GHP + PVT [151,276,296–298] ​ ​ ​ ​ ​ ​ ​

a Various system configurations were compared.

C. List of co-simulation studies with optimization. Abbreviations: area (A), length (L), capacity (C), back-propagation neural network (BPNN), 
Box–Behnken design (BBD), direct ground cooling (DGC), genetic algorithm (GA), life cycle cost (LCC), net present value (NPV), not-considered (NC), 
not-known (N/A), response surface methodology (RSM), seasonal performance factor (SPF) and thermally activated building (TAB).

Software 
(optimization 
tool)

Year Location Building Annual loads 
(MWh)

Geothermal 
system

Design variables Objective 
functions

Optimal system/ 
remarks

Reference

Heating Cooling

TRNSYS 2008 Québec, 
Canada

Residential 7 4 BHE System size LCC DST model: LBHE 
= 80 m, CGHP = 1 
ton. EWS model: 
LBHE = 40 m, 
CGHP = 1 ton.

[182]

TRNSYS 2014 Beijing, China Office N/A N/A BTES Size of BTES and 
STC, flow rates of 
load and source 
sides of GHP

COP The optimal 
system had 180 m 
BTES and 10 m2 

STC. The optimal 
ratio of source to 
load side flow rate 
was around 1.5.

[174]

TRNSYS 2015 Helsinki, 
Finland

Residential 69 1 BTES Size of BTES and 
size and 
configuration of 
STC

Energy 
consumption

The optimal 
system included 
150.5 m BTES 
with 93.6 m2 

glazed flat plate 
collectors.

[165]

TRNSYS 2015 Flanders, 
Belgium

Office 29 69 BTES Size of cold 
boreholes in a 
BTES and 
drycooler

LCC The optimal 
system comprised 
5 and 35 warm 
and cold 
boreholes, 
respectively, and 
a 11.4 kW 
drycooler.

[10]

EnergyPlus/ 
CaRM

2018 Padova, Italy Office ~30 ~50 BHE Layout of borefield 
(L-shape, 
rectangular, U- 
shape)

COP L- and U-shape 
layouts showed 
better thermal 
performance than 
the rectangular 
one.

[185]

TRNSYS 2019 Birmingham, 
USA

Residential N/A N/A GHE Size of GHE Energy 
consumption

LGHE = 600 m [184]

New York 
City, USA

N/A N/A LGHE = 800 m

Orlando, USA N/A N/A LGHE = 400 m
TRNSYS 2019 Naples, Italy District N/A NC BTES Thermal 

conductivity of soil 
and grout, U-pipe 
spacing, heat 
carrier fluid type, 
BTES number and 
connection

Energy 
consumption/ 
CO2 emission/ 
operation cost

6 series- 
connected BTES is 
the optimal 
system. Shank 
spacing and heat 
carrier fluid 
typology have not 
significant impact 
on overall 
performance.

[285]

Modelica 2020 Denver, USA TAB N/A NC BTES MPC control inputs 
(GHP modulation 
signal, ground 
regenerator signal, 
auxiliary heater 
signal)

Operational 
cost

Pumping cost is 
reduced by 10 % 
thanks to optimal 
use of active 
regeneration 
based on long- 
term horizon 
prediction.

[190]

TRNSYS (BPNN 
and GA)

2020 Wuhan, China Office N/A N/A BHE Load and source 
side GHP loops 
temperature 

COP/exergy 
efficiency

Under optimal 
conditions, COP 
and exergy 

[191]

(continued on next page)
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(continued )

Software 
(optimization 
tool) 

Year Location Building Annual loads 
(MWh) 

Geothermal 
system 

Design variables Objective 
functions 

Optimal system/ 
remarks 

Reference

Heating Cooling

differences, load 
side return water 
temperature, load 
side supply and 
source side return 
water 
temperatures and 
supply air 
temperature of 
AHU

efficiency of the 
system can be 
increased by 20.5 
and 77 %, 
respectively.

Modelica 
(TACO)

2020 Denver, USA TAB N/A NC BHE COP model, MPC 
control inputs 
(GHP modulation 
signal, source fluid 
mass flow rate, 
boiler power)

Operational 
cost

A constant COP 
model results in 
abrupt on/off for 
GHP. Accurate 
prediction of COP 
can results in 3 % 
cost reduction.

[192]

TRNSYS 2020 Naples, Italy District N/A NC BTES Configuration of 
plant including 
STC, PV, ICE, SE, 
NGB, WPB, BTES

Energy 
consumption/ 
CO2 emission/ 
operation cost

The optimal 
configuration was 
STC + BTES + ICE 
for all single 
objective 
functions.

[290]

TRNSYS 
(MOBO)

2020 Lukla, Nepal District 796 NC BTES Size of BTES and 
STC

LCC + cost of 
GHG emission

LBTES =

2831–5959 m, 
ASTC = 516–521 
m2

[268]

Dras, India 910 LBTES =

3761–5973 m, 
ASTC = 648–652 
m2

Sivas, Turkey 419 LBTES = 2138 m, 
ASTC = 286 m2

Harbin, China 690 LBTES = 3939 m, 
ASTC = 681 m2

Ulaanbaatar, 
Mongolia

729 LBTES =

3476–6000 m, 
ASTC = 680–693 
m2

Verkhoyansk, 
Russia

1166 LBTES = 6000 m, 
ASTC = 1640 m2

IDA ICE 2022 Gothenburg, 
Sweden

Office 252- 
457a

81-469a BHE Size and layout of 
boreholes and 
plant configuration 
(DGC/GHP/DH)

BHE 
installation 
cost/land area

Borehole length is 
smaller for DGC 
+ DH compared 
to DGC + GHP 
plant.

[159]

EnergyPlus 2022 16 locations in 
California, 
USA

Residential 477- 
3033b

0-2436b BHE Depth and number 
of boreholes

NPV System including 
16 BHE with 6.7 
m depth was 
optimal in most 
regions.

[260]

TRNSYS (JEA) 2023 Jilin, China Office N/A N/A BTES Size of BTES and 
PVT

LCC LBTES = 888 m, 
ASTC = 20 m2

[189]

TRNSYS 
(GenOpt)

2023 Alps, Italy Restaurant 119 NC BTES Number and depth 
of boreholes, size 
of STC and storage 
characteristics

LCC + SPF Optimal design 
had 4 boreholes 
with depth of 350 
m and about 36 
m2 STC. Optimal 
point was mainly 
specified by 
number of 
boreholes.

[167]

TRNSYS (RSM 
and BBD)

2023 Zhengzhou, 
China

Office N/A N/A BTES Size of BTES, PVT, 
WT and FC

Energy 
consumption 
+ COP + LCC

System with 17 
boreholes (1700 
m), 132 m2 PVT, 
20 WT and 12 FC 
was optimal.

[188]

Modelica 2023 Belgium District N/A NC BHE GHP size, 
controller type 
(MPC, RBC)

LCC MPC can reduce 
GHP size by 
10–17 % 
compared to RBC. 
District size and 
heterogeneity 
could have 

[193]

(continued on next page)
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(continued )

Software 
(optimization 
tool) 

Year Location Building Annual loads 
(MWh) 

Geothermal 
system 

Design variables Objective 
functions 

Optimal system/ 
remarks 

Reference

Heating Cooling

conflicting 
impacts on the 
profitability of the 
MPC.

IDA ICE 2023 Gothenburg, 
Sweden

Office 272- 
457a

81-469a BHE Building facade 
thermal 
parameters (walls 
U-value and 
windows G- 
values), plant 
configuration 
(GSHP + DGC or 
GSHP + DH)

LCC DGC + GSHP 
system is more 
profitable for 
buildings with 
balanced thermal 
loads.

[93]

TRNSYS 2023 Shenyang, 
China

Office 188 60 BTES Size of BTES, PVT 
installation angle, 
roof absorptivity

Energy 
performance 
metrics

The optimal 
building should 
have roof 
absorptivity of 
above 0.36, PVT 
tilt angle of 45̊
and as many as 
possible 
boreholes.

[172]

a Depending on the building external structure.
b Depending on the region.

D. Software and geothermal models used in co-simulation studies. Abbreviations: analytical (AN), borehole-to-ground (B2G), conduction transfer 
function (CTF), duct ground heat storage (DST), finite difference method (FDM), finite element method (FEM), finite volume method (FVM), g- 
function (g-func), infinite line source (ILS), quadratic transfer function (QTF), not-known (N/A), predefined temperature (PT) and thermal resistance 
capacitance model (TRCM). 

Software Geothermal system model Reference

GHE BHE EP BTES GWHP ATES

TRNSYS 3D 
FDM 
(Type 
997)

− − − − − [153,184]

2D 
FDM 
(Type 
556)

− − − − − [196,251,271]

AN 
(Type 
460)

− − − − − [247]

3D 
FDM 
(Type 
233)

− − − − − [194]

N/A − − − − − [299]
− DST (Type 

557)
− − − − [149–151,154,157,160,162,178,179,183,191,252– 

259,274–277,279,281,286,291,292,294–298,300]
− DST (Type 

557) + 3D 
FDM (Type 
997)

− − − − [197]

− EWS − − − − [182]
− FVM − − − − [282]
− TRNVDSTP 

(Type 80)
− − − − [265]

− g-func (B2G) − − − − [195]
− N/A − − − − [156,180,284,301]
− DST (Type 

557)
− 3D 

FDM 
(Type 
997)

− − [145]

− DST (Type 
557)

− DST 
(Type 
557)

− − [47]

− − − DST 
(Type 
557)

− − [161,163–167,169,171,172,174,188,189,266–270,273,278,283,285,288,290,293]

(continued on next page)
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(continued )

Software Geothermal system model Reference

GHE BHE EP BTES GWHP ATES 

− − − DST 
(Type 
557) +
EWS

− − [10]

− − − − − 2D 
FDM 
(Type 
345)

[140,141]

EnergyPlus − g-func − − − − [74,152,155,185,199,215–217,260–262,287]
− − g- 

func
− − − [138]

IDA ICE PT − − 2D 
FDM

− − [148]

− 2D FDM − − − − [93,94,159,177,198,248–250,263]
− − − 2D 

FDM
− − [173]

Modelica − g-func − − − − [192,193,289]
− − − g-func − − [170,190,280]
− − − TRCM 

+ CTF
− − [168]

DesignBuildera QTF g-func − − − − [146,147]
− g-func − − − − [264]

Simulink − g-func − − − − [158,175]
− EWS − − − − [176]

DOE-2 − g-func − − − − [200,201]
VisualDOEb − − − − PT − [144]
eQUESTb − g-func − − − − [181,197,201]
ESP-r ILS − − − − − [272]
TRNSYS–MATLAB − g-func − − − − [211]
TRNSYS–FEFLOW − − − 3D FEM − − [130,208]
TRNSYS–COMSOL − − − − − 2D 

FEM
[142,143]

EnergyPlus–Modelica − g-func − − − − [206,207]
EnergyPlus–MATLAB AN − − − − − [212]
EnergyPlus–Ansys 

Fluent
− − FVM − − − [139]

Modelica–TOUGH − 2D FVM − − − − [132,209]
− 3D FVM − − − − [186]

Modelica–FEFLOW − − − 3D FEM − − [187]
Modelica–OGS − 3D FDM − − − − [131,210]
COMFIE–MATLAB − g-func − − − − [135]

a EnergyPlus based tool.
b DOE-2 based tool.

Data availability

No data was used for the research described in the article.
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