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Abstract

Real-world data is often ambiguous; for example,
human annotation produces instances with mul-
tiple conflicting class labels. Partial-label learn-
ing (PLL) aims at training a classifier in this chal-
lenging setting, where each instance is associated
with a set of candidate labels and one correct, but
unknown, class label. A multitude of algorithms
targeting this setting exists and, to enhance their
prediction quality, several extensions that are ap-
plicable across a wide range of PLL methods have
been introduced. While many of these extensions
rely on heuristics, this article proposes a novel
enhancing method that incrementally prunes can-
didate sets using conformal prediction. To work
around the missing labeled validation set, which
is typically required for conformal prediction, we
propose a strategy that alternates between training
a PLL classifier to label the validation set, leverag-
ing these predicted class labels for calibration, and
pruning candidate labels that are not part of the
resulting conformal sets. In this sense, our method
alternates between empirical risk minimization and
candidate set pruning. We establish that our prun-
ing method preserves the conformal validity with
respect to the unknown ground truth. Our extensive
experiments on artificial and real-world data show
that the proposed approach significantly improves
the test set accuracies of several state-of-the-art
PLL classifiers.

1 INTRODUCTION

Real-world data is often noisy and ambiguous. In crowd-
sourcing, for example, different annotators can assign sev-
eral conflicting class labels to the same instance. Other ex-
amples with ambiguous data include web mining (Guillau-

min et al., 2010; Zeng et al., 2013) and audio classification
(Briggs et al., 2012). While such datasets can be manually
cleaned, sanitizing data is costly, especially for large-scale
datasets. Partial-label learning (PLL; Jin and Ghahramani
2002; Lv et al. 2020; Xu et al. 2021; Tian et al. 2024) pro-
vides a principled way of dealing with such conflicting data.
More specifically, in PLL, instances are annotated with sets
of candidate labels of which only one unknown label is
the correct class label. PLL permits training a multi-class
classifier in this weakly-supervised setting.

Many algorithms targeting the PLL problem exist. Recently,
several extensions (Bao et al., 2021, 2022; Wang and Zhang,
2022; Zhang et al., 2022b; Xu et al., 2023) that can be
combined with a wide range of PLL methods have been
proposed, which aim at further improving their predictive
performance. Typically, different PLL classifiers perform
best on different datasets. In this sense, having extensions
that are applicable to a multitude of different PLL algorithms
is extremely beneficial. These extensions include feature
selection and candidate cleaning techniques, which clean
the instance space and candidate label space, respectively.
However, many of these extensions depend on heuristics.

In contrast, this article proposes a novel method that alter-
nates between training a PLL classifier through empirical
risk minimization and pruning the candidate sets using con-
formal prediction, which output sets of possible labels that
contain the correct label with a specified confidence level
(Lei, 2014; Sadinle et al., 2019). In our pruning step, we
remove candidate labels if they are not part of these pre-
dicted conformal sets. This principled way of reducing the
candidate set ambiguity benefits the training of the PLL
classifier when compared to the existing heuristic thresh-
olds. Our extension significantly improves the prediction
quality of several state-of-the-art PLL methods across a va-
riety of datasets and experimental settings. To guarantee
the validity of the conformal classifier used in the pruning
step, one usually requires a labeled validation set for the
calibration of the coverage guarantee. In the PLL setting,
however, ground truth is unavailable. To resolve this seri-
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ous issue, we propose a strategy that trains a PLL classifier,
uses its predictions to label the validation set, calibrates the
conformal sets with the validation set, and prunes candidate
labels that are not part of these conformal sets. We show that
our method preserves the conformal validity with respect to
the unknown ground truth.

Our contributions can be summarized as follows.

• Algorithm. We propose a novel candidate cleaning
method that alternates between training a PLL classi-
fier and pruning the PLL candidate sets. Our algorithm
significantly improves the predictive performance of
several state-of-the-art PLL approaches.

• Experiments. Extensive experiments on artificial and
real-world partially labeled data support our claims.
An ablation study further demonstrates the usefulness
of the proposed strategy. We make our source code and
data openly available at github.com/mathefuchs/
pll-with-conformal-candidate-cleaning.

• Theoretical analysis. We analyze our method and show
that the pruning step yields valid conformal sets.

Structure of the paper. Section 2 establishes our nota-
tions and states the partial-label learning problem, Section 3
discusses related work, Section 4 details our contributions,
and Section 5 shows our experimental setup and results. All
proofs are deferred to Appendix A. Appendix D lists all
hyperparameters used within our experiments in detail and
Appendix E contains additional experiments.

2 NOTATIONS

This section establishes notations used throughout our work
as well as states the partial-label learning problem.

Given a d-dimensional real-valued feature space X = Rd

and a set Y = [k] := {1, . . . , k} of 3 ≤ k ∈ N classes, a
partially-labeled training dataset D = {(xi, si) ∈ X ×2Y :
i ∈ [n]} contains n training instances with associated fea-
ture vectors xi ∈ X and candidate labels si ⊆ Y for each
i ∈ [n]. Their respective ground-truth labels yi ∈ Y are
unknown during training, but yi ∈ si. We split the dataset
D into a training set Dt and a dataset Dv for calibration.

Let Ω = X ×Y ×2Y . Underlying partial-label learning
(PLL) is the probability triplet (Ω,B(Ω),P) with B de-
noting the Borel σ-algebra. We denote by X : Ω → X ,
Y : Ω→ Y , and S : Ω→ 2Y the random variables govern-
ing the occurrence of an instance’s features, ground-truth
label, and its candidate labels, respectively. Their realiza-
tions are denoted by xi, yi, and si. We denote by PX the
marginal and by PXY and PXS the joint distribution of
(X,Y ) and (X,S), respectively. PXY coincides with the
probability measure usually underlying the supervised set-
ting. We denote with Pn := Pn

XS the n-fold product of PXS .

The cumulative distribution function of the random variable
X is FX(t) = PX(X ≤ t) and its empirical counterpart is
F̂X(t) = 1

n

∑n
i=1 1{Xi≤t}, where Xi, . . . , Xn

i.i.d.∼ PX .

Let ℓ : [0, 1]k × Y → R≥0 denote a measurable loss
function, e.g., the log-loss. PLL aims to train a proba-
bilistic classifier f : X → [0, 1]k with

∑k
j=1 fj(x) =

1, for x ∈ X , that minimizes the risk R(f) =

EXS [
∑k

y=1 WX,S,y ℓ(f(X), y)], where WX,S,y are label
weights to control the influence of different loss terms. fy(x)
denotes the y-th entry of the vector f(x) ∈ [0, 1]k.

Common instantiations for WX,S,y include the average
strategy W

(avg)
X,S,y = 1{y∈S}/|S| (Hüllermeier and Beringer,

2005; Cour et al., 2011) and the minimum strategy

W
(min)
X,S,y =

PY |X(Y = y)∑
j∈S PY |X(Y = j)

(1)

(Lv et al., 2020; Feng et al., 2020), which weights the loss
based on the relevancy of each label.

For the minimum strategy in (1), the true risk takes the form

R(f) = EXS

[ k∑
y=1

PY |X(Y = y)∑
j∈S PY |X(Y = j)

ℓ(f(X), y)
]
. (2)

The empirical version of the risk is obtained by substituting
the expectation with a sample mean:

R̂(f) =
1

n

n∑
i=1

k∑
y=1

wijℓ(f(xi), y), (3)

where (xi, si) ∈ D and wij ∈ [0, 1] approximates the label
relevancy W

(min)
X,S,y in (1) using

wij =

{
fj(xi)/

∑
j′∈si

fj′(xi) if j ∈ si,
0 else,

(4)

using a trained classifier f : X → [0, 1]k.

Let H = {f : X → [0, 1]k | f measurable, ∀x ∈
X :

∑k
j=1 fj(x) = 1} denote the hypothesis space,

f∗ = argminf∈H R(f) the true risk minimizer, and f̂ =

argminf∈H R̂(f) the empirical risk minimizer. An opti-
mal multi-class classifier must be of the form f∗

y (x) =
PY |X=x(Y = y) (Yu et al., 2018, Lemma 1). We make
the common assumption that the hypothesis space H is
well-specified, that is, f∗ ∈ H (Tsybakov, 2004; van Er-
ven et al., 2015). The class label of each instance x ∈ X
with the highest probabilistic prediction, that is, ŷx =
argmaxy∈Y f̂y(x), is called pseudo-label.

3 EXISTING WORK

Partial-label learning is one out of many weakly-supervised
learning frameworks (Bylander, 1994; Hady and Schwenker,
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2013; Ishida et al., 2019), where training instances are
annotated with multiple candidate labels. Section 3.1 dis-
cusses related work regarding partial-label learning and
Section 3.2 discusses related work regarding set-valued
prediction-making, which is a natural fit for representing
the ambiguity of the PLL candidate sets.

3.1 PARTIAL-LABEL LEARNING (PLL)

PLL is a weakly-supervised learning problem that has
gained significant attention over the last decades. Most ap-
proaches adapt common supervised classification algorithms
to the PLL setting. Examples include a logistic regression
formulation (Grandvalet, 2002), expectation-maximization
strategies (Jin and Ghahramani, 2002; Liu and Dietterich,
2012), nearest-neighbor methods (Hüllermeier and Beringer,
2005; Zhang and Yu, 2015; Fuchs et al., 2025), support-
vector classifiers (Nguyen and Caruana, 2008; Cour et al.,
2011; Yu and Zhang, 2017), custom stacking and boosting
ensembles (Zhang et al., 2017; Tang and Zhang, 2017; Wu
and Zhang, 2018), and label propagation strategies (Zhang
and Yu, 2015; Zhang et al., 2016; Xu et al., 2019; Wang
et al., 2019; Feng and An, 2019).

Recent state-of-the-art methods (Lv et al., 2020; Feng et al.,
2020; Xu et al., 2021; Zhang et al., 2022a; Wang et al.,
2022; Xu et al., 2023; Tian et al., 2024) minimize variations
of (3) with the weights as in (4) using different deep learning
approaches. The minimum loss reweighs the loss terms to
only include the most likely class labels. Gong et al. (2024)
extend this idea by introducing a smoothing component.

Lv et al. (2020); Feng et al. (2020) iteratively refine the
PLL candidate sets by alternating between training a model
f : X → [0, 1]k using empirical risk minimization on (3)
and updating the label weights wij in (4) using the trained
classifier f . At the beginning, the weights wij are initial-
ized with uniform weights on the respective candidate sets:
wij = 1/|si| if j ∈ si, else 0, which coincides with the
average strategy (Hüllermeier and Beringer, 2005; Cour
et al., 2011). They further show that the resulting classifier
is risk consistent with the Bayes classifier f∗, if the small-
ambiguity-degree condition holds (Cour et al., 2011; Liu and
Dietterich, 2012). The condition requires that there is no in-
correct label ȳ ̸= y, which co-occurs with the correct label y
in a candidate set with a probability of one. Formally, one im-
poses that supx∈X ,y∈Y,ȳ∈Y,ȳ ̸=y PS|X=x,Y=y(ȳ ∈ S) < 1.

Because of the huge variety of PLL methods, there are recent
algorithms that can be combined with any of the above to
improve prediction performance further. Wang and Zhang
(2022) propose a feature augmentation technique based on
class prototypes and Bao et al. (2021, 2022); Zhang et al.
(2022b) propose feature selection strategies for PLL data.
Existing state-of-the-art methods achieve significantly better
accuracies when trained on these modified feature sets.

Xu et al. (2023) propose the method POP, which gradually
removes unlikely class labels from the candidate sets if the
margin between the most likely and the second-most likely
class label exceeds some heuristic threshold. In contrast, our
method gradually removes unlikely class labels based on the
set-valued conformal prediction framework, which provides
a more principled way of cleaning the candidate sets. Our
method significantly improves the test set accuracies of
several state-of-the-art methods including the method POP.

3.2 SET-VALUED PREDICTIONS

Recent methods in supervised multi-class classification (Lei,
2014; Barber et al., 2023; Mozannar et al., 2023; Mao et al.,
2024; Narasimhan et al., 2024) explore training set-valued
predictors C : X → 2Y rather than single-label classifiers
f : X → Y as they offer more flexibility in representing
the uncertainty involved in prediction-making. Set-valued
prediction-making involves a variety of problem formula-
tions including reject options and conformal prediction. Re-
ject options allow one to abstain from individual predictions
if unsure alleviating the cost of misclassifications; see Fuchs
et al. (2025) for a recent study of reject options in PLL.

In conformal prediction, classifiers output sets of class labels
C(x) ⊆ Y . Valid conformal predictors guarantee that

PXY (Y ∈ C(X)) ≥ 1− α, (5)

which means that the correct label is part of a conformal set
with a given error level of at most α ∈ (0, 1). The conformal
predictor C that outputs C(x) = Y , for x ∈ X , is trivially
valid as it covers the correct label with a probability of one.
To avoid this case, one searches for conformal predictors C
with minimal expected cardinality EX |C(X)|, while still
being valid. In the supervised setting, this is captured by the
following optimization problem (Sadinle et al., 2019):

min
C:X→2Y

EX |C(X)|, (6)

subject to PXY (Y ∈ C(X)) ≥ 1− α.

Optimal solutions to (6) are of the form C(x) = {y ∈ Y :
PY |X=x(Y = y) ≥ tα}, for x ∈ X , where tα is set to

tα = sup
{
t ∈ [0, 1] : PXY

[
(x, y) :

PY |X=x(Y = y) ≥ t
]
≥ 1− α

}
, (7)

where we assume that the quantile function of PY |X=x(Y =
y) is continuous at tα.1 In practice, one approximates tα by
computing the empirical distribution function on a hold-out
validation set. One splits the dataset D into a dataset Dt for
model training and Dv for calibrating the conformal predic-
tor C with respect to the confidence level α. The validation
set Dv is assumed to be exchangeable with respect to the
joint distribution PXY .

1See Sadinle et al. (2019, Theorem 1) for the general case.
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Conformal prediction is also a natural fit to partial-label
learning as both deal with sets of class labels. Javanmardi
et al. (2023) examine different ways of achieving valid
conformal sets in the PLL context. However, they do not
propose any new PLL method against which we can com-
pare. Rather, they analyze the properties of different non-
conformity measures in this context. In contrast, our focus
is on constructing new PLL methods and evaluating them.

In the following section, we propose a novel candidate
cleaning method that is based on conformal prediction and
adapts (6) to the PLL setting to yield valid conformal sets.
The optimization problem (6) cannot directly be transferred
to the PLL context as ground truth for the calibration of the
validity property is unavailable. We propose a strategy that
uses the PLL classifier f to label the validation set and then
leverages these pseudo-labels for calibration. We show that
this preserves the validity with respect to the ground truth.

4 PLL WITH CONFORMAL CLEANING

We propose a novel candidate cleaning strategy that iter-
atively cleans the candidate sets of the PLL dataset D by
reducing the candidate set cardinalities. Our method alter-
nates between training a PLL classifier through empirical
risk minimization and pruning the candidate sets based on
conformal prediction. Conformal predictors C : X → 2Y

cover the correct label yi of instance xi with a specified
probability; see (5). This coverage property is calibrated
using a separate validation set of exchangeable PLL data
points that are labeled using the trained PLL algorithm. As
the classifier can give wrong predictions, however, we pro-
pose a novel correction strategy that accounts for possible
misclassifications when calibrating the coverage of the cor-
rect labels against the validation set, which maintains the
validity guarantee. We remove class labels from the candi-
date sets si if they are not part of the predicted conformal set
C(xi) since the correct label yi is in C(xi) with a specified
confidence level.

This procedure iteratively removes noise from incorrect
candidate labels, which benefits the training of the PLL clas-
sifier by having to account for less and less noise in each
training step. Many PLL algorithms (Lv et al., 2020; Xu
et al., 2023; Tian et al., 2024) proceed in a similar manner.
They have in common that they alternate between training a
PLL classifier and using its predictions to refine the candi-
date label weights. This can equivalently be expressed from
an expectation-maximization perspective (Wang et al., 2022,
Section 5). These label propagation strategies are state-of-
the-art in many weakly-supervised learning domains. In
contrast to the existing heuristic update rules, however, our
proposed method provides a principled way of iteratively
cleaning the candidate sets using conformal predictors C.

In the following sections, we discuss our method in detail.

Section 4.1 elaborates on the notion of conformal validity
in the PLL context, Section 4.2 details how to correct for
the ambiguity in PLL compared to the supervised setting,
Section 4.3 outlines the proposed algorithm, Section 4.4
discusses the method’s runtime complexity, and Section 4.5
discusses the placement of our method with respect to re-
lated work.

4.1 PLL VALIDITY

Since we use the conformal predictions C(xi) to clean the
associated candidate sets si, for (xi, si) ∈ D, we require
that si ∩ C(xi) is nonempty with a specified confidence
level as otherwise C(xi) does not contain the unknown
correct label yi. Hence, we adapt (5) to our setting and
consider a conformal classifier C valid with respect to the
PLL candidate sets if it holds that

PXS(S ∩ C(X) ̸= ∅) ≥ 1− α, (8)

for a given error level α ∈ (0, 1). In other words, conformal
predictions C(xi) need to cover the observed ambiguously
labeled candidate sets si with a specified probability. Recall
that C(x) = Y , for x ∈ X , trivially satisfies (8). One
therefore also wants to minimize the cardinalities |C(x)|.
Given the standard PLL assumption that the correct label
yi is within the respective candidate set si, which implies
that PS|X=x,Y=y(y ∈ S) = 1 for any (x, y) ∈ X ×Y ,
an optimal solution to (6) is also valid in the sense of (8).
Theorem 4.1 captures this relationship and underpins our
proposed cleaning method, which we detail in Section 4.3.

Theorem 4.1. Assume that PS|X=x,Y=y(y ∈ S) = 1, for
any (x, y) ∈ X ×Y , and α ∈ (0, 1). Then, an optimal
solution C of (6) satisfies (8): PXS(S∩C(X) ̸= ∅) ≥ 1−α.

4.2 CORRECTING FOR MISCLASSIFICATION

Recall that, in the PLL setting, the ground-truth labels y
are unavailable during training, which hinders the approx-
imation of (7) needed for the solution of (6). Because a
solution to (6) is, however, also desirable in the PLL setting
(Theorem 4.1), we make use of existing PLL algorithms
to generate pseudo-labels. This strategy iteratively learns a
prediction model f : X → [0, 1]k that minimizes the empir-
ical risk in (3). We use the trained model f to predict the
labels on the validation set Dv , which in turn is used for the
calibration of the validity guarantee. Notably, this strategy
results in a valid conformal predictor (Theorem 4.4). We
note that it remains open to establish the minimality of the
resulting conformal sets (analogous to solutions of (6)).

At first glance, it might be counter-intuitive to use the trained
model f to label the validation set and build conformal sets
based on it. However, we want to recall that the used base
PLL classifier is risk consistent (Feng et al., 2020, Theo-
rem 4). With this result and additional mild assumptions,
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we can prove that the PLL classifier’s predictions cannot be
arbitrarily bad (Lemma 4.3) and, leveraging this, that our
conformal predictor is valid for some adapted threshold and
error level (Theorem 4.4).

One of our central assumptions is a Bernstein condition
(Audibert, 2004; Bartlett and Mendelson, 2006; Grünwald
and Mehta, 2020) on the loss difference (Assumption 4.2).
The Bernstein condition is defined as follows.

Assumption 4.2 (Bernstein Condition). Let B > 0, β ∈
(0, 1], f∗ = argminf∈H R(f) the true risk minimizer, and
ℓ : [0, 1]k × Y → R≥0 a loss function. We assume that the
excess loss Lf (x, y) := ℓ(f(x), y) − ℓ(f∗(x), y) satisfies
the (β,B)-Bernstein condition, that is, for f ∈ H,

EXY

[
Lf (X,Y )2

]
≤ B (EXY [Lf (X,Y )])

β .

Assumption 4.2 is frequently made in ERM as it
allows controlling the variance of the resulting
losses, since VarXY [ℓ(f(X), Y ) − ℓ(f∗(X), Y )] ≤
EXY [(ℓ(f(X), Y ) − ℓ(f∗(X), Y ))2]. In other words,
the tail of the distribution of the excess loss must be
well-behaved.

Building upon Assumption 4.2, we prove the results in the
following Lemma 4.3, which are the main building blocks
underlying the proof of our main result.

Lemma 4.3. Let f̂ = argminf∈H R̂(f) the empirical risk
minimizer, f∗ = argminf∈H R(f) the true risk minimizer,
ŷx = argmaxy f̂y(x), y∗x = argmaxy f

∗
y (x), and Assump-

tion 4.2 hold for the excess loss Lf̂ .

(i) Then, for any δ1 ∈ (0, 1) and some constant M1 > 0,
it holds, with Pn-probability at least 1− δ1, that

EXY

[
|f̂Y (X)− f∗

Y (X)|
]
≤M1

(
log(1/δ1)

n

) 1
4β

,

assuming that ℓ : (0, 1]k × Y → R≥0, (p, y) 7→
− log py is the log-loss.

(ii) Also, for any δ2 ∈ (0, 1) and some constant M2 > 0,
it holds, with Pn-probability at least 1− δ2, that

PX [ŷX ̸= y∗X ] ≤M2

(
log(1/δ2)

n

) 1
2β

,

given that, for any x ∈ X and some constant δ5 ∈
[0, 1), PY |X=x (Y ∈ {ŷx, y∗x}) ≥ 1− δ5.

Intuitively, Lemma 4.3 (i) and (ii) state that, under mild
assumptions, a consistent PLL classifier cannot, in expec-
tation, provide arbitrarily bad predictions. More precisely,
Lemma 4.3 (i) states that the expected absolute difference
in the probabilistic predictions of the empirical and true risk
minimizer are upper-bounded. Lemma 4.3 (ii) states that

the probability of class label predictions of the empirical and
true risk minimizer not matching is upper-bounded. Note
that, for n→∞, both upper-bounds tend to zero.

In the following, we comment on the assumptions made.
Lemma 4.3 (i) requires the loss function to be the log-loss
as it is a local proper loss function (Gneiting and Raftery,
2007), that is, ℓ is a proper loss function that only uses
the y-th entry of the vector p in the computation of ℓ(p, y),
which we use in our proof. Lemma 4.3 (ii) requires that
the correct label y∗x and pseudo-label ŷx have some lower-
bound for their conditional probability mass. Intuitively,
the assumption captures that the true class posterior of the
correct label y∗x must have a probability mass that is not
arbitrarily close to zero.

Based on the upper bounds in Lemma 4.3, one can adapt the
threshold and confidence levels in (6) and (7) such that the
conformal guarantee is still valid when using the pseudo-
labels on the validation set. Theorem 4.4 states this result.

Theorem 4.4. Assume the setting of Lemma 4.3 (i) and (ii)
and, for any δ6 ∈ (0, 1), PY |X=x(Y = y∗X) ≥ 1− δ6 with
y∗X = argmaxy′∈Y f∗

y (X). For any α ∈ (0, 1), let

tα = sup{t ∈ [0, 1] | F̂f̂ŷX (X)(t) ≤ α}, (9)

with ŷx = argmaxy∈Y f̂y(x). Then, the conformal set

C(x) = {y ∈ Y | f̂y(x) ≥ tα − δ3} (10)

is valid, that is, PX(y∗X ∈ C(X)) ≥ 1 − α′
n holds with

a Pn-probability of at least 1 − (δ1 + δ2 + δ4), where,
for any δ1, δ2, δ4 ∈ (0, 1) and some constants β ∈ (0, 1],
B, δ3,M1,M2 > 0,

α′
n :=

1

δ3(1− δ6)
M1

(
log(1/δ1)

n

) 1
4β

+M2

(
log(1/δ2)

n

) 1
2β

+ α+

(
log(2/δ4)

2n

) 1
2

.

Intuitively, the tighter the upper bounds in Lemma 4.3 are,
the smaller the necessary correction of the threshold and
confidence level in Theorem 4.4. In other words, loose up-
per bounds in Lemma 4.3 lead to high cardinalities of C(x)
in (10). In contrast, tight upper bounds in Lemma 4.3 lead
to small cardinalities of C(x) in (10). The following Re-
mark 4.5 details how to obtain conformal validity for a fixed
error level.
Remark 4.5. Alternatively, one obtains a fixed error level
α2 ∈ (0, 1) in Theorem 4.4, that is, PX(y∗X ∈ C(X)) ≥
1− α2, by using

α′′ = α2 −
1

δ3(1− δ6)
M1

(
log(1/δ1)

n

) 1
4β

−M2

(
log(1/δ2)

n

) 1
2β

−
(
log(2/δ4)

2n

) 1
2

, (11)
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in the computation of the threshold tα′′ in (9).

While Remark 4.5 follows from a simple substitution, it ex-
plicitly links Theorem 4.4 to the setting usually considered
in conformal prediction: One wants to have a conformal pre-
dictor that is valid regarding some specified confidence level
α2, which Remark 4.5 achieves by using an altered α′′ in
the computation of tα′′ . If α′′ ≤ 0, the resulting conformal
predictor defaults to C(x) = Y , for x ∈ X , which is valid.
In contrast, given some confidence level α, Theorem 4.4
gives a conformal predictor that is valid with the confidence
level α′

n ̸= α.

Theorem 4.4 enables our proposed algorithm. When using
a consistent PLL classifier to label the validation set, a
conformal predictor with a threshold set based on these
pseudo-labels still satisfies a conformal validity guarantee
for an adapted threshold and error level. The subsequent
section discusses our approach.

4.3 PROPOSED ALGORITHM

Based on the conformal predictor in Theorem 4.4, we pro-
pose a novel candidate cleaning strategy that alternates be-
tween training a neural-network-based PLL classifier and
pruning the candidate labels by conformal prediction. We
outline our method in Algorithm 1. In the following, we pro-
vide an overview. Thereafter, we discuss all parts in detail.

First, we randomly partition the dataset D into Dt for train-
ing the model and Dv for calibrating the conformal predic-
tor C based on the current state of the prediction model f
(Line 1). The training set consists of 80% and the validation
set of 20% of all instances. We initialize the model f and
the label weights wij in Lines 3–4. Lines 5–23 contain the
main training loop, which can be divided into four phases:
(1) Updating the predictions on the validation set Dv for
calibration (Lines 6–7), (2) updating the model’s weights
θ through back-propagation (Lines 8–10), (3) cleaning the
candidate sets si based on the predicted conformal sets
C(xi) (Lines 11–20), and (4) updating the label weights
wij (Lines 21–22). We detail these phases in the following.

In phase 1 (Lines 6–7), we use the current model f to
predict the labels on the hold-out validation set Dv, which
are required for the computations in phase 3.

In phase 2 (Lines 8–10), we update the weights θ of the
neural network f by performing back-propagation on the
risk term (3). As our candidate cleaning method is agnostic
to the concrete PLL classifier used, one can also use other
commonly-used PLL strategies instead.

In phase 3 (Lines 11–18), we compute the conformal pre-
dictor C, which is used to clean the candidate sets. After
completing Rwarmup warm-up epochs, we start with our
pruning procedure. In Line 13, we compute αr for the cur-
rent epoch r. While it is desirable to use the exact value

Algorithm 1 Conformal Candidate Cleaning

Input: PLL dataset D = {(xi, si) ∈ X ×2Y : i ∈ [n]};
conformal error level α ∈ (0, 1); number of epochs R;
number of warm-up rounds Rwarmup;

Output: Predictor f : X → [0, 1]k,
∑

y∈Y fy(x) = 1;
1: (Dt,Dv)← Partition D into Dt for model training and
Dv for calibrating the conformal sets;

2: n′ ← |Dt |;
3: (f, θ)← Initialize model f and its weights θ;
4: (wij)i∈[n′],j∈[k] ← 1/|si| if j ∈ si, else 0;

5: for r = 1, . . . , R do
6: ▷ Update predictions on the validation set
7: S ← {maxy∈si fy(xi; θ) : (xi, si) ∈ Dv};
8: ▷ Update f ’s weights θ
9: R̂(f ;w, θ)← − 1

n′

∑n′

i=1

∑k
j=1 wij log fj(xi; θ);

10: Update θ by back-propagation on−∇R̂(f ;w, θ);

11: ▷ Clean candidate sets si
12: if r ≥ Rwarmup then
13: αr ← Estimate the adapted error level in (11);
14: for (xi, si) ∈ Dt do
15: C(xi)← Construct the conformal predictor as

defined in (10) using S and αr;
16: if si ∩ C(xi) ̸= ∅ then
17: si ← si ∩ C(xi);

18: ▷ Update label weights wij

19: (wij)i∈[n′],j∈[k] ←
fj(xi)∑

j′∈si
fj′ (xi)

if j ∈ si, else 0;

20: return predictor f( · ; θ);

of α′′ in (11) in Line 13 of Algorithm 1, its computation is
unfortunately infeasible as the constants B and β, for which
the Bernstein condition (Assumption 4.2) holds, cannot be
known unless the true distribution PXY is known. As the em-
ployed PLL classifiers are consistent, that is, they converge
to the Bayes classifier with enough samples, we approxi-
mate the estimation error terms in (11) by the probability
mass that the PLL classifier allocates on false class labels,
that is, class labels that are not part of the candidate sets
and hence cannot be the correct label. Given (xi, si) ∈ Dt,
we set αr = 1

n′

∑n′

i=1

∑
j /∈si

fj(xi) with n′ = | Dt |. Then,
we compute the conformal prediction sets C(xi) in Line 15
for all training instances (xi, si) ∈ Dt using the empirical
distribution function of the adapted scores on the validation
set; this conformal predictor C is valid by Theorem 4.4. We
use the conformal sets C(xi) to prune the candidate sets
si. If C(xi) and si have a nonempty intersection, which
is implied with high probability by the conformal validity
(Theorem 4.1), we assign si ∩ C(xi) to si in Line 17.

Finally, in phase 4 (Lines 21–22), we update the label
weights wij based on the cleaned candidate sets si with (4).
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Table 1: Average test-set accuracies (± std.) on the real-world datasets (top) and the supervised datasets with added incorrect
candidate labels (bottom). We benchmark our strategy (CONF+) combined with all existing methods.

Method bird-song lost mir-flickr msrc-v2 soccer yahoo-news

PRODEN (2020) 75.55 (± 1.08) 78.94 (± 3.01) 67.05 (± 1.18) 54.33 (± 1.76) 54.18 (± 0.55) 65.25 (± 1.00)
CONF+P. (no) 76.27 (± 0.94) 79.56 (± 1.96) 66.07 (± 1.63) 53.00 (± 2.24) 54.63 (± 0.81) 65.42 (± 0.36)
CONF+PRODEN 76.99 (± 0.90) 80.09 (± 4.40) 66.91 (± 1.57) 54.60 (± 3.42) 54.77 (± 0.84) 65.93 (± 0.42)

CC (2020) 74.49 (± 1.57) 78.23 (± 2.11) 62.39 (± 1.87) 50.96 (± 2.03) 55.28 (± 0.96) 65.03 (± 0.51)
CONF+CC 75.01 (± 1.84) 79.38 (± 1.79) 63.37 (± 0.45) 52.45 (± 3.64) 55.52 (± 0.74) 64.35 (± 0.64)

VALEN (2021) 72.30 (± 1.83) 70.18 (± 3.44) 67.05 (± 1.48) 49.20 (± 1.37) 53.20 (± 0.88) 62.25 (± 0.45)
CONF+VALEN 71.22 (± 1.03) 68.41 (± 2.95) 61.61 (± 2.79) 48.37 (± 2.24) 52.49 (± 1.00) 62.16 (± 0.74)

CAVL (2022) 69.78 (± 3.00) 72.12 (± 1.08) 65.02 (± 1.34) 52.67 (± 2.32) 55.06 (± 0.48) 61.91 (± 0.46)
CONF+CAVL 72.00 (± 1.22) 71.24 (± 3.81) 64.42 (± 0.89) 51.63 (± 5.03) 54.85 (± 0.92) 62.43 (± 0.43)

POP (2023) 75.17 (± 1.04) 77.79 (± 2.11) 67.93 (± 1.44) 53.83 (± 0.69) 55.31 (± 0.71) 65.09 (± 0.64)
CONF+POP 77.58 (± 1.01) 78.41 (± 2.13) 66.21 (± 2.19) 54.82 (± 3.60) 56.49 (± 1.10) 65.25 (± 0.23)

CROSEL (2024) 75.11 (± 1.79) 81.24 (± 3.68) 67.58 (± 1.16) 52.23 (± 2.83) 52.64 (± 1.21) 67.72 (± 0.32)
CONF+CROSEL 77.76 (± 0.50) 81.15 (± 2.57) 65.93 (± 1.94) 54.10 (± 2.75) 54.97 (± 0.65) 67.55 (± 0.22)

Method mnist fmnist kmnist svhn cifar10 cifar100

PRODEN (2020) 87.21 (± 0.83) 71.18 (± 2.95) 59.31 (± 1.22) 83.71 (± 0.37) 86.42 (± 0.39) 61.58 (± 0.20)
CONF+P. (no) 91.74 (± 0.34) 78.38 (± 0.50) 66.88 (± 0.76) 87.31 (± 0.30) 85.39 (± 0.49) 61.50 (± 0.20)
CONF+PRODEN 91.55 (± 0.23) 78.09 (± 0.33) 66.43 (± 0.38) 86.99 (± 0.41) 85.29 (± 0.44) 61.45 (± 0.49)

CC (2020) 86.29 (± 2.18) 66.19 (± 2.77) 58.29 (± 0.32) 83.40 (± 0.42) 85.61 (± 0.27) 60.43 (± 0.53)
CONF+CC 85.20 (± 4.16) 59.75 (± 2.68) 57.07 (± 0.66) 84.32 (± 0.31) 84.10 (± 0.38) 60.49 (± 0.37)

VALEN (2021) 78.91 (± 0.80) 66.53 (± 2.65) 58.48 (± 0.45) 54.87 (± 15.83) 84.83 (± 0.23) 58.67 (± 0.17)
CONF+VALEN 74.20 (± 21.99) 69.09 (± 2.71) 60.95 (± 2.59) 78.31 (± 3.15) 84.35 (± 0.22) 59.57 (± 0.71)

CAVL (2022) 71.11 (± 3.92) 59.85 (± 6.49) 48.15 (± 5.07) 72.57 (± 3.14) 84.00 (± 0.94) 61.97 (± 0.25)
CONF+CAVL 71.86 (± 4.57) 59.54 (± 6.62) 52.14 (± 3.89) 70.53 (± 2.94) 82.82 (± 1.58) 61.79 (± 0.36)

POP (2023) 87.08 (± 0.58) 72.30 (± 2.63) 60.63 (± 1.15) 83.69 (± 0.28) 86.76 (± 0.29) 61.27 (± 0.60)
CONF+POP 91.19 (± 0.29) 79.15 (± 1.23) 67.37 (± 0.28) 85.89 (± 0.48) 85.32 (± 0.38) 61.38 (± 0.30)

CROSEL (2024) 91.84 (± 0.44) 76.34 (± 1.21) 65.55 (± 0.81) 75.95 (± 3.91) 87.32 (± 0.22) 63.69 (± 0.29)
CONF+CROSEL 91.85 (± 0.61) 77.31 (± 0.46) 64.73 (± 1.52) 77.70 (± 3.84) 87.05 (± 0.09) 64.55 (± 0.31)

4.4 RUNTIME COMPLEXITY

The main runtime cost of our cleaning method arises from
the computation of the conformal sets C(xi) in Line 15
of Algorithm 1. Finding the rank of fy(xi) within S can
be done by first sorting S and then using a binary search.
This requires a total runtime of O(Rn log n), as we prune
candidate labels in each epoch and, both, the training set
Dt and validation set Dv have a size of O(n). Note that the
runtime of our method is not dependent on the number of
feature dimensions d as the considered scores S are scalars.

4.5 PLACEMENT REGARDING RELATED WORK

In this section, we provide a brief comparison of our clean-
ing strategy with the one employed by POP (Xu et al.,
2023). POP uses level sets, which we sketch in the fol-

lowing. Let e > 0, (xi, si) ∈ D, the predicted label
ŷxi

= argmaxj∈si fj(xi), and the second-most likely la-
bel ôxi

= argmaxj∈si,j ̸=ŷ fj(xi). The level sets are of the
form L(e) = {x ∈ X : fŷx(x)− fôx(x) ≥ e} to gradually
clean the candidate labels for instances in L(e). In other
words, one is confident in the predicted labels if the dis-
tance between the most likely and second-most likely label
exceeds some margin. Given x ∈ L(e), this implies

fŷx
(x)− fôx(x) ≥ e

(†)⇔ 2fŷx
(x)− 1 +

∑
j′∈Y \{ŷx,ôx}

fj′(x)︸ ︷︷ ︸
≤1

≥ e

⇒ fŷx
(x) ≥ 1

2
e, (12)
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with (†) holding as fôx(x) = 1−
∑

j′∈Y \{ŷx,ôx} fj′(x)−
fŷx

(x). POP gradually decreases the value of e to enlarge
the reliable region L(e), which in turn requires fŷx

(x) ≥ 1
2e

by (12). In contrast, in Theorem 4.4, we find an appropriate
value t such that fŷx(x) ≥ t holds with a specified prob-
ability. The conformal predictor C can therefore also be
interpreted as a level set. However, our approach satisfies
the conformal validity guarantee.

5 EXPERIMENTS

Section 5.1 lists all PLL methods that we compare against,
Section 5.2 summarizes the experimental setup, and Sec-
tion 5.3 shows our results.

5.1 ALGORITHMS FOR COMPARISON

In our experiments, we benchmark six state-of-the-art PLL
methods. These are PRODEN (Lv et al., 2020), CC (Feng
et al., 2020), VALEN (Xu et al., 2021), CAVL (Zhang et al.,
2022a), POP (Xu et al., 2023), and CROSEL (Tian et al.,
2024). For each dataset, we use the same base models across
all approaches. For the colored-image datasets, we use a
ResNet-9 architecture (He et al., 2016). Else, we use a stan-
dard d-300-300-300-k MLP (Werbos, 1974). We train all
models from scratch. An in-depth overview of all hyperpa-
rameters is in Appendix D. Appendix E contains additional
experiments, including the use of the pre-trained BLIP-2
model (Li et al., 2023) on the vision datasets.

5.2 EXPERIMENTAL SETUP

Data. Using the standard PLL experimentation protocol
(Lv et al., 2020; Zhang et al., 2022a; Tian et al., 2024), we
perform experiments on real-world PLL datasets and on su-
pervised datasets with artificially added incorrect candidate
labels. To report averages and standard deviations, we repeat
all experiments five times with different seeds. For the super-
vised multi-class datasets, we use mnist (LeCun et al., 1999),
fmnist (Xiao et al., 2018), kmnist (Clanuwat et al., 2018),
cifar10 (Krizhevsky, 2009), cifar100 (Krizhevsky, 2009),
and svhn (Netzer et al., 2011). Regarding the real-world PLL
datasets, we use bird-song (Briggs et al., 2012), lost (Cour
et al., 2011), mir-flickr (Huiskes and Lew, 2008), msrc-v2
(Liu and Dietterich, 2012), soccer (Zeng et al., 2013), and
yahoo-news (Guillaumin et al., 2010). An overview of the
dataset characteristics is in Appendix D.

Candidate generation. As is common in related work,
we use two kinds of candidate label generation methods to
augment labeled multi-class data with partial labels: Uni-
form (Hüllermeier and Beringer, 2005; Liu and Dietterich,
2012) and instance-dependent (Xu et al., 2021). For cifar10
and cifar100, we use the uniform generation strategy as

Table 2: Number of significant differences compared to all 6
methods on all 12 datasets using a paired t-test (level 5%).

Comparison vs. all others Wins Ties Losses

PRODEN (2020) 26 36 10
CONF+PRODEN (no correction) 37 24 11
CONF+PRODEN 44 21 7

CC (2020) 17 36 19
CONF+CC 19 28 25

VALEN (2021) 3 31 38
CONF+VALEN 4 26 42

CAVL (2022) 8 28 36
CONF+CAVL 5 29 38

POP (2023) 27 38 7
CONF+POP 44 22 6

CROSEL (2024) 36 29 7
CONF+CROSEL 49 19 4

in Wang et al. (2022) and the instance-dependent strategy
for all other datasets. For adding instance-dependent can-
didate labels, we first train a supervised MLP classifier
g : X → [0, 1]k. Then, given an instance x ∈ X with cor-
rect label y ∈ Y , we add the incorrect label ȳ ∈ Y \{y}
to the candidate set s with a binomial flipping probability
of ξȳ(x) = gȳ(x)/maxy′∈Y \{y} gy′(x). For cifar10, we
use a constant flipping probability of ξȳ(x) = 0.1. In the
cifar100 dataset, all class labels Y are partitioned into 20
meta-categories (for example, aquatic mammals consisting
of the labels beaver, dolphin, otter, seal, and whale) and we
use a constant flipping probability of ξȳ(x) = 0.1 if ȳ and
y belong to the same meta-category, else we set ξȳ(x) = 0.

5.3 RESULTS

Predictive performance. Table 1 presents the average
test-set accuracies for all competitors on all datasets. We
benchmark our conformal candidate cleaning technique
combined with all approaches in Section 5.1, which is
marked by CONF+METHOD. An overview of significant
differences is in Table 2. There, we compare the respective
method to all the other approaches. All significance tests
use a paired student t-test with a confidence level of 5%.

The approaches CONF+PRODEN, CONF+POP, and
CONF+CROSEL that combine the respective approaches
with our candidate cleaning strategy win most often
(Table 2). Conformal candidate cleaning makes PRODEN
win 18 more direct comparisons, POP win 17 more direct
comparisons, and CROSEL win 13 more direct comparisons
advancing the state-of-the-art prediction performance.
These methods significantly benefit from our pruning.
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The approaches CC, VALEN, and CAVL yield similar perfor-
mances when combined with conformal candidate cleaning.
For VALEN and CAVL, we attribute this to the fact that their
methods already use pseudo-labeling internally, that is, they
treat the most likely label as the possible correct label, which
diminishes the positive effect of pruning candidates.

Ablation study. Additionally, we perform an ablation ex-
periment regarding our correction method proposed in The-
orem 4.4. The approach CONF+PRODEN (no correction)
uses conformal predictions based on the labels provided by
the PLL classifier without our proposed correction method,
which is equivalent to a fixed αr. Table 2 shows that, while
CONF+PRODEN (no correction) is already a significant im-
provement over PRODEN, our PLL correction strategy im-
proves performance even further by incorporating the pos-
sible approximation error of the trained classifier. We limit
our ablation study to PRODEN due to runtime constraints.

Our experiments show that the proposed method yields sig-
nificant improvements over a wide range of existing PLL
models (PRODEN, POP, and CROSEL) and advances the
state-of-the-art prediction performance with the method
CONF+CROSEL.
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A PROOFS

This section collects our proofs. Section A.1 contains the proof of Theorem 4.1, Section A.2 that of Lemma 4.3, and
Section A.3 that of Theorem 4.4.

A.1 PROOF OF THEOREM 4.1

Let C be an optimal solution of (6). Then, we have

PXS(S ∩ C(X) ̸= ∅) = 1− PXS(S ∩ C(X) = ∅) = 1− PXS(∀y ∈ S, y /∈ C(X)) ≥ 1− PXS(∃y ∈ S, y /∈ C(X))

(a)
= 1−

∑
y∈Y

P(Y = y, y ∈ S, y /∈ C(X)) = 1− P(Y ∈ S, Y /∈ C(X))

(b)
= 1−

∫
X ×Y

PS|X=x,Y=y(y ∈ S, y /∈ C(x)) dPXY (x, y)

(c)
= 1−

∫
X ×Y

PS|X=x,Y=y(y ∈ S)︸ ︷︷ ︸
(d)
=1

PS|X=x,Y=y,y∈S(y /∈ C(x)) dPXY (x, y)

= 1−
∫
X ×Y

PS|X=x,Y=y,y∈S(y /∈ C(x)) dPXY (x, y)

(e)
= 1−

∫
X ×Y

PS|X=x,Y=y(y /∈ C(x)) dPXY (x, y)

(f)
= 1−

∫
X ×Y

1{y/∈C(x)} dPXY (x, y)

= 1− PXY (Y /∈ C(X)) = PXY (Y ∈ C(X))
(g)

≥ 1− α,

where (a) is implied by the law of total probability holding for the discrete Y taking mutually exclusive values in y ∈ Y , (b)
holds by the tower rule, (c) holds by the chain rule of conditional probability, (d) holds as PS|X=x,Y=y(y ∈ S) = 1 for
any (x, y) ∈ X ×Y , (e) holds by independence, (f) holds as PS|X=x,Y=y(y /∈ C(x)) is either one if y /∈ C(x) or zero if
y ∈ C(x), and (g) holds by our imposed assumption.

A.2 PROOF OF LEMMA 4.3

We prove parts (i) and (ii) separately in the following.
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Proof of (i). To proof the result, we first show that for any f̂ , one has the expectation bound

EXY

[∣∣∣f̂Y (X)− f∗
Y (X)

∣∣∣] ≤ λ
√
B

2
1
2β

(
R(f̂)−R(f∗)

) 1
2β

, (13)

for some constants β ∈ (0, 1] and B, λ > 0. We then apply a known result (recalled in Theorem C.4) to obtain the stated
concentration inequality. The details are as follows.

To prove (13), notice that

EXY

[∣∣∣f̂Y (X)− f∗
Y (X)

∣∣∣] = ((EXY

[∣∣∣f̂Y (X)− f∗
Y (X)

∣∣∣])2) 1
2 (a)

≤
(
EXY

[∣∣∣f̂Y (X)− f∗
Y (X)

∣∣∣2]) 1
2

(b)

≤ λ

(
EXY

[∣∣∣ℓ(f̂(X), Y )− ℓ(f∗(X), Y )
∣∣∣2]) 1

2

= λ

(
EXY

[(
ℓ(f̂(X), Y )− ℓ(f∗(X), Y )

)2]) 1
2

(c)

≤ λ
√
B
(
EXY

[
ℓ(f̂(X), Y )− ℓ(f∗(X), Y )

]) 1
2β (d)

= λ
√
B
(
EXY

[
ℓ(f̂(X), Y )

]
− EXY [ℓ(f

∗(X), Y )]
) 1

2β

(e)
= λ
√
B

1

2
1
2β

(
R(f̂)−R(f∗)

) 1
2β

,

using the following observations. (a) is implied by Jensen’s inequality. Next, we note that z 7→ − log(z) satisfies the
λ-bi-Lipschitz condition on [ϵ, 1] (Lemma B.1), implying that∣∣∣f̂Y (X)− f∗

Y (X)
∣∣∣ ≤ λ

∣∣∣− log
(
f̂Y (X)

)
− (− log (f∗

Y (X)))
∣∣∣ = ∣∣∣ℓ(f̂(X), Y

)
− ℓ (f∗(X), Y )

∣∣∣ , (14)

where we used the definition of ℓ for the equality. Using (14) together with the monotonicity of the L2-norm yields (b).
(c) holds by the assumed (β,B)-Bernstein condition. The linearity of expectations gives (d) and an identity recalled in
Theorem C.3 yields (e).

Now, to obtain the probabilistic bound, we observe that

Pn

(
EXY

[
|f̂Y (X)− f∗

Y (X)|
]
≤M1

(
log(1/δ1)

n

) 1
4β
)

(13)
≥ Pn

(
λ
√
B

1

2
1
2β

(
R(f̂)−R(f∗)

) 1
2β ≤M1

(
log(1/δ1)

n

) 1
4β
)

(a)
= Pn

(
λ

2
β B

1
β
1

2

(
R(f̂)−R(f∗)

)
≤M1

(
log(1/δ1)

n

) 1
2

)
(b)

≥ 1− δ1.

In (a), we notice that both sides of the inequality are nonnegative and apply the function z 7→ z2/β , which is monotonically
increasing on R+. We conclude the proof of part (i) with an application of Theorem C.4 in (b), where we let M1 = Mλ

2
β B

1
β 1

2
(with M defined in the external result).

Proof of (ii). The proof of the lemma proceeds in three steps. In step 1, we will show that

EXY

[
1{argmaxj∈Y f̂j(X)̸=argmaxj∈Y f∗

j (X)}

]
≤ 1

1− δ5
EXY

[(
1{argmaxj∈Y f̂j(x)̸=y} − 1{argmaxj∈Y f∗

j (x)̸=y}

)2]
,

which will allow us to obtain, in step 2, that for some constants β ∈ (0, 1], B > 0 and δ5 ∈ [0, 1), one has

PX

[
argmax

j∈Y
f̂j(X) ̸= argmax

j∈Y
f∗
j (X)

]
≤ B

1− δ5

(
R(f̂)−R(f∗)

)β
. (15)

The result will then follow by an application of Theorem C.4, which we elaborate in step 3. The details are as follows.

Step 1. Note that we have

1
(a)

≤ 1

1− δ5
PY |X=x (Y ∈ {ŷx, y∗x})

(b)

≤ 1

1− δ5

∑
y∈{ŷx,y∗

x}

PY |X=x (Y = y) , (16)
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with the assumption used in (a) and a union bound implying (b).

To conclude the first step, we obtain

EXY

[
1{argmaxj∈Y f̂j(X)̸=argmaxj∈Y f∗

j (X)}

]
(a)

≤ 1

1− δ5
EX

 ∑
y∈{y∗

X ,ŷX}

PY |X(Y = y)1{ŷX ̸=y∗
X}


(b)
=

1

1− δ5
EX

 ∑
y∈{y∗

X ,ŷX}

PY |X(Y = y)(1{ŷX ̸=y} − 1{y∗
X ̸=y})

2


(c)

≤ 1

1− δ5
EX

∑
y∈Y

PY |X(Y = y)(1{ŷX ̸=y} − 1{y∗
X ̸=y})

2


(d)
=

1

1− δ5
EXY

[(
1{argmaxj∈Y f̂j(x)̸=y} − 1{argmaxj∈Y f∗

j (x)̸=y}

)2]
, (17)

where (a) is implied by (16) and the indicator function being nonnegative. For (b), we must show that 1{ŷx ̸=y∗
x} =

(1{ŷx ̸=y} − 1{y∗
x ̸=y})

2 for any (fixed) x ∈ X and y ∈ {ŷx, y∗x}; it suffices to check the three cases.

• If y = ŷx = y∗x, then 0 = 0,

• if ŷx ̸= y∗x and y = ŷx, then 1 = 1, and

• if ŷx = y∗x and y ̸= ŷx, then 1 = 1.

In (c), we add nonnegative terms and (d) holds by the definition of the expectation.

Step 2. We relax the l.h.s. in (15) to

PX

[
argmax

j∈Y
f̂j(X) ̸= argmax

j∈Y
f∗
j (X)

]
(a)
= EX

[
1{argmaxj∈Y f̂j(X)̸=argmaxj∈Y f∗

j (X)}

]
(b)
= EXY

[
1{argmaxj∈Y f̂j(X)̸=argmaxj∈Y f∗

j (X)}

]
(c)

≤ 1

1− δ5
EXY

[
(1{argmaxj∈Y f̂j(X)̸=Y } − 1{argmaxj∈Y f∗

j (X)̸=Y })
2
]

(d)
=

1

1− δ5
EXY

[
(ℓ(f̂(X), Y )− ℓ(f∗(X), Y ))2

] (e)

≤ B

1− δ5

(
R(f̂)−R(f∗)

)β
,

obtaining the r.h.s. and establishing (15). The details are as follows. In (a), we use that a probability can be written as the
expectation of an indicator function. We notice in (b) that the integrand does not depend on Y . Regarding (c), with ŷx, y

∗
x

defined as in the statement, we use (17) obtained in step 1. Defining ℓ : [0, 1]k → R≥0, (p, y) 7→ 1{argmaxy′∈Y py′ ̸=y} as
the usual 0-1-loss yields (d) and the (β,B)-Bernstein condition gives (e).

Step 3. It remains to obtain the probabilistic bound. We have that

Pn

(
PX

[
argmax

j∈Y
f̂j(X) ̸= argmax

j∈Y
f∗
j (X)

]
≤M2

(
log(1/δ2)

n

) 1
2β
)

(15)
≥ Pn

(
B

1− δ5

(
R(f̂)−R(f∗)

)β
≤M2

(
log(1/δ2)

n

) 1
2β
)

(a)
= Pn

((
B

1− δ5

) 1
β (

R(f̂)−R(f∗)
)
≤M

1
β

2

(
log(1/δ2)

n

) 1
2

)
(b)

≥ 1− δ2,

where we apply the monotonically increasing z 7→ z1/β in (a). In (b), we set M
1
β

2 = M
(

B
1−δ5

) 1
β

and apply Theorem C.4
(with M given there). This concludes the proof of (ii).

1350



A.3 PROOF OF THEOREM 4.4

To obtain the statement, we first show that one has the following decomposition. For any α ∈ (0, 1) and some δ3 ∈ (0, 1),

PX

[
f∗
y∗
X
(X) ≥ tα − δ3

]
≥ PX

[
f∗
y∗
X
(X) ≥ f̂y∗

X
(X)− δ3

]
︸ ︷︷ ︸

=:t1

+PX

[
f̂y∗

X
(X) = f̂ŷX

(X)
]

︸ ︷︷ ︸
=:t2

+PX

[
f̂ŷX

(X) ≥ tα

]
︸ ︷︷ ︸

=:t3

−2. (18)

We will then obtain lower bounds on the individual terms t1, t2, and t3, and show that their combination implies the stated
result.

Decomposition. Let A1 = {X : f∗
y∗
X
(X) ≥ f̂y∗

X
(X)− δ3}, A2 = {X : f̂y∗

X
(X) = f̂ŷX

(X)}, A3 = {X : f̂ŷX
(X) ≥ tα},

and B = {X : f∗
y∗
X
(X) ≥ tα − δ3}. Using these definitions, we obtain that

PX

[
f∗
y∗
X
(X) ≥ tα − δ3

]
(a)
= PX [B]

(b)

≥ PX [A1 ∩A2 ∩A3]
(c)
= 1− PX [(A1 ∩A2 ∩A3)

c]
(d)
= 1− PX [Ac

1 ∪Ac
2 ∪Ac

3]

(e)

≥ 1− PX [Ac
1]− PX [Ac

2]− PX [Ac
2]

(f)
= 1− (1− PX [A1])− (1− PX [A2])− (1− PX [A3])

(g)
= PX [A1]︸ ︷︷ ︸

=t1

+PX [A2]︸ ︷︷ ︸
=t2

+PX [A3]︸ ︷︷ ︸
=t3

−2, (19)

with the following details. (a) is by the preceeding definition of the B set. For (b), we have to show that B ⊇ A1 ∩A2 ∩A3,
which implies that PX [B] ≥ PX [A1 ∩A2 ∩A3]. Let x ∈ A1 ∩A2 ∩A3, then

f∗
y∗
x
(x) ≥ f̂y∗

x
(x)− δ3 = f̂ŷx(x)− δ3 ≥ tα − δ3 =⇒ f∗

y∗
x
(x) ≥ tα − δ3.

Therefore, x ∈ B, proving (b). (c) considers complementary events and De Morgan’s laws yield (d). In (e), we use the
inclusion-exclusion principle, where we ignore a few positive terms to obtain the inequality. Considering complementary
events gives (f) and cancellations yield (g). This proves (18).

Term t1. To obtain a bound on the first term, we obtain an expectation bound, which together with Markov’s inequality and
Lemma 4.3 (i) will give the result. The expectation bound is

EX

[
|f̂y∗

X
(X)− f∗

y∗
X
(X)|

] (a)

≤ EX

[PY |X(Y = y∗X)

1− δ6
|f̂y∗

X
(X)− f∗

y∗
X
(X)|

]
(b)

≤ 1

1− δ6
EX

[∑
y∈Y

PY |X(Y = y) |f̂y(X)− f∗
y (X)|

]
(c)
=

1

1− δ6
EXY

[
|f̂Y (X)− f∗

Y (X)|
]
, (20)

with (a) implied by the assumption PY |X(Y = y∗X) ≥ 1 − δ6 guaranteeing that 1 ≤ PY |X(Y=y∗
X)

1−δ6
. In (b), we use that

y∗X ∈ Y and that all terms in the sum are nonnegative. Using a property of the expectation of a joint distribution yields (c).

Next, Markov’s inequality (recalled in Lemma C.5) implies that

PX

[
|f̂y∗

X
(X)− f∗

y∗
X
(X)| ≥ δ3

] C.5
≤ 1

δ3
EX

[
|f̂y∗

X
(X)− f∗

y∗
X
(X)|

] (20)
≤ 1

δ3(1− δ6)
EXY

[
|f̂Y (X)− f∗

Y (X)|
]

. (21)
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Finally, we have that

Pn

[
PX

[
f∗
y∗
X
(X) ≥ f̂y∗

X
(X)− δ3

]
≥ 1− 1

δ3(1− δ6)
M1

(
log(1/δ1)

n

) 1
4β
]

(a)
= Pn

[
PX

[
f̂y∗

X
(X)− f∗

y∗
X
(X) ≤ δ3

]
≥ 1− 1

δ3(1− δ6)
M1

(
log(1/δ1)

n

) 1
4β
]

(b)

≥ Pn

[
PX

[∣∣∣f̂y∗
X
(X)− f∗

y∗
X
(X)

∣∣∣ ≤ δ3

]
≥ 1− 1

δ3(1− δ6)
M1

(
log(1/δ1)

n

) 1
4β
]

(c)

≥ Pn

[
1− PX

[∣∣∣f̂y∗
X
(X)− f∗

y∗
X
(X)

∣∣∣ ≤ δ3

]
≤ 1

δ3(1− δ6)
M1

(
log(1/δ1)

n

) 1
4β
]

(d)

≥ Pn

[
PX

[∣∣∣f̂y∗
X
(X)− f∗

y∗
X
(X)

∣∣∣ > δ3

]
≤ 1

δ3(1− δ6)
M1

(
log(1/δ1)

n

) 1
4β
]

(21)
≥ Pn

[
1

δ3(1− δ6)
EXY

[
|f̂Y (X)− f∗

Y (X)|
]
≤ 1

δ3(1− δ6)
M1

(
log(1/δ1)

n

) 1
4β
]

(e)

≥ Pn

[
EXY

[
|f̂Y (X)− f∗

Y (X)|
]
≤M1

(
log(1/δ1)

n

) 1
4β
]

(f)

≥ 1− δ1, (22)

where we rearrange the l.h.s. of the inequality in (a). In (b), we consider the absolute value, decreasing the overall probability.
In (c), we subtract 1 on both sides and multiply by −1. In (d), we consider the complement of the event. In (e), we simplify
and Lemma 4.3(i) yields (f).

Term t2. The observation PX

[
f̂y∗

X
(X) = f̂ŷX

(X)
]
≥ PX [y∗X = ŷX ] implies that

Pn

[
PX

[
f̂y∗

X
(X) = f̂ŷX

(X)
]
≥ 1−M2

(
log(1/δ2)

n

) 1
2β
]

(a)

≥ Pn

[
PX [y∗X = ŷX ] ≥ 1−M2

(
log(1/δ2)

n

) 1
2β
]

(b)
= Pn

[
PX [y∗X ̸= ŷX ] ≤M2

(
log(1/δ2)

n

) 1
2β
]

(c)

≥ 1− δ2, (23)

where (a) holds by the preceding observation. In (b), we subtract 1 on both sides, multiply by −1, and consider the
complement of the l.h.s. Inequality (c) was shown in Lemma 4.3(ii).

Term t3. For bounding the third term, we use the well-known Dvoretzky-Kiefer-Wolfowitz inequality (recalled in Theo-
rem C.1) In particular, we have

Pn

[
PX [f̂ŷX

(X) ≥ tα] ≥ 1−

(
α+

√
log(2/δ4)

2n

)]
(a)
= Pn

[
1− Ff̂ŷX (X)(tα) ≥ 1−

(
α+

√
log(2/δ4)

2n

)]
(b)
= Pn

[
Ff̂ŷX (X)(tα)− α ≤

√
log(2/δ4)

2n

]
(c)

≥ Pn

[
Ff̂ŷX (X)(tα)− F̂f̂ŷX (X)(tα) ≤

√
log(2/δ4)

2n

]
(d)

≥ Pn

[
sup
tα

∣∣∣Ff̂ŷX (X)(tα)− F̂f̂ŷX (X)(tα)
∣∣∣ (e)≤ √ log(2/δ4)

2n

]
(e)

≥ 1− δ4, (24)

where (a) holds as

PX [f̂ŷX
(X) ≥ tα] = 1− PX [f̂ŷX

(X) ≤ tα] = 1− Ff̂ŷX (X)(tα).

We rearrange in (b). For obtaining (c), we observe that F̂f̂ŷX (X)(tα) ≤ α. In (d), we consider the supremum, reducing the
probability as the inequality becomes more strict. Theorem C.1 gives (e).
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Combination of t1, t2, and t3. The desired result is obtained by combining the intermediate results using that

Pn[PX [y∗X ∈ C(X)] ≥ 1− α′
n]

(19a)
= Pn[PX [B] ≥ 1− α′

n]
(19)
≥ Pn[PX [A1] + PX [A2] + PX [A3]− 2 ≥ 1− α′

n]

(a)

≥ 1− (δ1 + δ2 + δ4),

where we use a union bound in (a) and the results obtained in (22), (23), and (24); further, we observe that(
1− 1

δ3(1− δ6)
M1

(
log(1/δ1)

n

) 1
4β
)

+

(
1−M2

(
log(1/δ2)

n

) 1
2β
)

+

(
1− α−

√
log(2/δ4)

2n

)
− 2

= 1−

(
1

δ3(1− δ6)
M1

(
log(1/δ1)

n

) 1
4β

+M2

(
log(1/δ2)

n

) 1
2β

+ α+

√
log(2/δ4)

2n

)
= 1− α′

n.

B AUXILIARY RESULTS

This section collects our auxiliary results.

Lemma B.1. Let ε ∈ (0, 1) and f : [ε, 1] → [0,− log ε], z 7→ − log z. Then, f is 1
ε -bi-Lipschitz, that is, for any

x1, x2 ∈ [ε, 1], it holds that ε|x1 − x2| ≤ |f(x1)− f(x2)| ≤ 1
ε |x1 − x2|.

Proof. f is continuous on [ε, 1] and differentiable on (ε, 1). Hence, by the mean value theorem, for any x1, x2 ∈ [ε, 1], there
exists ξ ∈ (x1, x2) such that

|f(x1)− f(x2)| = |x1 − x2| |f ′(ξ)| .

Using that |f ′(ξ)| = 1
ξ satisfies ε ≤ f ′(ξ) ≤ 1

ε as ε ≤ ξ ≤ 1 yields the stated stated claim.

C EXTERNAL RESULTS

This section briefly summarizes external results that are necessary to prove our theorems. Theorem C.1 states the Dvoretzky-
Kiefer-Wolfowitz inequality, Assumption C.2 describes the candidate generation model used in Theorem C.3, which relates
the PLL risk (2) to the risk in the supervised setting. Theorem C.4 provides the estimation-error bound on which we build in
our Lemma 4.3. We recall Markov’s inequality in Lemma C.5.

Theorem C.1 (Dvoretzky et al. 1956; Naaman 2021, Dvoretzky-Kiefer-Wolfowitz Inequality). Let (Ω,F ,P) be a proba-

bility space and X,X1, . . . , Xn
i.i.d.∼ P real-valued random variables on Ω. Then, for any δ ∈ (0, 1),

PX

(
sup
x∈R

∣∣∣F̂X(x)− FX(x)
∣∣∣ ≤√ log(2/δ)

2n

)
≥ 1− δ,

with F̂X(x) = 1
n

∑n
i=1 1{Xi≤x} and FX(x) = P(X ≤ x).

Assumption C.2 (Feng et al. 2020, Eq. (5)). In the PLL setting (Section 2), assume that PXS and PXY have Lebesgue
densities pXS and pXY , respectively, pS|X,Y (S) = pS|Y (S), and the candidate generation model is of the form

pXS(X,S) =

k∑
y=1

pS|Y=y(S)pXY (X,Y = y), with pS|Y=y(S) =

{
1

2k−1−1
if y ∈ S,

0 else.

The following theorem collects an identity by Feng et al. (2020).

Theorem C.3 (Feng et al. 2020, Eq. (6), (7), and (8)). Let Assumption C.2 hold, R(f) as in (2), and the true risk of the
supervised classification setting Rsup(f) := EXY [ℓ(f(X), Y )]. Then, Rsup(f) =

1
2R(f).
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Table 3: Overview of dataset characteristics grouped into real-world partially labeled datasets (top) and supervised multi-class
classification datasets with added candidate labels (bottom).

Dataset #Instances n #Features d #Classes k Avg. candidates

bird-song 4 966 38 12 2.146
lost 1 122 108 14 2.216
mir-flickr 2 778 1 536 12 2.756
msrc-v2 1 755 48 22 3.149
soccer 17 271 279 158 2.095
yahoo-news 22 762 163 203 1.915

mnist 70 000 784 10 6.304
fmnist 70 000 784 10 5.953
kmnist 70 000 784 10 6.342
svhn 99 289 3 072 10 4.878
cifar10 60 000 3 072 10 1.900
cifar100 60 000 3 072 100 1.399

Theorem C.4 (Feng et al. 2020, Theorem 4). Let ℓ : [0, 1]k × Y → [0,M ] be a bounded and λ-Lipschitz loss function
in the first argument (λ > 0), that is, supy∈Y |ℓ(p, y) − ℓ(q, y)| ≤ λ∥p − q∥2 for p,q ∈ [0, 1]k. Further, let H =

{f : X → [0, 1]k | f measurable, ∀x ∈ X :
∑k

j=1 fj(x) = 1}, f∗ = argminf∈H R(f) be the true risk minimizer and

f̂ = argminf∈H R̂(f) be the empirical risk minimizer of the risks in (2) and (3), respectively. Then, for any δ ∈ (0, 1),
with Pn-probability of at least 1− δ,

R(f̂)−R(f∗) ≤ 4
√
2λ

k∑
y=1

Rn(Hy) + C

√
log(2/δ)

2n
,

where Rn(Hy) is the empirical Rademacher complexity ofHy := {fy | f ∈ H} and some constant C > 0. Further, using
that Rn(Hy) ≤ CH/

√
n for some constants CH,M > 0, it holds with the same probability that

R(f̂)−R(f∗) ≤M

√
log(1/δ)

n
.

Lemma C.5 (Markov inequality). For a real-valued random variable X with probability distribution P and a > 0, it holds
that

P (|X| ≥ a) ≤ E (|X|)
a

.

D ADDITIONAL SETUP

In our experiments, we consider twelve datasets of which Table 3 summarizes the characteristics. As mentioned in Section 5.1,
we consider six state-of-the-art PLL approaches and our novel candidate cleaning technique. We choose their parameters as
recommended by the respective authors.

• PRODEN (Lv et al., 2020): For a fair comparison, we use the same base models for each particular dataset. For the
colored-image datasets, we use a ResNet-9 architecture (He et al., 2016). For all other image and non-image datasets,
we use a standard d-300-300-300-k MLP (Werbos, 1974) with batch normalization (Ioffe and Szegedy, 2015) and
ReLU activations (Glorot et al., 2011). We choose the Adam optimizer for training over a total of 200 epochs and use
the one-cycle learning rate scheduler (Smith and Topin, 2019). Also, we use mini-batched training with a batch size
of 16 for the small-scale datasets (less than 5000 samples) and of 256 for the large-scale datasets (more than 5000
samples). This balances training duration and predictive quality.

• CC (Feng et al., 2020): We use the same base models and training procedures as mentioned above for PRODEN.
Otherwise, there are no additional hyperparameters for CC.
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Table 4: Average test-set accuracies (± std.) on the real-world datasets. We benchmark our strategy (CONF+) as well as the
cleaning method CLSP combined with all existing methods.

Method bird-song lost mir-flickr msrc-v2 soccer yahoo-news

PRODEN (2020) 75.55 (± 1.08) 78.94 (± 3.01) 67.05 (± 1.18) 54.33 (± 1.76) 54.18 (± 0.55) 65.25 (± 1.00)
CLSP+PRODEN 74.61 (± 0.84) 61.95 (± 2.80) 60.53 (± 2.95) 51.74 (± 1.77) 31.93 (± 29.15) 50.92 (± 0.66)
CONF+P. (no) 76.27 (± 0.94) 79.56 (± 1.96) 66.07 (± 1.63) 53.00 (± 2.24) 54.63 (± 0.81) 65.42 (± 0.36)
CONF+PRODEN 76.99 (± 0.90) 80.09 (± 4.40) 66.91 (± 1.57) 54.60 (± 3.42) 54.77 (± 0.84) 65.93 (± 0.42)

CC (2020) 74.49 (± 1.57) 78.23 (± 2.11) 62.39 (± 1.87) 50.96 (± 2.03) 55.28 (± 0.96) 65.03 (± 0.51)
CLSP+CC 74.37 (± 0.91) 60.88 (± 3.71) 59.79 (± 2.29) 49.64 (± 2.06) 53.71 (± 0.99) 49.89 (± 0.30)
CONF+CC 75.01 (± 1.84) 79.38 (± 1.79) 63.37 (± 0.45) 52.45 (± 3.64) 55.52 (± 0.74) 64.35 (± 0.64)

VALEN (2021) 72.30 (± 1.83) 70.18 (± 3.44) 67.05 (± 1.48) 49.20 (± 1.37) 53.20 (± 0.88) 62.25 (± 0.45)
CLSP+VALEN 74.95 (± 0.27) 59.03 (± 2.67) 60.11 (± 1.95) 49.92 (± 1.80) 53.31 (± 0.84) 49.50 (± 0.76)
CONF+VALEN 71.22 (± 1.03) 68.41 (± 2.95) 61.61 (± 2.79) 48.37 (± 2.24) 52.49 (± 1.00) 62.16 (± 0.74)

CAVL (2022) 69.78 (± 3.00) 72.12 (± 1.08) 65.02 (± 1.34) 52.67 (± 2.32) 55.06 (± 0.48) 61.91 (± 0.46)
CLSP+CAVL 73.13 (± 1.23) 58.76 (± 1.75) 59.86 (± 2.92) 48.65 (± 2.31) 53.48 (± 0.76) 49.48 (± 0.37)
CONF+CAVL 72.00 (± 1.22) 71.24 (± 3.81) 64.42 (± 0.89) 51.63 (± 5.03) 54.85 (± 0.92) 62.43 (± 0.43)

POP (2023) 75.17 (± 1.04) 77.79 (± 2.11) 67.93 (± 1.44) 53.83 (± 0.69) 55.31 (± 0.71) 65.09 (± 0.64)
CLSP+POP 74.25 (± 0.89) 60.18 (± 2.48) 59.61 (± 1.84) 50.58 (± 1.47) 32.08 (± 29.29) 50.77 (± 0.42)
CONF+POP 77.58 (± 1.01) 78.41 (± 2.13) 66.21 (± 2.19) 54.82 (± 3.60) 56.49 (± 1.10) 65.25 (± 0.23)

CROSEL (2024) 75.11 (± 1.79) 81.24 (± 3.68) 67.58 (± 1.16) 52.23 (± 2.83) 52.64 (± 1.21) 67.72 (± 0.32)
CLSP+CROSEL 76.53 (± 1.34) 63.72 (± 2.23) 59.75 (± 2.79) 51.29 (± 1.69) 52.24 (± 0.84) 53.53 (± 0.93)
CONF+CROSEL 77.76 (± 0.50) 81.15 (± 2.57) 65.93 (± 1.94) 54.10 (± 2.75) 54.97 (± 0.65) 67.55 (± 0.22)

• VALEN (Xu et al., 2021): We use the same base models and training procedures as mentioned above for PRODEN.
Additionally, we use ten warm-up epochs and the three nearest neighbors to calculate the adjacency matrix.

• CAVL (Zhang et al., 2022a): We use the same base models and training procedures as mentioned above for PRODEN.
Otherwise, there are no additional hyperparameters for CAVL.

• POP (Xu et al., 2023): We use the same base models and training procedures as mentioned above for PRODEN. Also,
we set e0 = 0.001, eend = 0.04, and es = 0.001. We abstain from using the data augmentations discussed in the paper
for a fair comparison.

• CROSEL (Tian et al., 2024): We use the same base models and training procedures as mentioned above for PRODEN.
We use 10 warm-up epochs using CC and λcr = 2. We abstain from using the data augmentations discussed in the
paper for a fair comparison.

• CONF+Other method (our proposed approach): Our conformal candidate cleaning technique uses the same base models
and training procedures as mentioned above for PRODEN. We use Rwarmup = 10 warm-up epochs, a validation set size
of 20%, and αr = 1

n′

∑n′

i=1

∑
j /∈si

fj(xi). Otherwise, we use one of the given PLL classifiers for prediction-making.

We have implemented all approaches in PYTHON using the PYTORCH library. Running all experiments requires approx-
imately three days on a machine with 48 cores and one NVIDIA GeForce RTX 4090. All our source code and data is
available at github.com/mathefuchs/pll-with-conformal-candidate-cleaning.

E ADDITIONAL EXPERIMENTS

In addition to our cleaning method (CONF), we also benchmark the existing cleaning method CLSP (He et al., 2024) on
all datasets in Table 4, 5, and 6, similar to the experiments in Section 5. Instead of training a ResNet-9 base model from
scratch as done in Section 5.1, we use the pre-trained BLIP-2 model (Li et al., 2023) for the experiments in Table 5 below.
We repeat all experiments five times and report means and standard deviations.

We observe that the CLSP models perform well on the image datasets (e.g., cifar100) but poorly on the real-world tabular
PLL datasets shown in Table 4. We attribute this to the fact that CLSP relies on the latent representation of large-scale vision
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Table 5: Average test-set accuracies (± std.) on the supervised datasets with added incorrect candidate labels. We benchmark
our strategy (CONF) as well as the cleaning method CLSP combined with all existing methods. We use the pre-trained
BLIP-2 model for all results in this table.

Method mnist fmnist kmnist cifar10 cifar100

PRODEN 87.21 (± 0.83) 71.18 (± 2.95) 59.31 (± 1.22) 99.07 (± 0.05) 90.51 (± 0.18)
CLSP+PRODEN 85.91 (± 2.42) 72.11 (± 2.81) 62.61 (± 1.00) 99.03 (± 0.07) 90.31 (± 0.13)
CONF+P. (no correction) 91.74 (± 0.34) 78.38 (± 0.50) 66.88 (± 0.76) 99.03 (± 0.04) 91.16 (± 0.10)
CONF+PRODEN 91.55 (± 0.23) 78.09 (± 0.33) 66.43 (± 0.38) 99.03 (± 0.04) 91.16 (± 0.10)

CC 86.29 (± 2.18) 66.19 (± 2.77) 58.29 (± 0.32) 99.07 (± 0.05) 73.43 (± 1.40)
CLSP+CC 85.46 (± 1.93) 71.37 (± 2.34) 61.37 (± 1.09) 99.03 (± 0.06) 89.00 (± 1.56)
CONF+CC 85.20 (± 4.16) 59.75 (± 2.68) 57.07 (± 0.66) 99.04 (± 0.03) 71.45 (± 0.94)

VALEN 78.91 (± 0.80) 66.53 (± 2.65) 58.48 (± 0.45) 92.17 (± 0.54) 67.24 (± 2.49)
CLSP+VALEN 84.72 (± 3.10) 68.84 (± 1.49) 60.76 (± 0.76) 98.17 (± 0.17) 84.53 (± 1.23)
CONF+VALEN 74.20 (± 21.99) 69.09 (± 2.71) 60.95 (± 2.59) 42.63 (± 19.92) 60.44 (± 1.91)

CAVL 71.11 (± 3.92) 59.85 (± 6.49) 48.15 (± 5.07) 41.78 (± 21.40) 31.95 (± 1.80)
CLSP+CAVL 83.72 (± 3.57) 67.38 (± 2.59) 62.06 (± 2.12) 87.34 (± 12.71) 68.02 (± 1.96)
CONF+CAVL 71.86 (± 4.57) 59.54 (± 6.62) 52.14 (± 3.89) 29.97 (± 15.73) 37.34 (± 2.59)

POP 87.08 (± 0.58) 72.30 (± 2.63) 60.63 (± 1.15) 99.06 (± 0.04) 90.50 (± 0.21)
CLSP+POP 85.43 (± 2.60) 72.05 (± 2.41) 62.49 (± 0.90) 99.04 (± 0.07) 90.37 (± 0.06)
CONF+POP 91.19 (± 0.29) 79.15 (± 1.23) 67.37 (± 0.28) 99.05 (± 0.04) 91.12 (± 0.09)

CROSEL 91.84 (± 0.44) 76.34 (± 1.21) 65.55 (± 0.81) 99.07 (± 0.02) 75.86 (± 2.26)
CLSP+CROSEL 91.70 (± 0.62) 74.42 (± 1.02) 67.93 (± 1.07) 99.08 (± 0.02) 88.80 (± 0.85)
CONF+CROSEL 91.85 (± 0.61) 77.31 (± 0.46) 64.73 (± 1.52) 99.07 (± 0.03) 77.26 (± 0.98)

Table 6: Number of significant differences aggregated from Table 4 and 6 using a paired t-test (level 5%).

Comparison vs. all others Wins Ties Losses

PRODEN 27 37 8
CLSP+PRODEN 18 27 27
CONF+PRODEN (no correction) 41 25 6
CONF+PRODEN 50 20 2

CC 18 39 15
CLSP+CC 18 22 32
CONF+CC 22 30 20

VALEN 5 30 37
CLSP+VALEN 17 15 40
CONF+VALEN 5 24 43

CAVL 5 26 41
CLSP+CAVL 9 19 44
CONF+CAVL 4 26 42

POP 29 39 4
CLSP+POP 17 23 32
CONF+POP 49 22 1

CROSEL 30 33 9
CLSP+CROSEL 25 15 32
CONF+CROSEL 44 22 6
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models. In contrast, our method CONF gives strong results on, both, real-world and image data. This hypothesis is supported
by Table 6: The approaches CONF+PRODEN, CONF+POP, and CONF+CROSEL that combine the respective approaches
with our candidate cleaning strategy win most frequently.
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